CN104459236A - Bipolar linkage impulse current generator - Google Patents
Bipolar linkage impulse current generator Download PDFInfo
- Publication number
- CN104459236A CN104459236A CN201410770921.6A CN201410770921A CN104459236A CN 104459236 A CN104459236 A CN 104459236A CN 201410770921 A CN201410770921 A CN 201410770921A CN 104459236 A CN104459236 A CN 104459236A
- Authority
- CN
- China
- Prior art keywords
- current generator
- impulse current
- tested
- storage capacitor
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 239000003990 capacitor Substances 0.000 claims description 43
- 238000002955 isolation Methods 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 claims 1
- 230000008054 signal transmission Effects 0.000 claims 1
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 13
- 150000004706 metal oxides Chemical class 0.000 abstract description 13
- 238000004146 energy storage Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Landscapes
- Testing Relating To Insulation (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
本发明提供一种双极性联动冲击电流发生器,包括正极性冲击电流发生器、负极性冲击电流发生器、控制系统和测量系统;所述正极性冲击电流发生器与所述负极性冲击电流发生器分别设有与被测试品连接的接口,并分别通过放电球隙与所述控制系统相连;所述正极性冲击电流发生器与所述负极性冲击电流发生器在所述控制系统的控制下分别在不同时间段向所述被测试品放电,以产生冲击电流;所述测量系统测量并显示所述被测试品的电压和电流。这种冲击电流发生器经济有效,能产生一正一负两个连续且间隔时间可控的冲击电流,适合于考核金属氧化物限压器的能量耐受能力。
The invention provides a bipolar linkage impulse current generator, including a positive impulse current generator, a negative impulse current generator, a control system and a measurement system; the positive impulse current generator and the negative impulse current The generators are respectively provided with interfaces connected to the tested products, and are respectively connected to the control system through the discharge ball gap; the positive polarity impulse current generator and the negative polarity impulse current generator are controlled by the control system Discharge to the tested product in different time periods to generate impulse current; the measurement system measures and displays the voltage and current of the tested product. This kind of impulse current generator is economical and effective, and can generate two continuous impulse currents, one positive and one negative, with a controllable interval time, which is suitable for evaluating the energy tolerance of metal oxide voltage limiters.
Description
技术领域technical field
本发明涉及一种电流发生器,具体讲涉及一种能够模拟并产生串联补偿装置用金属氧化物限压器动作时电流波形的冲击电流发生器。The invention relates to a current generator, in particular to an impulse current generator capable of simulating and generating a current waveform when a metal oxide voltage limiter for a series compensation device operates.
技术领域 technical field
现有的金属氧化物限压器的能量耐受能力一般用其在2ms方波电流下的能量耐受能力来表示,这种波形能够大致模拟常规交流系统操作过电压下的电流波形,并用于考核避雷器的能量耐受能力。但串联补偿装置用金属氧化物限压器动作时的电流波形与2ms方波差异很大。The energy tolerance of existing metal oxide voltage limiters is generally expressed by its energy tolerance under 2ms square wave current. This waveform can roughly simulate the current waveform under the operating overvoltage of a conventional AC system, and is used for Assess the energy tolerance of the arrester. However, the current waveform when the series compensation device operates with a metal oxide voltage limiter is very different from the 2ms square wave.
图1和图2给出了典型金属氧化物限压器动作时的电流波形。其主要特点是:交流系统操作过电压时,流经金属氧化物限压器的冲击电流为多个连续的冲击电流,相邻两个冲击电流的极性相反;电流波形与电压波形相对应,电流持续时间约4ms,两个相反极性的电流波形相差约半个工频周期。Figure 1 and Figure 2 show the current waveform of a typical metal oxide voltage limiter in action. Its main features are: when the AC system operates overvoltage, the impulse current flowing through the metal oxide voltage limiter is a plurality of continuous impulse currents, and the polarity of two adjacent impulse currents is opposite; the current waveform corresponds to the voltage waveform, The duration of the current is about 4ms, and the difference between the two current waveforms of opposite polarities is about half a power frequency cycle.
因此,传统方法中,仅用金属氧化物限压器在2ms方波电流下的能量耐受能力来表示其能量耐受能力显然不够准确。需要提供一种新的技术方案,以准确模拟串联补偿装置用金属氧化物限压器动作时的电流波形,考核金属氧化物限压器的能量耐受能力。Therefore, in the traditional method, only using the energy tolerance of the metal oxide voltage limiter under the 2ms square wave current to represent its energy tolerance is obviously not accurate enough. It is necessary to provide a new technical solution to accurately simulate the current waveform when the metal oxide voltage limiter used in the series compensation device operates, and to assess the energy tolerance of the metal oxide voltage limiter.
发明内容Contents of the invention
为了解决现有技术中所存在的上述问题,本发明提供一种能够模拟并产生串联补偿装置用金属氧化物限压器动作时电流波形的冲击电流发生器,该电流发生器能够产生一正一负两个连续且间隔时间可控的冲击电流,用于考核限压器的能量耐受能力。In order to solve the above-mentioned problems existing in the prior art, the present invention provides an inrush current generator capable of simulating and generating a current waveform when a metal oxide voltage limiter for a series compensation device operates. Negative two continuous impulse currents with a controllable interval time are used to assess the energy tolerance of the voltage limiter.
本发明提供的技术方案是:一种双极性联动冲击电流发生器,包括正极性冲击电流发生器、负极性冲击电流发生器、控制系统和测量系统;其改进之处在于:所述正极性冲击电流发生器与所述负极性冲击电流发生器分别设有与被测试品连接的接口,并分别通过放电球隙与所述控制系统相连;所述正极性冲击电流发生器与所述负极性冲击电流发生器在所述控制系统的控制下分别在不同时间段向所述被测试品放电,以产生冲击电流;所述测量系统测量并显示所述被测试品的电压和电流。The technical solution provided by the present invention is: a bipolar linkage surge current generator, including a positive polarity surge current generator, a negative polarity surge current generator, a control system and a measurement system; its improvement is: the positive polarity The impulse current generator and the negative polarity impulse current generator are respectively provided with an interface connected to the tested product, and are respectively connected to the control system through the discharge ball gap; the positive polarity impulse current generator is connected to the negative polarity Under the control of the control system, the impulse current generator discharges to the tested object at different time periods to generate impulse current; the measurement system measures and displays the voltage and current of the tested object.
优选的,所述控制系统包括交流电源、可控硅、可控硅控制器、变压器、整流器、放电系统和主控制器;Preferably, the control system includes an AC power supply, a thyristor, a thyristor controller, a transformer, a rectifier, a discharge system and a main controller;
所述可控硅的输入端与交流电流相连,其输出端与所述变压器的输入端相连,所述变压器的输出端与整流器的输入端相连,所述整流器的输出端与放电系统相连;The input terminal of the silicon controlled rectifier is connected to the alternating current, the output terminal thereof is connected to the input terminal of the transformer, the output terminal of the transformer is connected to the input terminal of the rectifier, and the output terminal of the rectifier is connected to the discharge system;
所述主控制器通过可控硅控制器与所述可控硅的控制极连接;并通过分压器检测所述整流器的输出电压;所述主控制器根据所述整流器的输出电压发送信号给所述可控硅控制器,使所述可控硅控制器控制所述可控硅的导通或关断,从而调节所述变压器的输入电压;The main controller is connected to the control pole of the thyristor through a thyristor controller; and detects the output voltage of the rectifier through a voltage divider; the main controller sends a signal to the rectifier according to the output voltage of the rectifier The thyristor controller is configured to enable the thyristor controller to control the turn-on or turn-off of the thyristor, thereby adjusting the input voltage of the transformer;
所述主控制器与放电系统相连,用于控制所述放电系统产生高压触发脉冲输出至所述正极性冲击电流发生器的放电球隙或所述负极性冲击电流发生器的隔离球隙和放电球隙。The main controller is connected with the discharge system, and is used to control the discharge system to generate a high-voltage trigger pulse output to the discharge ball gap of the positive polarity impulse current generator or the isolation ball gap and discharge of the negative polarity surge current generator. ball clearance.
进一步,所述主控制器控制所述放电球隙和所述隔离球隙的放电时间,所述放电时间为2ms-10ms。Further, the main controller controls the discharge time of the discharge ball gap and the isolation ball gap, and the discharge time is 2ms-10ms.
优选的,所述正极性冲击电流发生器包括第一充电设备、储能电容C1、电感L1、第一放电球隙和电阻阀片;所述储能电容C1、所述电感L1、所述第一放电球隙、所述电阻阀片、以及所述被测试品依次连接形成一个闭合回路;Preferably, the positive surge current generator includes a first charging device, an energy storage capacitor C1, an inductor L1, a first discharge ball gap and a resistor valve plate; the energy storage capacitor C1, the inductor L1, the first A discharge ball gap, the resistance valve plate, and the tested product are sequentially connected to form a closed loop;
所述第一充电设备与所述储能电容C1并联;所述储能电容C1与所述被测试品的连接端接地。The first charging device is connected in parallel with the energy storage capacitor C1; the connection terminal between the energy storage capacitor C1 and the DUT is grounded.
进一步,负极性冲击电流发生器包括第二充电设备、储能电容C2、电感L2、第二放电球隙和隔离球隙;所述储能电容C2、所述电感L2、所述第二放电球隙、所述隔离球隙、以及所述被测试品依次连接形成一个闭合回路;Further, the negative polarity surge current generator includes a second charging device, an energy storage capacitor C2, an inductor L2, a second discharge ball gap and an isolation ball gap; the energy storage capacitor C2, the inductor L2, the second discharge ball Gap, the spacer ball gap, and the tested product are connected in sequence to form a closed loop;
所述第二充电设备与所述储能电容C2并联,所述储能电容C2与所述被测试品的连接端接地。The second charging device is connected in parallel with the energy storage capacitor C2, and the connection terminal between the energy storage capacitor C2 and the DUT is grounded.
进一步,所述隔离球隙与所述第二放电球隙的连接端与箝位电阻的一端相连,所述箝位电阻的另一端接地。Further, the connecting end of the isolation ball gap and the second discharge ball gap is connected to one end of a clamping resistor, and the other end of the clamping resistor is grounded.
进一步,第一充电设备和第二充电设备分别对储能电容C1充正极性电和对储能电容C2充负极性电,控制系统控制第一放电球隙放电时,正极性冲击电流发生器回路导通,所述储能电容C1通过电感L1、第一放电球隙、以及电阻阀片对被测试品放电;Further, the first charging device and the second charging device respectively charge the energy storage capacitor C1 with positive polarity electricity and the energy storage capacitor C2 with negative polarity electricity, and when the control system controls the discharge of the first discharge ball gap, the positive polarity surge current generator circuit conduction, the energy storage capacitor C1 discharges the tested product through the inductance L1, the first discharge ball gap, and the resistance valve plate;
所述储能电容C1放电完成后;所述控制系统控制第二放电球隙和隔离球隙放电,负极性冲击电流发生器回路导通,所述储能电容C2通过电感L2、第二放电球隙、以及隔离球隙对所述被测试品放电。After the discharge of the energy storage capacitor C1 is completed; the control system controls the discharge of the second discharge ball gap and the isolation ball gap, the negative polarity surge current generator circuit is turned on, and the energy storage capacitor C2 passes through the inductor L2, the second discharge ball The gap, and the isolation ball gap discharge the tested product.
优选的,所述测量系统包括分压器、分流器和示波器;所述分压器与所述被测试品并联,用于测量所述被测试品两端的电压,并将测量电压值输出给所述示波器进行波形显示;Preferably, the measurement system includes a voltage divider, a shunt and an oscilloscope; the voltage divider is connected in parallel with the tested product, and is used to measure the voltage at both ends of the tested product, and output the measured voltage value to the tested product. The oscilloscope is used for waveform display;
所述分流器与所述被测试品串联,用于测量流经所述被测试品的电流,并将测量电流值输出给示波器进行波形显示。The shunt is connected in series with the tested product, and is used to measure the current flowing through the tested product, and output the measured current value to an oscilloscope for waveform display.
进一步,所述示波器通过光电转换方式与控制系统的主控制器连接,将所述被测试品的电压和电流信号传输给所述主控制器,所述主控制器根据所述电压和电流信号计算所述被测试品吸收的能量。Further, the oscilloscope is connected with the main controller of the control system by means of photoelectric conversion, and transmits the voltage and current signals of the tested product to the main controller, and the main controller calculates according to the voltage and current signals The energy absorbed by the test article.
与最接近的技术方案相比,本发明具有如下显著进步:Compared with the closest technical solution, the present invention has the following remarkable progress:
1)本发明提供的技术方案可经济高效的确定金属氧化物限压器的能量耐受能力,克服了用工频回路实现考核时容量要求大,可控性差的缺陷。1) The technical solution provided by the present invention can economically and efficiently determine the energy tolerance of the metal oxide voltage limiter, and overcome the defects of large capacity requirements and poor controllability when using a power frequency circuit to realize the assessment.
2)本发明通过在负极性冲击电流发生器的回路中串联隔离球隙,并通过控制系统控制放电球隙放电,可防止正极性冲击电流发生器的储能电容C1在实际应用中直接对负极性冲击电流发生器的储能电容C2放电的误动作。2) The present invention isolates the ball gap in series in the circuit of the negative polarity surge current generator, and controls the discharge of the discharge ball gap through the control system, which can prevent the energy storage capacitor C1 of the positive polarity surge current generator from directly charging the negative electrode in practical applications. The malfunction of the discharge of the energy storage capacitor C2 of the impulse current generator.
3)本发明通过在正极性冲击电流发生器的回路中串联电阻阀片,并通过控制系统控制放电球隙放电,,可防止负极性冲击电流发生器的储能电容C2放电时,通过正极性冲击电流发生器回路将电流信号短路。3) The present invention can prevent the energy storage capacitor C2 of the negative polarity surge current generator from discharging through the positive polarity by connecting the resistance valve plate in series in the circuit of the positive polarity surge current generator, and controlling the discharge ball gap discharge through the control system. The surge current generator circuit shorts the current signal.
4)在负极性冲击电流发生器的回路中设置箝位电阻,保证负极性冲击电流发生器的回路能顺利点火,提高了冲击电流发生器的可靠性。4) A clamping resistor is set in the circuit of the negative polarity impulse current generator to ensure that the circuit of the negative polarity impulse current generator can be ignited smoothly, and the reliability of the impulse current generator is improved.
5)测量系统和控制系统之间采用光电转换的方式进行采集和传输信号,防止了系统中的高压电磁干扰和地电位对控制信号的干扰。5) The photoelectric conversion method is used to collect and transmit signals between the measurement system and the control system, which prevents the interference of high-voltage electromagnetic interference and ground potential in the system on the control signal.
附图说明Description of drawings
图1为传统的串补装置发生单相接地故障,火花间隙拒动,金属氧化物限压器MOV电压、电流和能耗波形图;Figure 1 is a single-phase ground fault in a traditional series compensator device, the spark gap refuses to move, and the MOV voltage, current and energy consumption waveform diagram of the metal oxide voltage limiter;
图2为传统的串补装置发生三相接地故障,火花间隙拒动,金属氧化物限压器MOV电压、电流和能耗波形图;Figure 2 is a three-phase ground fault in a traditional series compensator device, the spark gap refuses to move, and the MOV voltage, current and energy consumption waveform diagram of the metal oxide voltage limiter;
图3为本发明提供的双极性冲击电流发生器的原理图;Fig. 3 is the schematic diagram of the bipolar surge current generator provided by the present invention;
图4为本发明的控制系统的结构示意图;Fig. 4 is the structural representation of control system of the present invention;
图5为本发明的测量系统的结构示意图;Fig. 5 is the structural representation of measuring system of the present invention;
图6为本发明提供的双极性冲击电流发生器产生的电压电流波形图。FIG. 6 is a waveform diagram of voltage and current generated by the bipolar impulse current generator provided by the present invention.
其中:1-分流器,2-分压器,3-放电球隙1,4-放电球隙2,5-隔离球隙,6-箝位电阻,7-被测试品,8-电阻阀片。Among them: 1-shunt, 2-voltage divider, 3-discharge ball gap 1, 4-discharge ball gap 2, 5-isolation ball gap, 6-clamp resistor, 7-tested product, 8-resistance valve .
具体实施方式Detailed ways
为了更好地理解本发明,下面结合说明书附图和实例对本发明的内容做进一步的说明。In order to better understand the present invention, the content of the present invention will be further described below in conjunction with the accompanying drawings and examples.
本发明提供的双极性联动冲击电流发生器主要由两套极性相反的冲击电流发生器、控制系统、保护系统和测量系统组成;The bipolar linkage impulse current generator provided by the present invention is mainly composed of two sets of impulse current generators with opposite polarities, a control system, a protection system and a measurement system;
两套极性相反的单极性冲击电流发生器的回路设计如图3所示,主要包括:The circuit design of two sets of unipolar impulse current generators with opposite polarities is shown in Figure 3, mainly including:
产生正极性波形的正极性冲击电流发生器和产生负极性波形的负极性冲击电流发生器;A positive impulse current generator generating a positive waveform and a negative impulse current generator producing a negative waveform;
正极性冲击电流发生器包括储能电容C1、电感L1、放电球隙1和电阻阀片;储能电容C1、电感L1、放电球隙1、电阻阀片、以及被测试品依次连接形成一个闭合回路;储能电容C1通过并联在其两端的充电设备充正极性电,其放电由控制系统给放电球隙1点火来控制;The positive polarity surge current generator includes energy storage capacitor C1, inductor L1, discharge ball gap 1 and resistance valve plate; energy storage capacitor C1, inductor L1, discharge ball gap 1, resistance valve plate, and the tested product are connected in sequence to form a closed Loop; the energy storage capacitor C1 is charged with positive polarity electricity through the charging equipment connected in parallel at its two ends, and its discharge is controlled by the control system to ignite the discharge ball gap 1;
负极性冲击电流发生器包括储能电容C2、电感L2、放电球隙2和隔离球隙;储能电容C2、电感L2、放电球隙2、隔离球隙、以及被测试品依次连接形成一个闭合回路;储能电容C2通过并联在其两端的充电设备充负极性电,其放电由控制系统给放电球隙2和隔离球隙点火来控制;The negative polarity surge current generator includes energy storage capacitor C2, inductor L2, discharge ball gap 2 and isolation ball gap; energy storage capacitor C2, inductor L2, discharge ball gap 2, isolation ball gap, and the tested product are sequentially connected to form a closed Loop; the energy storage capacitor C2 is charged with negative polarity electricity through the charging equipment connected in parallel at its two ends, and its discharge is controlled by the control system to ignite the discharge ball gap 2 and the isolation ball gap;
实际使用中,设备容易产生正极性冲击电流发生器的储能电容C1直接对负极性冲击电流发生器的储能电容C2放电这样的误动作,为此在本发明中使用隔离球间隙和放电系统3来减小系统此方面的误动作。In actual use, the equipment is prone to malfunction such that the energy storage capacitor C1 of the positive surge current generator directly discharges the energy storage capacitor C2 of the negative polarity surge current generator. For this reason, the isolation ball gap and discharge system are used in the present invention 3 to reduce the malfunction of the system in this respect.
另外在正极性冲击电流发生器的回路中串联非线性电阻阀片,可以保证负极性冲击电流发生器的储能电容C2放电时不会通过正极性冲击电流发生器的储能电容C1将电流信号旁路。In addition, the non-linear resistance valve plate is connected in series in the circuit of the positive surge current generator, which can ensure that the energy storage capacitor C2 of the negative polarity surge current generator will not pass the current signal through the energy storage capacitor C1 of the positive polarity surge current generator. bypass.
负极性冲击电流发生器回路中的箝位电阻是一个MΩ级的电阻,用于为放电球隙2的下半部分提供参考地电位,以保证负极性冲击电流发生器的回路能顺利点火。The clamping resistor in the loop of the negative surge current generator is a resistance of MΩ level, which is used to provide the reference ground potential for the lower half of the discharge ball gap 2, so as to ensure that the loop of the negative polarity surge current generator can be ignited smoothly.
控制系统如图4所示:正负不同极性回路的联合动作由控制系统来控制,控制系统可以控制两个不同极性回路的放电时间,并且放电时间可调,从2mS~10mS间可灵活设置。The control system is shown in Figure 4: the joint action of the positive and negative circuits with different polarities is controlled by the control system, the control system can control the discharge time of the two circuits with different polarities, and the discharge time is adjustable, flexible from 2mS to 10mS set up.
控制系统主要包括:380V的交流电源、可控硅、可控硅控制器、变压器、整流器、放电系统和主控制器;The control system mainly includes: 380V AC power supply, thyristor, thyristor controller, transformer, rectifier, discharge system and main controller;
控制回路采用闭环控制,主控制器(计算机及PLC系统)通过分压器检测整流器的输出电压,根据整流器的输出电压发送信号给可控硅控制器,使可控硅控制器控制可控硅的导通或关断,从而调节变压器的输入电压;The control loop adopts closed-loop control. The main controller (computer and PLC system) detects the output voltage of the rectifier through the voltage divider, and sends a signal to the thyristor controller according to the output voltage of the rectifier, so that the thyristor controller controls the thyristor. Turn on or off to adjust the input voltage of the transformer;
主控制器与放电系统相连,用于控制放电系统产生高压触发脉冲输出至正极性冲击电流发生器的放电球隙或负极性冲击电流发生器的隔离球隙和放电球隙,给放电球隙或隔离球隙点火。The main controller is connected with the discharge system, used to control the discharge system to generate high-voltage trigger pulse output to the discharge ball gap of the positive polarity impact current generator or the isolation ball gap and the discharge ball gap of the negative polarity surge current generator, to the discharge ball gap or Isolate ball gap ignition.
测量系统如图5所示:测量系统可测量正极性冲击电流波形、幅值和对应的电压波形、幅值;负极性冲击电流波形、幅值和对应的电压波形、幅值;正负极性时间间隔、每次冲击被测试品吸收的能量、总能量;The measurement system is shown in Figure 5: the measurement system can measure positive polarity impulse current waveform, amplitude and corresponding voltage waveform, amplitude; negative polarity impulse current waveform, amplitude and corresponding voltage waveform, amplitude; positive and negative polarity Time interval, energy absorbed by the test object per impact, total energy;
测量系统主要包括分压器、分流器和示波器;分压器与被测试品并联,用于测量被测试品两端的电压;分流器与被测试品串联,用于测量流经被测试品两端的电流;分压器和分流器测得的电压和电流波形均通过独立电源示波器显示;The measurement system mainly includes a voltage divider, a shunt and an oscilloscope; the voltage divider is connected in parallel with the tested product to measure the voltage across the tested product; the shunt is connected in series with the tested product to measure the voltage flowing through the tested product. Current; the voltage and current waveforms measured by the voltage divider and shunt are displayed by an independent power supply oscilloscope;
独立电源示波器与控制系统相连,将被测试品的电压和电流发送给控制系统,通过控制系统计算被测试品吸收的能量。The independent power supply oscilloscope is connected to the control system, sends the voltage and current of the tested product to the control system, and calculates the energy absorbed by the tested product through the control system.
双极性联动冲击电流发生器的具体工作过程如下:The specific working process of the bipolar linkage impulse current generator is as follows:
双极性冲击电流发生器使用2套充电设备对电容C1充正极性电压,对电容C2充负极性电压。电压充电到设定值时,控制系统给放电系统1发出放电信号,正极性冲击电流发生器的回路接通,电容C2放电产生正半波的冲击电流波形,同时测量系统检测正极性回路的放电信号,并发送给控制系统,控制系统对信号进行延时,延时时间2mS~10mS可调,随后将信号传递给放电系统2和放电系统3由它们同时动作,使得充着负极性电压的电容C2对被测试品进行放电,从而对被测试品产生负极性的波形。The bipolar impulse current generator uses two sets of charging equipment to charge the positive polarity voltage to the capacitor C1 and charge the negative polarity voltage to the capacitor C2. When the voltage is charged to the set value, the control system sends a discharge signal to the discharge system 1, the circuit of the positive polarity impulse current generator is connected, and the discharge of capacitor C2 generates a positive half-wave impulse current waveform, and at the same time, the measurement system detects the discharge of the positive polarity circuit signal, and send it to the control system, the control system delays the signal, the delay time is adjustable from 2mS to 10mS, and then transmits the signal to the discharge system 2 and discharge system 3, and they act at the same time, so that the capacitor with negative polarity voltage is charged C2 discharges the tested product, thereby generating a negative polarity waveform to the tested product.
为了防止系统中高压电磁干扰和地电位对控制信号的干扰,控制系统和测量系统之间采用光电转换的方式采集和传输信号。In order to prevent the interference of high-voltage electromagnetic interference and ground potential on the control signal in the system, the control system and the measurement system adopt photoelectric conversion to collect and transmit signals.
如图6所示:图6为双极性冲击电流发生器的电流和电压波形图。图中上部分为电压信号,下部分为电流信号。As shown in Figure 6: Figure 6 is the current and voltage waveform diagram of the bipolar impulse current generator. The upper part of the figure is the voltage signal, and the lower part is the current signal.
以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均在申请待批的本发明的权利要求范围之内。The above is only an embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention are all pending applications for the rights of the present invention. within the required range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410770921.6A CN104459236B (en) | 2014-12-12 | 2014-12-12 | A kind of bipolarity linkage impulse current generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410770921.6A CN104459236B (en) | 2014-12-12 | 2014-12-12 | A kind of bipolarity linkage impulse current generator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104459236A true CN104459236A (en) | 2015-03-25 |
CN104459236B CN104459236B (en) | 2017-11-07 |
Family
ID=52905619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410770921.6A Active CN104459236B (en) | 2014-12-12 | 2014-12-12 | A kind of bipolarity linkage impulse current generator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104459236B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107422239A (en) * | 2017-09-27 | 2017-12-01 | 重庆大学 | The more dash current discharge test device and methods of soil |
CN108429547A (en) * | 2018-04-11 | 2018-08-21 | 西安交通大学 | A device for generating negative high-voltage pulses |
CN113791317A (en) * | 2021-08-30 | 2021-12-14 | 中国南方电网有限责任公司超高压输电公司南宁局 | Metal oxide variable resistance test circuit, system and method |
CN114200193A (en) * | 2021-10-29 | 2022-03-18 | 东风商用车有限公司 | Device and method for testing impact current of negative bus of electric automobile |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08172780A (en) * | 1995-07-14 | 1996-07-02 | Nichicon Corp | Impulse voltage/current generating apparatus |
CN200982998Y (en) * | 2006-10-27 | 2007-11-28 | 常州市创捷防雷电子有限公司 | A surge current generator |
CN201260135Y (en) * | 2008-09-03 | 2009-06-17 | 郑晓东 | Cascade-type high voltage impulse current generator |
CN101629981A (en) * | 2009-05-19 | 2010-01-20 | 武汉大学 | Modularized multiple wave forms impact generator test device |
CN201532403U (en) * | 2009-09-29 | 2010-07-21 | 中国电力科学研究院 | A surge current generator |
JP4525858B1 (en) * | 2009-12-21 | 2010-08-18 | 日新電機株式会社 | Impulse current generator |
CN102832843A (en) * | 2012-09-03 | 2012-12-19 | 许继集团有限公司 | Bipolar high-voltage pulse generation device and corresponding processing system |
CN203630197U (en) * | 2013-12-13 | 2014-06-04 | 中国西电电气股份有限公司 | An arrester power frequency current testing apparatus |
-
2014
- 2014-12-12 CN CN201410770921.6A patent/CN104459236B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08172780A (en) * | 1995-07-14 | 1996-07-02 | Nichicon Corp | Impulse voltage/current generating apparatus |
CN200982998Y (en) * | 2006-10-27 | 2007-11-28 | 常州市创捷防雷电子有限公司 | A surge current generator |
CN201260135Y (en) * | 2008-09-03 | 2009-06-17 | 郑晓东 | Cascade-type high voltage impulse current generator |
CN101629981A (en) * | 2009-05-19 | 2010-01-20 | 武汉大学 | Modularized multiple wave forms impact generator test device |
CN201532403U (en) * | 2009-09-29 | 2010-07-21 | 中国电力科学研究院 | A surge current generator |
JP4525858B1 (en) * | 2009-12-21 | 2010-08-18 | 日新電機株式会社 | Impulse current generator |
CN102832843A (en) * | 2012-09-03 | 2012-12-19 | 许继集团有限公司 | Bipolar high-voltage pulse generation device and corresponding processing system |
CN203630197U (en) * | 2013-12-13 | 2014-06-04 | 中国西电电气股份有限公司 | An arrester power frequency current testing apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107422239A (en) * | 2017-09-27 | 2017-12-01 | 重庆大学 | The more dash current discharge test device and methods of soil |
CN108429547A (en) * | 2018-04-11 | 2018-08-21 | 西安交通大学 | A device for generating negative high-voltage pulses |
CN108429547B (en) * | 2018-04-11 | 2021-01-19 | 西安交通大学 | A device for generating negative high voltage pulses |
CN113791317A (en) * | 2021-08-30 | 2021-12-14 | 中国南方电网有限责任公司超高压输电公司南宁局 | Metal oxide variable resistance test circuit, system and method |
CN114200193A (en) * | 2021-10-29 | 2022-03-18 | 东风商用车有限公司 | Device and method for testing impact current of negative bus of electric automobile |
CN114200193B (en) * | 2021-10-29 | 2024-01-19 | 东风商用车有限公司 | Device and method for testing impact current of negative bus of electric automobile |
Also Published As
Publication number | Publication date |
---|---|
CN104459236B (en) | 2017-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101710159B (en) | Novel direct-current converter valve test unit | |
CN201532403U (en) | A surge current generator | |
CN101762778B (en) | Power module test system and test method thereof | |
CN203519681U (en) | Pulse oscillation test apparatus for interturn insulation detection of dry-type air-core reactor | |
CN105510652B (en) | Pulsed current injection source for the experiment of HEMP conducted immunities | |
CN102162829B (en) | Experimental device for multiple lightning current return strokes of surge protection device (SPD) | |
CN101598757A (en) | A controllable metal oxide arrester residual voltage test circuit and method | |
CN104459236B (en) | A kind of bipolarity linkage impulse current generator | |
CN106526330A (en) | Portable impact current generator for measuring impact ground resistance | |
CN202221465U (en) | Power capacitor tolerance blasting energy testing apparatus | |
CN103424652A (en) | Impact performance simulation test method and device for grounding body with large simulated size and large amplitude value | |
CN201388154Y (en) | Single-phase AC-DC coupling decoupling network power supply | |
CN107271866B (en) | Test device and method for direct effect of quadruple continuous time sequence lightning stroke | |
CN110618356A (en) | Long-time voltage tolerance test device and method for direct current transfer switch lightning arrester | |
CN104198843B (en) | Power grid impedance frequency property testing method and device | |
CN103278694B (en) | Dash current generating means | |
CN106019005B (en) | A test system and method for simulating transient ground potential rise | |
CN107355817B (en) | A kind of low energy single electric spark production method | |
CN104374962B (en) | 10/1,000-microsecond lightning surge generator | |
CN107290625B (en) | Test device and method for lightning strike effect of optical fiber composite overhead ground wire induced by double exponential current wave | |
CN104820149A (en) | Test loop of action load of lightning arrester proportional unit | |
CN203117319U (en) | Combination waveform generator | |
CN109490591B (en) | High-stability lightning impulse simulator | |
CN107271846B (en) | Test device and method for lightning strike effect of optical fiber composite overhead ground wire induced by square wave current wave | |
CN203164304U (en) | Impulse current generating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |