CN107422239A - The more dash current discharge test device and methods of soil - Google Patents
The more dash current discharge test device and methods of soil Download PDFInfo
- Publication number
- CN107422239A CN107422239A CN201710890345.2A CN201710890345A CN107422239A CN 107422239 A CN107422239 A CN 107422239A CN 201710890345 A CN201710890345 A CN 201710890345A CN 107422239 A CN107422239 A CN 107422239A
- Authority
- CN
- China
- Prior art keywords
- discharge
- impulse
- ball gap
- voltage
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002689 soil Substances 0.000 title claims abstract description 80
- 238000012360 testing method Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title abstract description 12
- 239000003990 capacitor Substances 0.000 claims abstract description 61
- 238000002955 isolation Methods 0.000 claims abstract description 32
- 244000035744 Hura crepitans Species 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 239000013307 optical fiber Substances 0.000 claims description 12
- 230000035939 shock Effects 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 6
- 238000010998 test method Methods 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims 1
- 230000009471 action Effects 0.000 abstract description 5
- 238000011160 research Methods 0.000 abstract description 5
- 238000011161 development Methods 0.000 abstract description 4
- 238000004088 simulation Methods 0.000 abstract description 3
- 238000010892 electric spark Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
本发明公开了一种土壤多冲击电流放电试验装置及方法,属于电力系统接地特性试验技术领域。本发明装置主要包括多冲击电流发生器主体电容、多冲击电流发生器控制系统、放电球隙组、隔离球隙、时延控制器、模拟接地沙盒、穿芯式电流传感器、冲击电压分压器、宽频数字示波器等等;本发明方法是在本发明装置的基础上进行土壤多冲击电流放电试验。本发明可以实现波形参数独立可控、多冲击电流时间间隔连续可调的多冲击电流波形输出,可广泛应用于多冲击电流作用下接地系统放电特性研究,及其他雷电多冲击模拟实验的开展与观测。本发明具有时间间隔可调的多冲击电流的输出功能,可以更加贴合实际雷电情况。
The invention discloses a soil multi-impulse current discharge test device and method, and belongs to the technical field of electric power system grounding characteristic tests. The device of the invention mainly includes the main body capacitor of the multi-impulse current generator, the control system of the multi-impulse current generator, the discharge ball gap group, the isolation ball gap, the delay controller, the analog grounding sandbox, the core-through current sensor, and the impulse voltage divider device, broadband digital oscilloscope or the like; the inventive method is to carry out the soil multiple impulse current discharge test on the basis of the inventive device. The invention can realize independently controllable waveform parameters and continuously adjustable multi-impact current waveform output, and can be widely used in the research on the discharge characteristics of the grounding system under the action of multiple impulse currents, and the development and implementation of other lightning multi-impact simulation experiments. observe. The invention has the output function of multiple impulse currents with adjustable time intervals, which can be more suitable for actual lightning conditions.
Description
技术领域technical field
本发明涉及电力系统接地特性试验技术领域,特别是一种土壤多冲击电流放电试验装置及其方法。The invention relates to the technical field of electric power system grounding characteristic test, in particular to a soil multi-impact current discharge test device and a method thereof.
背景技术Background technique
接地系统的冲击放电特性是保证电力系统安全可靠运行的重要因素之一,研究接地系统以及土壤介质的冲击放电特性便尤为重要。利用冲击电流发生器模拟实际雷电等冲击源是研究土壤冲击放电特性的重要手段之一。The impulse discharge characteristic of the grounding system is one of the important factors to ensure the safe and reliable operation of the power system. It is particularly important to study the impulse discharge characteristics of the grounding system and the soil medium. Using the impulse current generator to simulate the actual lightning and other impulse sources is one of the important means to study the characteristics of soil impulse discharge.
现有研究表明,雷电具有一次击穿多次放电的特性,一次雷电过程通常含有首次放电和多次继后回击,平均回击次数为3-5次,两次回击之间的时间间隔在几毫秒至几百毫秒之间,平均时间间隔为60ms。Existing studies have shown that lightning has the characteristics of one breakdown and multiple discharges. A lightning process usually includes the first discharge and multiple subsequent return strikes. The average number of return strikes is 3-5 times, and the time interval between two return strikes is several milliseconds. Between hundreds of milliseconds, the average time interval is 60ms.
目前接地系统冲击特性研究中均以单冲击电流作用为激励源,单冲击电流仅可以模拟雷电的首次放电,无法考虑继后回击的作用效果,而土壤是由土壤颗粒、颗粒间隙中的空气、水等多种物质组成的复合介质,在冲击大电流作用下,土壤的介电特性及土壤介质中物质的性态会发生改变,而这种物质性态的改变在毫秒级别的时间内无法完全恢复,因此多冲击电流作用下的土壤放电特性与单冲击电流作用下土壤放电特性存在差别。土壤多冲击电流发生装置的开发可以实现雷电多冲击的模拟试验。因此对研究土壤多冲击放电特性而言,多冲击电流发生装置的设计开发具有重要意义。At present, in the study of the impact characteristics of the grounding system, the single impulse current is used as the excitation source. The single impulse current can only simulate the first discharge of lightning, and cannot consider the effect of subsequent strikes. The soil is composed of soil particles, air in the particle gap, The composite medium composed of water and other substances will change the dielectric properties of the soil and the properties of the substances in the soil medium under the action of a large impact current, and the change of the material properties cannot be completely completed within milliseconds. Therefore, the soil discharge characteristics under the action of multiple impulse currents are different from those under the action of single impulse currents. The development of soil multi-impulse current generator can realize the simulation experiment of lightning multi-impact. Therefore, the design and development of multi-impulse current generators is of great significance for the study of soil multi-impulse discharge characteristics.
发明内容Contents of the invention
本发明的目的是提出一种土壤多冲击电流放电试验装置及方法;本装置可实现波形参数独立控制、多冲击电流时间间隔连续可调的多冲击电流波形输出,更加贴合实际雷电情况。The purpose of the present invention is to propose a soil multi-impact current discharge test device and method; the device can realize independent control of waveform parameters, multi-impact current waveform output with continuously adjustable time intervals of multiple impulse currents, and is more suitable for actual lightning conditions.
本发明的目的是通过以下技术方案来实现的:The purpose of the present invention is achieved through the following technical solutions:
本发明提供的土壤多冲击电流放电试验装置,包括至少两套独立可控的单冲击电流发生器;所述每套单冲击电流发生器分别与时延控制系统连接;所述时延控制系统用于控制单冲击电流发生器的充放电时间,以适于各单冲击电流发生器依次实现多冲击电流的输出。The soil multi-impact current discharge test device provided by the present invention includes at least two sets of independently controllable single impulse current generators; each set of single impulse current generators is respectively connected with a time delay control system; the time delay control system is used It is used to control the charging and discharging time of the single impulse current generator, so as to be suitable for each single impulse current generator to realize the output of multiple impulse currents in sequence.
进一步,所述每套单冲击电流发生器包括充电控制系统、冲击放电主体电容组、电动放电球隙组、调波电感、隔离球隙和调波电阻;Further, each set of single impulse current generator includes a charging control system, an impulse discharge main capacitor group, an electric discharge ball gap group, a wave modulation inductor, an isolation ball gap, and a wave modulation resistor;
所述冲击放电主体电容组并联于充电控制系统的输出端;所述冲击放电主体电容组一端与电动放电球隙组一端连接;所述电动放电球隙组另一端依次与调波电感和调波电阻连接;所述调波电阻的另一端通过隔离球隙与另一套单冲击电流发生器的调波电阻连接;并将所述调波电阻作为输出端口;所述冲击放电主体电容组的另一端与另一套单冲击电流发生器的冲击放电主体电容组连接,并将所述冲击放电主体电容组的另一端作为输出端口;The impact discharge main capacitor group is connected in parallel to the output end of the charging control system; one end of the impact discharge main capacitor group is connected to one end of the electric discharge ball gap group; the other end of the electric discharge ball gap group is sequentially connected to the wave modulation inductor and wave modulation Resistor connection; the other end of the wave modulation resistor is connected to the wave modulation resistance of another set of single impulse current generator through the isolation ball gap; and the wave modulation resistance is used as an output port; the other end of the shock discharge main capacitor group One end is connected to the impulse discharge main capacitor group of another set of single impulse current generator, and the other end of the impulse discharge main capacitor group is used as an output port;
所述时延控制系统分别与电动放电球隙组连接;所述时延控制系统用于控制单冲击电流发生器的充放电时刻,以适于各单冲击电流发生器依次实现多冲击电流的输出。The time delay control system is respectively connected with the electric discharge ball gap group; the time delay control system is used to control the charging and discharging time of the single impulse current generator, so as to be suitable for each single impulse current generator to realize the output of multiple impulse currents in sequence .
进一步,所述充电控制系统包括调压器、升压变压器、硅堆和保护电阻;Further, the charging control system includes a voltage regulator, a step-up transformer, a silicon stack and a protection resistor;
所述调压器进线端与电源电压连接;所述调压器的出线端与升压变压器原边连接;所述升压变压器的副边与硅堆连接;所述硅堆与保护电阻连接;所述保护电阻与电动放电球隙组连接。The inlet terminal of the voltage regulator is connected to the power supply voltage; the outlet terminal of the voltage regulator is connected to the primary side of the step-up transformer; the secondary side of the step-up transformer is connected to the silicon stack; the silicon stack is connected to the protection resistor ; The protection resistor is connected with the electric discharge ball gap group.
进一步,所述冲击放电主体电容组包括多级并联的电容器;所述硅堆输出端通过充电电阻与冲击放电主体电容组连接,用于对冲击放电主体电容组进行充电;所述冲击放电主体电容组另一端依次与隔离电阻和电动放电球隙组连接;所述隔离电阻和电动放电球隙组公共连接端依次与另一级电容器的另一端连接;最后一级隔离电阻和电动放电球隙组公共连接端依次与调波电感和调波电阻连接,用于输出冲击电流波形。Further, the surge discharge main capacitor group includes multi-stage parallel capacitors; the output end of the silicon stack is connected to the surge discharge main capacitor group through a charging resistor, and is used to charge the surge discharge main capacitor group; the surge discharge main capacitor The other end of the group is connected to the isolation resistor and the electric discharge ball gap group in turn; the common connection end of the isolation resistor and the electric discharge ball gap group is connected to the other end of the capacitor in turn; the last stage of the isolation resistor and the electric discharge ball gap group The common connection terminal is sequentially connected with the wave-modulating inductor and the wave-modulating resistor for outputting the surge current waveform.
进一步,还包括土壤样品及数据采集系统;所述土壤样品及数据采集系统包括高精度数字示波器、穿芯式电流传感器、金属电极、沙盒和冲击电压分压器;Further, it also includes a soil sample and data acquisition system; the soil sample and data acquisition system includes a high-precision digital oscilloscope, a core-through current sensor, a metal electrode, a sandbox, and an impulse voltage divider;
所述单冲击电流发生器输出端口输出冲击电流后经导电电缆及金属电极导入置入沙盒内的土壤样品中;所述穿芯式电流传感器环套在导电电缆线上,并经同轴屏蔽电缆线连接至高精度数字示波器中用于采集电流波形;所述金属电极的端电压经导线连接至冲击电压分压器高压端,所述冲击电压分压器信号输出端经同轴屏蔽电缆线连接至高精度数字示波器用于采集电压波形。After the output port of the single impulse current generator outputs the impulse current, it is introduced into the soil sample placed in the sandbox through a conductive cable and a metal electrode; The cable is connected to a high-precision digital oscilloscope for collecting current waveforms; the terminal voltage of the metal electrode is connected to the high-voltage end of the impulse voltage divider through a wire, and the signal output end of the impulse voltage divider is connected through a coaxial shielded cable A high-precision digital oscilloscope is used to acquire voltage waveforms.
进一步,所述时延控制系统经光纤与分别与各电动放电球隙组的电火花触发器相连接。Further, the time delay control system is connected to the spark triggers of each electric discharge ball gap group respectively via optical fiber.
同时还提供了一种土壤多冲击电流放电试验方法,包括以下步骤:At the same time, a soil multi-impulse current discharge test method is also provided, including the following steps:
(1)确定试验波形参数及土壤样品参数;所述波形参数包括波形波头波尾时间及幅值以及多冲击电流波之间的时间间隔;(1) determine test waveform parameter and soil sample parameter; Described waveform parameter comprises the time interval between waveform head wave tail time and amplitude and many shock current waves;
(2)连接试验回路;将两套冲击电流发生器的输出端经铜带连接汇合于电缆线上,连接至金属电极上作为土壤放电试验的高压端,并埋入沙盒土壤之中,沙盒内覆铜皮连接接地线作为接地端;将穿芯式电流传感器环套在电缆线上,用同轴屏蔽电缆将信号输送至数字示波器以采集电流波形;用金属导线将金属电极端连接至冲击电压分压器,并用同轴屏蔽电缆将信号输送至数字示波器以采集电压波形;(2) Connect the test circuit; the output ends of the two sets of impulse current generators are connected to the cable through the copper tape, connected to the metal electrode as the high-voltage end of the soil discharge test, and buried in the soil of the sandbox. The copper clad in the box is connected to the grounding wire as the grounding terminal; the core-through current sensor is sleeved on the cable, and the signal is transmitted to the digital oscilloscope with a coaxial shielded cable to collect the current waveform; the metal electrode terminal is connected to the Impulse voltage divider, and use coaxial shielded cable to send the signal to the digital oscilloscope to collect the voltage waveform;
(3)多冲击电流波形输出预调试;分别对冲击电流发生器设定预设电压;安装对应预设电压调节放电球隙组的球隙间距,然后进行充放电测试;(3) Multi-inrush current waveform output pre-commissioning; set the preset voltage for the impulse current generator respectively; install the corresponding preset voltage to adjust the ball gap distance of the discharge ball gap group, and then perform the charge and discharge test;
(4)连接土壤样品及数据采集系统进行多冲击放电试验。(4) Connect the soil sample and data acquisition system to conduct multi-impact discharge test.
进一步,所述数据采集系统按照一下方式进行数据采集:Further, the data acquisition system performs data acquisition in the following manner:
通过环套在电缆线上的穿芯式电流传感器获取放电回路中的电流波形信号,并经同轴屏蔽电缆将电流波形信号输送至数字示波器中进行电流波形采集;Obtain the current waveform signal in the discharge circuit through the core-through current sensor looped on the cable, and transmit the current waveform signal to the digital oscilloscope through the coaxial shielded cable for current waveform acquisition;
通过与放电高压端连接的冲击电压分压器获取金属电极上的电压波形,并经同轴屏蔽电缆将信号输送至数字示波器进行电压波形采集;Obtain the voltage waveform on the metal electrode through the impulse voltage divider connected to the discharge high voltage end, and transmit the signal to the digital oscilloscope through the coaxial shielded cable for voltage waveform acquisition;
将数字示波器中的电压电流波形导出并存储,获得电压电流峰值以及各个时刻对应的电压电流值。Export and store the voltage and current waveforms in the digital oscilloscope, and obtain the voltage and current peak values and the corresponding voltage and current values at each moment.
进一步,所述多冲击电流波形输出预调试具体按照以下步骤来实现:Further, the multi-inrush current waveform output pre-commissioning is specifically implemented according to the following steps:
①首先给第一冲击电流发生器设定预设电压,按照对应电压自动调节放电球隙组的球隙间距,然后对电容组充电,待充电完成后,向放电球隙组输送放电触发信号进行放电测试;如放电失败,微调放电球隙组的球隙间距,直至正常放电;①First set the preset voltage for the first impulse current generator, automatically adjust the ball gap distance of the discharge ball gap group according to the corresponding voltage, and then charge the capacitor group. After the charging is completed, send the discharge trigger signal to the discharge ball gap group to start Discharge test; if the discharge fails, fine-tune the ball gap distance of the discharge ball gap group until normal discharge;
②给第二冲击电流发生器设定预设电压,按照对应电压调节放电球隙组的球隙间距,隔离球隙短接,然后对电容组充电,待充电完成后,向放电球隙组输送放电触发信号进行放电测试;如放电失败,微调放电球隙组的球隙间距,直至正常放电;②Set the preset voltage for the second impulse current generator, adjust the ball gap distance of the discharge ball gap group according to the corresponding voltage, isolate the ball gap short circuit, and then charge the capacitor group. After the charging is completed, it will be sent to the discharge ball gap group Discharge trigger signal for discharge test; if the discharge fails, fine-tune the ball gap spacing of the discharge ball gap group until normal discharge;
按照对应电压调节隔离球隙间距,然后重新进行上述充放电测试;如放电失败,微调隔离球隙间距,直至正常放电;Adjust the distance between the isolation ball gaps according to the corresponding voltage, and then re-do the above charge and discharge test; if the discharge fails, fine-tune the distance between the isolation ball gaps until the normal discharge;
③最后,设定时间间隔。③ Finally, set the time interval.
由于采用了上述技术方案,本发明具有如下的优点:Owing to adopting above-mentioned technical scheme, the present invention has following advantage:
本发明提供的土壤多冲击电流放电试验装置实现波形参数独立可控、多冲击电流时间间隔连续可调的多冲击电流波形输出,可广泛应用于多冲击电流作用下接地系统放电特性研究,及其他雷电多冲击模拟实验的开展与观测。本发明具有时间间隔可调的多冲击电流的输出功能,可以更加贴合实际雷电情况,主要有以下技术效果:The soil multi-impulse current discharge test device provided by the present invention realizes independently controllable waveform parameters and continuously adjustable multi-impulse current time interval multi-inrush current waveform output, and can be widely used in research on the discharge characteristics of grounding systems under the action of multiple impulse currents, and other Development and observation of lightning multi-shock simulation experiment. The invention has the output function of multi-impact current with adjustable time interval, which can be more suitable for the actual lightning situation, and mainly has the following technical effects:
(1)本发明中的多冲击电流发生装置可以输出波形间时间间隔连续可调的多冲击电流波,可以模拟实际雷电情况中的一次击穿多次放电的情况,且装置容量大,可以实现对土壤样品的高幅值大电流输出。更加贴合实际土壤冲击放电情况。(1) The multi-inrush current generating device in the present invention can output multi-inrush current waves with continuously adjustable time intervals between waveforms, can simulate the situation of one-time breakdown and multiple discharges in the actual lightning situation, and the device has a large capacity, which can realize High amplitude and high current output for soil samples. It is more suitable for the actual soil impact discharge situation.
(2)本发明中的时延控制系统控制精度高,可控范围大。可以保证对冲击放电这一短暂过程进行有效的时间控制,产生满足试验需求的多冲击电流波形。(2) The delay control system in the present invention has high control precision and a large controllable range. It can ensure effective time control of the short process of impulse discharge, and generate multiple impulse current waveforms that meet the test requirements.
(3)本发明装置均为室内试验平台,可以在室内重复进行模拟实际雷击情况的试验研究。具有操作简便,可控性能高,成本低等优点。(3) The devices of the present invention are all indoor test platforms, and can repeatedly carry out experimental research on simulating actual lightning strike conditions indoors. It has the advantages of simple operation, high controllability and low cost.
(4)本发明装置的数字示波器采用独立蓄电池与逆变器组合或离线UPS电源供电,能有效的防止冲击电流发生器放电时,实验室地网电位急剧升高而损毁数字示波器、穿芯式电流传感器等测量设备现象的发生。(4) The digital oscilloscope of the device of the present invention adopts a combination of an independent storage battery and an inverter or an offline UPS power supply, which can effectively prevent the surge current generator from being discharged, and the potential of the laboratory ground grid rises sharply and damages the digital oscilloscope, core-through type Occurrence of phenomena in measuring equipment such as current sensors.
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。Other advantages, objects and features of the present invention will be set forth in the following description to some extent, and to some extent, will be obvious to those skilled in the art based on the investigation and research below, or can be obtained from It is taught in the practice of the present invention. The objects and other advantages of the invention may be realized and attained by the following specification.
附图说明Description of drawings
本发明的附图说明如下。The accompanying drawings of the present invention are described as follows.
图1为本发明多冲击电流放电装置原理接线图。Fig. 1 is a principle wiring diagram of the multi-inrush current discharge device of the present invention.
图2为图1的多冲击电流放电装置的结构示意图。FIG. 2 is a schematic structural diagram of the multi-inrush current discharge device in FIG. 1 .
图3为模拟接地沙盒及数据采集系统结构示意图。Figure 3 is a schematic diagram of the simulated grounding sandbox and data acquisition system.
图4为多冲击电流放电触发逻辑示意图。Fig. 4 is a logic schematic diagram of multiple impulse current discharge triggering.
图中:1多冲击电流发生装置,2,3调压器,4,5升压变压器,6,7硅堆,8,9保护水阻,10,11脉冲电容器组,12,13电动放电球隙组,14,15调波电感,16,17调波电阻,18时延控制系统,19隔离球隙,20土壤样品及数据采集系统,21高精度数字示波器,22穿芯式电流传感器,23金属电极,24沙盒,25冲击电压分压器,26,27充电电阻,28,29隔离电阻,30智能控制系统In the figure: 1 multiple impulse current generating device, 2, 3 voltage regulator, 4, 5 step-up transformer, 6, 7 silicon stack, 8, 9 protection water resistance, 10, 11 pulse capacitor bank, 12, 13 electric discharge ball Gap group, 14, 15 wave modulation inductor, 16, 17 wave modulation resistor, 18 time delay control system, 19 isolation ball gap, 20 soil sample and data acquisition system, 21 high precision digital oscilloscope, 22 core-through current sensor, 23 Metal electrode, 24 sandbox, 25 impulse voltage divider, 26,27 charging resistor, 28,29 isolation resistor, 30 intelligent control system
具体实施方式detailed description
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
实施例1Example 1
如图所示,本实施例提供的土壤多冲击电流放电试验装置,可用于模拟实际雷电多次回击放电,主要用于模拟实际雷击接地系统时具有多次冲击放电情况,通过多冲击电流发生装置,来实现对土壤多冲击放电试验;通过多球隙组隔离技术以及高精度时延控制技术为土壤样品负载提供一个多冲击大电流的输出,且多冲击电流之间的时间间隔连续可控,填补土壤多冲击放电研究领域的空白。As shown in the figure, the soil multi-impulse current discharge test device provided in this embodiment can be used to simulate multiple actual lightning strikes and discharges. , to realize the multi-impact discharge test on soil; through the multi-gap group isolation technology and high-precision time-delay control technology, a multi-impact high-current output is provided for the soil sample load, and the time interval between multiple impulse currents is continuously controllable. Fill in the gaps in the field of soil multi-shock discharge research.
本装置主要包括冲击放电主体电容组、放电球隙组、隔离球隙、时延控制系统、充电控制系统、调波电阻电感、穿芯式电流传感器、高精度数字示波器等。This device mainly includes impact discharge main capacitor group, discharge ball gap group, isolation ball gap, time delay control system, charging control system, wave modulation resistor inductance, core-through current sensor, high-precision digital oscilloscope, etc.
主体部分为两套独立可控的单冲击电流发生器,以充电控制系统、时延控制系统以及连接光纤控制两套冲击电流发生器的触发放电时间,从而实现多冲击电流的输出。The main part is two sets of independent and controllable single impulse current generators. The trigger discharge time of the two sets of impulse current generators is controlled by the charging control system, time delay control system and connecting optical fiber, so as to realize the output of multiple impulse currents.
本实施例中的两套单冲击电流发生器分别为第一单冲击电流发生器和单冲击电流发生器;可以分别组成第一和第二冲击放电回路。The two sets of single impulse current generators in this embodiment are respectively the first single impulse current generator and the single impulse current generator; they can form the first and second impulse discharge circuits respectively.
冲击放电主体电容组、充电控制系统、调波电阻电感为定制产品。每台电容器额定参数可选范围为50~150kV/2~5μF,1-5台电容为一组,两组共2-10台电容器。充电控制系统主要用计算机控制软件、变压器、PLC控制部分组成。调波电阻阻值范围10Ω~5000Ω,调波电感0~200μH。The main capacitor group of the impact discharge, the charging control system, and the wave-modulating resistor and inductor are customized products. The optional range of the rated parameters of each capacitor is 50~150kV/2~5μF, 1-5 capacitors form a group, and there are 2-10 capacitors in two groups. The charging control system is mainly composed of computer control software, transformer, and PLC control parts. The resistance value range of the modulation resistor is 10Ω~5000Ω, and the modulation inductance is 0~200μH.
放电球隙组为定制产品。具体规格为电动1~5级放电球隙组,每级球隙对应一台电容器,充电时电容组并联,每级球隙隔离一台电容电压。放电采用电容串联连接方式,以电火花触多级球隙级联放电。The discharge ball gap group is a customized product. The specific specification is electric 1-5 discharge ball gap groups, each level of ball gap corresponds to a capacitor, the capacitor groups are connected in parallel during charging, and each level of ball gap isolates a capacitor voltage. The discharge adopts the capacitor series connection method, and the electric spark touches the multi-level ball gap cascade discharge.
在第二冲击放电回路中设有一隔离球隙,隔离球隙为定制产品,从而隔离第一冲击放电产生的电位抬升,避免联动放电。隔离球隙间距在0~150mm之间连续可调。工作模型有自然放电和电火花触发放电两种可选。An isolation ball gap is provided in the second impact discharge circuit, and the isolation ball gap is a customized product, so as to isolate the potential rise generated by the first impact discharge and avoid linkage discharge. The distance between the isolation ball gaps is continuously adjustable between 0 and 150mm. The working model has two options: natural discharge and electric spark triggered discharge.
时延控制系统为定制产品。其时延可控范围为0~5000ms,时延控制器的控制精度为纳秒级,考虑到各设备之间的联动延迟,从而实现多冲击电流波时间间隔微秒级可调精度。The delay control system is a customized product. The controllable range of the time delay is 0-5000ms, and the control precision of the time delay controller is at the nanosecond level. Taking into account the linkage delay between various devices, the microsecond-level adjustable accuracy of the multi-impact current wave time interval can be realized.
实施例2Example 2
本实施例提供的多冲击电流发生装置为定制产品,可工作在单冲击放电和多冲击放电两种模式下。可以瞬时输出幅值为1-300kA可调、波前时间1-50μs、波尾时间10-1000的双指数电流波。多冲击电流波之间的时间间隔在0-5000ms范围内连续可调。多冲击电流发生器其主体部分为两套独立可控的单冲击电流发生器,以充电控制系统、时延控制系统以及连接光纤控制两套冲击电流发生器的触发放电时间,从而实现多冲击电流的输出。每套单冲击电流发生器主要包括:调压器、升压变压器、硅堆、调波电阻、调波电感、脉冲电容器组、电动放电球隙组。智能控制系统通过光纤与调压器相连,调压器的进线端通过导线与380V工频电源连接,调压器的出线端与升压变压器的原边通过导线连接;升压变压器的副边与硅堆用导线连接;经硅堆向电容组充电。每套冲击电流发生器的电容组由1-5台电容组成,充电完成后可经放电球隙及调波电感、调波电阻放电,输出冲击电流波形。The multi-impulse current generating device provided in this embodiment is a customized product, which can work in two modes of single-impulse discharge and multiple-impact discharge. It can instantaneously output double-exponential current waves with adjustable amplitude from 1 to 300 kA, wave front time from 1 to 50 μs, and wave tail time from 10 to 1000. The time interval between multiple shock current waves is continuously adjustable within the range of 0-5000ms. The main part of the multi-impulse current generator is two sets of independently controllable single-impulse current generators. The trigger discharge time of the two sets of impulse current generators is controlled by the charging control system, the delay control system and the connecting optical fiber, so as to realize the multi-impact current generator. Output. Each set of single impulse current generator mainly includes: voltage regulator, step-up transformer, silicon stack, wave-modulating resistor, wave-modulating inductance, pulse capacitor bank, electric discharge ball-gap bank. The intelligent control system is connected to the voltage regulator through an optical fiber. The input end of the voltage regulator is connected to the 380V power frequency power supply through a wire, and the outlet end of the voltage regulator is connected to the primary side of the step-up transformer through a wire; the secondary side of the step-up transformer Connect to the silicon stack with a wire; charge the capacitor bank through the silicon stack. The capacitor group of each impulse current generator is composed of 1-5 capacitors. After charging, it can be discharged through the discharge ball gap, wave-modulating inductor, and wave-modulating resistor to output the impulse current waveform.
所述放电球隙组为定制产品。控制系统经光纤与放电球隙组连接,根据设定电压等级智能调节球隙间距,以保证冲击电流正常输出。电容充电时,充电回路工作,电容组并联连接充电,每级球隙对应一台电容器,配合隔离电阻隔离一台电容上的电压。充电完成后,控制系统经光纤向放电球隙组的火花触发器输送触发信号以在球隙之间产生一个电火花,放电球隙组由电火花点火触发,电容放电时放电回路工作,电容组采用串联连接方式,以电火花触发多级球隙级联放电。使得电容组经调波电感、调波电阻放电,从而输出所设定参数的冲击电流波。The discharge ball gap group is a customized product. The control system is connected to the discharge ball gap group through optical fiber, and intelligently adjusts the ball gap distance according to the set voltage level to ensure the normal output of the impulse current. When the capacitor is charged, the charging circuit works, and the capacitor banks are connected in parallel for charging. Each level of ball gap corresponds to a capacitor, and the isolation resistor is used to isolate the voltage on one capacitor. After the charging is completed, the control system sends a trigger signal to the spark trigger of the discharge ball gap group through the optical fiber to generate an electric spark between the ball gaps. The discharge ball gap group is triggered by the spark ignition. When the capacitor is discharged, the discharge circuit works, and the capacitor group The series connection method is used to trigger the multi-stage ball gap cascade discharge with electric sparks. The capacitor group is discharged through the wave-modulating inductor and the wave-modulating resistor, so as to output the shock current wave of the set parameters.
所述多冲击电流发生器的时延控制系统为定制产品。多冲击电流波形输出后经电缆及金属电极导入土壤样品中。以细砂土作为土壤样品,放置于边长200-1000mm不等的绝缘材料沙盒内,沙盒内底面及侧面覆有铜片并接地。实现多冲击电流对土壤放电。The time delay control system of the multiple impulse current generator is a customized product. After the multiple impulse current waveforms are output, they are introduced into the soil sample through cables and metal electrodes. Take fine sandy soil as the soil sample and place it in a sandbox of insulating material with a side length of 200-1000 mm. The bottom and sides of the sandbox are covered with copper sheets and grounded. Realize the discharge of multiple impulse currents to the soil.
实施例3Example 3
如图1~3所示,土壤多冲击电流放电试验装置,其主要由冲击放电主体电容组10~11、放电球隙组12~13、隔离球隙19、时延控制系统18、充电控制系统2~9、调波电感14~15、调波电阻16~17、穿芯式电流传感器22、冲击电压分压器25以及高精度数字示波器21等组成。As shown in Figures 1 to 3, the soil multi-impulse current discharge test device is mainly composed of the impact discharge main capacitor group 10-11, the discharge ball gap group 12-13, the isolation ball gap 19, the time delay control system 18, and the charging control system 2-9, wave-modulating inductance 14-15, wave-modulating resistor 16-17, core-through current sensor 22, impulse voltage divider 25 and high-precision digital oscilloscope 21, etc.
所述多冲击电流发生装置1其主体部分为两套独立可控的单冲击电流发生器,以充电控制系统2~9、时延控制系统18以及连接光纤控制两套冲击电流发生器的触发放电时间,从而实现多冲击电流的输出。每套单冲击电流发生器主要包括:智能控制系统、调压器2~3、升压变压器4~5、硅堆6~7、调波电阻16~17、调波电感14~15、脉冲电容器组10~11、电动放电球隙组12~13。智能控制系统通过光纤与调压器2~3相连,调压器2~3的进线端通过导线与380V工频电源连接,调压器2~3的出线端与升压变压器4~5的原边通过导线连接;升压变压器4~5的副边与硅堆6~7用导线连接;经硅堆6~7及充电电阻26~27向电容组10~11充电。每套冲击电流发生器的电容组由1-5台电容组成,充电完成后可经放电球隙组12~13及调波电感14~15、调波电阻16~17放电,输出冲击电流波形。The main part of the multiple impulse current generating device 1 is two sets of independently controllable single impulse current generators, and the trigger discharge of the two sets of impulse current generators is controlled by the charging control system 2-9, the time delay control system 18 and the connecting optical fiber. Time, so as to realize the output of multi-inrush current. Each set of single impulse current generator mainly includes: intelligent control system, voltage regulator 2~3, step-up transformer 4~5, silicon stack 6~7, wave-modulating resistor 16-17, wave-modulating inductor 14-15, pulse capacitor Groups 10-11, electromotive discharge ball gap groups 12-13. The intelligent control system is connected with voltage regulators 2~3 through optical fiber, the incoming line terminals of voltage regulators 2~3 are connected with 380V power frequency power supply through wires, and the outgoing line terminals of voltage regulators 2~3 are connected with step-up transformers 4~5 The primary sides are connected by wires; the secondary sides of the step-up transformers 4-5 are connected with the silicon stacks 6-7 by wires; the capacitor groups 10-11 are charged through the silicon stacks 6-7 and the charging resistors 26-27. The capacitor group of each impulse current generator is composed of 1-5 capacitors. After charging, it can be discharged through the discharge ball gap group 12-13, the wave-modulating inductor 14-15, and the wave-modulating resistor 16-17, and the impulse current waveform is output.
所述放电球隙组12~13其具体规格为电动5级放电球隙组。控制系统经光纤与放电球隙组12~13连接,根据设定电压等级智能调节球隙间距,以保证冲击电流正常输出。每级球隙对应一台电容器,充电时电容组并联,每级球隙配合隔离电阻28~29隔离一台电容上的电压。充电完成后,控制系统经光纤向放电球隙组12~13的火花触发器输送触发信号以在球隙之间产生一个电火花,放电球隙组12~13由电火花点火触发,放电时采用电容串联连接方式,以电火花触发5级球隙级联放电。使得电容组10~11经调波电感14~15、调波电阻16~17放电,从而输出所设定参数的冲击电流波。The specific specifications of the discharge ball gap groups 12 to 13 are electric 5-stage discharge ball gap groups. The control system is connected to the discharge ball gap groups 12-13 via optical fiber, and intelligently adjusts the distance between the ball gaps according to the set voltage level to ensure the normal output of the impulse current. Each level of ball gap corresponds to a capacitor. When charging, the capacitor groups are connected in parallel, and each level of ball gap cooperates with isolation resistors 28-29 to isolate the voltage on one capacitor. After the charging is completed, the control system transmits trigger signals to the spark triggers of the discharge ball gap groups 12-13 via optical fibers to generate an electric spark between the ball gaps. Capacitors are connected in series to trigger 5-level ball gap cascade discharge with electric sparks. The capacitor groups 10-11 are discharged through the wave-modulating inductors 14-15 and the wave-modulating resistors 16-17, so as to output the impulse current wave with the set parameters.
所述多冲击电流发生器的时延控制系统18经光纤与分别与两套冲击放电球隙组12~13的电火花触发器相连接。该时延控制系统18具有自主触发和检测触发两种工作模式。当工作在自主触发模式时,当触发信号输送至时延控制系统18,由时延控制系统18处理并输出两路信号分别送至两套放电球隙组12~13,两路信号具有所设定的时间延迟,从而控制两套放电球隙组12~13的触发放电时间,使之放电具有时间差,实现多冲击电流的输出。当工作在检测触发模式时,当触发信号输送至时延控制系统18,时延控制系统18直接送至第一冲击放电球隙组12触发放电并对放电情况进行检测,当第一冲击放电成功时,时延控制系统18会收到反馈信号,并以此时刻为开始,经规定时延后向第二冲击放电球隙组13输送触发信号,实现第二冲击放电。具体延迟时间可在放电之前通过计算机软件写入时延控制系统18之中,其时延可控范围为0~5000ms,时延控制系统18控制精度为纳秒级,考虑各器件之间的时延,从而实现精度为微秒级的不同时间间隔的多冲击电流的输出。The time delay control system 18 of the multi-impact current generator is connected to the spark triggers of the two sets of impulse discharge ball gap groups 12-13 respectively through optical fibers. The delay control system 18 has two working modes: autonomous triggering and detection triggering. When working in the autonomous trigger mode, when the trigger signal is sent to the delay control system 18, the delay control system 18 processes and outputs two signals to the two sets of discharge ball gap groups 12-13 respectively, and the two signals have the set A certain time delay is used to control the trigger discharge time of the two sets of discharge ball gap groups 12-13, so that the discharge has a time difference and realize the output of multiple impulse currents. When working in the detection trigger mode, when the trigger signal is sent to the delay control system 18, the delay control system 18 directly sends it to the first impact discharge ball gap group 12 to trigger discharge and detect the discharge situation. When the first impact discharge is successful , the delay control system 18 will receive the feedback signal, and start from this moment, and send a trigger signal to the second impact discharge ball gap group 13 after a specified time delay to realize the second impact discharge. The specific delay time can be written into the time delay control system 18 through computer software before discharging. The controllable range of the time delay is 0-5000ms, and the control accuracy of the time delay control system 18 is nanosecond level. Delay, so as to realize the output of multiple impulse currents at different time intervals with an accuracy of microseconds.
所述隔离球隙19其主要功能是隔离多冲击放电过程中第一冲击放电造成的电位抬升对后续冲击放电的影响。第一冲击放电时会在土壤样品上产生一个瞬时的电位抬升,造成第二冲击放电球隙两端电压畸变从而和第一冲击同时放电,时延控制失效。增加隔离球隙可以有效解决这一问题。隔离球隙19之间间距设定为第一冲击输出电压对应隔离距离,并有-30~+30mm的调节域度,使其满足既可以隔离土壤样品上电位抬升的影响,又不影响第二冲击电流的正常放电。The main function of the isolation ball gap 19 is to isolate the influence of the potential rise caused by the first impulse discharge on the subsequent impulse discharge in the multi-impulse discharge process. The first shock discharge will generate an instantaneous potential rise on the soil sample, which will cause the voltage distortion at both ends of the ball gap of the second shock discharge and discharge at the same time as the first shock, and the time delay control will fail. Increasing the isolation ball gap can effectively solve this problem. The distance between the isolation ball gaps 19 is set to the isolation distance corresponding to the first impact output voltage, and has an adjustment range of -30 to +30 mm, so that it can isolate the influence of the potential rise on the soil sample without affecting the second Normal discharge of inrush current.
所述多冲击电流波形输出后经电缆及金属电极23导入土壤样品中。以细砂土作为土壤样品,放置于边长200*200*200mm的绝缘材料沙盒24内,沙盒24内底面及侧面覆有铜片并接地。长为100mm金属电极23垂直放置于沙盒24中心。实现多冲击电流对土壤放电。穿芯式电流传感器22环套在导电电缆线上,并经同轴屏蔽电缆线连接至高精度数字示波器21用以采集电流波形。金属电极23端电压经导线连接至冲击电压分压器25高压端,冲击电压分压器25信号输出端经同轴屏蔽电缆线连接至高精度数字示波器21用以采集电压波形。After the multiple impulse current waveforms are output, they are introduced into the soil sample through cables and metal electrodes 23 . Take fine sand as the soil sample and place it in a sandbox 24 made of insulating material with a side length of 200*200*200mm. The inner bottom and sides of the sandbox 24 are covered with copper sheets and grounded. A metal electrode 23 with a length of 100 mm is vertically placed in the center of the sandbox 24 . Realize the discharge of multiple impulse currents to the soil. The core-through current sensor 22 is looped on the conductive cable, and connected to the high-precision digital oscilloscope 21 through the coaxial shielded cable to collect the current waveform. The voltage at the metal electrode 23 terminal is connected to the high-voltage end of the impulse voltage divider 25 through wires, and the signal output end of the impulse voltage divider 25 is connected to a high-precision digital oscilloscope 21 through a coaxial shielded cable for collecting voltage waveforms.
所述高精度示波器21采用市购模块,4独立信号采集通道,带宽为50-200MHz,实时采样率0-2GSa/s,存储深度1k-24Mpts,能保证采集信号的精度和长度。所述高精度数字示波器的供电电源为独立蓄电池和逆变器组合电源或离线UPS电源,这不仅可以提高数字示波器获取的信号的信噪比,而且能防止冲击电流发生器放电时,冲击大电流入地导致实验室地网电位急剧升高而损毁数字示波器。The high-precision oscilloscope 21 adopts a commercially available module, 4 independent signal acquisition channels, a bandwidth of 50-200MHz, a real-time sampling rate of 0-2GSa/s, and a storage depth of 1k-24Mpts, which can ensure the accuracy and length of the collected signals. The power supply of the high-precision digital oscilloscope is a combined power supply of an independent storage battery and an inverter or an offline UPS power supply, which can not only improve the signal-to-noise ratio of the signal obtained by the digital oscilloscope, but also prevent the impact of large currents when the impulse current generator is discharged. The potential of the ground grid in the laboratory rises sharply and damages the digital oscilloscope.
本实施例提供的试验沙盒24的边长尺寸为300*200*200mm,以绝缘材料制作。沙盒24内底面及侧面覆有铜片并接地。长为100mm的金属电极23水平放置于沙盒24中心。The test sandbox 24 provided in this embodiment has a side length of 300*200*200mm and is made of insulating material. Sandbox 24 inner bottom surface and side are covered with copper sheet and grounded. A metal electrode 23 with a length of 100 mm is placed horizontally in the center of the sandbox 24 .
本实施例提供的试验沙盒24的边长尺寸为1000*200*200mm,以绝缘材料制作。沙盒24内底面及侧面覆有铜片并接地。长为800mm的金属电极23水平放置于沙盒24中心。The test sandbox 24 provided in this embodiment has a side length of 1000*200*200mm and is made of insulating material. Sandbox 24 inner bottom surface and side are covered with copper sheet and grounded. A metal electrode 23 with a length of 800 mm is placed horizontally in the center of the sandbox 24 .
实施例4Example 4
本实施例提供土壤多冲击电流放电试验方法,利用该装置,经确定波形及土壤参数、连接试验回路、多冲击电流波形输出预调试、进行多冲击放电试验以及数据采集等步骤进行土壤多冲击放电试验,其具体方案及预调试步骤如下:This embodiment provides a soil multi-impact current discharge test method. Using this device, the soil multi-impact discharge is carried out through steps such as determining the waveform and soil parameters, connecting the test circuit, outputting the multi-impact current waveform pre-commissioning, performing a multi-impact discharge test, and collecting data. The specific scheme and pre-commissioning steps of the test are as follows:
(1)确定试验波形参数及土壤样品参数(1) Determine the test waveform parameters and soil sample parameters
首先根据试验要求和规划确定试验波形参数及土壤样品参数。其中波形参数主要包括:第一及第二冲击电流波的波头波尾时间、冲击电流幅值以及多冲击电流之间的时间间隔;土壤样品参数主要包括土壤种类、土壤电阻率、沙盒及电极尺寸。First, determine the test waveform parameters and soil sample parameters according to the test requirements and planning. Among them, the waveform parameters mainly include: the wave head and tail time of the first and second shock current waves, the shock current amplitude and the time interval between multiple shock currents; the soil sample parameters mainly include soil type, soil resistivity, sandbox and electrode size.
①确定波形波头波尾时间及幅值。通过分别调节第一冲击电流发生器和第二冲击电流发生器的调波电感14~15和调波电阻16~17可以独立调节两冲击电流波形的波头时间和波尾时间。在调节调波电感14~15和调波电阻16~17之前,可通过仿真软件或计算公式确定其参考值。通过改变放电电容组10~11的充电电压调节冲击电流波幅值;① Determine the wave head and tail time and amplitude. By adjusting the wave-modulating inductance 14-15 and the wave-modulating resistor 16-17 of the first impulse current generator and the second impulse current generator respectively, the wave head time and wave tail time of the two impulse current waveforms can be independently adjusted. Before adjusting the tuning inductors 14-15 and tuning resistors 16-17, their reference values can be determined by simulation software or calculation formulas. Adjusting the surge current wave amplitude by changing the charging voltage of the discharge capacitor group 10-11;
②确定多冲击电流波之间的时间间隔。在充电开始之前,通过向时延控制系统18中写入所需时延设定多冲击电流之间的时间间隔。② Determine the time interval between multiple impulse current waves. Before charging starts, the time interval between multiple surge currents is set by writing the required time delay into the time delay control system 18 .
③确定土壤参数。根据试验要求确定土壤的种类以及沙盒24、金属电极23的尺寸。通过调节土壤的含水量及含盐量调节土壤电阻率。首先对土壤样品进行清洗去除可容性盐成分,多次清晰至洗涤液盐度接近0;然后对土壤样品进行烘干去除土壤中水分;最后跟试验所需添加预设质量的水和盐,其中盐以NaCl晶体溶于水中后添加至土壤中。然后测定土壤电阻率并记录。③ Determine the soil parameters. Determine the type of soil and the size of the sandbox 24 and the metal electrode 23 according to the test requirements. Adjust the soil resistivity by adjusting the water content and salt content of the soil. First, the soil sample is washed to remove the soluble salt components, and it is cleared several times until the salinity of the washing solution is close to 0; then the soil sample is dried to remove the moisture in the soil; finally, the preset quality of water and salt is added according to the test requirements, The salt is dissolved in water as NaCl crystals and added to the soil. The soil resistivity was then measured and recorded.
(2)连接试验回路(2) Connect the test circuit
第(1)步完成后,按照本发明装置进行试验回路接线。将两套冲击电流发生器的输出端经编织铜带连接汇合于电缆线上,连接至金属电极23上作为土壤放电试验的高压端,并埋入沙盒24土壤之中,沙盒24内覆铜皮连接接地线作为接地端。将穿芯式电流传感器22环套在电缆线上,用同轴屏蔽电缆将信号输送至数字示波器21以采集电流波形。用金属导线将金属电极23端连接至冲击电压分压器25,并用同轴屏蔽电缆将信号输送至数字示波器21以采集电压波形。After the step (1) is completed, the test circuit wiring is carried out according to the device of the present invention. Connect the output ends of the two sets of impulse current generators to the cables through braided copper strips, connect them to the metal electrode 23 as the high-voltage end of the soil discharge test, and bury them in the soil of the sandbox 24. The sandbox 24 is covered with The copper skin is connected to the ground wire as the ground terminal. The core-through current sensor 22 is looped on the cable, and the coaxial shielded cable is used to transmit the signal to the digital oscilloscope 21 to collect the current waveform. Connect the end of the metal electrode 23 to the impulse voltage divider 25 with a metal wire, and use a coaxial shielded cable to send the signal to a digital oscilloscope 21 to collect the voltage waveform.
(3)多冲击电流波形输出预调试(3) Multi-inrush current waveform output pre-debugging
在第(2)步完成之后,需要对发明设备进行预调试,保证多冲击电流发生装置1各个设备之间的同步与正常触发之后,才可以进行试验。After step (2) is completed, it is necessary to carry out pre-commissioning on the inventive equipment to ensure the synchronization and normal triggering among the various equipment of the multi-inrush current generating device 1 before the test can be carried out.
①首先给第一冲击电流发生器设定预设电压,按照对应电压自动调节放电球隙组12的球隙间距,然后对电容组充电,待充电完成后,向放电球隙组12输送放电触发信号进行放电测试。如放电失败,微调放电球隙组12的球隙间距,直至正常放电;①First set the preset voltage for the first impulse current generator, automatically adjust the ball gap distance of the discharge ball gap group 12 according to the corresponding voltage, then charge the capacitor group, and send the discharge trigger to the discharge ball gap group 12 after the charging is completed signal for a discharge test. If the discharge fails, fine-tune the distance between the ball gaps of the discharge ball gap group 12 until normal discharge;
②给第二冲击电流发生器设定预设电压,按照权利要求4所述内容对应电压调节放电球隙组13的球隙间距,隔离球隙19短接,然后对电容组充电,待充电完成后,向放电球隙组13输送放电触发信号进行放电测试。如放电失败,微调放电球隙组13的球隙间距,直至正常放电。其后按照权利要求5所述内容对应电压调节隔离球隙19间距,然后重新进行上述充放电测试。如放电失败,微调隔离球隙19间距,直至正常放电;②Set the preset voltage for the second impulse current generator, adjust the ball gap distance of the discharge ball gap group 13 according to the corresponding voltage according to the content of claim 4, short-circuit the isolation ball gap 19, and then charge the capacitor group, and wait for the charging to be completed Afterwards, a discharge trigger signal is sent to the discharge ball gap group 13 to perform a discharge test. If the discharge fails, fine-tune the distance between the ball gaps of the discharge ball gap group 13 until normal discharge. Thereafter, adjust the distance between the isolation ball gaps 19 according to the corresponding voltage according to the content of claim 5, and then carry out the above-mentioned charging and discharging test again. If the discharge fails, fine-tune the spacing between the isolation ball gaps 19 until normal discharge;
③最后,设定时间间隔。结合图4说明,先由智能控制系统30向时延控制系统18中写入预设时间间隔,此时,时延控制系统18标定零时刻,并即时向第一冲击电流发生器的放电球隙组12输送触发信号,使其触发放电;经预设的时间延迟后,时延控制系统18向第二冲击电流发生器的放电球隙组13输送触发信号,使其触发放电。从而试验多冲击电流发生装置1全面运行,输出预设波形。③ Finally, set the time interval. 4, the intelligent control system 30 first writes the preset time interval into the time delay control system 18. At this time, the time delay control system 18 calibrates the zero time, and immediately sends the discharge ball gap of the first impulse current generator Group 12 sends a trigger signal to trigger discharge; after a preset time delay, time delay control system 18 sends a trigger signal to discharge ball gap group 13 of the second impulse current generator to trigger discharge. Thus, the test multi-inrush current generating device 1 is fully operated, and the preset waveform is output.
(4)进行多冲击放电试验(4) Conduct multi-impact discharge test
完成第(3)步后,进行土壤多冲击放电试验。在仅改变时间间隔,不改变冲击电流幅值的情况下,可以不必进行第(3)步所述预调试。此时各球隙间距不变。在控制系统的操作平台上设定时间间隔并写入时延控制系统18,然后分别点击第一第二冲击电流发生器的“充电”按钮开始分别充电,充电完成后,点击“触发”按钮,放电球隙组12~13点火触发装置将按照设定时延分别触发两套放电球隙组12~13进行放电。多冲击电流经土壤样品入地,完成一次土壤多冲击放电试验。每次试验过后,将沙盒24内土壤翻新还原,且每次多冲击放电试验至少间隔2-5分钟。After completing step (3), carry out the soil multi-impact discharge test. In the case of only changing the time interval without changing the magnitude of the impulse current, the pre-commissioning described in step (3) may not be necessary. At this time, the distance between the ball gaps remains unchanged. Set the time interval on the operating platform of the control system and write it into the delay control system 18, and then click the "charge" button of the first and second impulse current generators to start charging respectively. After the charging is completed, click the "trigger" button, The ignition trigger devices of the discharge ball gap groups 12-13 will respectively trigger the two sets of discharge ball gap groups 12-13 to discharge according to the set time delay. The multi-impact current is injected into the ground through the soil sample, and a soil multi-impact discharge test is completed. After each test, the soil in the sandbox 24 was refurbished and restored, and each multi-impact discharge test was at least 2-5 minutes apart.
(5)数据采集(5) Data collection
进行第(4)步时,环套在电缆线上的穿芯式电流传感器22可以监测到放电回路中的电流波形,并经同轴屏蔽电缆将信号输送至数字示波器21以采集到电流波形。与放电高压端连接的冲击电压分压器25可以监测到金属电极23上的电压波形,并经同轴屏蔽电缆将信号输送至数字示波器21以采集到电压波形。When performing step (4), the core-through current sensor 22 looped on the cable can monitor the current waveform in the discharge circuit, and transmit the signal to the digital oscilloscope 21 through the coaxial shielded cable to collect the current waveform. The impulse voltage divider 25 connected to the discharge high voltage end can monitor the voltage waveform on the metal electrode 23, and transmit the signal to the digital oscilloscope 21 through the coaxial shielded cable to collect the voltage waveform.
完成第(4)步后,可将数字示波器21中的电压电流波形导出并存储,可以获得电压电流峰值以及各个时刻对应的电压电流值,用以后续数据分析。After completing step (4), the voltage and current waveforms in the digital oscilloscope 21 can be exported and stored, and the voltage and current peak values and corresponding voltage and current values at each moment can be obtained for subsequent data analysis.
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的保护范围当中。Finally, it is noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements, without departing from the spirit and scope of the technical solution, should be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710890345.2A CN107422239A (en) | 2017-09-27 | 2017-09-27 | The more dash current discharge test device and methods of soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710890345.2A CN107422239A (en) | 2017-09-27 | 2017-09-27 | The more dash current discharge test device and methods of soil |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107422239A true CN107422239A (en) | 2017-12-01 |
Family
ID=60435832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710890345.2A Pending CN107422239A (en) | 2017-09-27 | 2017-09-27 | The more dash current discharge test device and methods of soil |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107422239A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107807088A (en) * | 2017-12-06 | 2018-03-16 | 广东大鹏液化天然气有限公司 | Ablation simulated test special purpose device and test method of a kind of fault current to pipeline |
CN107807146A (en) * | 2017-12-06 | 2018-03-16 | 广东大鹏液化天然气有限公司 | The simulated test special purpose device and test method of a kind of thunder-strike current ablation pipeline |
CN108680777A (en) * | 2018-07-20 | 2018-10-19 | 中国电力科学研究院 | A kind of surge voltage generating means |
CN108761208A (en) * | 2018-08-13 | 2018-11-06 | 西南交通大学 | A kind of test method of vertical demixing soil dynamic resistance |
CN108872824A (en) * | 2018-09-04 | 2018-11-23 | 重庆大学 | Soil electric discharge imaging device and more impulse current generator synchronization systems and method |
CN109164359A (en) * | 2018-09-05 | 2019-01-08 | 重庆大学 | The filming apparatus in X-ray penetration soil spark discharge channel |
CN109188091A (en) * | 2018-08-13 | 2019-01-11 | 西南交通大学 | The test method of electric resistance of soil nonlinear characteristic under a kind of different in moisture content |
CN109188093A (en) * | 2018-08-13 | 2019-01-11 | 西南交通大学 | The nonlinear test method of electric resistance of soil under a kind of different pH values |
CN112180225A (en) * | 2020-10-29 | 2021-01-05 | 云南电网有限责任公司电力科学研究院 | A triple lightning strike anti-false trigger protection circuit |
CN112485303A (en) * | 2020-12-08 | 2021-03-12 | 国网四川省电力公司电力科学研究院 | Method and system for analyzing characteristic parameters of soil multi-impact discharge |
CN112572828A (en) * | 2019-09-28 | 2021-03-30 | 苏州电器科学研究院股份有限公司 | Movable aircraft lightning test system |
CN112710936A (en) * | 2020-12-02 | 2021-04-27 | 平高集团有限公司 | AC/DC discharge breakdown test system and test method |
CN113238155A (en) * | 2021-06-24 | 2021-08-10 | 国网山西省电力公司晋中供电公司 | Battery fault or failure detection method based on impulse discharge |
CN113740684A (en) * | 2021-08-19 | 2021-12-03 | 国网四川省电力公司电力科学研究院 | Adjustable capacitor matrix device, standard impulse current testing device and testing method |
CN115542783A (en) * | 2022-10-26 | 2022-12-30 | 上海茂化电工科技发展有限公司 | Automatic testing method, device, equipment, system and medium for impulse voltage test |
CN116087699A (en) * | 2022-10-20 | 2023-05-09 | 国网四川省电力公司电力科学研究院 | Multi-phase regulated multi-terminal combined control impact generator and pulse ignition system and method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102298108A (en) * | 2011-05-25 | 2011-12-28 | 重庆大学 | Impact characteristic simulation test apparatus of earthing device and method thereof |
CN204086461U (en) * | 2014-07-30 | 2015-01-07 | 中国铁道科学研究院 | A kind of two-way dash current electric discharge ball device |
CN204088881U (en) * | 2014-07-30 | 2015-01-07 | 中国铁道科学研究院 | A kind of two-way 20kV composite wave ball discharge device |
CN104459236A (en) * | 2014-12-12 | 2015-03-25 | 国家电网公司 | Bipolar linkage impulse current generator |
CN105319407A (en) * | 2014-07-30 | 2016-02-10 | 中国铁道科学研究院 | Dual-loop impulse generator |
CN106841903A (en) * | 2017-03-21 | 2017-06-13 | 国网上海市电力公司 | The tower grounding shock response test of 35kV overhead power transmissions and appraisal procedure and system |
-
2017
- 2017-09-27 CN CN201710890345.2A patent/CN107422239A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102298108A (en) * | 2011-05-25 | 2011-12-28 | 重庆大学 | Impact characteristic simulation test apparatus of earthing device and method thereof |
CN204086461U (en) * | 2014-07-30 | 2015-01-07 | 中国铁道科学研究院 | A kind of two-way dash current electric discharge ball device |
CN204088881U (en) * | 2014-07-30 | 2015-01-07 | 中国铁道科学研究院 | A kind of two-way 20kV composite wave ball discharge device |
CN105319407A (en) * | 2014-07-30 | 2016-02-10 | 中国铁道科学研究院 | Dual-loop impulse generator |
CN104459236A (en) * | 2014-12-12 | 2015-03-25 | 国家电网公司 | Bipolar linkage impulse current generator |
CN106841903A (en) * | 2017-03-21 | 2017-06-13 | 国网上海市电力公司 | The tower grounding shock response test of 35kV overhead power transmissions and appraisal procedure and system |
Non-Patent Citations (2)
Title |
---|
朱彬 等: "基于地中电场分布的针刺式接地装置结构参数优化", 《电网技术》 * |
江彬: "《最新电力避雷器优化设计与制作新技术及相关技术标准实用手册 第2卷》", 30 November 2007 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107807088B (en) * | 2017-12-06 | 2023-04-28 | 广东大鹏液化天然气有限公司 | Special device and test method for fault current ablation simulation test of pipeline |
CN107807146A (en) * | 2017-12-06 | 2018-03-16 | 广东大鹏液化天然气有限公司 | The simulated test special purpose device and test method of a kind of thunder-strike current ablation pipeline |
CN107807088A (en) * | 2017-12-06 | 2018-03-16 | 广东大鹏液化天然气有限公司 | Ablation simulated test special purpose device and test method of a kind of fault current to pipeline |
CN108680777A (en) * | 2018-07-20 | 2018-10-19 | 中国电力科学研究院 | A kind of surge voltage generating means |
CN109188091A (en) * | 2018-08-13 | 2019-01-11 | 西南交通大学 | The test method of electric resistance of soil nonlinear characteristic under a kind of different in moisture content |
CN109188093A (en) * | 2018-08-13 | 2019-01-11 | 西南交通大学 | The nonlinear test method of electric resistance of soil under a kind of different pH values |
CN109188091B (en) * | 2018-08-13 | 2019-06-04 | 西南交通大学 | A Test Method for Nonlinear Characteristics of Soil Resistance at Different Moisture Contents |
CN108761208A (en) * | 2018-08-13 | 2018-11-06 | 西南交通大学 | A kind of test method of vertical demixing soil dynamic resistance |
CN108872824A (en) * | 2018-09-04 | 2018-11-23 | 重庆大学 | Soil electric discharge imaging device and more impulse current generator synchronization systems and method |
CN109164359A (en) * | 2018-09-05 | 2019-01-08 | 重庆大学 | The filming apparatus in X-ray penetration soil spark discharge channel |
CN112572828A (en) * | 2019-09-28 | 2021-03-30 | 苏州电器科学研究院股份有限公司 | Movable aircraft lightning test system |
CN112180225A (en) * | 2020-10-29 | 2021-01-05 | 云南电网有限责任公司电力科学研究院 | A triple lightning strike anti-false trigger protection circuit |
CN112710936A (en) * | 2020-12-02 | 2021-04-27 | 平高集团有限公司 | AC/DC discharge breakdown test system and test method |
CN112485303A (en) * | 2020-12-08 | 2021-03-12 | 国网四川省电力公司电力科学研究院 | Method and system for analyzing characteristic parameters of soil multi-impact discharge |
CN112485303B (en) * | 2020-12-08 | 2023-08-08 | 国网四川省电力公司电力科学研究院 | Method and system for analyzing characteristic parameters of multiple impact discharge of soil |
CN113238155A (en) * | 2021-06-24 | 2021-08-10 | 国网山西省电力公司晋中供电公司 | Battery fault or failure detection method based on impulse discharge |
CN113238155B (en) * | 2021-06-24 | 2024-04-26 | 国网山西省电力公司晋中供电公司 | Battery fault or failure detection method based on impact discharge |
CN113740684A (en) * | 2021-08-19 | 2021-12-03 | 国网四川省电力公司电力科学研究院 | Adjustable capacitor matrix device, standard impulse current testing device and testing method |
CN113740684B (en) * | 2021-08-19 | 2023-05-16 | 国网四川省电力公司电力科学研究院 | Adjustable capacitance matrix device, standard impact current test device and test method |
CN116087699A (en) * | 2022-10-20 | 2023-05-09 | 国网四川省电力公司电力科学研究院 | Multi-phase regulated multi-terminal combined control impact generator and pulse ignition system and method |
CN115542783A (en) * | 2022-10-26 | 2022-12-30 | 上海茂化电工科技发展有限公司 | Automatic testing method, device, equipment, system and medium for impulse voltage test |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107422239A (en) | The more dash current discharge test device and methods of soil | |
CN104714067B (en) | The portable thunder and lightning stream generation apparatus and method tested for earthing or grounding means impact impedance | |
CN104502819B (en) | Arrester impact characteristics testing device and method | |
CN207650293U (en) | A kind of extra high voltage direct current transmission line lightning shielding analogue test platform | |
CN105759186B (en) | A kind of scenes GIS progressive wave test method and system | |
CN103424652A (en) | Impact performance simulation test method and device for grounding body with large simulated size and large amplitude value | |
CN202221465U (en) | Power capacitor tolerance blasting energy testing apparatus | |
CN102540093B (en) | Ground simulating test device and method for secondary electric arc of solar cell array for aerospace | |
CN204514974U (en) | For the portable lightning current generation device of earthing device impact impedance test | |
CN106569038A (en) | Method for testing impulse grounding resistance of pole of power transmission line | |
CN109450413B (en) | High-voltage double-exponential wave pulse source for simulating complex electromagnetic environment | |
CN114200258B (en) | Electric arc striking detection method based on electric signals | |
CN104034973A (en) | Electronic current transformer testing system and testing method | |
Rojas et al. | New circuit for the measurement of lightning generated electric fields | |
CN207908603U (en) | A kind of circuit artificial earthing short-circuit test overall process current detecting system | |
CN204086334U (en) | A kind of two-circuit surge generator | |
CN105319407B (en) | A double-circuit impulse generator | |
CN212540604U (en) | Partial discharge detection circuit of variable frequency power supply for high voltage test | |
CN218546873U (en) | Insulation resistance tester based on capacitance partial pressure restraines induced voltage | |
CN107515354B (en) | A full-process current test system for line artificial grounding short-circuit test | |
CN203275542U (en) | Lightning traveling wave characteristic test system of transmission lines | |
CN110927528A (en) | Transmission line fault simulation test device | |
CN117434394A (en) | A test method and system for withstand voltage of circuit breaker closing resistor | |
CN108872848A (en) | A kind of fast pulse generating device for superfrequency calibration | |
CN109164359A (en) | The filming apparatus in X-ray penetration soil spark discharge channel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171201 |
|
RJ01 | Rejection of invention patent application after publication |