[go: up one dir, main page]

CN107454031A - A kind of OFDM MFSK water sound communication techniques based on packet signal to noise ratio confidence level - Google Patents

A kind of OFDM MFSK water sound communication techniques based on packet signal to noise ratio confidence level Download PDF

Info

Publication number
CN107454031A
CN107454031A CN201710606188.8A CN201710606188A CN107454031A CN 107454031 A CN107454031 A CN 107454031A CN 201710606188 A CN201710606188 A CN 201710606188A CN 107454031 A CN107454031 A CN 107454031A
Authority
CN
China
Prior art keywords
mrow
msub
signal
data
diversity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710606188.8A
Other languages
Chinese (zh)
Other versions
CN107454031B (en
Inventor
孙大军
郑翠娥
崔宏宇
张居成
韩云峰
王永恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201710606188.8A priority Critical patent/CN107454031B/en
Publication of CN107454031A publication Critical patent/CN107454031A/en
Application granted granted Critical
Publication of CN107454031B publication Critical patent/CN107454031B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供的是一种基于分组信噪比置信度的OFDM‑MFSK水声通信技术。发射端将信息进行2分集调制,并将一帧数据的首尾加入线性调频信号;接收端对帧前同步信号进行检测,完成数据截取和多普勒因子估计,并对接收数据进行多普勒补偿;对每个数据符号进行解调,并按照分组信噪比置信度的合并方式对分集信号进行合并;最后对分集合并后的数据进行解调。本方法采用频率分集技术,有效弥补了OFDM‑MFSK水声通信系统受信道严重频率选择性影响而导致的性能损失,并提出了基于分组信噪比置信度的分集信号合并方式提高合并后信号的信噪比。

The invention provides an OFDM-MFSK underwater acoustic communication technology based on the confidence degree of the packet signal-to-noise ratio. The transmitting end performs 2-diversity modulation on the information, and adds the beginning and end of a frame of data to the linear frequency modulation signal; the receiving end detects the preamble signal of the frame, completes data interception and Doppler factor estimation, and performs Doppler compensation on the received data ; Demodulate each data symbol, and combine the diversity signals according to the combination method of the group signal-to-noise ratio confidence; finally demodulate the data after the diversity combination. This method uses frequency diversity technology to effectively compensate for the performance loss of the OFDM-MFSK underwater acoustic communication system caused by the severe frequency selectivity of the channel, and proposes a diversity signal combination method based on the confidence level of the packet signal-to-noise ratio to improve the accuracy of the combined signal. SNR.

Description

一种基于分组信噪比置信度的OFDM-MFSK水声通信技术A OFDM-MFSK Underwater Acoustic Communication Technology Based on Group SNR Confidence

技术领域technical field

本发明涉及水声信道领域,具体涉及一种基于分组信噪比置信度的OFDM-MFSK水声通信技术。The invention relates to the field of underwater acoustic channels, in particular to an OFDM-MFSK underwater acoustic communication technology based on the confidence level of the packet signal-to-noise ratio.

背景技术Background technique

OFDM-MFSK是多载波技术与MFSK相结合的调制技术,OFDM-MFSK的发射端将全部子载波以M元为一组进行划分,采用MFSK的方式进行信息映射,接收端则按照非相干的方式进行MFSK信号的检测,无需信道估计与均衡过程。OFDM-MFSK兼容了多载波调制技术的高通信速率,又保留了MFSK调制的稳健性能,与正交频分复用(OFDM)调制相比,可以更好的平衡传输速率和稳健性能。OFDM-MFSK is a modulation technology that combines multi-carrier technology and MFSK. The transmitting end of OFDM-MFSK divides all subcarriers into groups of M elements, uses MFSK to map information, and the receiving end uses a non-coherent method. MFSK signal detection is performed without channel estimation and equalization process. OFDM-MFSK is compatible with the high communication rate of multi-carrier modulation technology, and retains the robust performance of MFSK modulation. Compared with Orthogonal Frequency Division Multiplexing (OFDM) modulation, it can better balance the transmission rate and robust performance.

水声信道是迄今为止最为复杂的无线信道之一,是多途扩展和多普勒扩展严重的双扩水声信道。信道时域上严重的多途扩展,在频域上则表现为严重的频率选择性衰落,当多载波系统的有效子载波位于信道的深衰落频率时,该子载波的信噪比会严重损失,常规的均衡技术依然无法获得较好的效果。分集技术是指利用相同的信息通过相互独立的信道进行数据传输,来减少干扰,提高系统性能。分集信号不同的合并方式会获得不同的处理增益,在OFDM系统中,频率分集信号的合并方式主要包括:选择性合并、等增益合并以及最大比合并,但数据需要进行信道估计与均衡。对于非相干解调的OFDM-MFSK系统而言,分集信号的合并方式需要根据符号的具体特点进行优化设计。本发明将频率分集技术应用于OFDM-MFSK系统中,并结合符号自身的特点,提出一种分组信噪比置信度的分集信号合并方式来提高系统性能。The underwater acoustic channel is one of the most complex wireless channels so far, and it is a double-expanded underwater acoustic channel with serious multi-channel expansion and Doppler expansion. Severe multipath spreading in the time domain of the channel is manifested as severe frequency selective fading in the frequency domain. When the effective subcarrier of the multi-carrier system is located at the deep fading frequency of the channel, the signal-to-noise ratio of the subcarrier will be seriously lost , conventional equalization techniques still cannot achieve better results. Diversity technology refers to using the same information to transmit data through mutually independent channels to reduce interference and improve system performance. Different combining methods of diversity signals will obtain different processing gains. In the OFDM system, the combining methods of frequency diversity signals mainly include: selective combining, equal gain combining and maximum ratio combining, but the data needs to be channel estimated and equalized. For OFDM-MFSK systems with non-coherent demodulation, the combining method of diversity signals needs to be optimally designed according to the specific characteristics of symbols. The present invention applies the frequency diversity technology to the OFDM-MFSK system, and combines the characteristics of the symbol itself, and proposes a diversity signal combination method of grouping signal-to-noise ratio confidence to improve system performance.

发明内容Contents of the invention

本发明的目的在于提供一种基于分组信噪比置信度的OFDM-MFSK水声通信方法,该方法实现了衰落水声信道下系统性能的提升。The purpose of the present invention is to provide an OFDM-MFSK underwater acoustic communication method based on the confidence degree of packet signal-to-noise ratio, which realizes the improvement of system performance under fading underwater acoustic channels.

本发明的目的是这样实现的:The purpose of the present invention is achieved like this:

一种基于分组信噪比置信度的OFDM-MFSK水声通信技术,其特征在于,包括如下步骤:A kind of OFDM-MFSK underwater acoustic communication technology based on packet signal-to-noise ratio confidence, is characterized in that, comprises the steps:

(1)发射端将信息进行2分集调制,并将一帧数据的收尾加入线性调频信号;(1) The transmitter performs 2-diversity modulation on the information, and adds the end of a frame of data to the chirp signal;

(2)接收端对帧前同步信号进行检测,完成数据截取和多普勒因子估计,并对接收数据进行多普勒补偿;(2) The receiving end detects the frame preamble signal, completes data interception and Doppler factor estimation, and performs Doppler compensation on the received data;

(3)对每个数据符号进行解调,并按照分组信噪比置信度的合并方式对分集信号进行合并;(3) Demodulate each data symbol, and combine the diversity signals according to the combination method of the group signal-to-noise ratio confidence;

(4)最后对分集合并后的数据进行解调。(4) Finally, demodulate the data after diversity combining.

所述的2分集调制具体包括:The 2-diversity modulation specifically includes:

所述的将信息进行2分集调制是指将全部N个子载波划分为两个分集支路,即分集支路1为子载波[1:N/2]、分集支路2为子载波[N/2+1:N],且两个分集支路映射上完全相同的信息。The said 2-diversity modulation of information means that all N subcarriers are divided into two diversity branches, that is, diversity branch 1 is a subcarrier [1:N/2], and diversity branch 2 is a subcarrier [N/ 2+1:N], and the two diversity branch maps have exactly the same information.

所述的线性调频信号具体包括:The linear frequency modulation signal specifically includes:

所述的线性调频信号的带宽为系统工作带宽,线性调频信号的带宽与线性调频信号的时间乘积大于100,且数据与两个线性调频信号间的保护间隔长度大于信道的最大多途扩展长度。The bandwidth of the chirp signal is the working bandwidth of the system, the time product of the bandwidth of the chirp signal and the chirp signal is greater than 100, and the guard interval length between the data and the two chirp signals is greater than the maximum multi-path extension length of the channel.

所述的步骤(2)具体包括:Described step (2) specifically comprises:

利用数据首尾的线性调频信号进行匹配滤波,计算整帧数据的平均多普勒因子,并根据平均多普勒因子采用线性插值的方法完成接收信号的多普勒补偿;具体包括如下步骤:Use the linear frequency modulation signal at the beginning and end of the data to perform matched filtering, calculate the average Doppler factor of the entire frame of data, and use the linear interpolation method to complete the Doppler compensation of the received signal according to the average Doppler factor; specifically include the following steps:

(2.1)对接收到的数据以同步信号作为参考信号进行相关运算,寻找帧前和帧后同步信号的峰值坐标点,计算两个信号的时间间隔Tr,根据如下公式计算整个数据块的多普勒因子 (2.1) Correlate the received data with the synchronous signal as the reference signal, find the peak coordinate points of the pre-frame and post-frame synchronous signals, calculate the time interval T r between the two signals, and calculate the multiplicity of the entire data block according to the following formula Puller factor

其中,Tt为发射帧信号中两个线性调频信号的时间间隔;Wherein, T t is the time interval between two chirp signals in the transmission frame signal;

(2.2)采用线性插值的方式得到多普勒补偿后信号的幅值:(2.2) The amplitude of the Doppler-compensated signal is obtained by linear interpolation:

设函数f(x)在区间[x0,x1]两端点的函数值为f(x0)和f(x1),使用线性函数L(x)=ax+b近似代替区间[x0,x1]内的f(x),通过选择参数a和b,使得L(x0)=f(x0),L(x1)=f(x1),由直线方程的两点可求得L(x)的表达式为Let the function f(x) be f(x 0 ) and f(x 1 ) at the two endpoints of the interval [x 0 ,x 1 ], and use the linear function L(x)=ax+b to approximate the interval [x 0 ,x 1 ], by selecting parameters a and b, so that L(x 0 )=f(x 0 ), L(x 1 )=f(x 1 ), the two points of the straight line equation can be The expression to obtain L(x) is

结合公式(2)和新采样点位置为即可完成接收信号的多普勒补偿。Combining formula (2) and the new sampling point position is The Doppler compensation of the received signal can be completed.

所述的步骤(3)中的解调具体包括:The demodulation in the described step (3) specifically includes:

将多普勒补偿后的信号进行串并转换,并去掉循环前缀和循环后缀,得到OFDM-MFSK符号;对每个OFDM-MFSK数据符号进行DFT解调得到相应子载波的频域数据。Perform serial-parallel conversion on the Doppler-compensated signal, and remove the cyclic prefix and cyclic suffix to obtain OFDM-MFSK symbols; perform DFT demodulation on each OFDM-MFSK data symbol to obtain the frequency domain data of the corresponding subcarrier.

所述的步骤(3)中的分组信噪比置信度的合并方式具体包括:The merging mode of the grouping SNR confidence in the described step (3) specifically includes:

设一个OFDM-MFSK数据符号进行DFT运算后得到N个子载波频域数据R(fi)i=1,2,...,N,则每条分集支路由P组MFSK数据组成,P=N/2M;设每组数据有效载波位置和空载波位置的集合分别为ΥA(q,p)和ΥN(q,p),由此可以计算得到当前组数据的噪声估计σq,p和信噪比SNRq,p,q代表不同分集支路,这里取值为1和2;将当前组数据减去噪声功率σq,p得到新数据R′q,p(fm),然后按照如下公式完成分组信噪比置信度的信号合并Suppose an OFDM-MFSK data symbol is subjected to DFT operation to obtain N subcarrier frequency domain data R(f i )i=1,2,...,N, then each diversity branch is composed of P groups of MFSK data, P=N /2M; Suppose the sets of effective carrier positions and empty carrier positions of each group of data are respectively Y A (q, p) and Y N (q, p), thus the noise estimates σ q, p and Signal-to-noise ratio SNR q,p , q represents different diversity branches, and the values here are 1 and 2; subtract the noise power σ q,p from the current group data to get new data R′ q,p (f m ), and then follow The following formula completes the signal combination of group SNR confidence

其中:in:

R′q,p(fm)=Rq,p(fm)-σq,p R′ q,p (f m )=R q,p (f m )-σ q,p

所述的步骤(4)具体包括:Described step (4) specifically comprises:

所述的分组信噪比置信度的合并方式是指对不同分集支路的数据按照M元为一组进行噪声和信噪比估计,每组数据减掉该组估计出的噪声并将该组信噪比作为置信度进行相乘运算,最后将两个分集支路数据对应求和完成分集合并。The merging method of the confidence level of the grouping signal-to-noise ratio refers to performing noise and signal-to-noise ratio estimation on the data of different diversity branches according to M elements, each group of data subtracts the noise estimated by the group and divides the group The signal-to-noise ratio is multiplied as a confidence degree, and finally the data of the two diversity branches are correspondingly summed to complete the diversity combination.

本发明的有益效果为:该方法采用频率分集技术来有效改善由于信道严重的频率选择性而导致的系统性能损失,并结合OFDM-MFSK符号的自身特点,提出一种分组信噪比置信度的分集信号合并方法进一步提高分集信号增益。在衰落水声信道下,相比常规OFDM-MFSK通信系统,基于分组信噪比置信度的OFDM-MFSK系统具有更好的应用性能。The beneficial effects of the present invention are: the method adopts the frequency diversity technology to effectively improve the system performance loss caused by the severe frequency selectivity of the channel, and combines the own characteristics of the OFDM-MFSK symbol to propose a method of grouping SNR confidence The diversity signal combining method further improves the diversity signal gain. Compared with the conventional OFDM-MFSK communication system, the OFDM-MFSK system based on the confidence level of packet SNR has better application performance in fading underwater acoustic channel.

附图说明Description of drawings

图1是OFDM-MFSK水声通信系统发射帧结构示意图;Fig. 1 is a schematic diagram of the transmission frame structure of the OFDM-MFSK underwater acoustic communication system;

图2是基于分组信噪比置信度的分集信号合并流程图。Fig. 2 is a flow chart of combining diversity signals based on group SNR confidence.

具体实施方式detailed description

下面结合附图对本发明给出更详细的说明。The present invention will be described in more detail below in conjunction with the accompanying drawings.

本发明主要包括如下步骤:The present invention mainly comprises the steps:

(1)发射端将信息进行2分集调制,并将一帧数据的收尾加入线性调频信号;(1) The transmitter performs 2-diversity modulation on the information, and adds the end of a frame of data to the chirp signal;

(2)接收端对帧前同步信号进行检测,完成数据截取和多普勒因子估计,并对接收数据进行多普勒补偿;(2) The receiving end detects the frame preamble signal, completes data interception and Doppler factor estimation, and performs Doppler compensation on the received data;

(3)对每个数据符号进行解调,并按照分组信噪比置信度的合并方式对分集信号进行合并;(3) Demodulate each data symbol, and combine the diversity signals according to the combination method of the group signal-to-noise ratio confidence;

(4)最后对分集合并后的数据进行解调。(4) Finally, demodulate the data after diversity combining.

发射端将信息进行2分集调制,并将一帧数据的收尾加入线性调频信号。所述的将信息进行2分集调制是指将全部N个子载波划分为两个分集支路,即子载波[1:N/2](分集支路1)和子载波[N/2+1:N](分集支路2),且两个分集支路映射上完全相同的信息。所述的线性调频信号的带宽为系统工作带宽,线性调频信号的带宽与线性调频信号的时间乘积大于100,且数据与两个线性调频信号间的保护间隔长度大于信道的最大多途扩展长度。The transmitting end performs 2-diversity modulation on the information, and adds the end of a frame of data to the chirp signal. The 2-diversity modulation of information refers to dividing all N subcarriers into two diversity branches, namely subcarrier [1:N/2] (diversity branch 1) and subcarrier [N/2+1:N ] (diversity branch 2), and the two diversity branches map exactly the same information. The bandwidth of the chirp signal is the working bandwidth of the system, the time product of the bandwidth of the chirp signal and the chirp signal is greater than 100, and the guard interval length between the data and the two chirp signals is greater than the maximum multi-path extension length of the channel.

利用数据首尾的线性调频信号进行匹配滤波,计算整帧数据的平均多普勒因子,并根据平均多普勒因子采用线性插值的方法完成接收信号的多普勒补偿。Using the linear frequency modulation signal at the beginning and end of the data to perform matched filtering, calculate the average Doppler factor of the whole frame of data, and use the method of linear interpolation to complete the Doppler compensation of the received signal according to the average Doppler factor.

对每个数据符号进行解调,并按照分组信噪比置信度的合并方式对分集信号进行合并。所述的分组信噪比置信度的合并方式是指对不同分集支路的数据按照M元为一组进行噪声和信噪比估计,每组数据减掉该组估计出的噪声并将该组信噪比作为置信度进行相乘运算,最后将两个分集支路数据对应求和完成分集合并。Each data symbol is demodulated, and the diversity signals are combined according to the combination method of group SNR confidence. The merging method of the confidence level of the grouping signal-to-noise ratio refers to performing noise and signal-to-noise ratio estimation on the data of different diversity branches according to M elements, each group of data subtracts the noise estimated by the group and divides the group The signal-to-noise ratio is multiplied as a confidence degree, and finally the data of the two diversity branches are correspondingly summed to complete the diversity combination.

具体为:1、发射端将信息进行2分集调制,发射端在一帧数据的首尾加入线性调频信号。Specifically: 1. The transmitting end performs 2-diversity modulation on the information, and the transmitting end adds chirp signals at the beginning and end of a frame of data.

发射端将全部N个数据子载波按照2频率分集进行数据映射,即子载波[1:N/2]与子载波[N/2+1:N]携带完全一致的数据信息,将此数据进行IDFT运算完成数据的调制,得到时域OFDM-MFSK符号,并添加大于信道多途扩展的循环前缀和循环后缀获得一个OFDM-MFSK数据块,循环前缀即将OFDM-MFSK符号后面的数据复制到符号之前,循环后缀即将OFDM-MFSK符号前面的数据复制到符号之后,具体参见图1,以此减少由于信道多途扩展所引起的符号间干扰。The transmitting end performs data mapping on all N data subcarriers according to 2 frequency diversity, that is, subcarriers [1:N/2] and subcarriers [N/2+1:N] carry exactly the same data information, and this data is The IDFT operation completes the data modulation, obtains OFDM-MFSK symbols in the time domain, and adds a cyclic prefix and cyclic suffix that are greater than the channel multi-path extension to obtain an OFDM-MFSK data block. The cyclic prefix is to copy the data behind the OFDM-MFSK symbol to before the symbol. , the cyclic suffix is to copy the data in front of the OFDM-MFSK symbol to the end of the symbol, see Figure 1 for details, so as to reduce the inter-symbol interference caused by channel multi-path extension.

OFDM-MFSK系统发射帧结构如图1所示,现将数据之前的线性调频信号称之为帧前同步信号,数据之后的线性调频信号称之为帧后同步信号。两个线性调频信号的参数一致,数据与两个线性调频信号间的保护间隔长度大于信道的最大多途扩展长度。The transmission frame structure of the OFDM-MFSK system is shown in Figure 1. Now, the chirp signal before the data is called a frame preamble signal, and the chirp signal after the data is called a frame postamble signal. The parameters of the two chirp signals are consistent, and the length of the guard interval between the data and the two chirp signals is greater than the maximum multipath extension length of the channel.

2、接收端对帧前同步信号进行检测,完成数据截取和多普勒因子估计,并对接收信号进行多普勒补偿。2. The receiving end detects the frame preamble signal, completes data interception and Doppler factor estimation, and performs Doppler compensation on the received signal.

对接收到的数据以同步信号作为参考信号进行相关运算,寻找帧前和帧后同步信号的峰值坐标点,计算两个信号的时间间隔Tr,根据如下公式计算整个数据块的多普勒因子 Perform correlation calculation on the received data with the synchronization signal as the reference signal, find the peak coordinate points of the synchronization signal before and after the frame, calculate the time interval T r between the two signals, and calculate the Doppler factor of the entire data block according to the following formula

其中,Tt为发射帧信号中两个线性调频信号的时间间隔。Wherein, T t is the time interval between two chirp signals in the transmitted frame signal.

假设原始采样点矢量为x,根据计算得到的多普勒因子,经过多普勒补偿后的新采样点位置为多普勒补偿后信号的幅值则采用线性插值的方式完成。Assuming that the original sampling point vector is x, according to the calculated Doppler factor, the position of the new sampling point after Doppler compensation is The amplitude of the signal after Doppler compensation is completed by linear interpolation.

设函数f(x)在区间[x0,x1]两端点的函数值为f(x0)和f(x1),使用线性函数L(x)=ax+b近似代替区间[x0,x1]内的f(x),通过选择参数a和b,使得L(x0)=f(x0),L(x1)=f(x1),由直线方程的两点可求得L(x)的表达式为Let the function f(x) be f(x 0 ) and f(x 1 ) at the two endpoints of the interval [x 0 ,x 1 ], and use the linear function L(x)=ax+b to approximate the interval [x 0 ,x 1 ], by selecting parameters a and b, so that L(x 0 )=f(x 0 ), L(x 1 )=f(x 1 ), the two points of the straight line equation can be The expression to obtain L(x) is

结合公式(2)和新采样点位置为即可完成接收信号的多普勒补偿。Combining formula (2) and the new sampling point position is The Doppler compensation of the received signal can be completed.

3、对每个数据符号进行解调,并按照分组信噪比置信度的合并方式对分集信号进行合并。3. Demodulate each data symbol, and combine the diversity signals according to the combination method of group SNR confidence.

将多普勒补偿后的信号进行串并转换,并去掉循环前缀和循环后缀,得到OFDM-MFSK符号。对每个OFDM-MFSK数据符号进行DFT解调得到相应子载波的频域数据,并对其进行基于分组信噪比置信度的分集信号合并,下面给出信号合并的具体步骤:The Doppler-compensated signal is serial-to-parallel converted, and the cyclic prefix and cyclic suffix are removed to obtain OFDM-MFSK symbols. Perform DFT demodulation on each OFDM-MFSK data symbol to obtain the frequency domain data of the corresponding subcarrier, and perform diversity signal combination based on the confidence level of the packet SNR. The specific steps of signal combination are given below:

设一个OFDM-MFSK数据符号进行DFT运算后得到N个子载波频域数据R(fi)i=1,2,...,N,则每条分集支路由P组MFSK数据组成,P=N/2M。设每组数据有效载波位置和空载波位置的集合分别为ΥA(q,p)和ΥN(q,p),由此可以计算得到当前组数据的噪声估计σq,p和信噪比SNRq,p,q代表不同分集支路,这里取值为1和2。将当前组数据减去噪声功率σq,p得到新数据R′q,p(fm),然后按照如下公式完成分组信噪比置信度的信号合并,具体的信号合并流程图如图2所示。Suppose an OFDM-MFSK data symbol is subjected to DFT operation to obtain N subcarrier frequency domain data R(f i )i=1,2,...,N, then each diversity branch is composed of P groups of MFSK data, P=N /2M. Assume that the sets of effective carrier positions and empty carrier positions of each group of data are Υ A (q, p) and Υ N (q, p) respectively, so that the noise estimation σ q, p and the signal-to-noise ratio of the current group of data can be calculated SNR q,p , where q represents different diversity branches, where the values are 1 and 2. Subtract the noise power σ q,p from the current group data to obtain the new data R′ q,p (f m ), and then complete the signal combination of the group SNR confidence level according to the following formula. The specific signal combination flow chart is shown in Figure 2 Show.

其中:in:

R′q,p(fm)=Rq,p(fm)-σq,p R′ q,p (f m )=R q,p (f m )-σ q,p

最后将合并后的数据按照M元一组进行划分,完成数据的解调。Finally, the merged data is divided into groups of M elements to complete data demodulation.

Claims (7)

1.一种基于分组信噪比置信度的OFDM-MFSK水声通信技术,具体包括如下步骤:1. A OFDM-MFSK underwater acoustic communication technology based on grouping SNR confidence, specifically comprising the steps: (1)发射端将信息进行2分集调制,并将一帧数据的收尾加入线性调频信号;(1) The transmitter performs 2-diversity modulation on the information, and adds the end of a frame of data to the chirp signal; (2)接收端对帧前同步信号进行检测,完成数据截取和多普勒因子估计,并对接收数据进行多普勒补偿;(2) The receiving end detects the frame preamble signal, completes data interception and Doppler factor estimation, and performs Doppler compensation on the received data; (3)对每个数据符号进行解调,并按照分组信噪比置信度的合并方式对分集信号进行合并;(3) Demodulate each data symbol, and combine the diversity signals according to the combination method of the group signal-to-noise ratio confidence; (4)最后对分集合并后的数据进行解调。(4) Finally, demodulate the data after diversity combining. 2.根据权利要求1所述的一种基于分组信噪比置信度的OFDM-MFSK水声通信技术,其特征在于,所述的2分集调制具体包括:2. a kind of OFDM-MFSK underwater acoustic communication technology based on packet signal-to-noise ratio confidence degree according to claim 1, is characterized in that, described 2 diversity modulations specifically comprise: 所述的将信息进行2分集调制是指将全部N个子载波划分为两个分集支路,即分集支路1为子载波[1:N/2]、分集支路2为子载波[N/2+1:N],且两个分集支路映射上完全相同的信息。The said 2-diversity modulation of information means that all N subcarriers are divided into two diversity branches, that is, diversity branch 1 is a subcarrier [1:N/2], and diversity branch 2 is a subcarrier [N/ 2+1:N], and the two diversity branch maps have exactly the same information. 3.根据权利要求1所述的一种基于分组信噪比置信度的OFDM-MFSK水声通信技术,其特征在于,所述的线性调频信号具体包括:3. a kind of OFDM-MFSK underwater acoustic communication technology based on grouping SNR confidence degree according to claim 1, is characterized in that, described chirp signal specifically comprises: 所述的线性调频信号的带宽为系统工作带宽,线性调频信号的带宽与线性调频信号的时间乘积大于100,且数据与两个线性调频信号间的保护间隔长度大于信道的最大多途扩展长度。The bandwidth of the chirp signal is the working bandwidth of the system, the time product of the bandwidth of the chirp signal and the chirp signal is greater than 100, and the guard interval length between the data and the two chirp signals is greater than the maximum multi-path extension length of the channel. 4.根据权利要求1所述的一种基于分组信噪比置信度的OFDM-MFSK水声通信技术,其特征在于,所述的步骤(2)具体包括:4. a kind of OFDM-MFSK underwater acoustic communication technology based on packet SNR confidence degree according to claim 1, is characterized in that, described step (2) specifically comprises: 利用数据首尾的线性调频信号进行匹配滤波,计算整帧数据的平均多普勒因子,并根据平均多普勒因子采用线性插值的方法完成接收信号的多普勒补偿;具体包括如下步骤:Use the linear frequency modulation signal at the beginning and end of the data to perform matched filtering, calculate the average Doppler factor of the entire frame of data, and use the linear interpolation method to complete the Doppler compensation of the received signal according to the average Doppler factor; specifically include the following steps: (2.1)对接收到的数据以同步信号作为参考信号进行相关运算,寻找帧前和帧后同步信号的峰值坐标点,计算两个信号的时间间隔Tr,根据如下公式计算整个数据块的多普勒因子 (2.1) Correlate the received data with the synchronous signal as the reference signal, find the peak coordinate points of the pre-frame and post-frame synchronous signals, calculate the time interval T r between the two signals, and calculate the multiplicity of the entire data block according to the following formula Puller factor <mrow> <mover> <mi>&amp;epsiv;</mi> <mo>^</mo> </mover> <mo>=</mo> <mfrac> <msub> <mi>T</mi> <mi>r</mi> </msub> <msub> <mi>T</mi> <mi>t</mi> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><mover><mi>&amp;epsiv;</mi><mo>^</mo></mover><mo>=</mo><mfrac><msub><mi>T</mi><mi>r</mi></msub><msub><mi>T</mi><mi>t</mi></msub></mfrac><mo>-</mo><mn>1</mn><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 其中,Tt为发射帧信号中两个线性调频信号的时间间隔;Wherein, T t is the time interval between two chirp signals in the transmission frame signal; (2.2)采用线性插值的方式得到多普勒补偿后信号的幅值:(2.2) The amplitude of the Doppler-compensated signal is obtained by linear interpolation: 设函数f(x)在区间[x0,x1]两端点的函数值为f(x0)和f(x1),使用线性函数L(x)=ax+b近似代替区间[x0,x1]内的f(x),通过选择参数a和b,使得L(x0)=f(x0),L(x1)=f(x1),由直线方程的两点可求得L(x)的表达式为Let the function f(x) be f(x 0 ) and f(x 1 ) at the two endpoints of the interval [x 0 ,x 1 ], and use the linear function L(x)=ax+b to approximate the interval [x 0 ,x 1 ], by selecting parameters a and b, so that L(x 0 )=f(x 0 ), L(x 1 )=f(x 1 ), the two points of the straight line equation can be The expression to obtain L(x) is <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>L</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>x</mi><mo>-</mo><msub><mi>x</mi><mn>1</mn></msub></mrow><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>-</mo><msub><mi>x</mi><mn>1</mn></msub></mrow></mfrac><mi>f</mi><mrow><mo>(</mo><msub><mi>x</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mi>x</mi><mo>-</mo><msub><mi>x</mi><mn>0</mn></msub></mrow><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>-</mo><msub><mi>x</mi><mn>0</mn></msub></mrow></mfrac><mi>f</mi><mrow><mo>(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow> 结合公式(2)和新采样点位置为即可完成接收信号的多普勒补偿。Combining formula (2) and the new sampling point position is The Doppler compensation of the received signal can be completed. 5.根据权利要求1所述的一种基于分组信噪比置信度的OFDM-MFSK水声通信技术,其特征在于,所述的步骤(3)中的解调具体包括:5. a kind of OFDM-MFSK underwater acoustic communication technology based on grouping SNR confidence degree according to claim 1, is characterized in that, the demodulation in the described step (3) specifically comprises: 将多普勒补偿后的信号进行串并转换,并去掉循环前缀和循环后缀,得到OFDM-MFSK符号;对每个OFDM-MFSK数据符号进行DFT解调得到相应子载波的频域数据。Perform serial-parallel conversion on the Doppler-compensated signal, and remove the cyclic prefix and cyclic suffix to obtain OFDM-MFSK symbols; perform DFT demodulation on each OFDM-MFSK data symbol to obtain the frequency domain data of the corresponding subcarrier. 6.根据权利要求1所述的一种基于分组信噪比置信度的OFDM-MFSK水声通信技术,其特征在于,所述的步骤(3)中的分组信噪比置信度的合并方式具体包括:6. a kind of OFDM-MFSK underwater acoustic communication technology based on grouping SNR confidence degree according to claim 1, is characterized in that, the merging mode of the grouping SNR confidence degree in described step (3) is specific include: 设一个OFDM-MFSK数据符号进行DFT运算后得到N个子载波频域数据R(fi)i=1,2,...,N,则每条分集支路由P组MFSK数据组成,P=N/2M;设每组数据有效载波位置和空载波位置的集合分别为ΥA(q,p)和ΥN(q,p),由此可以计算得到当前组数据的噪声估计σq,p和信噪比SNRq,p,q代表不同分集支路,这里取值为1和2;将当前组数据减去噪声功率σq,p得到新数据R′q,p(fm),然后按照如下公式完成分组信噪比置信度的信号合并Suppose an OFDM-MFSK data symbol is subjected to DFT operation to obtain N subcarrier frequency domain data R(f i )i=1,2,...,N, then each diversity branch is composed of P groups of MFSK data, P=N /2M; Suppose the sets of effective carrier positions and empty carrier positions of each group of data are respectively Y A (q, p) and Y N (q, p), thus the noise estimates σ q, p and Signal-to-noise ratio SNR q,p , q represents different diversity branches, and the values here are 1 and 2; subtract the noise power σ q,p from the current group data to get new data R′ q,p (f m ), and then follow The following formula completes the signal combination of group SNR confidence <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>2</mn> </munderover> <msub> <mi>SNR</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <msubsup> <mi>R</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>p</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>R</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>p</mi> </mrow> <mrow> <mo>&amp;prime;</mo> <mo>*</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>N</mi> <mo>/</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>M</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>M</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><msub><mi>R</mi><mi>p</mi></msub><mrow><mo>(</mo><msub><mi>f</mi><mi>m</mi></msub><mo>)</mo></mrow><mo>=</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow><mn>2</mn></munderover><msub><mi>SNR</mi><mrow><mi>q</mi><mo>,</mo><mi>p</mi></mrow></msub><msubsup><mi>R</mi><mrow><mi>q</mi><mo>,</mo><mi>p</mi></mrow><mo>&amp;prime;</mo></msubsup><mrow><mo>(</mo><msub><mi>f</mi><mi>m</mi></msub><mo>)</mo></mrow><msubsup><mi>R</mi><mrow><mi>q</mi><mo>,</mo><mi>p</mi></mrow><mrow><mo>&amp;prime;</mo><mo>*</mo></mrow></msubsup><mrow><mo>(</mo><msub><mi>f</mi><mi>m</mi></msub><mo>)</mo></mrow></mrow></mtd><mtd><mrow><mi>p</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>N</mi><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mi>M</mi><mo>)</mo></mrow></mrow></mtd><mtd><mrow><mi>m</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>M</mi></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 其中:in: R′q,p(fm)=Rq,p(fm)-σq,p R′ q,p (f m )=R q,p (f m )-σ q,p 7.根据权利要求1所述的一种基于分组信噪比置信度的OFDM-MFSK水声通信技术,其特征在于,所述的步骤(4)具体包括:7. a kind of OFDM-MFSK underwater acoustic communication technology based on packet signal-to-noise ratio confidence degree according to claim 1, is characterized in that, described step (4) specifically comprises: 所述的分组信噪比置信度的合并方式是指对不同分集支路的数据按照M元为一组进行噪声和信噪比估计,每组数据减掉该组估计出的噪声并将该组信噪比作为置信度进行相乘运算,最后将两个分集支路数据对应求和完成分集合并。The merging method of the confidence level of the grouping signal-to-noise ratio refers to performing noise and signal-to-noise ratio estimation on the data of different diversity branches according to M elements, each group of data subtracts the noise estimated by the group and divides the group The signal-to-noise ratio is multiplied as a confidence degree, and finally the data of the two diversity branches are correspondingly summed to complete the diversity combination.
CN201710606188.8A 2017-07-24 2017-07-24 A OFDM-MFSK Underwater Acoustic Communication Technology Based on Packet Signal-to-Noise Ratio Confidence Active CN107454031B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710606188.8A CN107454031B (en) 2017-07-24 2017-07-24 A OFDM-MFSK Underwater Acoustic Communication Technology Based on Packet Signal-to-Noise Ratio Confidence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710606188.8A CN107454031B (en) 2017-07-24 2017-07-24 A OFDM-MFSK Underwater Acoustic Communication Technology Based on Packet Signal-to-Noise Ratio Confidence

Publications (2)

Publication Number Publication Date
CN107454031A true CN107454031A (en) 2017-12-08
CN107454031B CN107454031B (en) 2020-12-22

Family

ID=60487916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710606188.8A Active CN107454031B (en) 2017-07-24 2017-07-24 A OFDM-MFSK Underwater Acoustic Communication Technology Based on Packet Signal-to-Noise Ratio Confidence

Country Status (1)

Country Link
CN (1) CN107454031B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390718A (en) * 2018-02-08 2018-08-10 武汉邮电科学研究院有限公司 The measuring device and method of optical signal to noise ratio in optical fiber telecommunications system
CN111224749A (en) * 2020-01-08 2020-06-02 重庆邮电大学 Method and system for signal diversity combined transmission in heterogeneous transmission medium
CN111935054A (en) * 2020-07-27 2020-11-13 电子科技大学 Data-energy integrated waveform design based on packet filtering
CN115037329A (en) * 2022-05-31 2022-09-09 江苏屹信航天科技有限公司 anti-Doppler receiving method, receiving device and terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643814A (en) * 2002-02-13 2005-07-20 迪康公司 Moudel apparatus for diversity reception of modulation signal
WO2008157609A2 (en) * 2007-06-18 2008-12-24 University Of Connecticut Apparatus, systems and methods for enhanced multi-carrier based underwater acoustic communications
CN102571677A (en) * 2012-02-27 2012-07-11 华南理工大学 Multi-sub-band underwater acoustic anti-Doppler modulation and demodulation method based on assisted pilot frequency and device thereof
CN205864457U (en) * 2016-04-27 2017-01-04 中国人民解放军空军工程大学 A kind of frequency diversity underwater sound communication modem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643814A (en) * 2002-02-13 2005-07-20 迪康公司 Moudel apparatus for diversity reception of modulation signal
WO2008157609A2 (en) * 2007-06-18 2008-12-24 University Of Connecticut Apparatus, systems and methods for enhanced multi-carrier based underwater acoustic communications
CN102571677A (en) * 2012-02-27 2012-07-11 华南理工大学 Multi-sub-band underwater acoustic anti-Doppler modulation and demodulation method based on assisted pilot frequency and device thereof
CN205864457U (en) * 2016-04-27 2017-01-04 中国人民解放军空军工程大学 A kind of frequency diversity underwater sound communication modem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏梦璐: "浅水起伏环境中模型-数据结合水声信道均衡技术", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390718A (en) * 2018-02-08 2018-08-10 武汉邮电科学研究院有限公司 The measuring device and method of optical signal to noise ratio in optical fiber telecommunications system
CN111224749A (en) * 2020-01-08 2020-06-02 重庆邮电大学 Method and system for signal diversity combined transmission in heterogeneous transmission medium
CN111224749B (en) * 2020-01-08 2022-08-09 重庆邮电大学 Method and system for diversity combining transmission of signals in heterogeneous transmission medium
CN111935054A (en) * 2020-07-27 2020-11-13 电子科技大学 Data-energy integrated waveform design based on packet filtering
CN111935054B (en) * 2020-07-27 2021-11-23 电子科技大学 Digital-energy integrated waveform design based on grouping filtering
CN115037329A (en) * 2022-05-31 2022-09-09 江苏屹信航天科技有限公司 anti-Doppler receiving method, receiving device and terminal
CN115037329B (en) * 2022-05-31 2024-06-11 江苏屹信航天科技有限公司 Doppler-resistant receiving method, receiving device and terminal

Also Published As

Publication number Publication date
CN107454031B (en) 2020-12-22

Similar Documents

Publication Publication Date Title
CN107438038B (en) Pilot design and synchronous channel estimation method of FBMC/OQAM
CN110636024B (en) 5G waveform system synchronization method based on index modulation
CN102932289B (en) Cyclic shifting-based method for estimating shifting number and channel response in orthogonal frequency division multiplexing (OFDM) system
CN101986631A (en) Time- and frequency-domain unified single carrier modulation signal transmission method
CN109861939B (en) OQPSK frequency domain equalization wireless data transmission method
CN101005475A (en) Method and system for synchronizing time and frequency in orthogonal frequency division multiplex communication
CN107454031B (en) A OFDM-MFSK Underwater Acoustic Communication Technology Based on Packet Signal-to-Noise Ratio Confidence
CN111585688B (en) OCDM underwater acoustic communication method based on index modulation
CN112671473B (en) OTFS underwater acoustic communication method based on passive time reversal technology
CN103973619A (en) Signal transmission method for single-carrier modulation with time-frequency domain combination
CN109302208B (en) A Parallel Combined Spread Spectrum Underwater Acoustic Communication Method with Interleaved Gold Mapping Sequences
CN101505291A (en) Hydroacoustic communication differential decoding method based on OFDM coding
CN109691048B (en) Transmitter and method for formatting transmission data into frame structure
CN104735017A (en) Non-orthogonal multi-carrier digital modulation and demodulation method and device
CN101394385B (en) A Method for Improving the Performance of OFDM Systems Based on Joint Channel Estimation Based on Time-Domain Processing
CN101119350B (en) OFDM system, fast synchronization method and sending terminal equipment
CN102571677A (en) Multi-sub-band underwater acoustic anti-Doppler modulation and demodulation method based on assisted pilot frequency and device thereof
Chithra et al. Underwater communication implementation with OFDM
CN103281265A (en) Pilot sequence structure in MIMO-OFDM/OQAM (Multi-input Multi-output-Orthogonal Frequency Division Multiplexing/Offset Quadrature Amplitude Modulation) system and channel estimation method
CN103888404B (en) A kind of entire spectrum carrier modulating method based on frequency spectrum shift
CN101741775B (en) Taylor expansion-based single-frequency OFDM time-varying channel estimation method
CN103441980A (en) Sideband-information-free shallow sea underwater acoustic communication pattern selection peak-to-average ratio restraining algorithm based on frequency reversal mirror technology
CN108650005B (en) Pilot structure and channel estimation method for MIMO-FBMC/OQAM system
CN103916342B (en) Signal-to-noise-ratio estimation method
CN103220242A (en) Channel estimation method based on pilot frequency block in single carrier frequency domain equalizing system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant