CN107462173A - Micromotion platform displacement measurement method and system based on micro-vision - Google Patents
Micromotion platform displacement measurement method and system based on micro-vision Download PDFInfo
- Publication number
- CN107462173A CN107462173A CN201710874305.9A CN201710874305A CN107462173A CN 107462173 A CN107462173 A CN 107462173A CN 201710874305 A CN201710874305 A CN 201710874305A CN 107462173 A CN107462173 A CN 107462173A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- micro
- mtd
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 46
- 238000000691 measurement method Methods 0.000 title claims description 10
- 239000002245 particle Substances 0.000 claims abstract description 80
- 238000005259 measurement Methods 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 238000003384 imaging method Methods 0.000 claims abstract description 13
- 238000005457 optimization Methods 0.000 claims abstract description 12
- 230000003287 optical effect Effects 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 claims 12
- 238000012804 iterative process Methods 0.000 claims 4
- 238000009434 installation Methods 0.000 claims 2
- IAPHXJRHXBQDQJ-ODLOZXJASA-N jacobine Natural products O=C1[C@@]2([C@H](C)O2)C[C@H](C)[C@](O)(C)C(=O)OCC=2[C@H]3N(CC=2)CC[C@H]3O1 IAPHXJRHXBQDQJ-ODLOZXJASA-N 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 13
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000010845 search algorithm Methods 0.000 abstract description 2
- 230000000007 visual effect Effects 0.000 abstract 1
- 239000003550 marker Substances 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Image Analysis (AREA)
Abstract
本发明公开基于显微视觉的微动平台位移测量方法及系统,步骤:图像序列采集:通过微视觉系统采集一组图片序列;粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;最佳匹配位置获取:在以粗匹配位置为中心,利用全搜索块匹配算法在小邻域内搜索,获得最佳匹配位置;微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。本发明利用改进的粒子群算法和全区域搜索算法相结合,减少了计算资源消耗,实现了快速匹配与位移测量;该方法相对于已有微位移测量技术,测量设备成本低、精度高、可用于测量面内双自由度的微动系统。
The invention discloses a method and system for measuring the displacement of a micro-moving platform based on micro-vision. The steps include: image sequence acquisition: a group of image sequences are collected through a micro-vision system; coarse matching position acquisition: using an improved particle swarm optimization algorithm to rapidly search in the entire search domain Search to obtain the rough matching position of the image block; obtain the best matching position: use the full search block matching algorithm to search in a small neighborhood with the rough matching position as the center; obtain the best matching position; calculate the displacement of the micro-motion platform: according to the The visual system imaging model establishes the image Jacobian matrix, and converts the displacement corresponding to the best matching position in the image space into the actual displacement of the micro-motion platform. The invention combines the improved particle swarm algorithm and the whole area search algorithm, reduces the consumption of computing resources, and realizes fast matching and displacement measurement; compared with the existing micro-displacement measurement technology, the method has low cost of measurement equipment, high precision, and available A micro-motion system with two degrees of freedom in the measurement plane.
Description
技术领域technical field
本发明涉及基于显微视觉的微动平台位移测量方法及系统。The invention relates to a method and system for measuring the displacement of a micro-motion platform based on microscopic vision.
背景技术Background technique
现代科学技术正迅速向微小、超精密领域快速发展。微米、纳米技术的兴起,已经引发了制造、信息、材料、生物、医疗和国防等领域的重大变革。同时,微纳技术的发展也对超精密测量技术提出了更高的要求。由于非接触光学测量方法具有测量精度高、响应速度快、测量自由度多等优点从而在微纳领域得到了广泛的应用。目前,国内外的研究主要集中在计算机微视觉测量、频闪显微测量、激光多勒普测量、显微干涉测量等。其中,计算机微视觉测量是利用微视觉系统,通过对微视觉图像中运动矢量的分析,从而判断微动系统中运动部分位移情况,该系统成本较低,可测量自由度较多。但是,显微视觉中图像处理往往采用普通的图像块匹配法或者图像特征匹配估计微动平台位移,因而效率较低,难以满足测量系统的快速响应要求。Modern science and technology are rapidly developing towards the small and ultra-precision fields. The rise of micron and nanotechnology has triggered major changes in the fields of manufacturing, information, materials, biology, medical treatment and national defense. At the same time, the development of micro-nano technology also puts forward higher requirements for ultra-precision measurement technology. Due to the advantages of high measurement accuracy, fast response speed, and many measurement degrees of freedom, non-contact optical measurement methods have been widely used in the micro-nano field. At present, research at home and abroad mainly focuses on computer micro-vision measurement, stroboscopic micro-measurement, laser Doppler measurement, micro-interferometry, etc. Among them, the computer micro-vision measurement uses the micro-vision system to judge the displacement of the moving part in the micro-motion system through the analysis of the motion vector in the micro-vision image. However, image processing in microscopic vision often uses the ordinary image block matching method or image feature matching to estimate the displacement of the micro-motion platform, so the efficiency is low, and it is difficult to meet the rapid response requirements of the measurement system.
发明内容Contents of the invention
针对上述现有技术及存在的问题,本发明的目的是提供基于显微视觉的微动平台位移测量方法及系统,可直接应用于微动平台测量,解决当前微纳操控平台测量中的技术问题。In view of the above-mentioned prior art and existing problems, the purpose of the present invention is to provide a method and system for measuring the displacement of a micro-motion platform based on microscopic vision, which can be directly applied to the measurement of a micro-motion platform, and solve the technical problems in the current micro-nano control platform measurement .
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
基于显微视觉的微动平台位移测量方法,步骤如下:The method of measuring the displacement of the micro-motion platform based on microscopic vision, the steps are as follows:
步骤(1):图像序列采集:通过微视觉系统采集一组图像序列;Step (1): Image sequence acquisition: collect a set of image sequences through the micro vision system;
步骤(2):粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;Step (2): Acquisition of rough matching position: use the improved particle swarm optimization algorithm to quickly search in the entire search domain to obtain the rough matching position of the image block;
步骤(3):最佳匹配位置获取:在以粗匹配位置为中心,利用全区域搜索匹配算法在小邻域内搜索,获得最佳匹配位置;Step (3): Obtaining the best matching position: centering on the rough matching position, use the whole-area search matching algorithm to search in a small neighborhood to obtain the best matching position;
步骤(4):微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。Step (4): Displacement calculation of the micro-motion platform: The image Jacobian matrix is established according to the imaging model of the micro-vision system, and the displacement corresponding to the best matching position in the image space is converted into the actual displacement of the micro-motion platform.
所述步骤(1)中,微视觉系统,包括:显微镜,所述显微镜顶部安装CCD相机,所述CCD相机与计算机终端连接,所述XY二自由度微动平台固定在显微镜载物台上,所述XY二自由度微动平台通过PZT控制驱动,所述XY二自由度微动平台上表面贴有标记物,标记物表面光滑;同轴光入射至标记物后反射经过显微镜光路在CCD相机靶平面成像,显微镜光轴垂直于标记物上表面,同时,显微镜光轴也垂直于CCD相机靶平面,CCD靶平面平行于标记物上表面。In the step (1), the micro-vision system includes: a microscope, a CCD camera is installed on the top of the microscope, the CCD camera is connected to a computer terminal, and the XY two-degree-of-freedom micro-motion platform is fixed on the microscope stage, The XY two-degree-of-freedom micro-motion platform is driven by PZT control. The upper surface of the XY two-degree-of-freedom micro-motion platform is marked with a smooth surface. For target plane imaging, the optical axis of the microscope is perpendicular to the upper surface of the marker. At the same time, the optical axis of the microscope is also perpendicular to the target plane of the CCD camera, and the CCD target plane is parallel to the upper surface of the marker.
所述步骤(2)中,粗匹配位置获取包括:In the step (2), the coarse matching position acquisition includes:
步骤(2-1):确定图像ROI区域,将ROI区域作为图像块匹配的解空间,ROI区域确定根据XY二自由度微动平台的位行程xR、显微镜放大倍数k、相机像元尺寸p以及图像块尺寸大小[X,Y]决定,选取的ROI区域尺寸最小为:Step (2-1): Determine the ROI area of the image, and use the ROI area as the solution space for image block matching. The ROI area is determined according to the bit stroke x R of the XY two-degree-of-freedom micro-motion platform, the microscope magnification k, and the camera pixel size p And the size of the image block [X, Y], the minimum size of the selected ROI area is:
步骤(2-2):选择累计绝对误差(summed absolute difference,SAD)作为匹配准则,累计绝对误差也是粒子群优化算法的目标函数,对每个图像中每个像素点[x+u,y+v]T,对应的适应值fit为:Step (2-2): Select the summed absolute difference (summed absolute difference, SAD) as the matching criterion, which is also the objective function of the particle swarm optimization algorithm. For each pixel in each image [x+u,y+ v] T , the corresponding fitness value fit is:
其中,x为图像像素点横坐标,y为图像像素点纵坐标,u为图像块横轴方向运动量,v为纵轴方向运动量。Wherein, x is the abscissa of the image pixel, y is the ordinate of the image pixel, u is the motion amount of the image block in the horizontal axis direction, and v is the motion amount in the vertical axis direction.
步骤(2-3):粒子初始化:将I个初始粒子均匀分布在解空间,利用式(2)计算每个粒子对应的适应值;Step (2-3): Particle initialization: evenly distribute I initial particles in the solution space, and use formula (2) to calculate the Corresponding fitness value;
步骤(2-4):将第i个粒子在n次迭代过程中得到适应值[fiti,1,fiti,2,...fiti,n]里面最小的适应值作为每个粒子的局部最优解pbest[i]:Step (2-4): put the i-th particle In the process of n iterations, the smallest fitness value in the fitness value [fit i,1 ,fit i,2 ,...fit i,n ] is used as the local optimal solution pbest[i] of each particle:
pbest[i]=min{fiti,1,fiti,2,...fiti,n};pbest[i]=min{fit i,1 ,fit i,2 ,...fit i,n };
选择所有粒子在n次迭代过程中适应值最小的粒子作为全局最优解gbest[n],即:Select the particle with the smallest fitness value of all particles during n iterations as the global optimal solution gbest[n], namely:
gbest[n]=min{pbest1,pbest2,...pbestI};gbest[n]=min{pbest 1 ,pbest 2 ,...pbest I };
每个粒子以公式(3)更新自己的位置和速度:Each particle updates its position and velocity according to formula (3):
式中,n表示第n次迭代,C1,C2为学习因子,设为2,R1,R2为随机数,R1,R2∈[0,1]。In the formula, n represents the nth iteration, C 1 and C 2 are learning factors, set to 2, R 1 and R 2 are random numbers, and R 1 and R 2 ∈ [0,1].
表示第i个粒子在第n+1次迭代过程中的速度, Indicates the velocity of the i-th particle during the n+1 iteration,
表示第i个粒子在第n+1次迭代过程中的位置, Indicates the position of the i-th particle in the n+1 iteration process,
表示第i个粒子在第n次迭代过程中的速度, Indicates the velocity of the i-th particle during the n-th iteration,
表示第i个粒子在第n次迭代过程中的位置; Indicates the position of the i-th particle during the n-th iteration;
步骤(2-5):计算第n次迭代后,粒子i与当前全局最优解的粒子之间的距离rgbest,i:Step (2-5): Calculate the distance r gbest,i between particle i and the particle of the current global optimal solution after the nth iteration:
计算粒子i与整个粒子群所经过位置的最近距离rnearest,i:Calculate the closest distance r nearest,i between particle i and the position passed by the entire particle swarm:
其中,p∈[1,2,...I],q∈[1,2,...n-1];Among them, p∈[1,2,...I], q∈[1,2,...n-1];
每个粒子更新自己位置后,粒子根据设定规则更新自己的适应值fiti,n,所述粒子根据设定规则更新自己的适应值fiti,n如下:After each particle updates its own position, the particle updates its own fitness value fit i,n according to the set rules, and the particle updates its own fitness value fit i,n according to the set rules as follows:
a.如果rgbest,i<r0,式中r0为设定阈值,则新粒子i根据式(2)更新其适应值;a. If r gbest,i < r 0 , where r 0 is the set threshold, the new particle i updates its fitness value according to formula (2);
b.如果rgbest,i>r0且rnearest,i>r0,则新粒子i根据式(2)更新其适应值;b. If r gbest,i >r 0 and r nearest,i >r 0 , the new particle i updates its fitness value according to formula (2);
c.如果rgbest,i>r0且rnearest,i<r0,则用新粒子i距离整个粒子群所经过位置最近点的适应值代替新粒子的适应值,fiti,n=SADnearest;c. If r gbest,i >r 0 and r nearest,i <r 0 , replace the fitness value of the new particle with the fitness value of the point where the new particle i is the closest to the entire particle swarm, fit i,n = SAD nearest ;
步骤(2-6):重复步骤(2-4)-(2-5),直到满足最大迭代次数,并计算出的全局最优解对应的坐标作为粗匹配位置 Step (2-6): Repeat steps (2-4)-(2-5) until the maximum number of iterations is met, and the coordinates corresponding to the calculated global optimal solution are used as the rough matching position
所述步骤(3)中,以为粗匹配位置为中心,选择一小搜索区域,所述小搜索区域的尺寸大小设置为7×7像素,在小搜索区域内以全搜索块匹配算法搜索,计算出小搜索区域内49个像素点的适应值,选择其中适应值最小的点作为最终匹配结果 In the step (3), it is assumed that the coarse matching position As the center, select a small search area, the size of the small search area is set to 7×7 pixels, search with the full search block matching algorithm in the small search area, and calculate the fitness value of 49 pixels in the small search area , select the point with the smallest fitness value as the final matching result
所述步骤(4)中,根据步骤(1)中所述,CCD靶平面平行于标记物上表面,将成像模型简化为针孔模型;图像空间和微动平台的雅各比矩阵如下:In the step (4), according to the description in the step (1), the CCD target plane is parallel to the upper surface of the marker, and the imaging model is simplified to a pinhole model; the Jacobian matrix of the image space and the micro-motion platform is as follows:
式中ximg,yimg为图像空间坐标,x0,y0为微动平台位置坐标,是一个参数为常数的雅各比矩阵。In the formula, x img and y img are the image space coordinates, x 0 and y 0 are the position coordinates of the micro-motion platform, is a Jacobian matrix with constant parameters.
根据步骤(3)中所求的最终匹配结果计算微动平台所对应的位置:According to the final matching result obtained in step (3) Calculate the position corresponding to the micro-motion platform:
基于显微视觉的微动平台位移测量系统,包括:存储器、处理器和存储在存储器上并在处理器上运行的计算机指令,所述计算机指令在处理器上运行时完成以下步骤:The microscopic vision-based micro-motion platform displacement measurement system includes: a memory, a processor, and computer instructions stored on the memory and run on the processor, and the computer instructions complete the following steps when running on the processor:
步骤(1):图像序列采集:通过微视觉系统采集一组图像序列;Step (1): Image sequence acquisition: collect a set of image sequences through the micro vision system;
步骤(2):粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;Step (2): Acquisition of rough matching position: use the improved particle swarm optimization algorithm to quickly search in the entire search domain to obtain the rough matching position of the image block;
步骤(3):最佳匹配位置获取:在以粗匹配位置为中心,利用全区域搜索匹配算法在小邻域内搜索,获得最佳匹配位置;Step (3): Obtaining the best matching position: centering on the rough matching position, use the whole-area search matching algorithm to search in a small neighborhood to obtain the best matching position;
步骤(4):微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。Step (4): Displacement calculation of the micro-motion platform: The image Jacobian matrix is established according to the imaging model of the micro-vision system, and the displacement corresponding to the best matching position in the image space is converted into the actual displacement of the micro-motion platform.
一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令在处理器上运行时完成以下步骤:A computer-readable storage medium having stored thereon computer instructions which, when executed on a processor, perform the following steps:
步骤(1):图像序列采集:通过微视觉系统采集一组图像序列;Step (1): Image sequence acquisition: collect a set of image sequences through the micro vision system;
步骤(2):粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;Step (2): Acquisition of rough matching position: use the improved particle swarm optimization algorithm to quickly search in the entire search domain to obtain the rough matching position of the image block;
步骤(3):最佳匹配位置获取:在以粗匹配位置为中心,利用全区域搜索匹配算法在小邻域内搜索,获得最佳匹配位置;Step (3): Obtaining the best matching position: centering on the rough matching position, use the whole-area search matching algorithm to search in a small neighborhood to obtain the best matching position;
步骤(4):微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。Step (4): Displacement calculation of the micro-motion platform: The image Jacobian matrix is established according to the imaging model of the micro-vision system, and the displacement corresponding to the best matching position in the image space is converted into the actual displacement of the micro-motion platform.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明利用改进的粒子群算法和全区域搜索算法相结合,减少了计算资源消耗,实现了快速匹配与位移测量;同时,该方法相对于已有微位移测量技术,具有测量设备成本低、精度高、可用于测量面内双自由度(X-Y)的微动系统等特点。The invention uses the combination of the improved particle swarm algorithm and the whole area search algorithm to reduce the consumption of computing resources and realize fast matching and displacement measurement; at the same time, compared with the existing micro-displacement measurement technology, the method has the advantages of low cost of measurement equipment and high precision. High, can be used to measure the micro-motion system with two degrees of freedom (X-Y) in the plane, etc.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。The accompanying drawings constituting a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application, and do not constitute improper limitations to the present application.
图1为本发明的硬件连接关系图;Fig. 1 is a hardware connection diagram of the present invention;
图2为改进粒子群算法中粒子更新适应值规则的示意图;Fig. 2 is a schematic diagram of particle update fitness value rule in the improved particle swarm optimization algorithm;
图3为以为中心,选择一小搜索域,并以全搜索块匹配算法搜索精确解的示意图;Figure 3 is based on As the center, select a small search domain, and use the full search block matching algorithm to search for the schematic diagram of the exact solution;
图4为将成像模型简化为针孔模型示意图;Fig. 4 is a schematic diagram of simplifying the imaging model into a pinhole model;
图5为本发明的方法流程图。Fig. 5 is a flow chart of the method of the present invention.
具体实施方式detailed description
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be pointed out that the following detailed description is exemplary and intended to provide further explanation to the present application. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific implementations, and is not intended to limit the exemplary implementations according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
如图5所示,基于显微视觉的微动平台位移测量方法,步骤如下:As shown in Figure 5, the microscopic vision-based micro-motion platform displacement measurement method, the steps are as follows:
步骤(1):图像序列采集:通过由标记特征点、微动平台、体式显微镜、CCD相机组成的微视觉系统采集一组图片序列;Step (1): Image sequence acquisition: collect a set of image sequences through a micro-vision system consisting of marked feature points, a micro-motion platform, a stereo microscope, and a CCD camera;
步骤(2):粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;如图2所示;Step (2): Acquisition of rough matching position: use the improved particle swarm optimization algorithm to quickly search in the entire search domain to obtain the rough matching position of the image block; as shown in Figure 2;
步骤(3):最佳匹配位置获取:在以粗匹配位置为中心,利用全搜索块匹配算法在小邻域内搜索,获得最佳匹配位置;Step (3): Obtaining the best matching position: centering on the rough matching position, use the full search block matching algorithm to search in a small neighborhood to obtain the best matching position;
步骤(4):微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。Step (4): Displacement calculation of the micro-motion platform: The image Jacobian matrix is established according to the imaging model of the micro-vision system, and the displacement corresponding to the best matching position in the image space is converted into the actual displacement of the micro-motion platform.
所述步骤(1)中,图像序列采集的原理为:图像采集原理如图1所示,PZT驱动XY二自由度微动平台执行部分,其中表面贴有标记物,标记物表面光滑。同轴光经标记物反射后经过显微镜光路在CCD靶平面成像。其中,显微镜光轴垂直于标记物上表面,同时显微镜光轴也垂直于相机靶平面。In the step (1), the principle of image sequence acquisition is as follows: the principle of image acquisition is as shown in Figure 1, the execution part of the XY two-degree-of-freedom micro-motion platform is driven by PZT, and markers are attached to the surface, and the surface of the markers is smooth. After the coaxial light is reflected by the marker, it passes through the microscope optical path and forms an image on the CCD target plane. Wherein, the optical axis of the microscope is perpendicular to the upper surface of the marker, and the optical axis of the microscope is also perpendicular to the target plane of the camera.
所述步骤(2)中,粗匹配位置获取包括:In the step (2), the coarse matching position acquisition includes:
步骤(2-1)确定图像ROI区域,将整个ROI区域作为图像块匹配的解空间,整个ROI区域确定可以根据微动平台位行程xR以显微镜放大倍数k,相机像元尺寸p以及图像块大小[X,Y]决定,选取的ROI区域最小为:Step (2-1) Determine the ROI area of the image, and use the entire ROI area as the solution space for image block matching. The entire ROI area can be determined according to the position stroke x R of the micro-motion platform, the microscope magnification k, the camera pixel size p, and the image block The size [X, Y] is determined, and the minimum selected ROI area is:
步骤(2-2)选择累计绝对误差(summed absolute difference,SAD)作为匹配准则,其也是粒子群优化算法的目标函数,对每个图像中每个像素点[x+u,y+v]T,其对应的适应值为:Step (2-2) select the summed absolute difference (summed absolute difference, SAD) as the matching criterion, which is also the objective function of the particle swarm optimization algorithm, for each pixel point [x+u,y+v] T in each image , and its corresponding fitness value is:
步骤(2-3)粒子初始化:将I个初始粒子均匀分布在整个解空间,每个粒子利用(2)式计其对应的适应值。Step (2-3) particle initialization: uniformly distribute I initial particles in the whole solution space, each particle Use formula (2) to calculate its corresponding fitness value.
步骤(2-4)第i个粒子粒子的在n次迭代过程中的适应值[fiti,1,fiti,2,...fiti,n]里面最小的一个值作为每个粒子的局部最优解,即pbest[i]=min{fiti,1,fiti,2,...fiti,n}。选择所有粒子在n次迭代过程中适应值最小的粒子作为全局最优解,即Step (2-4) the i-th particle particle The smallest value among the fitness values [fit i,1 ,fit i,2 ,...fit i,n ] in the n iteration process is taken as the local optimal solution of each particle, that is, pbest[i]= min{fit i,1 ,fit i,2 ,...fit i,n }. Select the particle with the smallest fitness value of all particles during n iterations as the global optimal solution, that is,
gbest[n]=min{pbest1,pbest2,...pbestI}。gbest[n]=min{pbest 1 , pbest 2 ,... pbest 1 }.
每个粒子以下式更新自己的位置和速度:Each particle updates its position and velocity as follows:
式中n表示第n迭代,C1,C2为学习因子,设为2,R1,R2为随机数,R1,R2∈[0,1]。In the formula, n represents the nth iteration, C 1 and C 2 are the learning factors, which are set to 2, R 1 and R 2 are random numbers, and R 1 and R 2 ∈ [0,1].
步骤(2-5)计算第n次迭代后,粒子i与当前全局最优解的粒子之间的距离计算粒子i与整个粒子群所经过位置的最近距离,即其中p∈[1,2,...I],q∈[1,2,...n-1]。每个粒子更新自己位置后,粒子根据如下所述规则跟新自己的适应值fiti,n,具体如下:Step (2-5) Calculate the distance between particle i and the particle of the current global optimal solution after the nth iteration Calculate the shortest distance between particle i and the position passed by the entire particle swarm, that is where p∈[1,2,...I],q∈[1,2,...n-1]. After each particle updates its own position, the particle updates its own fitness value fit i,n according to the following rules, as follows:
a.rgbest,i<r0,式中r0为阈值,新粒子i根据式(2)更新其适应值;ar gbest,i < r 0 , where r 0 is the threshold, and the new particle i updates its fitness value according to formula (2);
b.rgbest,i>r0且rnearest,i>r0,新粒子i根据式(2)更新其适应值;br gbest,i >r 0 and r nearest,i >r 0 , the new particle i updates its fitness value according to formula (2);
c.rgbest,i>r0且rnearest,i<r0,用新粒子i距离整个粒子群所经过位置最近点的适应值代替新粒子的适应值,即fiti,n=SADnearest。cr gbest,i >r 0 and r nearest,i <r 0 , replace the fitness value of the new particle with the fitness value of the point where the new particle i is closest to the entire particle swarm, that is, fit i,n =SAD nearest .
其中,r0为设定的阈值,可根据搜索窗口、粒子数目由经验公式确定。Among them, r 0 is the set threshold, which can be determined by empirical formula according to the search window and the number of particles.
步骤(2-6)复步骤(2-4),(2-5),直到满足最大迭代次数,并以上述方法计算出的全局最优解对应的坐标作为粗匹配位置 Step (2-6) Repeat steps (2-4), (2-5) until the maximum number of iterations is met, and use the coordinates corresponding to the global optimal solution calculated by the above method as the rough matching position
所述步骤(3)中,以为中心,选择一小搜索域,其大小设置为7×7pixel,如图3所示。在整个区域内以全搜索块匹配算法搜索,计算出该区域内49个像素点的适应值,选择其中适应值最小的点作为最终匹配结果 In described step (3), think In the center, select a small search field and set its size to 7×7pixel, as shown in Figure 3. Search with the full search block matching algorithm in the entire area, calculate the fitness value of 49 pixels in the area, and select the point with the smallest fitness value as the final matching result
所述步骤(4)中,根据步骤(1)中所述,CCD靶平面平行于标记物上表面,因而可将成像模型简化为针孔模型,其具体如图4所示。根据图示几何关系,可以推导图像空间和微动平台的雅各比矩阵如下:In the step (4), according to the step (1), the CCD target plane is parallel to the upper surface of the marker, so the imaging model can be simplified to a pinhole model, as shown in FIG. 4 . According to the geometric relationship shown in the figure, the Jacobian matrix of the image space and the micro-motion platform can be derived as follows:
式中ximg,yimg为图像空间坐标,x0,y0为微动平台位置坐标,是一个参数为常数的雅各比矩阵。根据步骤(3)中所求,可以推出微动平台所对应的位置:In the formula, x img and y img are the image space coordinates, x 0 and y 0 are the position coordinates of the micro-motion platform, is a Jacobian matrix with constant parameters. According to the requirement in step (3), the position corresponding to the micro-movement platform can be deduced:
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, there may be various modifications and changes in the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710874305.9A CN107462173B (en) | 2017-09-25 | 2017-09-25 | Microscopic vision-based displacement measurement method and system for micro-movement platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710874305.9A CN107462173B (en) | 2017-09-25 | 2017-09-25 | Microscopic vision-based displacement measurement method and system for micro-movement platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107462173A true CN107462173A (en) | 2017-12-12 |
CN107462173B CN107462173B (en) | 2019-07-05 |
Family
ID=60553672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710874305.9A Active CN107462173B (en) | 2017-09-25 | 2017-09-25 | Microscopic vision-based displacement measurement method and system for micro-movement platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107462173B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108534683A (en) * | 2018-03-06 | 2018-09-14 | 山东大学 | The micro-nano platform movement measurement system and method for view-based access control model image procossing |
CN109596053A (en) * | 2019-01-14 | 2019-04-09 | 中山大学 | A method of measurement high-speed rail bridge vertically moves degree of disturbing |
CN114394843A (en) * | 2021-12-03 | 2022-04-26 | 广东中旗新材料股份有限公司 | Porous ceramic prepared from quartz stone waste and preparation method thereof |
CN115063451A (en) * | 2022-06-10 | 2022-09-16 | 华南理工大学 | High-speed micro-visual tracking method and system for planar three-degree-of-freedom pose measurement |
CN116805283A (en) * | 2023-08-28 | 2023-09-26 | 山东大学 | A submicron-level super-resolution microscopic imaging reconstruction method and system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1546943A (en) * | 2003-11-28 | 2004-11-17 | 天津大学 | Micro-electromechanical system testing device and method based on micro-interference technology |
CN1654923A (en) * | 2005-02-28 | 2005-08-17 | 天津大学 | System and method for measuring three-dimensional motion of microstructures using image matching and phase-shifting interferometry |
KR20100126941A (en) * | 2009-05-25 | 2010-12-03 | 주식회사 쓰리비 시스템 | Micro Vision Inspection System for PCC defect inspection |
CN102506710A (en) * | 2011-10-25 | 2012-06-20 | 天津大学 | Device for detecting in-plane error in micro/nano device out-of-plane motion test and compensating method |
CN105180806A (en) * | 2015-08-25 | 2015-12-23 | 大连理工大学 | Trans-scale geometrical parameter measurement method based on microscopic visual sense |
CN106018415A (en) * | 2016-05-20 | 2016-10-12 | 哈尔滨理工大学 | System for detecting quality of small parts based on micro-vision |
-
2017
- 2017-09-25 CN CN201710874305.9A patent/CN107462173B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1546943A (en) * | 2003-11-28 | 2004-11-17 | 天津大学 | Micro-electromechanical system testing device and method based on micro-interference technology |
CN1654923A (en) * | 2005-02-28 | 2005-08-17 | 天津大学 | System and method for measuring three-dimensional motion of microstructures using image matching and phase-shifting interferometry |
KR20100126941A (en) * | 2009-05-25 | 2010-12-03 | 주식회사 쓰리비 시스템 | Micro Vision Inspection System for PCC defect inspection |
CN102506710A (en) * | 2011-10-25 | 2012-06-20 | 天津大学 | Device for detecting in-plane error in micro/nano device out-of-plane motion test and compensating method |
CN105180806A (en) * | 2015-08-25 | 2015-12-23 | 大连理工大学 | Trans-scale geometrical parameter measurement method based on microscopic visual sense |
CN106018415A (en) * | 2016-05-20 | 2016-10-12 | 哈尔滨理工大学 | System for detecting quality of small parts based on micro-vision |
Non-Patent Citations (2)
Title |
---|
HENG WU, ET AL: "Displacement measurement system for inverters using computer micro-vision", 《OPTICS AND LASERS IN ENGINEERING》 * |
高云龙等: "基于多种群粒子群算法和布谷鸟搜索的联合寻优算法", 《控制与决策》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108534683A (en) * | 2018-03-06 | 2018-09-14 | 山东大学 | The micro-nano platform movement measurement system and method for view-based access control model image procossing |
CN108534683B (en) * | 2018-03-06 | 2019-08-27 | 山东大学 | Micro-nano platform motion measurement system and method based on visual image processing |
CN109596053A (en) * | 2019-01-14 | 2019-04-09 | 中山大学 | A method of measurement high-speed rail bridge vertically moves degree of disturbing |
CN109596053B (en) * | 2019-01-14 | 2019-10-01 | 中山大学 | A method of measurement high-speed rail bridge vertically moves degree of disturbing |
CN114394843A (en) * | 2021-12-03 | 2022-04-26 | 广东中旗新材料股份有限公司 | Porous ceramic prepared from quartz stone waste and preparation method thereof |
CN114394843B (en) * | 2021-12-03 | 2022-09-20 | 广东中旗新材料股份有限公司 | Porous ceramic prepared from quartz stone waste and preparation method thereof |
CN115063451A (en) * | 2022-06-10 | 2022-09-16 | 华南理工大学 | High-speed micro-visual tracking method and system for planar three-degree-of-freedom pose measurement |
CN115063451B (en) * | 2022-06-10 | 2024-06-04 | 华南理工大学 | High-speed micro-vision tracking method and system for planar three-degree-of-freedom posture measurement |
CN116805283A (en) * | 2023-08-28 | 2023-09-26 | 山东大学 | A submicron-level super-resolution microscopic imaging reconstruction method and system |
CN116805283B (en) * | 2023-08-28 | 2023-11-24 | 山东大学 | Submicron super-resolution microscopic imaging reconstruction method and system |
Also Published As
Publication number | Publication date |
---|---|
CN107462173B (en) | 2019-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107462173A (en) | Micromotion platform displacement measurement method and system based on micro-vision | |
CN107729808B (en) | An image intelligent acquisition system and method for unmanned aerial vehicle inspection of transmission lines | |
CN108242079B (en) | A VSLAM method based on multi-feature visual odometry and graph optimization model | |
CN107885209B (en) | An Obstacle Avoidance Method Based on Dynamic Window and Virtual Target Point | |
CN106097322B (en) | A kind of vision system calibration method based on neural network | |
CN109873948B (en) | A kind of optical microscope intelligent automatic focusing method, equipment and storage equipment | |
CN108759643B (en) | A Magnetic Target Location Method Based on Magnetic Sensor Array Coordinate System | |
CN106780542A (en) | A kind of machine fish tracking of the Camshift based on embedded Kalman filter | |
CN105049723B (en) | Atomatic focusing method based on defocusing amount difference qualitative analysis | |
CN106683118A (en) | Unmanned plane target tracking method based on hierarchical model | |
CN108519654A (en) | An Autofocus Method Based on Electro-hydraulic Adjustable Focus Lens | |
CN111552069A (en) | A method and system for automatic focusing of microscopic images based on deep reinforcement learning | |
Wang et al. | NeRF-IBVS: visual servo based on nerf for visual localization and navigation | |
CN112633248A (en) | Deep learning all-in-focus microscopic image acquisition method | |
CN112589795A (en) | Vacuum chuck mechanical arm grabbing method based on uncertainty multi-frame fusion | |
CN109544584B (en) | Method and system for realizing inspection image stabilization precision measurement | |
CN108646760B (en) | System and method for target tracking and platform control of mobile robot based on monocular vision | |
CN114202490A (en) | Wear particle surface reconstruction method based on multi-focus image and related device | |
CN114066773A (en) | Dynamic object removal method based on point cloud characteristics and Monte Carlo expansion method | |
Li et al. | Vision-based imitation learning of needle reaching skill for robotic precision manipulation | |
CN118411415A (en) | Mobile robot relocalization method and device based on whale algorithm and ensemble learning | |
CN110288528B (en) | An image stitching system and method for micro-nano visual observation | |
CN109887035A (en) | Optimization of BP Neural Network Binocular Vision Calibration Based on Bat Algorithm | |
CN115862074A (en) | Human body direction determining method, human body direction determining device, screen control method, human body direction determining device and related equipment | |
CN116704032A (en) | Outdoor visual SLAM method based on monocular depth estimation network and GPS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |