[go: up one dir, main page]

CN107377634B - A kind of hot-strip outlet Crown Prediction of Media method - Google Patents

A kind of hot-strip outlet Crown Prediction of Media method Download PDF

Info

Publication number
CN107377634B
CN107377634B CN201710588439.4A CN201710588439A CN107377634B CN 107377634 B CN107377634 B CN 107377634B CN 201710588439 A CN201710588439 A CN 201710588439A CN 107377634 B CN107377634 B CN 107377634B
Authority
CN
China
Prior art keywords
particle
strip
hot
support vector
vector machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710588439.4A
Other languages
Chinese (zh)
Other versions
CN107377634A (en
Inventor
王振华
李旭
龚殿尧
李广焘
张殿华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710588439.4A priority Critical patent/CN107377634B/en
Publication of CN107377634A publication Critical patent/CN107377634A/en
Application granted granted Critical
Publication of CN107377634B publication Critical patent/CN107377634B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明的热轧带钢出口凸度预报方法包括:分层别采集热轧带钢生产过程中的带钢的生产数据;对生产数据进行降噪处理;将降噪后的生产数据分为训练集和测试集;将降噪后的生产数据进行降维处理;将降维后的标准化矩阵作为支持向量机模型的输入,采用基于杂交的粒子群优化算法对支持向量机模型的参数进行优化;采用最优参数组合构造支持向量机带钢出口凸度预报模型;用训练集训练预报模型,用测试集测试预报模型的泛化性能。本发明的预报方法通过杂交粒子群算法寻优确定支持向量机的最佳参数,使基于支持向量机建立的支持向量机带钢出口凸度预报模型的精度得到提高。预报模型基于大量生产数据,而生产数据的采集易于操作,模型的推广能力较强。

The hot-rolled strip outlet convexity prediction method of the present invention includes: collecting the production data of the strip in the hot-rolled strip production process in layers; performing noise reduction processing on the production data; dividing the noise-reduced production data into training set and test set; the production data after noise reduction is subjected to dimensionality reduction processing; the standardized matrix after dimensionality reduction is used as the input of the support vector machine model, and the parameters of the support vector machine model are optimized by using the particle swarm optimization algorithm based on hybridization; The optimal parameter combination is used to construct the prediction model of SVM strip exit crown; the prediction model is trained with the training set, and the generalization performance of the prediction model is tested with the test set. The prediction method of the invention determines the optimal parameters of the support vector machine through the optimization of the hybrid particle swarm algorithm, so that the precision of the support vector machine strip exit convexity prediction model established based on the support vector machine is improved. The forecast model is based on a large amount of production data, and the collection of production data is easy to operate, and the model has a strong promotion ability.

Description

一种热轧带钢出口凸度预报方法A Method for Predicting Outlet Crown of Hot-rolled Strip

技术领域technical field

本发明涉及一种热轧带钢品质控制技术,尤其涉及一种热轧带钢出口凸度预报方法。The invention relates to a quality control technology of hot-rolled strip steel, in particular to a method for predicting the exit convexity of hot-rolled strip steel.

背景技术Background technique

带钢热连轧在钢铁工业中具有十分重要的地位,大约世界钢铁总量的一半都来源与热连轧生产线。一条热连轧生产线包括了许多精密的设备,复杂的混合控制模型以及恶劣的工作环境,这都为产品质量的提高带来困难。但是,随着科学技术的发展,各行业,各部门对带钢的需求量愈来愈多,同时用户对带钢的质量也愈来愈高,尤其是对家电钢板、汽车钢板、镀锡钢板以及电工钢板等板形都提出了很高要求。如果带钢断面形状不好,出现过大凸度、局部凸起、楔形等都将严重影响用户产品的质量及寿命。热连轧机是—个非线性、大时滞、多变量、强耦合的动态系统。影响带钢出口凸度的因素很多,诸如:轧制力、弯辊力、辊形及轧辊的热膨胀、轧辊直径、来料板形、板宽、轧机的时滞、轧制速度、轧机节奏的变化、带材和冷却水的温度波动、轧机压下量的变化等。因此,要实现该系统的精确控制是一项艰难的任务。传统的办法是根据轧制理论利用传统的数学工具建立起板凸度关系模型,分析轧制状态下轧辊的挠曲、压扁、热膨胀等情况。为了便于建模,需简化系统的复杂程度,给出许多假设条件,却以降低模型精度为代价。随着现代制造技术对带钢形精度的要求逐渐提高,改善模型或控制精度的任务变得十分紧迫。为此,需要寻找新的方法来对轧机系统进行更精确的预测和建模,从而达到精确控制带钢出口凸度的目的。Strip hot rolling plays a very important role in the steel industry, and about half of the world's total steel comes from hot rolling production lines. A hot tandem rolling production line includes many sophisticated equipment, complex mixed control models and harsh working environment, all of which bring difficulties to the improvement of product quality. However, with the development of science and technology, the demand for steel strips in various industries and departments is increasing, and the quality of steel strips is getting higher and higher, especially for home appliance steel plates, automobile steel plates, and tin-plated steel plates. As well as electrical steel plates and other plate shapes have put forward very high requirements. If the section shape of the strip steel is not good, excessive convexity, partial protrusion, wedge shape, etc. will seriously affect the quality and life of the user's product. The hot tandem rolling mill is a nonlinear, large time-delay, multi-variable and strongly coupled dynamic system. There are many factors affecting the crown of the strip exit, such as: rolling force, bending force, roll shape and thermal expansion of the roll, roll diameter, incoming plate shape, plate width, time lag of the rolling mill, rolling speed, and the rhythm of the rolling mill. Changes, temperature fluctuations of the strip and cooling water, changes in the reduction of the rolling mill, etc. Therefore, it is a difficult task to achieve precise control of this system. The traditional method is to use traditional mathematical tools to establish a plate crown relationship model based on the rolling theory, and analyze the deflection, flattening, thermal expansion, etc. of the roll in the rolling state. In order to facilitate modeling, it is necessary to simplify the complexity of the system and give many assumptions, but at the cost of reducing the accuracy of the model. With the increasing requirements of modern manufacturing technology for strip shape accuracy, the task of improving model or control accuracy has become very urgent. Therefore, it is necessary to find a new method to predict and model the rolling mill system more accurately, so as to achieve the purpose of precisely controlling the strip crown.

发明内容Contents of the invention

本发明实施例提出一种热轧带钢出口凸度预报方法,该方法通过杂交粒子群算法寻优确定支持向量机的最佳参数,使基于支持向量机建立的支持向量机带钢出口凸度预报模型的精度得到提高。The embodiment of the present invention proposes a hot-rolled strip exit convexity prediction method, which determines the optimal parameters of the support vector machine through the hybrid particle swarm optimization algorithm, so that the support vector machine strip exit convexity established based on the support vector machine The accuracy of forecast models has been improved.

本发明提供一种热轧带钢出口凸度预报方法,包括以下步骤:The invention provides a method for forecasting the exit crown of a hot-rolled strip, comprising the following steps:

步骤1:分层别采集热轧带钢生产过程中的每一块带钢的p个生产数据并用一个p维向量进行表示,层别按照钢种、终轧带钢宽度以及终轧带钢厚度进行划分;Step 1: Collect p pieces of production data of each piece of hot-rolled strip steel in the production process of the hot-rolled strip and represent it with a p-dimensional vector. division;

步骤2:采用统计学3σ原则对各层别的生产数据进行降噪处理;Step 2: Use the statistical 3σ principle to perform noise reduction processing on the production data of each level;

步骤3:将降噪后的生产数据按一定的比例划分为训练集和测试集两个集合,集合划分要保持数据分布的一致性;Step 3: Divide the noise-reduced production data into two sets of training set and test set according to a certain ratio, and the set division should maintain the consistency of data distribution;

步骤4:将降噪后的各层别的生产数据构成观测值矩阵,并对观测值矩阵进行标准化变换和降维处理,获得降维后的标准化矩阵;Step 4: Constitute the production data of each layer after noise reduction into an observation matrix, and perform standardized transformation and dimensionality reduction on the observation matrix to obtain a dimensionality-reduced standardized matrix;

步骤5:将降维后的标准化矩阵作为支持向量机模型的输入,采用基于杂交的粒子群优化算法对支持向量机模型的参数进行优化;Step 5: The standardized matrix after dimension reduction is used as the input of the support vector machine model, and the parameters of the support vector machine model are optimized by using the particle swarm optimization algorithm based on hybridization;

步骤6:采用优化获得的最优参数组合构造支持向量机带钢出口凸度预报模型;Step 6: Using the optimal parameter combination obtained by optimization to construct a support vector machine strip exit convexity prediction model;

步骤7:用训练集训练支持向量机带钢出口凸度预报模型,用测试集测试支持向量机带钢出口凸度预报模型的泛化性能;Step 7: use the training set to train the support vector machine strip crown prediction model, and use the test set to test the generalization performance of the support vector machine strip crown forecast model;

步骤8:采用决定系数R2,平均绝对误差MAE,平均绝对百分误差MAPE,均方根误差RMSE来评价支持向量机带钢出口凸度预报模型的整体性能。Step 8: Use the coefficient of determination R 2 , the mean absolute error MAE, the mean absolute percentage error MAPE, and the root mean square error RMSE to evaluate the overall performance of the support vector machine strip crown prediction model.

本发明的热轧带钢出口凸度预报方法至少具有以下有益效果:本发明采用了一种人工智能方法来建立支持向量机带钢出口凸度预报模型。模型基于大量生产数据,而生产数据的采集易于操作,所以模型的推广能力较强。此外,模型建立过程中摆脱了寻求影响热轧带钢出口凸度各变量之间复杂的数学物理关系,很好的解决了各个输入变量之间强耦合,非线性等问题。通过合理的筛选和处理带钢样本数据后利用本发明方法可以有效进行热轧带钢出口凸度预报,为出口凸度的精准控制奠定了基础。The method for predicting the crown of the hot-rolled strip exit has at least the following beneficial effects: the present invention adopts an artificial intelligence method to establish a support vector machine strip exit crown forecast model. The model is based on a large amount of production data, and the collection of production data is easy to operate, so the model has strong promotion ability. In addition, in the process of building the model, the complex mathematical and physical relationship between the variables affecting the exit crown of the hot-rolled strip is eliminated, and the problems of strong coupling and nonlinearity between various input variables are well solved. After reasonably screening and processing strip steel sample data, the method of the invention can be used to effectively predict the exit crown of the hot-rolled strip, laying a foundation for precise control of the exit crown.

附图说明Description of drawings

图1是基于杂交粒子群算法优化支持向量机的热轧带钢出口凸度预报方法的流程图;Fig. 1 is the flow chart of the hot-rolled strip export convexity prediction method based on hybrid particle swarm optimization optimization support vector machine;

图2是生产数据经主成分分析法降维后的效果图;Figure 2 is the effect diagram of the production data after dimensionality reduction by principal component analysis;

图3是杂交粒子群算法优化支持向量机结构参数过程中适应度值和平均适应度变化图;Fig. 3 is the graph of fitness value and average fitness change in the process of optimization of support vector machine structure parameters by hybrid particle swarm optimization algorithm;

图4是模型在训练集上带钢出口凸度的预测效果图;Fig. 4 is the prediction effect diagram of the strip steel outlet convexity of the model on the training set;

图5是模型在测试集上带钢出口凸度的预测效果图。Figure 5 is the prediction effect diagram of the strip exit convexity of the model on the test set.

具体实施方式Detailed ways

下面结合附图和实施例对本发明作进一步详细的说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.

本实施例中,以某1780热连轧机组的末机架轧制数据用于进行带钢出口凸度预报,热轧带钢出口凸度预报方法的流程如图1所示。预报方法包括如下步骤:In this embodiment, the rolling data of the last stand of a certain 1780 hot rolling mill is used to predict the exit crown of the strip, and the flow chart of the method for forecasting the exit crown of the hot strip is shown in Figure 1 . The forecast method includes the following steps:

步骤1:分层别采集热轧带钢生产过程中的每一块带钢的p个生产数据并用一个p维向量进行表示,层别按照钢种、终轧带钢宽度以及终轧带钢厚度进行划分。Step 1: Collect p pieces of production data of each piece of hot-rolled strip steel in the production process of the hot-rolled strip and represent it with a p-dimensional vector. divided.

具体实施时,采集某1780热连轧轧机的末机架的生产数据,采集的生产数据包括轧制过程中各个机架的入口温度T,出口温度t,入口厚度H,出口厚度h,带钢宽度W,轧制过程弯辊力FB,轧辊横移量S,轧制力FR,轧辊冷却水流量Qm和入口凸度CH。数据的采集按层别进行,层别按照钢种和带钢规格进行划分。划分方法如表1所示。During the specific implementation, the production data of the last stand of a 1780 hot continuous rolling mill is collected. The collected production data includes the inlet temperature T of each stand during the rolling process, the outlet temperature t, the inlet thickness H, the outlet thickness h, the strip steel Width W, roll bending force F B during rolling, roll traverse S, rolling force F R , roll cooling water flow Q m and inlet crown CH . The data collection is carried out by layer, and the layer is divided according to steel type and strip steel specification. The division method is shown in Table 1.

表1为本实施例中数据采集层别。Table 1 shows the data collection layers in this embodiment.

钢种steel type 样本数量Number of samples 终轧厚度(mm)Final rolling thickness (mm) 带钢宽度(mm)Strip width(mm) SPHC-BSPHC-B 100100 4.24.2 14111411 SPA-HSPA-H 100100 6.06.0 11991199 65Mn-YT65Mn-YT 100100 5.05.0 13911391 SS400B-1SS400B-1 7474 2.952.95 13321332 SS400B-1SS400B-1 100100 3.63.6 12931293

步骤2:采用统计学3σ原则对各层别的生产数据进行降噪处理。Step 2: Use the statistical 3σ principle to denoise the production data of each layer.

具体实施时,采用统计学3σ原则剔除噪声数据得到474块钢的生产参数。部分生产参数如表2所示。In the specific implementation, the statistical 3σ principle was used to eliminate the noise data to obtain the production parameters of 474 pieces of steel. Some production parameters are shown in Table 2.

表2为部分带钢的生产参数。Table 2 shows the production parameters of some strips.

步骤3:将降噪后的生产数据按一定的比例划分为训练集A和测试集B两个集合,集合划分要保持数据分布的一致性。Step 3: Divide the denoised production data into two sets of training set A and test set B according to a certain ratio, and the set division should maintain the consistency of data distribution.

具体实施时,选取各个规格带钢数据的80%(380块)作为训练集,剩余的20%(94块)作为测试集。训练集数据=100*80%+100*80%+100*80%+74*80%+100*80%=380,测试集数据=100*20%+100*20%+100*20%+74*20%+100*20%=94。During specific implementation, 80% (380 blocks) of steel strip data of each specification are selected as a training set, and the remaining 20% (94 blocks) are used as a test set. Training set data=100*80%+100*80%+100*80%+74*80%+100*80%=380, test set data=100*20%+100*20%+100*20%+ 74*20%+100*20%=94.

步骤4:将降噪后的各层别的生产数据构成观测值矩阵,并对观测值矩阵进行标准化变换和降维处理,获得降维后的标准化矩阵。Step 4: Constitute the production data of each layer after noise reduction to form an observation value matrix, and perform standardized transformation and dimension reduction processing on the observation value matrix to obtain a dimensionality-reduced standardized matrix.

步骤4具体包括:Step 4 specifically includes:

步骤4.1:将降噪后的各层别的生产数据构成观测值矩阵,并对观测值矩阵进行标准化变换获得标准化矩阵,具体为:Step 4.1: Constitute the production data of each layer after noise reduction into an observation matrix, and perform standardized transformation on the observation matrix to obtain a standardized matrix, specifically:

把每一块带钢的生产数据看成一个p维向量X=(X1,X2,…,Xp),p为生产参数的数量,本实施例中p=10,经降噪后共获得474块带钢的生产数据,生产数据X=(X1,X2,…,X10)的观测值矩阵表示为:Consider the production data of each piece of steel strip as a p-dimensional vector X=(X 1 ,X 2 ,…,X p ), where p is the number of production parameters, p=10 in this embodiment, and a total of The production data of 474 steel strips, the observation value matrix of production data X=(X 1 ,X 2 ,…,X 10 ) is expressed as:

经标准化变换后获得标准化矩阵表示为:The standardized matrix obtained after standardized transformation is expressed as:

标准化的公式为:The standardized formula is:

其中, in,

步骤4.2:采用主成分分析法对标准化矩阵进行降维处理。具体包括:Step 4.2: Use principal component analysis to reduce the dimensionality of the standardized matrix. Specifically include:

步骤4.2.1:计算采集到的生产数据的相关系数矩阵R:Step 4.2.1: Calculate the correlation coefficient matrix R of the collected production data:

本实施例中,相关系数矩阵R的矩阵元素通过表3列出。In this embodiment, the matrix elements of the correlation coefficient matrix R are listed in Table 3.

表3相关系数矩阵R的矩阵元素列表:Table 3 Matrix element list of correlation coefficient matrix R:

其中, in,

步骤4.2.2:计算相关系数矩阵R的特征值(λ12,…,λ10)和相应的特征向量,并使其按大小顺序排列,λ1≥λ2≥…λp≥0;分别计算对应特征值λi的特征向量表示为:Step 4.2.2: Calculate the eigenvalues (λ 12 ,…,λ 10 ) and corresponding eigenvectors of the correlation coefficient matrix R, and arrange them in order of size, λ 1 ≥λ 2 ≥…λ p ≥0 ; respectively calculate the eigenvector corresponding to the eigenvalue λ i and express it as:

ei=(ei,1,ei,2,…,ei,474),i=1,2,…,10 (5)e i =(e i,1 ,e i,2 ,…,e i,474 ),i=1,2,…,10 (5)

分别计算对应特征值λi的特征向量,使||ei||=1,即其中eij表示向量ei的第j个分量。本实施例中相关系数矩阵R的特征值为(3.8836,2.1965,1.4238,1.0119,0.9145,0.3324,0.1555,0.0587,0.0229,0.0003)Calculate the eigenvector corresponding to the eigenvalue λ i respectively, so that ||e i ||=1, namely where e ij represents the jth component of vector e i . The eigenvalues of the correlation coefficient matrix R in this embodiment are (3.8836, 2.1965, 1.4238, 1.0119, 0.9145, 0.3324, 0.1555, 0.0587, 0.0229, 0.0003)

步骤4.2.3:选择重要主成分,并写出主成分表达式,根据各个主成分累计贡献率的大小选取k个主成分,贡献率η是指某个主成分的方差占全部方差的比重,在此也是相关系数矩阵R的某个特征值占全部特征值合计的比重,即:Step 4.2.3: Select important principal components, and write out the expression of the principal components. Select k principal components according to the cumulative contribution rate of each principal component. The contribution rate η refers to the proportion of the variance of a certain principal component to the total variance. Here is also the proportion of a certain eigenvalue of the correlation coefficient matrix R to the total of all eigenvalues, namely:

累计贡献率为:Cumulative contribution rate:

计算各主成分贡献率及累计贡献率。Calculate the contribution rate and cumulative contribution rate of each principal component.

表4各主成分贡献率及累计贡献率:Table 4 Contribution rate and cumulative contribution rate of each principal component:

主成分main ingredient 特征值Eigenvalues 贡献率(%)Contribution rate (%) 累计贡献率(%)Cumulative contribution rate (%) 11 3.88363.8836 0.38840.3884 0.38840.3884 22 2.19652.1965 0.21970.2197 0.6080.608 33 1.42381.4238 0.14240.1424 0.75040.7504 44 1.01191.0119 0.10120.1012 0.85160.8516 55 0.91450.9145 0.09150.0915 0.943>0.900.943>0.90 66 0.33240.3324 0.03320.0332 0.9763>0.950.9763>0.95 77 0.15550.1555 0.01560.0156 0.99180.9918 88 0.05870.0587 0.00590.0059 0.99770.9977 99 0.02290.0229 0.00230.0023 11 1010 0.00030.0003 00 11

贡献率越大,说明该主成分所包含的原始变量的信息越强,本发明中,累计贡献率达到90%以上,才能保证原始变量的绝大多数信息。经过降维后由10维数据变为5维数据,主成分如图2所示。The larger the contribution rate, the stronger the information of the original variable contained in the principal component. In the present invention, the cumulative contribution rate reaches more than 90% to ensure most of the information of the original variable. After dimensionality reduction, the 10-dimensional data becomes 5-dimensional data, and the principal components are shown in Figure 2.

步骤5:将降维后的标准化矩阵作为支持向量机模型的输入,采用基于杂交的粒子群优化算法对支持向量机模型的参数进行优化;Step 5: The standardized matrix after dimension reduction is used as the input of the support vector machine model, and the parameters of the support vector machine model are optimized by using the particle swarm optimization algorithm based on hybridization;

具体实施时,将降维后的生产参数作为支持向量机模型的输入,采用基于杂交的粒子群优化算法对支持向量机模型的参数进行优化,这些参数包括支持向量机的惩罚系数C,核函数参数σ和损失函数值ε。优化步骤包括如下步骤:In the specific implementation, the production parameters after dimension reduction are used as the input of the support vector machine model, and the parameters of the support vector machine model are optimized by using the particle swarm optimization algorithm based on hybridization. These parameters include the penalty coefficient C of the support vector machine, the kernel function Parameter σ and loss function value ε. The optimization step includes the following steps:

步骤5.1:初始化粒子群算法,对种群规模、种群中每个粒子的位置和速度进行初始化;Step 5.1: Initialize the particle swarm optimization algorithm, initialize the population size, the position and speed of each particle in the population;

具体为:定义一个p维搜索空间,其中p为每一块带钢所采集的生产参数的数量,在p维搜索空间有n个粒子组成的种群X=(X1,X2,...,Xn),其中第i个粒子表示为一个p维的向量Xi=[xi1,xi2,…,xip]T,代表第i个粒子在p维搜索空间中的位置,第i个粒子的速度为Vi=[Vi1,Vi2,…,Vip]T,个体极值为Pi=[Pi1,Pi2,…,Pip]T,种群的全局极值为Pg=[Pg1,Pg2,…,Pgp]T。本实施例中p=5。Specifically: define a p-dimensional search space, where p is the number of production parameters collected for each piece of steel strip, and there is a population of n particles in the p-dimensional search space X=(X 1 ,X 2 ,..., X n ), where the i-th particle is expressed as a p-dimensional vector Xi = [x i1 , x i2 ,…, x ip ] T , which represents the position of the i-th particle in the p-dimensional search space, and the i-th particle The particle velocity is V i =[V i1 ,V i2 ,…,V ip ] T , the individual extremum value is P i =[P i1 ,P i2 ,…,P ip ] T , and the global extremum value of the population is P g = [P g1 , P g2 , . . . , P gp ] T . In this example, p=5.

步骤5.2:计算种群中每个粒子的适应度值;具体包括:Step 5.2: Calculate the fitness value of each particle in the population; specifically include:

步骤5.2.1:确定适应度函数,采用交叉验证条件下带钢出口凸度的预测值和实际值之间的均方误差MSE作为适应度函数,适应度函数表达式如下:Step 5.2.1: Determine the fitness function, using the mean square error MSE between the predicted value and the actual value of the strip exit crown under the cross-validation condition as the fitness function, and the fitness function expression is as follows:

其中,为带钢出口凸度的预测值,yi为带钢出口凸度的实际值;in, is the predicted value of strip exit crown, y i is the actual value of strip exit crown;

步骤5.2.2:根据适应度函数计算每个粒子的适应度值。Step 5.2.2: Calculate the fitness value of each particle according to the fitness function.

步骤5.3:将每个粒子的适应度值和个体极值进行比较,如果其适应度值大于个体极值则用其适应度值作为新的个体极值;将每个粒子的适应度值和全局极值比较,如果其适应度值大于全局极值则用其适应度值作为新的全局极值。Step 5.3: Compare the fitness value of each particle with the individual extremum, if its fitness value is greater than the individual extremum, use its fitness value as the new individual extremum; compare the fitness value of each particle with the global Extremum comparison, if its fitness value is greater than the global extremum, use its fitness value as the new global extremum.

步骤5.4:根据新的个体极值和新的全局极值更新粒子的位置和速度;Step 5.4: Update the particle's position and velocity according to the new individual extremum and the new global extremum;

其中,粒子速度的更新公式为:Among them, the update formula of particle velocity is:

粒子位置的更新公式为:The update formula of the particle position is:

其中,ω为惯性权重;d=1,2,…,p;i=1,2,…,n;k为当前迭代次数;Vid为粒子的速度;c1,c2为加速度因子;r1,r2为0~1之间随机数。本实施例中,取ω=0.72,c1=c2=1.19,种群数量为20,最大迭代次数为100,交叉验证法的折数为5。C搜索范围为0~100,σ搜索范围为0~100,ε所搜范围为0~1。Among them, ω is the inertia weight; d=1,2,...,p; i=1,2,...,n; k is the current iteration number; V id is the velocity of the particle; c 1 , c 2 are the acceleration factors; r 1 and r 2 are random numbers between 0 and 1. In this embodiment, ω=0.72, c 1 =c 2 =1.19, the number of populations is 20, the maximum number of iterations is 100, and the fold factor of the cross-validation method is 5. The search range of C is 0~100, the search range of σ is 0~100, and the search range of ε is 0~1.

步骤5.5:重新初始化种群,根据杂交概率选取特定数量的粒子将其放入杂交池中,池中的父代粒子随机两两杂交产生同样数目的子代粒子,构成新的种群;Step 5.5: Re-initialize the population, select a specific number of particles according to the hybridization probability and put them into the hybridization pool. The parent particles in the pool randomly cross each other to generate the same number of offspring particles to form a new population;

其中,子代粒子的位置和子代粒子的速度表示为:Among them, the position of the offspring particle and the velocity of the offspring particle are expressed as:

其中,mx为父代粒子的位置,nx为子代粒子的位置,mv为父代粒子的速度,nv为子代粒子的速度,i为0~1之间随机数。Among them, m x is the position of the parent particle, n x is the position of the child particle, m v is the velocity of the parent particle, n v is the velocity of the child particle, and i is a random number between 0 and 1.

步骤5.6:重复步骤5.2至步骤5.4更新个体极值和全局极值,进而更新子代粒子的位置和速度。Step 5.6: Repeat steps 5.2 to 5.4 to update the individual extremum and the global extremum, and then update the position and velocity of the offspring particles.

步骤5.7:当迭代次数达到设定值,停止优化并输出优化结果,本实施例中寻找到的最优参数组合为(16.75,0.097,0.0473)。Step 5.7: When the number of iterations reaches the set value, stop the optimization and output the optimization result. The optimal parameter combination found in this embodiment is (16.75, 0.097, 0.0473).

如图3所示为本实施例中采用基于杂交的粒子群优化算法对支持向量机模型的参数进行优化过程中适应度值变化图,c1=c2=1.19,种群数量为20,最大迭代次数为100。As shown in Fig. 3, in this embodiment, the particle swarm optimization algorithm based on hybridization is used to optimize the fitness value change diagram of the parameters of the support vector machine model, c 1 =c 2 =1.19, the population size is 20, and the maximum iteration The number of times is 100.

步骤6:采用步骤5中寻找到的最优参数组合(C、σ、ε)构造支持向量机带钢出口凸度预报模型,具体包括:Step 6: Use the optimal parameter combination (C, σ, ε) found in step 5 to construct a support vector machine strip crown prediction model, including:

步骤6.1:将采集到的生产数据和带钢出口凸度的实际值构成数据集xi为选择的影响带钢出口凸度的生产数据,yi为带钢出口凸度的实际值,定义决策平面f(x)=wTφ(x)+b为支持向量机带钢出口凸度预报模型,支持向量机带钢出口凸度预报模型的问题表达式定义为:Step 6.1: Combine the collected production data and the actual value of the strip exit crown to form a data set x i is the selected production data that affects the strip exit crown, y i is the actual value of the strip exit crown, and the decision plane f(x)=w T φ(x)+b is defined as the support vector machine strip exit Convexity prediction model, the problem expression of the support vector machine strip exit convexity prediction model is defined as:

其中,φ(xi)为高维特征空间i=1,…,m,w为决策平面的可调权值向量,b为决策平面的偏置,即决策平面相对于原点的偏移;Among them, φ( xi ) is the high-dimensional feature space i=1,...,m, w is the adjustable weight vector of the decision-making plane, and b is the offset of the decision-making plane, that is, the offset of the decision-making plane relative to the origin;

C为惩罚系数,C>0,ε表示f(x)与yi之间的最大偏差,lε为不敏感损失函数, C is the penalty coefficient, C>0, ε represents the maximum deviation between f(x) and y i , l ε is the insensitive loss function,

步骤6.2:引入松弛变量对支持向量机带钢出口凸度预报模型的问题表达式进行改写,获得改写后的问题表达式:Step 6.2: Introducing Slack Variables The problem expression of the support vector machine strip crown prediction model is rewritten to obtain the rewritten problem expression:

步骤6.3:引入拉格朗日乘子α,α*,μ,μ*,得到拉格朗日函数如下式:Step 6.3: Introduce the Lagrange multipliers α,α * ,μ,μ * to obtain the Lagrangian function as follows:

步骤6.4:令L(w,b,α,α*,ξ,ξ*,μ,μ*)对w,b,ξ,ξ*偏导数为零:Step 6.4: Let the partial derivatives of L(w,b,α,α * ,ξ,ξ * ,μ,μ * ) with respect to w,b,ξ,ξ * be zero:

步骤6.5:将拉格朗日函数代入改写后的问题表达式,得到对偶问题表达式:Step 6.5: Substitute the Lagrangian function into the rewritten problem expression to obtain the dual problem expression:

其中,Q=φ(xi)Tφ(xj);Among them, Q=φ(x i ) T φ(x j );

求解对偶问题得到w,b的解:Solving the dual problem yields a solution for w,b:

步骤6.6:获得支持向量机带钢出口凸度预报模型:Step 6.6: Obtain the support vector machine strip exit convexity prediction model:

其中,σ为核函数参数。in, σ is the kernel function parameter.

步骤7:用训练集A训练步骤6中构造的支持向量机带钢出口凸度预报模型,用测试集B测试支持向量机带钢出口凸度预报模型泛化性能;Step 7: use the training set A to train the support vector machine strip crown prediction model constructed in step 6, and use the test set B to test the generalization performance of the support vector machine strip crown forecast model;

步骤8:采用决定系数R2,平均绝对误差MAE,平均绝对百分误差MAPE,均方根误差RMSE来评价支持向量机带钢出口凸度预报模型的整体性能。它们计算公式如下:Step 8: Use the coefficient of determination R 2 , the mean absolute error MAE, the mean absolute percentage error MAPE, and the root mean square error RMSE to evaluate the overall performance of the support vector machine strip crown prediction model. They are calculated as follows:

表5模型误差计算结果。Table 5 Model error calculation results.

训练集Training set 测试集test set MAEMAE 1.74261.7426 2.10422.1042 MAPE(%)MAPE(%) 2.87042.8704 3.27673.2767 RMSERMSE 2.13742.1374 1.30181.3018

预报模型在训练集上预测效果如图4所示,在测试集上的预测效果如图5所示。The prediction effect of the forecast model on the training set is shown in Figure 4, and the prediction effect on the test set is shown in Figure 5.

本发明的热轧带钢出口凸度预报方法至少具有以下有益效果:本发明采用了一种人工智能方法来建立热轧带钢的板凸度预报模型。模型基于大量生产数据,而生产数据的采集易于操作,所以模型的推广能力较强。此外,模型建立过程中摆脱了寻求影响热轧带钢出口凸度各变量之间复杂的数学物理关系,很好的解决了各个输入变量之间强耦合,非线性等问题。通过合理的筛选和处理带钢样本数据后利用本发明方法可以有效进行热轧带钢出口凸度预报,为凸度的精准控制奠定了基础。The method for predicting the outlet crown of the hot-rolled strip steel has at least the following beneficial effects: the invention adopts an artificial intelligence method to establish a plate crown forecast model for the hot-rolled strip steel. The model is based on a large amount of production data, and the collection of production data is easy to operate, so the model has strong promotion ability. In addition, in the process of building the model, the complex mathematical and physical relationship between the variables affecting the exit crown of the hot-rolled strip is eliminated, and the problems of strong coupling and nonlinearity between various input variables are well solved. After reasonably screening and processing strip steel sample data, the method of the invention can effectively predict the exit crown of the hot-rolled strip steel, laying a foundation for precise control of the crown.

以上所述仅为本发明的较佳实施实例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改,等同替换和改进等,均应包含在本发明的保护范围之内。The above description is only a preferred implementation example of the present invention, and is not intended to limit the present invention. Any modifications made within the spirit and principles of the present invention, equivalent replacements and improvements, etc., should be included in the protection of the present invention. within range.

Claims (10)

1.一种热轧带钢出口凸度预报方法,其特征在于,包括以下步骤:1. A hot-rolled steel strip outlet convexity prediction method, is characterized in that, comprises the following steps: 步骤1:分层别采集热轧带钢生产过程中的每一块带钢的p个生产数据并用一个p维向量进行表示,层别按照钢种、终轧带钢宽度以及终轧带钢厚度进行划分;Step 1: Collect p pieces of production data of each piece of hot-rolled strip steel in the production process of the hot-rolled strip and represent it with a p-dimensional vector. division; 步骤2:采用统计学3σ原则对各层别的生产数据进行降噪处理;Step 2: Use the statistical 3σ principle to perform noise reduction processing on the production data of each level; 步骤3:将降噪后的生产数据按一定的比例划分为训练集和测试集两个集合,集合划分要保持数据分布的一致性;Step 3: Divide the noise-reduced production data into two sets of training set and test set according to a certain ratio, and the set division should maintain the consistency of data distribution; 步骤4:将降噪后的各层别的生产数据构成观测值矩阵,并对观测值矩阵进行标准化变换和降维处理,获得降维后的标准化矩阵;Step 4: Constitute the production data of each layer after noise reduction into an observation matrix, and perform standardized transformation and dimensionality reduction on the observation matrix to obtain a dimensionality-reduced standardized matrix; 步骤5:将降维后的标准化矩阵作为支持向量机模型的输入,采用基于杂交的粒子群优化算法对支持向量机模型的参数进行优化;Step 5: The standardized matrix after dimension reduction is used as the input of the support vector machine model, and the parameters of the support vector machine model are optimized by using the particle swarm optimization algorithm based on hybridization; 步骤6:采用优化获得的最优参数组合构造支持向量机带钢出口凸度预报模型;Step 6: Using the optimal parameter combination obtained by optimization to construct a support vector machine strip exit convexity prediction model; 步骤7:用训练集训练支持向量机带钢出口凸度预报模型,用测试集测试支持向量机带钢出口凸度预报模型的泛化性能;Step 7: use the training set to train the support vector machine strip crown prediction model, and use the test set to test the generalization performance of the support vector machine strip crown forecast model; 步骤8:采用决定系数R2,平均绝对误差MAE,平均绝对百分误差MAPE,均方根误差RMSE来评价支持向量机带钢出口凸度预报模型的整体性能。Step 8: Use the coefficient of determination R 2 , the mean absolute error MAE, the mean absolute percentage error MAPE, and the root mean square error RMSE to evaluate the overall performance of the support vector machine strip crown prediction model. 2.如权利要求1所述的热轧带钢出口凸度预报方法,其特征在于,所述步骤4包括:2. the hot-rolled steel strip exit convexity prediction method as claimed in claim 1, is characterized in that, described step 4 comprises: 步骤4.1:将降噪后的各层别的生产数据构成观测值矩阵,并对观测值矩阵进行标准化变换获得标准化矩阵;Step 4.1: Constitute the production data of each layer after noise reduction into an observation matrix, and perform standardized transformation on the observation matrix to obtain a standardized matrix; 步骤4.2:采用主成分分析法对标准化矩阵进行降维处理。Step 4.2: Use principal component analysis to reduce the dimensionality of the standardized matrix. 3.如权利要求2所述的热轧带钢出口凸度预报方法,其特征在于,所述步骤4.1具体为:3. The hot-rolled strip exit convexity prediction method as claimed in claim 2, is characterized in that, described step 4.1 is specifically: 把每一块带钢的生产数据看成一个p维向量X=(X1,X2,…,Xp),经降噪后共获得N块带钢的生产数据,生产数据X=(X1,X2,…,Xp)的观测值矩阵表示为:Consider the production data of each piece of steel strip as a p-dimensional vector X=(X 1 ,X 2 ,…,X p ), and obtain the production data of N pieces of steel strip after noise reduction, and the production data X=(X 1 ,X 2 ,…,X p ) observation matrix is expressed as: 经标准化变换后获得标准化矩阵表示为:The standardized matrix obtained after standardized transformation is expressed as: 标准化的公式为:The standardized formula is: 其中, in, 4.如权利要求3所述的热轧带钢出口凸度预报方法,其特征在于,所述步骤4.2包括:4. hot-rolled steel strip exit convexity prediction method as claimed in claim 3, is characterized in that, described step 4.2 comprises: 步骤4.2.1:计算采集到的生产数据的相关系数矩阵R:Step 4.2.1: Calculate the correlation coefficient matrix R of the collected production data: 其中, in, 步骤4.2.2:计算相关系数矩阵R的特征值(λ12,…λp),并使其按大小顺序排列,λ1≥λ2≥…λp≥0;分别计算对应特征值λi的特征向量ei(i=1,2,…,p),使‖ei‖=1,即其中eij表示向量ei的第j个分量;Step 4.2.2: Calculate the eigenvalues (λ 1 , λ 2 ,…λ p ) of the correlation coefficient matrix R, and arrange them in order of size, λ 1 ≥λ 2 ≥…λ p ≥0; respectively calculate the corresponding eigenvalues eigenvector e i (i=1,2,…,p) of λ i , so that ‖e i ‖=1, namely where e ij represents the jth component of vector e i ; 步骤4.2.3:选择重要主成分,并写出主成分表达式,根据各个主成分累计贡献率的大小选取k个主成分,贡献率η是指某个主成分的方差占全部方差的比重,在此也是相关系数矩阵R的某个特征值占全部特征值合计的比重,即:Step 4.2.3: Select important principal components, and write out the expression of the principal components. Select k principal components according to the cumulative contribution rate of each principal component. The contribution rate η refers to the proportion of the variance of a certain principal component to the total variance. Here is also the proportion of a certain eigenvalue of the correlation coefficient matrix R to the total of all eigenvalues, namely: 累计贡献率为:Cumulative contribution rate: 贡献率越大,说明该主成分所包含的原始变量的信息越强,累计贡献率达到90%以上,才能保证原始变量的绝大多数信息。The greater the contribution rate, the stronger the information of the original variable contained in the principal component, and the cumulative contribution rate of more than 90% can guarantee most of the information of the original variable. 5.如权利要求1所述的热轧带钢出口凸度预报方法,其特征在于,所述步骤5包括:5. hot-rolled steel strip exit convexity prediction method as claimed in claim 1, is characterized in that, described step 5 comprises: 步骤5.1:初始化粒子群算法,对种群规模、种群中每个粒子的位置和速度进行初始化;Step 5.1: Initialize the particle swarm optimization algorithm, initialize the population size, the position and speed of each particle in the population; 步骤5.2:计算种群中每个粒子的适应度值;Step 5.2: Calculate the fitness value of each particle in the population; 步骤5.3:将每个粒子的适应度值和个体极值进行比较,如果其适应度值大于个体极值则用其适应度值作为新的个体极值;将每个粒子的适应度值和全局极值比较,如果其适应度值大于全局极值则用其适应度值作为新的全局极值;Step 5.3: Compare the fitness value of each particle with the individual extremum, if its fitness value is greater than the individual extremum, use its fitness value as the new individual extremum; compare the fitness value of each particle with the global Extremum comparison, if its fitness value is greater than the global extremum, use its fitness value as the new global extremum; 步骤5.4:根据新的个体极值和新的全局极值更新粒子的位置和速度;Step 5.4: Update the particle's position and velocity according to the new individual extremum and the new global extremum; 步骤5.5:重新初始化种群,根据杂交概率选取特定数量的粒子将其放入杂交池中,池中的父代粒子随机两两杂交产生同样数目的子代粒子,构成新的种群;Step 5.5: Reinitialize the population, select a specific number of particles according to the hybridization probability and put them into the hybridization pool, and the parent particles in the pool will randomly cross each other to generate the same number of offspring particles to form a new population; 步骤5.6:重复步骤5.2至步骤5.4更新个体极值和全局极值,进而更新子代粒子的位置和速度;Step 5.6: Repeat steps 5.2 to 5.4 to update the individual extremum and the global extremum, and then update the position and velocity of the offspring particles; 步骤5.7:当迭代次数达到设定值,停止优化并输出支持向量机模型的最优参数。Step 5.7: When the number of iterations reaches the set value, stop the optimization and output the optimal parameters of the support vector machine model. 6.如权利要求5所述的热轧带钢出口凸度预报方法,其特征在于,所述步骤5.1具体为:6. The hot-rolled strip exit convexity prediction method as claimed in claim 5, is characterized in that, described step 5.1 is specifically: 定义一个p维搜索空间,其中p为每一块带钢所采集的生产参数的数量,在p维搜索空间有n个粒子组成的种群X=(X1,X2,...,Xn),其中第i个粒子表示为一个p维的向量Xi=[xi1,xi2,…,xip]T,代表第i个粒子在p维搜索空间中的位置,第i个粒子的速度为Vi=[Vi1,Vi2,…,Vip]T,个体极值为Pi=[Pi1,Pi2,…,Pip]T,种群的全局极值为Pg=[Pg1,Pg2,…,Pgp]TDefine a p-dimensional search space, where p is the number of production parameters collected for each steel strip, and there is a population X=(X 1 ,X 2 ,...,X n ) composed of n particles in the p-dimensional search space , where the i-th particle is expressed as a p-dimensional vector X i =[x i1 , xi2 ,…,x ip ] T , representing the position of the i-th particle in the p-dimensional search space, and the velocity of the i-th particle V i =[V i1 ,V i2 ,…,V ip ] T , the individual extremum is P i =[P i1 ,P i2 ,…,P ip ] T , the global extremum of the population is P g =[P g1 ,P g2 ,…,P gp ] T . 7.如权利要求6所述的热轧带钢出口凸度预报方法,其特征在于,所述步骤5.2具体为:7. The hot-rolled steel strip exit convexity prediction method as claimed in claim 6, is characterized in that, described step 5.2 is specifically: 步骤5.2.1:确定适应度函数,采用交叉验证条件下带钢出口凸度的预测值和实际值之间的均方误差MSE作为适应度函数,适应度函数表达式如下:Step 5.2.1: Determine the fitness function, using the mean square error MSE between the predicted value and the actual value of the strip exit crown under the cross-validation condition as the fitness function, and the fitness function expression is as follows: 其中,为带钢出口凸度的预测值,yi为带钢出口凸度的实际值;in, is the predicted value of strip exit crown, y i is the actual value of strip exit crown; 步骤5.2.2:根据适应度函数计算每个粒子的适应度值。Step 5.2.2: Calculate the fitness value of each particle according to the fitness function. 8.如权利要求6所述的热轧带钢出口凸度预报方法,其特征在于,所述步骤5.4中粒子速度的更新公式为:8. hot-rolled steel strip exit convexity prediction method as claimed in claim 6 is characterized in that, the updating formula of particle velocity in the described step 5.4 is: 粒子位置的更新公式为:The update formula of the particle position is: 其中,ω为惯性权重;d=1,2,…,p;i=1,2,…,n;k为当前迭代次数;Vid为粒子的速度;c1,c2为加速度因子;r1,r2为0~1之间随机数。Among them, ω is the inertia weight; d=1,2,...,p; i=1,2,...,n; k is the current iteration number; V id is the velocity of the particle; c 1 , c 2 are the acceleration factors; r 1 and r 2 are random numbers between 0 and 1. 9.如权利要求6所述的热轧带钢出口凸度预报方法,其特征在于,所述步骤5.5中子代粒子的位置和子代粒子的速度表示为:9. hot-rolled steel strip exit convexity prediction method as claimed in claim 6, is characterized in that, the position of progeny particle and the speed of progeny particle in described step 5.5 are expressed as: 其中,mx为父代粒子的位置,nx为子代粒子的位置,mv为父代粒子的速度,nv为子代粒子的速度,i为0~1之间随机数。Among them, m x is the position of the parent particle, n x is the position of the child particle, m v is the velocity of the parent particle, n v is the velocity of the child particle, and i is a random number between 0 and 1. 10.如权利要求1所述的热轧带钢出口凸度预报方法,其特征在于,所述步骤6包括:10. the method for predicting the crown of the hot-rolled strip exit as claimed in claim 1, is characterized in that, described step 6 comprises: 步骤6.1:将采集到的生产数据和带钢出口凸度的实际值构成数据集xi为选择的影响带钢出口凸度的生产数据,yi为带钢出口凸度的实际值,定义决策平面f(x)=wTφ(x)+b为支持向量机带钢出口凸度预报模型,支持向量机带钢出口凸度预报模型的问题表达式定义为:Step 6.1: Combine the collected production data and the actual value of the strip exit crown to form a data set x i is the selected production data that affects the strip exit crown, y i is the actual value of the strip exit crown, and the decision plane f(x)=w T φ(x)+b is defined as the support vector machine strip exit Convexity prediction model, the problem expression of the support vector machine strip exit convexity prediction model is defined as: 其中,φ(xi)为高维特征空间i=1,…,m,w为决策平面的可调权值向量,b为决策平面的偏置,即决策平面相对于原点的偏移;Among them, φ( xi ) is the high-dimensional feature space i=1,...,m, w is the adjustable weight vector of the decision-making plane, and b is the offset of the decision-making plane, that is, the offset of the decision-making plane relative to the origin; C为惩罚系数,C>0,ε为f(x)与yi之间的最大偏差,lε为不敏感损失函数, C is the penalty coefficient, C>0, ε is the maximum deviation between f(x) and y i , l ε is the insensitive loss function, 步骤6.2:引入松弛变量ξi,对支持向量机带钢出口凸度预报模型的问题表达式进行改写,获得改写后的问题表达式:Step 6.2: Introduce the slack variable ξ i , The problem expression of the support vector machine strip crown prediction model is rewritten to obtain the rewritten problem expression: 步骤6.3:引入拉格朗日乘子α,α*,μ,μ*,得到拉格朗日函数如下式:Step 6.3: Introduce the Lagrange multipliers α,α * ,μ,μ * to obtain the Lagrangian function as follows: 步骤6.4:令L(w,b,α,α*,ξ,ξ*,μ,μ*)对w,b,ξ,ξ*偏导数为零Step 6.4: Let the partial derivatives of L(w,b,α,α * ,ξ,ξ * ,μ,μ * ) with respect to w,b,ξ,ξ * be zero 步骤6.5:将拉格朗日函数代入改写后的问题表达式,得到对偶问题表达式:Step 6.5: Substitute the Lagrangian function into the rewritten problem expression to obtain the dual problem expression: 其中,Q=φ(xi)Tφ(xj);Among them, Q=φ(x i ) T φ(x j ); 求解对偶问题得到w,b的解Solve the dual problem to get the solution of w,b 步骤6.6:获得支持向量机带钢出口凸度预报模型:Step 6.6: Obtain the support vector machine strip exit convexity prediction model: 其中,σ为核函数参数。in, σ is the kernel function parameter.
CN201710588439.4A 2017-07-19 2017-07-19 A kind of hot-strip outlet Crown Prediction of Media method Active CN107377634B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710588439.4A CN107377634B (en) 2017-07-19 2017-07-19 A kind of hot-strip outlet Crown Prediction of Media method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710588439.4A CN107377634B (en) 2017-07-19 2017-07-19 A kind of hot-strip outlet Crown Prediction of Media method

Publications (2)

Publication Number Publication Date
CN107377634A CN107377634A (en) 2017-11-24
CN107377634B true CN107377634B (en) 2018-10-16

Family

ID=60340921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710588439.4A Active CN107377634B (en) 2017-07-19 2017-07-19 A kind of hot-strip outlet Crown Prediction of Media method

Country Status (1)

Country Link
CN (1) CN107377634B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108229072A (en) * 2018-02-10 2018-06-29 东北大学 Continuous annealing soaking pit strip tension On-line Measuring Method based on data parsing
CN108637020B (en) * 2018-05-09 2020-04-10 北京科技大学 Self-adaptive variation PSO-BP neural network strip steel convexity prediction method
CN109513750B (en) * 2018-11-06 2021-07-23 首钢集团有限公司 A convexity feedback method considering the wave shape adjustment between racks
CN110428876B (en) * 2019-07-31 2022-11-29 东北大学 A Method for Steel Material Design Based on Physics-Guided Machine Learning Algorithms
CN110428175B (en) * 2019-08-05 2022-05-24 东北大学秦皇岛分校 A method for predicting the crown of hot-rolled steel strip based on deep learning
CN110929347A (en) * 2019-10-25 2020-03-27 东北大学 A method for predicting the crown of hot tandem strip steel based on gradient boosting tree model
CN111209967A (en) * 2020-01-08 2020-05-29 太原科技大学 Rolling process plate convexity prediction method based on support vector machine
US11769426B2 (en) 2020-02-18 2023-09-26 BlueOwl, LLC Systems and methods for creating driving challenges
CN112170501B (en) * 2020-09-16 2022-05-27 太原理工大学 A Prediction Method of Roll Wear Crown and Thermal Crown
CN112170502A (en) * 2020-09-16 2021-01-05 太原理工大学 Method for predicting roll bending force in rolling process
CN112749505B (en) * 2020-12-16 2023-10-24 太原科技大学 Hot rolled strip steel cross-sectional shape prediction method based on mechanism fusion data
CN114021290B (en) * 2022-01-04 2022-04-05 东北大学 A method for predicting the crown of strip steel based on data-driven and mechanism model fusion
CN115415331B (en) * 2022-10-10 2024-06-14 日照钢铁控股集团有限公司 Hot continuous rolling machine frame outlet strip steel convexity distribution method, system and computing terminal
CN119203711A (en) * 2024-06-30 2024-12-27 东北石油大学 A method for calculating exergy efficiency of heating furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477261A (en) * 1977-12-02 1979-06-20 Kawasaki Steel Co Production of high crown rolled plate
CN1150068A (en) * 1995-11-10 1997-05-21 东北重型机械学院南校 Roller shape of axial movement capable of changing roll pass concavity and shape
JP3587180B2 (en) * 2001-06-07 2004-11-10 住友金属工業株式会社 Stainless steel plate with excellent stain resistance and corrosion resistance and its manufacturing method.
CN101214501A (en) * 2007-12-27 2008-07-09 武汉钢铁(集团)公司 Working roll and its application method considering strip crown, edge drop control and wear control
JP2009006373A (en) * 2007-06-28 2009-01-15 Hitachi Ltd Apparatus and method for crown control of hot rolling mill
CN201720260U (en) * 2010-07-20 2011-01-26 江苏省沙钢钢铁研究院有限公司 Automatic convexity and/or wedge control system of hot rolling tandem type rolling mill
CN102847721A (en) * 2011-06-29 2013-01-02 宝山钢铁股份有限公司 Method for determining thermal crown of hot rolled strip roller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477261A (en) * 1977-12-02 1979-06-20 Kawasaki Steel Co Production of high crown rolled plate
CN1150068A (en) * 1995-11-10 1997-05-21 东北重型机械学院南校 Roller shape of axial movement capable of changing roll pass concavity and shape
JP3587180B2 (en) * 2001-06-07 2004-11-10 住友金属工業株式会社 Stainless steel plate with excellent stain resistance and corrosion resistance and its manufacturing method.
JP2009006373A (en) * 2007-06-28 2009-01-15 Hitachi Ltd Apparatus and method for crown control of hot rolling mill
CN101214501A (en) * 2007-12-27 2008-07-09 武汉钢铁(集团)公司 Working roll and its application method considering strip crown, edge drop control and wear control
CN201720260U (en) * 2010-07-20 2011-01-26 江苏省沙钢钢铁研究院有限公司 Automatic convexity and/or wedge control system of hot rolling tandem type rolling mill
CN102847721A (en) * 2011-06-29 2013-01-02 宝山钢铁股份有限公司 Method for determining thermal crown of hot rolled strip roller

Also Published As

Publication number Publication date
CN107377634A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
CN107377634B (en) A kind of hot-strip outlet Crown Prediction of Media method
CN114897227B (en) Mechanical properties prediction method for multiple steel grades based on improved random forest algorithm
CN103761423B (en) A kind of hot rolled plate microstructure and property prediction method based on PSO-ELM
CN103745273B (en) Semiconductor fabrication process multi-performance prediction method
WO2016101182A1 (en) Interval type indicator forecasting method based on bayesian network and extreme learning machine
CN110929347A (en) A method for predicting the crown of hot tandem strip steel based on gradient boosting tree model
CN110309603A (en) A short-term wind speed prediction method and system based on wind speed characteristics
CN106778846A (en) A kind of method for forecasting based on SVMs
CN112170501B (en) A Prediction Method of Roll Wear Crown and Thermal Crown
CN104504475A (en) Haze Time Series Forecasting Method Based on AR*-SVM Hybrid Modeling
CN110428175A (en) A kind of Hot Strip Crown Prediction of Media method based on deep learning
CN103258130B (en) Sintered ore rotary drum strength Forecasting Methodology
CN102693452A (en) Multiple-model soft-measuring method based on semi-supervised regression learning
CN105160437A (en) Load model prediction method based on extreme learning machine
CN111250548B (en) Board convexity prediction method based on kernel partial least square combined support vector machine
CN106897774A (en) Multiple soft measurement algorithm cluster modeling methods based on Monte Carlo cross validation
Ji et al. Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling
CN105303250A (en) Wind power combination prediction method based on optimal weight coefficient
CN104050547A (en) Non-linear optimization decision-making method of planning schemes for oilfield development
CN104375478A (en) Method and device for online predicting and optimizing product quality in steel rolling production process
CN103885867B (en) Online evaluation method of performance of analog circuit
Peng et al. A collaborative design platform for new alloy material development
Dong et al. Point and interval prediction of the effective length of hot-rolled plates based on IBES-XGBoost
Yan et al. Rolling force prediction during FGC process of tandem cold rolling based on IQGA-WNN ensemble learning
CN109920489A (en) A hydrocracking model and its establishment method based on Lasso-CCF-CNN

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20171124

Assignee: SHANDONG PROVINCE METALLURGICAL ENGINEERING Co.,Ltd.

Assignor: Northeastern University

Contract record no.: X2021210000025

Denomination of invention: A prediction method of exit crown of hot rolled strip

Granted publication date: 20181016

License type: Common License

Record date: 20210520