CN107364836B - Tin-germanium-sulfur selenide thin film, preparation method thereof and photoelectric conversion device - Google Patents
Tin-germanium-sulfur selenide thin film, preparation method thereof and photoelectric conversion device Download PDFInfo
- Publication number
- CN107364836B CN107364836B CN201710637683.5A CN201710637683A CN107364836B CN 107364836 B CN107364836 B CN 107364836B CN 201710637683 A CN201710637683 A CN 201710637683A CN 107364836 B CN107364836 B CN 107364836B
- Authority
- CN
- China
- Prior art keywords
- sulfur
- germanium
- tin
- selenide
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/002—Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/127—Active materials comprising only Group IV-VI or only Group II-IV-VI chalcogenide materials, e.g. PbSnTe
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于光电材料技术领域,具体涉及一种锡锗硫硒化物薄膜及其制备方法、光电转换器件。The invention belongs to the technical field of optoelectronic materials, and particularly relates to a tin-germanium-sulfur-selenide film, a preparation method thereof, and a photoelectric conversion device.
背景技术Background technique
随着人类社会工业化水平的不断提高,社会的能源需求总量不断增加。根据美国能源部2017年年度能源报告提供的数据,全世界的平均能源消耗功率约为14TW。在这当中,诸如,石油,天然气和煤这些化石能源的消耗约占了人类社会能源总消耗量的85%。在短期内,人类社会面临的主要问题并不是化石能源储量的短缺,而是大量消耗化石能源所带来的温室效应。有研究表明,假如地球上所有的化石能源被消耗完以后,地球大气及海洋当中的二氧化碳含量将达到地球早期人类出现以前的数值。为了预防温室效应所带来的危害,开发利用地球上丰富的太阳能资源是一项十分紧迫的任务。虽然太阳能具有总量丰富、可再生、清洁等优点,但其能量密度低、能量传输不连续的缺点限制了大规模的实际应用。因此,如何方便经济的捕获以及储存太阳能仍然是大规模利用太阳能所面临的难题。With the continuous improvement of the industrialization level of human society, the total energy demand of society continues to increase. According to data provided by the U.S. Department of Energy's 2017 Annual Energy Report, the world's average energy consumption is about 14TW. Among them, the consumption of fossil energy such as oil, natural gas and coal accounts for about 85% of the total energy consumption of human society. In the short term, the main problem facing human society is not the shortage of fossil energy reserves, but the greenhouse effect caused by the massive consumption of fossil energy. Studies have shown that if all the fossil energy on the earth is consumed, the carbon dioxide content in the earth's atmosphere and ocean will reach the value before the appearance of early humans on the earth. In order to prevent the harm caused by the greenhouse effect, it is a very urgent task to develop and utilize the abundant solar energy resources on the earth. Although solar energy has the advantages of abundant total, renewable, and clean, its disadvantages of low energy density and discontinuous energy transmission limit its large-scale practical application. Therefore, how to easily and economically capture and store solar energy is still a difficult problem for large-scale utilization of solar energy.
薄膜太阳能光伏电池以及水分解电池是两种能够大规模利用太阳能且具有应用前景的技术。多元硫硒化物,如Cu2ZnSn(SSe)4(CZTSSe),具有合适的带隙,光吸收系数高(>104cm-1)等优点,作为光吸收材料在太阳能光伏电池以及水分解电池等领域受到了人们的广泛关注。但CZTSSe(铜锌锡硫硒化合物)中含有与二价锡相关的深能级缺陷,限制了光电压的提升。Thin-film solar photovoltaic cells and water-splitting cells are two promising technologies that can utilize solar energy on a large scale. Multi-element sulfur selenides, such as Cu 2 ZnSn(SSe) 4 (CZTSSe), have the advantages of suitable band gap and high light absorption coefficient (>10 4 cm -1 ), which are used as light absorption materials in solar photovoltaic cells and water splitting cells. and other fields have received extensive attention. However, CZTSSe (copper-zinc-tin-sulfur-selenide compound) contains deep-level defects related to divalent tin, which limits the improvement of photovoltage.
发明内容SUMMARY OF THE INVENTION
常规的采用溶液-旋涂-硫化法制备CZTSSe的过程中,Ge含量通常为0,硫硒化处理(包括硫化、硒化或硫硒化)时硫硒分压(即硫硒化过程中薄膜样品上方硫单质或硫化氢、硒单质或硒化氢的蒸汽压)为0.03大气压甚至更低,这样制备的薄膜样品不能同时满足大晶粒尺寸和纯相的要求,大大限制了其光电性能。本发明的目的在于提供一种提升锡锗硫硒化物太阳能电池或光解水电池太阳能转换效率的方法,即,在溶液-旋涂-硫化法制备过程中,通过同时增加锗含量和硫硒分压的方法以获得大晶粒尺寸和纯相的锡锗硫硒化物薄膜,从而实现应用该薄膜作为光吸收材料的光电转换器件的太阳能转换效率的大幅提升In the conventional process of preparing CZTSSe by the solution-spin coating-sulfurization method, the Ge content is usually 0, and the sulfur-selenium partial pressure (that is, the thin film during the sulfur-selenization process (including sulfurization, selenization or sulfur-selenization) is usually 0. The vapor pressure of sulfur element or hydrogen sulfide, selenium element or hydrogen selenide above the sample is 0.03 atm or even lower, the thin film sample prepared in this way cannot meet the requirements of large grain size and pure phase at the same time, which greatly limits its optoelectronic properties. The object of the present invention is to provide a method for improving the solar energy conversion efficiency of a tin-germanium-sulfur-selenide solar cell or a water-splitting cell, that is, in the preparation process of the solution-spin coating-sulfurization method, by simultaneously increasing the content of germanium and the content of sulfur and selenium The method of pressing to obtain a tin-germanium-sulfur-selenide film with a large grain size and a pure phase, so as to achieve a substantial improvement in the solar energy conversion efficiency of photoelectric conversion devices using the film as a light absorbing material
本发明公开一种锡锗硫硒化物薄膜,所述锡锗硫硒化物薄膜的化学通式为M1x1M2x2Sn1-xGexS1-ySey,其中,M1为金属元素Cu、Ag中的一种或者两种任意比例混合物,M2为金属元素Zn、Cd中的一种或者两种任意比例混合物,0≤x1≤1,0≤x2≤1,0<x≤1,0≤y≤1,所述锡锗硫硒化物薄膜采用溶液-旋涂-硫化法制备,在硫硒化处理时满足:若0<x<0.1,硫硒分压为0.05-2个大气压;若0.1≤x≤0.4,硫硒分压为0.2-5个大气压;若0.40<x≤1,硫硒分压为0.5-5个大气压。The invention discloses a tin-germanium-sulfur-selenide film. The chemical formula of the tin-germanium-sulfur-selenide film is M1 x1 M2 x2 Sn 1-x Ge x S 1-y Se y , wherein M1 is the metal element Cu, One or two mixtures of Ag in arbitrary proportions, M2 is one or two mixtures of metal elements Zn and Cd in arbitrary proportions, 0≤x 1 ≤1, 0≤x 2 ≤1, 0<x≤1, 0≤y≤1, the tin-germanium-sulfur-selenide film is prepared by a solution-spin coating-sulfurization method, and during the sulfur-selenide treatment, the following conditions are met: if 0<x<0.1, the partial pressure of sulfur-selenium is 0.05-2 atmospheres; If 0.1≤x≤0.4, the partial pressure of sulfur and selenium is 0.2-5 atmospheres; if 0.40<x≤1, the partial pressure of sulfur and selenium is 0.5-5 atmospheres.
作为一种优选方案,若0<x<0.1,硫硒分压为0.05-1个大气压;若0.1≤x≤0.4,硫硒分压为0.2-2个大气压;若0.40<x≤1,硫硒分压为1-3个大气压。As a preferred solution, if 0<x<0.1, the partial pressure of sulfur and selenium is 0.05-1 atmosphere; if 0.1≤x≤0.4, the partial pressure of sulfur and selenium is 0.2-2 atmosphere; if 0.40<x≤1, the sulfur Selenium partial pressure is 1-3 atmospheres.
本发明还公开一种锡锗硫硒化物薄膜,所述锡锗硫硒化物薄膜的化学通式为M1x1M2x2Sn1-xGexS1-ySey,其中,M1为金属元素Cu、Ag中的一种或者两种任意比例混合物,M2为金属元素Zn、Cd中的一种或者两种任意比例混合物,0≤x1≤1,0≤x2≤1,0.1≤x≤0.4,0≤y≤1,所述锡锗硫硒化物薄膜采用溶液-旋涂-硫化法制备,在硫硒化处理时满足硫硒分压为0.2-2个大气压。The invention also discloses a tin-germanium-sulfur-selenide film. The chemical formula of the tin-germanium-sulfur-selenide film is M1 x1 M2 x2 Sn 1-x Ge x S 1-y Se y , wherein M1 is the metal element Cu , one or two mixtures in arbitrary proportions of Ag, M2 is one or two mixtures in arbitrary proportions of metal elements Zn and Cd, 0≤x 1 ≤1, 0≤x 2 ≤1, 0.1≤x≤0.4 , 0≤y≤1, the tin-germanium-sulfur-selenide film is prepared by a solution-spin coating-sulfurization method, and the partial pressure of sulfur and selenium is 0.2-2 atmospheres during the sulfur selenization treatment.
本发明还公开一种光电转换器件,采用具有上述方案所公开的特征的锡锗硫硒化物薄膜作为光吸收材料。The invention also discloses a photoelectric conversion device, which adopts the tin-germanium-sulfur-selenide film with the features disclosed in the above scheme as the light absorbing material.
本发明还公开一种锡锗硫硒化物薄膜的制备方法,其特征在于,所述锡锗硫硒化物薄膜的化学通式为M1x1M2x2Sn1-xGexS1-ySey,其中,M1为金属元素Cu、Ag中的一种或者两种任意比例混合物,M2为金属元素Zn、Cd中的一种或者两种任意比例混合物,0≤x1≤1,0≤x2≤1,0<x≤1,0≤y≤1,采用溶液-旋涂-硫化法制备锡锗硫硒化物薄膜,包括以下步骤:The invention also discloses a preparation method of a tin-germanium sulfide-selenide film, which is characterized in that the chemical formula of the tin-germanium sulfide-selenide film is M1 x1 M2 x2 Sn 1-x Ge x S 1-y Se y , Wherein, M1 is a mixture of one or two of metal elements Cu and Ag in arbitrary proportion, M2 is a mixture of one or two of metal elements Zn and Cd in arbitrary proportion, 0≤x 1 ≤1, 0≤x 2 ≤ 1, 0<x≤1, 0≤y≤1, using a solution-spin coating-sulfurization method to prepare a tin-germanium-sulfur-selenide film, including the following steps:
步骤一、制备前驱体溶液:将含M1和M2金属离子的硝酸盐、醋酸盐、氯化盐、溴化盐或碘化盐中的一种或者两种以上的任意比例混合物,锡源,锗源,以及硫硒脲分别加入到乙二醇甲醚、二甲亚砜、甲醇、乙醇或乙二醇中的一种或者两种以上的任意比例混合溶剂中进行搅拌混合,得到澄清的前驱体溶液;
步骤二、旋涂和煅烧:将步骤一制得的澄清的前驱体溶液进行老化;将老化后的前驱体溶液旋涂在导电衬底上并进行煅烧,以得到前驱物样品薄膜;重复以上旋涂和煅烧工艺以获得所需厚度的前驱物样品薄膜;
步骤三、硫硒化:将步骤二中得到的前驱物样品薄膜进行硫硒化处理,处理完成后即得到目标锡锗硫硒化物薄膜;Step 3, sulfur selenization: subjecting the precursor sample film obtained in
在前驱体溶液制备时,通过调节锡源和锗源的相对比例控制锗含量,即x的值;在硫硒化处理时满足:若0<x<0.1,硫硒分压为0.05-2个大气压;若0.1≤x≤0.4,硫硒分压为0.2-5个大气压;若0.40<x≤1,硫硒分压为0.5-5个大气压。During the preparation of the precursor solution, the content of germanium, that is, the value of x, is controlled by adjusting the relative ratio of the tin source and the germanium source; in the case of sulfur selenization treatment: if 0<x<0.1, the partial pressure of sulfur and selenide is 0.05-2 Atmospheric pressure; if 0.1≤x≤0.4, the partial pressure of sulfur and selenium is 0.2-5 atmospheres; if 0.40<x≤1, the partial pressure of sulfur and selenium is 0.5-5 atmospheres.
作为一种优选方案,若0<x<0.1,硫硒分压为0.05-1个大气压;若0.1≤x≤0.4,硫硒分压为0.2-2个大气压;若0.40<x≤1,硫硒分压为1-3个大气压。As a preferred solution, if 0<x<0.1, the partial pressure of sulfur and selenium is 0.05-1 atmosphere; if 0.1≤x≤0.4, the partial pressure of sulfur and selenium is 0.2-2 atmosphere; if 0.40<x≤1, the sulfur Selenium partial pressure is 1-3 atmospheres.
作为一种优选方案,0.1≤x≤0.4,在硫硒化处理时满足硫硒分压为0.2-2个大气压。As a preferred solution, 0.1≤x≤0.4, and the partial pressure of sulfur and selenium is 0.2-2 atmospheres during the sulfur selenization treatment.
作为一种优选方案,步骤一中,锡源为含Sn2+和Sn4+离子的醋酸盐、氯化盐、溴化盐或者碘化盐中的一种或者两种以上的任意比例混合物;锗源为氯化锗、溴化锗或碘化锗中的一种或者两种以上的任意比例混合物;溶剂为乙二醇甲醚、二甲亚砜、甲醇、乙醇和乙二醇中的一种或者两种以上的任意比例混合物。As a preferred solution, in
作为一种优选方案,步骤三中,将步骤二中得到的前驱物样品薄膜置于单质硫蒸汽、单质硒蒸汽、硫化氢气体、硒化氢气体中一种或其组合中进行硫硒化处理。As a preferred solution, in step 3, the precursor sample film obtained in
作为一种优选方案,步骤三中,将步骤二中得到的前驱物样品薄膜及锗的硫硒化物进行硫硒化处理,通过调节锗的硫硒化物的质量控制锗含量。锗的硫硒化物为:硫化亚锗,硫化锗,硒化亚锗,硒化锗中的一种或者两种以上任意比例混合物。As a preferred solution, in step 3, the precursor sample film and germanium sulfide selenide obtained in
作为一种优选方案,步骤二中,在相对湿度为5%-95%的环境中老化0-200小时,在200-550℃的空气中煅烧1-60分钟;步骤三中,在450-600℃的温度下进行硫硒化,硫硒化时间为20-120分钟。As a preferred solution, in
作为一种优选方案,硫硒化完成后得到的锡锗硫硒化物薄膜厚度为0.05-5微米。如0.05-3微米。As a preferred solution, the thickness of the tin-germanium-sulfur-selenide film obtained after the sulfur selenization is completed is 0.05-5 microns. Such as 0.05-3 microns.
作为一种优选方案,对步骤三中前驱物样品薄膜进行硫硒化处理的装置为开放式,开放式装置为两端通气的被管式炉加热的石英管,进行硫硒化时,石英管中载气气体的流速在10mL/min-1000mL/min范围内调节,加热温度在400℃-700℃内调节。As a preferred solution, the device for sulfide-selenization treatment of the precursor sample film in step 3 is an open type, and the open-type device is a quartz tube heated by a tube furnace with ventilation at both ends. The flow rate of the medium carrier gas is adjusted within the range of 10mL/min-1000mL/min, and the heating temperature is adjusted within the range of 400°C-700°C.
作为一种优选方案,对步骤三中前驱物样品薄膜进行硫硒化处理的装置为密封式,密封式装置为两端带阀门的被管式炉加热的石英管,进行硫硒化时,石英管两端的阀门关闭,惰性气体及硫硒源被密封在石英管内,加热温度在400℃-700℃内调节。As a preferred solution, the device for sulfide selenization treatment of the precursor sample film in step 3 is a sealed device, and the sealed device is a quartz tube heated by a tube furnace with valves at both ends. When sulfur selenization is performed, the quartz The valves at both ends of the tube are closed, the inert gas and the source of sulfur and selenium are sealed in the quartz tube, and the heating temperature is adjusted within 400℃-700℃.
本发明具有以下有益效果:The present invention has the following beneficial effects:
(1)基于常规的溶液-旋涂-硫化法,通过同时增加锗固溶含量和硫硒分压制备获得了大晶粒尺寸和纯相的锡锗硫硒化物薄膜,使锡锗硫硒化物薄膜的光电性能大幅度提升,本发明还给出了一种十倍提升的优选实施例。(1) Based on the conventional solution-spin coating-sulfurization method, a large grain size and pure phase tin-germanium-sulfelenide film was prepared by simultaneously increasing the solid solution content of germanium and the partial pressure of sulfur-selenium. The optoelectronic properties of the thin film are greatly improved, and the present invention also provides a ten-fold improvement in a preferred embodiment.
(2)采用本发明所公开的锡锗硫硒化物薄膜可作为光吸收材料应用于太阳能转换器件,如光伏电池、光解水电池和光电探测器等,以提升锡锗硫硒化物太阳能电池或光解水电池太阳能转换效率。(2) The tin-germanium-sulfur-selenide film disclosed in the present invention can be used as a light absorbing material in solar energy conversion devices, such as photovoltaic cells, photo-splitting water cells and photodetectors, etc., to improve the tin-germanium sulfur selenide solar cells or Photovoltaic water splitting cell solar energy conversion efficiency.
(3)本方法基于现有的溶液-旋涂-硫化法进行改进,操作简单,成本低廉,易于大规模生产。(3) The method is improved based on the existing solution-spin coating-vulcanization method, and has the advantages of simple operation, low cost and easy mass production.
附图说明Description of drawings
图1是本发明对比实施例1制备的CZTS薄膜和实施例1制备的Ge-CZTS薄膜表面和截面SEM图。(a)和(c)是对比实施例1制备的CZTS薄膜的表面和截面SEM图;(b)和(d)是实施例1制备的Ge-CZTS薄膜表面和截面SEM图。1 is a SEM image of the surface and cross-section of the CZTS thin film prepared in Comparative Example 1 and the Ge-CZTS thin film prepared in Example 1 of the present invention. (a) and (c) are the surface and cross-sectional SEM images of the CZTS film prepared in Comparative Example 1; (b) and (d) are the surface and cross-sectional SEM images of the Ge-CZTS film prepared in Example 1.
图2是本发明对比实施例1制备的CZTS薄膜和实施例1制备的Ge-CZTS薄膜的XRD图。2 is the XRD patterns of the CZTS thin film prepared in Comparative Example 1 and the Ge-CZTS thin film prepared in Example 1 of the present invention.
图3是本发明对比实施例1制备的CZTS薄膜和实施例1制备的Ge-CZTS薄膜的Raman光谱图。(a)为可见拉曼光谱图,(b)为紫外拉曼光谱图。3 is the Raman spectrum of the CZTS thin film prepared in Comparative Example 1 and the Ge-CZTS thin film prepared in Example 1 of the present invention. (a) is the visible Raman spectrum, (b) is the ultraviolet Raman spectrum.
图4是本发明对比实施例1制备的CZTS薄膜和实施例1制备的Ge-CZTS薄膜在担载CdS/In2S3/Pt后的光电流-电势曲线图。4 is a photocurrent-potential curve diagram of the CZTS thin film prepared in Comparative Example 1 and the Ge-CZTS thin film prepared in Example 1 after CdS/In 2 S 3 /Pt is supported.
图5是发明对比实施例1制备的CZTS薄膜和实施例2制备的Ge-CZTS薄膜的表面和截面SEM图。(a)和(c)是对比实施例1制备的CZTS薄膜的表面和截面SEM图;(b)和(d)是实施例2制备的Ge-CZTS薄膜表面和截面SEM图。5 is the surface and cross-sectional SEM images of the CZTS thin film prepared in Comparative Example 1 and the Ge-CZTS thin film prepared in Example 2. (a) and (c) are the surface and cross-sectional SEM images of the CZTS film prepared in Comparative Example 1; (b) and (d) are the surface and cross-sectional SEM images of the Ge-CZTS film prepared in Example 2.
图6是发明对比实施例1制备的CZTS/CdS/In2S3/Pt光阴极和实施例2制备的Ge-CZTS/CdS/In2S3/Pt光阴极的光电流-电势曲线图。6 is a photocurrent-potential graph of the CZTS/CdS/In 2 S 3 /Pt photocathode prepared in Comparative Example 1 and the Ge-CZTS/CdS/In 2 S 3 / Pt photocathode prepared in Example 2.
图7是发明对比实施例1制备的CZTS薄膜和实施例3制备的Ge-CZTS薄膜的表面和截面SEM图。(a)和(c)是对比实施例1制备的CZTS薄膜的表面和截面SEM图;(b)和(d)是实施例2制备的Ge-CZTS薄膜表面和截面SEM图。7 is the surface and cross-sectional SEM images of the CZTS thin film prepared in Comparative Example 1 and the Ge-CZTS thin film prepared in Example 3. (a) and (c) are the surface and cross-sectional SEM images of the CZTS film prepared in Comparative Example 1; (b) and (d) are the surface and cross-sectional SEM images of the Ge-CZTS film prepared in Example 2.
图8是发明对比实施例1制备的CZTS/CdS/In2S3/Pt光阴极和实施例3制备的Ge-CZTS/CdS/In2S3/Pt光阴极的光电流-电势曲线图。8 is a photocurrent-potential graph of the CZTS/CdS/In 2 S 3 /Pt photocathode prepared in Comparative Example 1 and the Ge-CZTS/CdS/In 2 S 3 / Pt photocathode prepared in Example 3.
图9是发明对比实施例1制备的CZTS薄膜和实施例4制备的Ge-CZTS薄膜的表面和截面SEM图。(a)和(c)是对比实施例1制备的CZTS薄膜的表面和截面SEM图;(b)和(d)是实施例2制备的Ge-CZTS薄膜表面和截面SEM图。9 is the surface and cross-sectional SEM images of the CZTS thin film prepared in Comparative Example 1 and the Ge-CZTS thin film prepared in Example 4. (a) and (c) are the surface and cross-sectional SEM images of the CZTS film prepared in Comparative Example 1; (b) and (d) are the surface and cross-sectional SEM images of the Ge-CZTS film prepared in Example 2.
图10是发明对比实施例1制备的CZTS/CdS/In2S3/Pt光阴极和实施例4制备的Ge-CZTS/CdS/In2S3/Pt光阴极的光电流-电势曲线图。10 is a photocurrent-potential graph of the CZTS/CdS/In 2 S 3 /Pt photocathode prepared in Comparative Example 1 and the Ge-CZTS/CdS/In 2 S 3 / Pt photocathode prepared in Example 4.
具体实施方式Detailed ways
锡锗硫硒化物薄膜可采用溶液-旋涂-硫化法制备,具体步骤为:The tin-germanium-sulfur-selenide film can be prepared by a solution-spin coating-sulfurization method, and the specific steps are:
步骤一、制备前驱体溶液:
将多元硫硒化物中,含M1和M2金属离子的硝酸盐、醋酸盐、氯化盐、溴化盐或者碘化盐中的一种或者两种以上的任意比例混合物,含Sn2+和Sn4+离子的醋酸盐、氯化盐、溴化盐或者碘化盐中的一种或者两种以上的任意比例混合物(即锡源),氯化锗、溴化锗或碘化锗中的一种或者两种以上的任意比例混合物(即锗源),以及硫硒脲分别加入到溶剂中进行搅拌混合,得到澄清的前驱体溶液。其中的溶剂选自乙二醇甲醚,二甲亚砜,甲醇,乙醇和乙二醇中的一种或者两种以上的任意比例混合物。In the multi-element sulfur selenide, one or more arbitrary proportion mixtures in nitrate, acetate, chloride, bromide or iodide salt containing M1 and M2 metal ions, containing Sn 2+ and Sn 4+ ion acetate, chloride salt, bromide salt or iodide salt in one or more arbitrary proportion mixture (i.e. tin source), in germanium chloride, germanium bromide or germanium iodide One or two or more mixtures in arbitrary proportions (ie, germanium source), and thioselenourea are respectively added to the solvent for stirring and mixing to obtain a clear precursor solution. The solvent is selected from one of ethylene glycol methyl ether, dimethyl sulfoxide, methanol, ethanol and ethylene glycol or a mixture of two or more in any ratio.
其中,前驱体溶液中的锡源为含Sn2+和Sn4+离子的醋酸盐、氯化盐、溴化盐或者碘化盐中的一种或者两种以上的任意比例混合物;锗盐为氯化锗、溴化锗或碘化锗中的一种或者两种以上的任意比例混合物;溶剂为乙二醇甲醚、二甲亚砜、甲醇、乙醇和乙二醇中的一种或者两种以上的任意比例混合物。前驱体溶液中的锗源的种类包括:四氯化锗,四溴化锗,四碘化锗,二碘化锗,二氧化锗,配置溶液时可使用其中的一种或者两种以上任意比例混合。可通过调节前驱物中锗源和锡源的相对比例调节锡锗硫硒化物中的Ge含量。Wherein, the tin source in the precursor solution is any ratio mixture of one or more of the acetate, chloride, bromide or iodide salts containing Sn 2+ and Sn 4+ ions; germanium salt It is one of germanium chloride, germanium bromide or germanium iodide or a mixture of two or more in any proportion; the solvent is one of ethylene glycol methyl ether, dimethyl sulfoxide, methanol, ethanol and ethylene glycol or A mixture of two or more in any ratio. The types of germanium sources in the precursor solution include: germanium tetrachloride, germanium tetrabromide, germanium tetraiodide, germanium diiodide, germanium dioxide, and one or more of them can be used in any ratio when configuring the solution mix. The content of Ge in the tin-germanium sulphide selenide can be adjusted by adjusting the relative ratio of germanium source and tin source in the precursor.
步骤二、旋涂和煅烧
将步骤一配制的澄清的前驱体溶液在相对湿度为5%-95%的环境中老化0-200小时,得到老化的前驱体溶液。The clear precursor solution prepared in
将老化后的前驱体溶液旋涂在导电衬底上,在200-550℃的空气中煅烧1-60分钟得到一层前驱物样品薄膜。The aged precursor solution is spin-coated on the conductive substrate, and calcined in air at 200-550° C. for 1-60 minutes to obtain a precursor sample film.
重复以上旋涂和煅烧步骤获得具有一定厚度的前驱物样品薄膜,其厚度需根据锡锗硫硒化物薄膜的光电性能进行优化。The above spin coating and calcination steps are repeated to obtain a precursor sample film with a certain thickness, and the thickness needs to be optimized according to the optoelectronic properties of the tin-germanium-sulfur-selenide film.
步骤三、硫硒化处理Step three, sulfur selenization treatment
旋涂和煅烧完成后,把前驱物样品薄膜在450-600℃的温度下进行硫硒化,硫硒化时间为20-120分钟,硫硒化可以在单质硫蒸汽,单质硒蒸汽或者硫化氢,硒化氢气体中进行。After the spin coating and calcination are completed, the precursor sample film is subjected to sulfur selenization at a temperature of 450-600 ℃, and the sulfur selenization time is 20-120 minutes. The sulfur selenization can be carried out in elemental sulfur vapor, elemental selenium vapor or hydrogen sulfide. , in hydrogen selenide gas.
硫硒化步骤中锗的硫硒化物的种类包括:硫化亚锗,硫化锗,硒化亚锗,硒化锗。硫硒化步骤中可使用其中的一种或者两种以上任意比例混合。The types of germanium sulfide selenides in the sulfide selenization step include germanium sulfide, germanium sulfide, germanium selenide, germanium selenide. In the sulfur selenization step, one or more of them can be mixed in any ratio.
在上述方法中,通过同时增加锗固溶含量和硫分压的方法可获得大晶粒尺寸和纯相的锡锗硫硒化物薄膜。In the above method, the tin-germanium-sulfur-selenide film with large grain size and pure phase can be obtained by simultaneously increasing the solid solution content of germanium and the partial pressure of sulfur.
通过调节硫硒化过程中使用的单质硫、单质硒的质量或者硫化氢,硒化氢气体的气压可以控制硫硒分压的高低。硫硒化完成后,得到约0.05-5微米厚的锡锗硫硒化物薄膜,具体可根据相应的光电转换器件需要调整薄膜的厚度,如0.05-3微米。在制备过程中,通过同时增加锗含量和硫硒化处理过程中的硫硒分压以制得大晶粒尺寸和纯相的锡锗硫硒化物薄膜。Ge含量可通过调节前驱体溶液中锡源和锗源的相对比例和调节硫硒化步骤中锗的硫硒化物的质量。本方法中,对锡锗硫硒化物进行硫硒化处理的装置分为开放式和密封式两种,使用密封式装置的效果与开放式装置相同,但密封式装置能节约硫硒化过程中的硫硒源的用量。By adjusting the quality of elemental sulfur, elemental selenium or hydrogen sulfide used in the sulfur selenization process, the gas pressure of hydrogen selenide gas can control the partial pressure of sulfur and selenium. After the sulfur selenization is completed, a tin germanium sulfur selenide film with a thickness of about 0.05-5 microns is obtained, and the thickness of the film can be adjusted according to the needs of the corresponding photoelectric conversion device, such as 0.05-3 microns. In the preparation process, the tin-germanium-sulfur-selenide thin film with large grain size and pure phase can be obtained by simultaneously increasing the germanium content and the partial pressure of sulfur-selenium during the sulfur-selenization process. The content of Ge can be adjusted by adjusting the relative ratio of tin source and germanium source in the precursor solution and by adjusting the quality of germanium sulfide selenide in the sulfide selenization step. In this method, the devices for sulfide selenization treatment of tin germanium sulfide selenide are divided into two types: open type and sealed type. The effect of using the sealed type device is the same as that of the open type device, but the sealed type device can save time in the sulfur selenization process. The amount of sulfur and selenium source.
开放式装置为两端通气的被管式炉加热的石英管,进行硫硒化时,石英管中载气气体的流速可在10ml/min-1000ml/min范围内调节,加热温度可在400℃-700℃内调节。The open device is a quartz tube heated by a tube furnace with ventilation at both ends. When sulfur selenization is performed, the flow rate of the carrier gas in the quartz tube can be adjusted in the range of 10ml/min-1000ml/min, and the heating temperature can be 400 ℃ Adjust within -700°C.
密封式装置为两端带阀门的被管式炉加热的石英管,进行硫硒化时,石英管两端的阀门关闭,惰性气体及硫硒源被密封在石英管内,加热温度可在400℃-700℃内调节。密封式装置也可由充满惰性气体,内含硫硒源和样品的密封石英玻璃试管替代,进行硫硒化时,将密封石英玻璃试管放在管式炉中加热即可。The sealed device is a quartz tube heated by a tube furnace with valves at both ends. When sulfur selenization is performed, the valves at both ends of the quartz tube are closed, and the inert gas and sulfur and selenium sources are sealed in the quartz tube. The heating temperature can be 400℃- Adjust within 700°C. The sealed device can also be replaced by a sealed quartz glass test tube filled with an inert gas and containing a sulfur-selenium source and a sample. For sulfur-selenide, the sealed quartz glass test tube can be heated in a tube furnace.
对于不同类别的硫硒化处理装置,增加硫硒化步骤中硫硒分压的方法包括:增加开放式硫硒化装置中使用的S粉或Se粉的质量,H2S或H2Se气体的流量;增加密封式硫硒化装置中使用的S粉或Se粉的质量。在开放式硫硒化处理装置中,前驱物样品薄膜的法线方向在开放式装置中相对于载气气流方向可在0°-360°之间调节,以获得不同的硫硒化效果。如,对于开放式装置,可选定当x>0.25时,mS>12/2600g/cm3(即每2600cm3装置体积使用12g硫单质)。For different types of sulfur-selenide treatment devices, the methods of increasing the partial pressure of sulfur-selenide in the sulfur-selenization step include: increasing the mass of S powder or Se powder used in the open-type sulfur-selenization device, H 2 S or H 2 Se gas flow rate; increase the quality of S powder or Se powder used in the sealed sulfur selenization device. In the open sulfide selenization treatment device, the normal direction of the precursor sample film can be adjusted between 0° and 360° relative to the direction of the carrier gas flow in the open device to obtain different sulfide selenization effects. For example, for an open device, when x>0.25, mS>12/2600g/cm 3 (ie, 12g of sulfur element per 2600cm 3 device volume) can be selected.
下面结合具体实施例对本发明做进一步说明:Below in conjunction with specific embodiment, the present invention will be further described:
对比实施例1:Comparative Example 1:
步骤1、将1.5224g硫硒脲,0.4513g SnCl2·2H2O,0.7187gCu(CH3COO)2·H2O以及0.3271g ZnCl2依次溶解到20ml的乙二醇甲醚溶液中,充分搅拌配置成澄清的前驱体溶液。
步骤2、澄清的前驱体溶液在20℃和70%湿度的空气中放置3个小时进行老化,制备成老化的前驱体溶液。老化后的前驱体溶液通过旋涂的方式在钼玻璃衬底上制备成前驱物样品薄膜。旋涂转速为3000转/分钟,时间为30秒。每旋涂一层,在400℃的空气中煅烧5分钟。为了获得最优的薄膜厚度,旋涂重复5次。
步骤3、旋涂完成后,采用开放式装置,以0.5克硫粉作为硫源,在580℃氮气气氛下硫化60分钟。硫化时以流量为100ml min-1的氮气为载气。硫化完成后得到1.2μm厚的CZTS(铜锌锡硫)薄膜(即锡锗硫硒化物薄膜的一种)。Step 3. After the spin coating is completed, an open device is used, and 0.5 g of sulfur powder is used as the sulfur source, and the solution is vulcanized under a nitrogen atmosphere at 580° C. for 60 minutes. During vulcanization, nitrogen with a flow rate of 100 ml min -1 was used as the carrier gas. After the vulcanization is completed, a 1.2 μm thick CZTS (copper zinc tin sulfur) film (that is, a kind of tin germanium sulfur selenide film) is obtained.
实施例1:Example 1:
步骤1、将1.5224g硫硒脲,0.0872g CuCl,0.1504g Zn(Ac)2,0.2338g ZnCl2,0.1072g GeCl4,0.3384g SnCl2·2H2O以及0.527g Cu(CH3COO)2·H2O依次溶解到20ml的乙二醇甲醚溶液中,充分搅拌配置成澄清的前驱体溶液(x=0.25)。
步骤2、澄清的前驱体溶液在20℃和70%湿度的空气中放置6个小时进行老化,制备成老化的前驱体溶液。老化后的前驱体溶液通过旋涂的方式在钼玻璃衬底上制备成前驱物样品薄膜。旋涂转速为1500转/分钟,时间为30秒。每旋涂一层,在400℃的空气中煅烧5分钟。为了获得最优的薄膜厚度,旋涂重复11次。
步骤3、旋涂完成后,采用开放式装置,以12克硫粉作为硫源控制硫偏压为0.5大气压,(比对比实施例多了10克硫粉,增加了硫硒分压),在580℃氮气气氛下硫化60分钟。硫化时以流量为100mL min-1的氮气为载气。硫化完成后得到1.2μm厚的Ge-CZTS(铜锌锡锗硫)薄膜(即锡锗硫硒化物薄膜的一种)。Step 3. After the spin coating is completed, an open device is used, and 12 grams of sulfur powder is used as the sulfur source to control the sulfur bias pressure to be 0.5 atmospheres, (10 grams of sulfur powder more than the comparative example, and the partial pressure of sulfur and selenium is increased), in Vulcanized under nitrogen atmosphere at 580°C for 60 minutes. During vulcanization, nitrogen with a flow rate of 100 mL min -1 was used as the carrier gas. After the vulcanization is completed, a 1.2 μm thick Ge-CZTS (copper zinc tin germanium sulfur) film (that is, a kind of tin germanium sulfur selenide film) is obtained.
实施例2:Example 2:
步骤1、将1.5224g硫硒脲,0.0872g CuCl,0.123g Zn(Ac)2,0.2508g ZnCl2,0.0429g GeCl4,0.4062g SnCl2·2H2O以及0.527g Cu(CH3COO)2·H2O依次溶解到20mL的乙二醇甲醚溶液中,充分搅拌配置成澄清的前驱体溶液(x=0.1)。
步骤2、澄清的前驱体溶液在20℃和70%湿度的空气中放置4个小时进行老化,制备成老化的前驱体溶液。老化后的前驱体溶液通过旋涂的方式在钼玻璃衬底上制备成前驱物样品薄膜。旋涂转速为1500转/分钟,时间为30秒。每旋涂一层,在400℃的空气中煅烧5分钟。为了获得最优的薄膜厚度,旋涂重复8次。
步骤3、旋涂完成后,采用开放式装置,以12克硫粉作为硫源,在580℃氮气气氛下硫化60分钟。硫化时以流量为100mL min-1的氮气为载气。硫化完成后得到1.2μm厚的Ge-CZTS薄膜。Step 3. After the spin coating is completed, an open device is used, and 12 grams of sulfur powder is used as the sulfur source, and the solution is vulcanized under a nitrogen atmosphere at 580° C. for 60 minutes. During vulcanization, nitrogen with a flow rate of 100 mL min -1 was used as the carrier gas. After vulcanization, a 1.2 μm thick Ge-CZTS film was obtained.
实施例3:Example 3:
步骤1、将1.5224g硫硒脲,0.1504g CuCl,0.289g Zn(Ac)2,0.1478g ZnCl2,0.1715g GeCl4,0.2708g SnCl2·2H2O以及0.3994g Cu(CH3COO)2·H2O依次溶解到20mL的乙二醇甲醚溶液中,充分搅拌配置成澄清的前驱体溶液(x=0.4)。
步骤2、澄清的前驱体溶液在20℃和70%湿度的空气中放置8个小时进行老化,制备成老化的前驱体溶液。老化后的前驱体溶液通过旋涂的方式在钼玻璃衬底上制备成前驱物样品薄膜。旋涂转速为1500转/分钟,时间为30秒。每旋涂一层,在400℃的空气中煅烧5分钟。为了获得最优的薄膜厚度,旋涂重复14次。
步骤3、旋涂完成后,采用开放式装置,以12克硫粉作为硫源,在580℃氮气气氛下硫化60分钟。硫化时以流量为100ml min-1的氮气为载气。硫化完成后得到1.2μm厚的Ge-CZTS薄膜。Step 3. After the spin coating is completed, an open device is used, and 12 grams of sulfur powder is used as the sulfur source, and the solution is vulcanized under a nitrogen atmosphere at 580° C. for 60 minutes. During vulcanization, nitrogen with a flow rate of 100 ml min -1 was used as the carrier gas. After vulcanization, a 1.2 μm thick Ge-CZTS film was obtained.
实施例4:Example 4:
步骤1、将1.5224g硫硒脲,0.0872g CuCl,0.1504g Zn(Ac)2,0.2338g ZnCl2,0.1072g GeCl4,0.3384g SnCl2·2H2O以及0.527g Cu(CH3COO)2·H2O依次溶解到20mL的乙二醇甲醚溶液中,充分搅拌配置成澄清的前驱体溶液(x=0.25)。
步骤2、澄清的前驱体溶液在20℃和70%湿度的空气中放置6个小时进行老化,制备成老化的前驱体溶液。老化后的前驱体溶液通过旋涂的方式在钼玻璃衬底上制备成前驱物样品薄膜。旋涂转速为1500转/分钟,时间为30秒。每旋涂一层,在400℃的空气中煅烧5分钟。为了获得最优的薄膜厚度,旋涂重复11次。
步骤3、旋涂完成后,采用开放式装置,以0.5克硫粉作为硫源,在580℃氮气气氛下硫化60分钟。硫化时以流量为100mL min-1的氮气为载气。硫化完成后得到1.2μm厚的Ge-CZTS薄膜。Step 3. After the spin coating is completed, an open device is used, and 0.5 g of sulfur powder is used as the sulfur source, and the solution is vulcanized under a nitrogen atmosphere at 580° C. for 60 minutes. During vulcanization, nitrogen with a flow rate of 100 mL min -1 was used as the carrier gas. After vulcanization, a 1.2 μm thick Ge-CZTS film was obtained.
在对对比实施例1、实施例1-3的锡锗硫硒化物薄膜样品进行光电流-电势曲线测试前,需对其进行表面修饰,步骤如下:Before carrying out the photocurrent-potential curve test on the tin-germanium-sulfur-selenide thin film samples of Comparative Example 1 and Examples 1-3, they need to be surface-modified, and the steps are as follows:
首先将5ml浓度为0.015mol/L的CdSO4水溶液,6.5ml的浓氨水(28-30%)加入36mL的去离子水中搅拌5分钟,随后将2.5mL浓度为1.5mol/L的硫脲水溶液加入上述溶液中。在将锡锗硫硒化物薄膜浸入溶液后开始对反应溶液进行水浴加热,反应时间为5分钟。反应完成后将锡锗硫硒化物薄膜从反应溶液中取出,并用去离子水轻轻冲洗,去除其表面未完全反应的前驱物。First, 5ml of CdSO 4 aqueous solution with a concentration of 0.015mol/L, 6.5ml of concentrated ammonia water (28-30%) was added to 36mL of deionized water and stirred for 5 minutes, then 2.5mL of 1.5mol/L thiourea aqueous solution was added in the above solution. After the tin-germanium-sulfur-selenide film was immersed in the solution, the reaction solution was heated in a water bath, and the reaction time was 5 minutes. After the reaction is completed, the tin-germanium-sulfur-selenide film is taken out from the reaction solution, and gently rinsed with deionized water to remove incompletely reacted precursors on its surface.
在CdS缓冲层的化学浴沉积步骤完成之后,In2S3缓冲层也被通过相似的步骤制备。将10mL浓度为0.025mol/L的In(NO3)3溶液和3ml冰醋酸(30%)加入13mL的去离子水中搅拌5分钟后,将25mL浓度为1mol/L的硫代乙酰胺溶液加入上述溶液中。待样品浸入反应溶液后开始水浴加热,温度为70℃,时间为14分钟。反应完成后将样品取出,用去离子水冲洗。After the chemical bath deposition step of the CdS buffer layer was completed, the In 2 S 3 buffer layer was also prepared by a similar procedure. Add 10 mL of 0.025 mol/L In(NO 3 ) 3 solution and 3 mL of glacial acetic acid (30%) into 13 mL of deionized water and stir for 5 minutes, then add 25 mL of 1 mol/L thioacetamide solution to the above solution. in solution. After the sample was immersed in the reaction solution, the water bath heating was started, the temperature was 70 °C, and the time was 14 minutes. After the reaction was complete, the samples were taken out and rinsed with deionized water.
通过上述步骤制备的锡锗硫硒化物薄膜被放入管式炉中,于氮气保护的条件下200℃加热60分钟。冷却取出后,锡锗硫硒化物薄膜被作为工作电极浸入浓度为0.1mmol/L的氯铂酸溶液中,以500W氙灯为光源对其进行照射,利用电化学工作站的电流-时间测试模式,将电位设置为-0.1VSCE后开始电沉积。当沉积电量达到5mC/cm2时停止沉积,从而得到锡锗硫硒化物光电极。The tin-germanium-sulfur-selenide film prepared by the above steps was put into a tube furnace and heated at 200° C. for 60 minutes under nitrogen protection. After cooling and taking out, the tin-germanium-sulfur-selenide film was immersed as a working electrode in a chloroplatinic acid solution with a concentration of 0.1 mmol/L, and irradiated with a 500W xenon lamp as a light source. Electrodeposition was started after the potential was set to -0.1 V SCE . The deposition was stopped when the deposition power reached 5 mC/cm 2 , thereby obtaining a tin-germanium-sulfur-selenide photoelectrode.
我们对经过上述步骤得到的锡锗硫硒化物光电极进行了各项表征,图1至图4是对锡锗硫硒化物薄膜光电极的表征结果。其中,利用上海辰华CHI633C型电化学工作站测试锡锗硫硒化物光电极的光电流-电势曲线。测试采用三电极体系,锡锗硫硒化物作为阴极,铂金作为阳极,SCE电极作为参比电极。AM 1.5G(100mW cm-2)太阳光模拟器作为光源。We have carried out various characterizations on the tin-germanium-sulfur-selenide photoelectrode obtained through the above steps, and Fig. 1 to Fig. 4 are the characterization results of the tin-germanium-sulfur-selenide thin film photoelectrode. Among them, Shanghai Chenhua CHI633C electrochemical workstation was used to test the photocurrent-potential curve of the tin-germanium-sulfur-selenide photoelectrode. A three-electrode system was used for the test, with tin-germanium-sulfur-selenide as the cathode, platinum as the anode, and SCE electrode as the reference electrode. AM 1.5G (100mW cm -2 ) solar simulator was used as the light source.
图1为不含Ge及低硫硒分压下制备的CZTS薄膜(即对比实施例1所制得的CZTS薄膜)和Ge含量为0.25及高硫硒分压下制备的Ge-CZTS薄膜(即实施例1所制得的Ge-CZTS薄膜)的表面和截面SEM图。从表面和截面的SEM图可以看出,通过增加Ge含量和硫硒分压制备的Ge-CZTS薄膜晶粒显著增大,晶界数量降低。Fig. 1 shows the CZTS film prepared under Ge-free and low sulfur-selenium partial pressure (ie, the CZTS film prepared in Comparative Example 1) and the Ge-CZTS film prepared under the Ge content of 0.25 and high sulfur-selenium partial pressure (ie, the CZTS film prepared in Comparative Example 1) Surface and cross-sectional SEM images of the Ge-CZTS film prepared in Example 1). It can be seen from the SEM images of the surface and cross-section that the grains of the Ge-CZTS films prepared by increasing the Ge content and the partial pressure of sulfur and selenium increase significantly and the number of grain boundaries decreases.
图2为不含Ge及低硫硒分压下制备的CZTS薄膜和Ge含量为0.25及高硫硒分压下制备的Ge-CZTS薄膜的XRD图。从图2可以看出,制备出的Ge-CZTS薄膜特征衍射峰的峰位置较CZTS的特征衍射峰向大角度移动,并且Ge-CZTS衍射峰的半峰宽更窄,表明了Ge-CZTS薄膜更高的结晶性。Figure 2 shows the XRD patterns of the CZTS films prepared without Ge and under low sulfur and selenium partial pressure and the Ge-CZTS films prepared under Ge content of 0.25 and high sulfur and selenium partial pressure. It can be seen from Fig. 2 that the peak position of the characteristic diffraction peak of the prepared Ge-CZTS film is shifted to a larger angle than that of CZTS, and the half-width of the Ge-CZTS diffraction peak is narrower, indicating that the Ge-CZTS film higher crystallinity.
图3为不含Ge及低硫硒分压下制备的CZTS薄膜和Ge含量为0.25及高硫硒分压下制备的Ge-CZTS薄膜的可见(a)和紫外(b)Raman光谱图。从图3(a)可以看出,所有的振动峰归为CZTS和Ge-CZTS的特征峰。从图3(b)可以看出,不含Ge及低硫硒分压下制备的CZTS薄膜中存在ZnS杂相,而增加Ge含量硫硒分压后制备的Ge-CZTS薄膜中不含有ZnS杂相。Figure 3 shows the visible (a) and ultraviolet (b) Raman spectra of CZTS films prepared without Ge and under low sulfur and selenium partial pressure and Ge-CZTS films with Ge content of 0.25 and high sulfur and selenium partial pressure. It can be seen from Fig. 3(a) that all the vibrational peaks are classified as characteristic peaks of CZTS and Ge-CZTS. It can be seen from Fig. 3(b) that there are ZnS impurity phases in the CZTS films prepared without Ge and under low sulfur and selenium partial pressure, while the Ge-CZTS films prepared with increasing Ge content and sulfur and selenium partial pressure do not contain ZnS impurity. Mutually.
图4为不含Ge及低硫硒分压下制备的CZTS/CdS/In2S3/Pt光阴极和Ge含量为0.25及高硫硒分压下制备的Ge-CZTS/CdS/In2S3/Pt光阴极的光电流-电势曲线图。从图4可以看出,通过同时增加Ge含量和硫硒分压制备的Ge-CZTS光阴极的光电流在0VRHE下得到大约十倍的提升。Figure 4 shows the CZTS/CdS/In 2 S 3 /Pt photocathode prepared without Ge and under low sulfur and selenium partial pressure and the Ge-CZTS/CdS/In 2 S prepared under high sulfur and selenium partial pressure with Ge content of 0.25 3 /Pt photocathode photocurrent-potential graph. It can be seen from Fig. 4 that the photocurrent of the Ge-CZTS photocathode prepared by simultaneously increasing the Ge content and the sulfur-selenium partial pressure is approximately tenfold improved at 0 V RHE .
图5为不含Ge及低硫硒分压下制备的CZTS薄膜(即对比实施例1所制得的CZTS薄膜)和Ge含量为0.1及高硫硒分压下制备的Ge-CZTS薄膜(即实施例2所制得的Ge-CZTS薄膜)的表面和截面SEM图。从表面和截面的SEM图可以看出,通过增加Ge含量和硫硒分压制备的Ge-CZTS薄膜晶粒显著增大,晶界数量降低。Fig. 5 shows the CZTS films prepared without Ge and under low sulfur and selenium partial pressure (ie, the CZTS film prepared in Comparative Example 1) and the Ge-CZTS films prepared under Ge content of 0.1 and high sulfur and selenium partial pressure (ie, the CZTS film prepared in Comparative Example 1) Surface and cross-sectional SEM images of the Ge-CZTS film prepared in Example 2). It can be seen from the SEM images of the surface and cross-section that the grains of the Ge-CZTS films prepared by increasing the Ge content and the partial pressure of sulfur and selenium increase significantly and the number of grain boundaries decreases.
图6为不含Ge及低硫硒分压下制备的CZTS/CdS/In2S3/Pt光阴极和Ge含量为0.1及高硫硒分压下制备的Ge-CZTS/CdS/In2S3/Pt光阴极的光电流-电势曲线图。从图6可以看出,通过同时增加Ge含量和硫硒分压制备的Ge-CZTS光阴极的光电流在0VRHE下得到大约7.6倍的提升。Figure 6 shows the CZTS/CdS/In 2 S 3 /Pt photocathode prepared without Ge and under low sulfur and selenium partial pressure and the Ge-CZTS/CdS/In 2 S prepared under high sulfur and selenium partial pressure with Ge content of 0.1 3 /Pt photocathode photocurrent-potential graph. It can be seen from Fig. 6 that the photocurrent of the Ge-CZTS photocathode prepared by simultaneously increasing the Ge content and the sulfur-selenium partial pressure is enhanced by about 7.6 times at 0 V RHE .
图7为不含Ge及低硫硒分压下制备的CZTS薄膜(即对比实施例1所制得的CZTS薄膜)和Ge含量为0.4及高硫硒分压下制备的Ge-CZTS薄膜(即实施例3所制得的Ge-CZTS薄膜)的表面和截面SEM图。从表面和截面的SEM图可以看出,通过增加Ge含量和硫硒分压制备的Ge-CZTS薄膜晶粒显著增大,晶界数量降低。Figure 7 shows the CZTS films prepared under Ge-free and low sulfur-selenium partial pressure (ie, the CZTS film prepared in Comparative Example 1) and the Ge-CZTS films prepared under the Ge content of 0.4 and high sulfur-selenium partial pressure (ie, the CZTS film prepared in Comparative Example 1) Surface and cross-sectional SEM images of the Ge-CZTS film prepared in Example 3). It can be seen from the SEM images of the surface and cross-section that the grains of the Ge-CZTS films prepared by increasing the Ge content and the partial pressure of sulfur and selenium increase significantly and the number of grain boundaries decreases.
图8为不含Ge及低硫硒分压下制备的CZTS/CdS/In2S3/Pt光阴极和Ge含量为0.4及高硫硒分压下制备的Ge-CZTS/CdS/In2S3/Pt光阴极的光电流-电势曲线图。从图8可以看出,通过同时增加Ge含量和硫硒分压制备的Ge-CZTS光阴极的光电流在0VRHE下得到大约4倍的提升。Figure 8 shows the CZTS/CdS/In 2 S 3 /Pt photocathode prepared without Ge and under low sulfur and selenium partial pressure and the Ge-CZTS/CdS/In 2 S prepared under high sulfur and selenium partial pressure with Ge content of 0.4 3 /Pt photocathode photocurrent-potential graph. It can be seen from Fig. 8 that the photocurrent of the Ge-CZTS photocathode prepared by simultaneously increasing the Ge content and the sulfur-selenium partial pressure is increased by about 4 times at 0 V RHE .
图9为不含Ge及低硫硒分压下制备的CZTS薄膜(即对比实施例1所制得的CZTS薄膜)和Ge含量为0.25及低硫硒分压下制备的Ge-CZTS薄膜(即实施例4所制得的Ge-CZTS薄膜)的表面和截面SEM图。从表面和截面的SEM图可以看出,在低硫硒分压下,增加Ge含量反而会使Ge-CZTS薄膜晶粒显著减小,晶界数量增多。Fig. 9 shows the CZTS films prepared without Ge and under low sulfur and selenium partial pressure (that is, the CZTS film prepared in Comparative Example 1) and the Ge-CZTS films prepared under the conditions of Ge content of 0.25 and low sulfur and selenium partial pressure (that is, the CZTS film prepared in Comparative Example 1) Surface and cross-sectional SEM images of the Ge-CZTS film prepared in Example 4). From the SEM images of the surface and cross-section, it can be seen that under the low partial pressure of sulfur and selenium, increasing the content of Ge will significantly reduce the grain size and increase the number of grain boundaries in the Ge-CZTS film.
图10为不含Ge及低硫硒分压下制备的CZTS/CdS/In2S3/Pt光阴极和Ge含量为0.25及低硫硒分压制备的Ge-CZTS/CdS/In2S3/Pt光阴极的光电流-电势曲线图。从图10可以看出,在低硫硒分压下制备的Ge含量为0.25的Ge-CZTS光阴极的光电流在0VRHE下减小了一倍。可见,只增加锗的含量,不增加硫硒分压,不但不能使所得薄膜的光电性能提升,反而降低了其性能。Figure 10 shows the CZTS/CdS/In 2 S 3 /Pt photocathode prepared without Ge and under low sulfur and selenium partial pressure and the Ge-CZTS/CdS/In 2 S 3 prepared with Ge content of 0.25 and low sulfur and selenium partial pressure Photocurrent-potential plot of the /Pt photocathode. It can be seen from Fig. 10 that the photocurrent of the Ge-CZTS photocathode with a Ge content of 0.25 prepared at low sulfur and selenium partial pressure is doubled at 0 V RHE . It can be seen that only increasing the content of germanium without increasing the partial pressure of sulfur and selenium can not improve the optoelectronic properties of the obtained film, but reduce its properties.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710637683.5A CN107364836B (en) | 2017-07-31 | 2017-07-31 | Tin-germanium-sulfur selenide thin film, preparation method thereof and photoelectric conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710637683.5A CN107364836B (en) | 2017-07-31 | 2017-07-31 | Tin-germanium-sulfur selenide thin film, preparation method thereof and photoelectric conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107364836A CN107364836A (en) | 2017-11-21 |
CN107364836B true CN107364836B (en) | 2020-07-31 |
Family
ID=60308783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710637683.5A Active CN107364836B (en) | 2017-07-31 | 2017-07-31 | Tin-germanium-sulfur selenide thin film, preparation method thereof and photoelectric conversion device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107364836B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110797431B (en) * | 2018-08-02 | 2021-11-02 | 上海新微技术研发中心有限公司 | Relaxed GeSn infrared avalanche photodetector and its fabrication method |
CN112201702B (en) * | 2020-10-10 | 2022-11-18 | 南开大学 | Thin film solar cell absorption layer forming method, thin film solar cell and preparation method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346201A (en) * | 2013-05-24 | 2013-10-09 | 深圳市亚太兴实业有限公司 | Preparation method of germanium-doped CZTS thin film, thin film and solar cell |
CN105789373A (en) * | 2016-01-07 | 2016-07-20 | 南京大学 | Method for preparing copper-based sulfoselenide semiconductor thin film |
-
2017
- 2017-07-31 CN CN201710637683.5A patent/CN107364836B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346201A (en) * | 2013-05-24 | 2013-10-09 | 深圳市亚太兴实业有限公司 | Preparation method of germanium-doped CZTS thin film, thin film and solar cell |
CN105789373A (en) * | 2016-01-07 | 2016-07-20 | 南京大学 | Method for preparing copper-based sulfoselenide semiconductor thin film |
Non-Patent Citations (2)
Title |
---|
Improved performance of Ge-alloyed CZTGeSSe thin- film solar cells through control of elemental losses;Charles J. Hages et al.;《Prog. Photovolt: Res. Appl.》;20131204;第23卷;第376-384页 * |
Rongyue Liu et al..Preparation of high-quality Cu2ZnSnS4 thin films for solar cells via the improvement of sulfur partial pressure using a static annealing sulfurization approach.《Solar Energy Materials & Solar Cells》.2016,第157卷 * |
Also Published As
Publication number | Publication date |
---|---|
CN107364836A (en) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Amiri et al. | Synthesis and characterization of CuInS2 microsphere under controlled reaction conditions and its application in low-cost solar cells | |
CN104795456B (en) | Method for preparing triple-bandgap iron-doped copper-gallium-sulfur solar cell material by electrodeposition | |
Guo et al. | Hierarchical TiO 2–CuInS 2 core–shell nanoarrays for photoelectrochemical water splitting | |
CN101746715B (en) | A kind of preparation method of CuInS2 nanocrystalline semiconductor film | |
CN101630701A (en) | Method for preparing copper-indium-selenium optoelectronic thin film material of solar cell | |
Jamali-Sheini et al. | Enhanced photovoltaic performance of tin sulfide nanoparticles by indium doping | |
KR101327536B1 (en) | Method for preparing cis based film, the cis based film prepared therefrom, and film solar cell including the cis based film | |
CN106233470B (en) | The preparation method of the light absorbing layer of thin-film solar cells and the thin-film solar cells for utilizing it | |
JP5564688B2 (en) | CBD solution for CZTS semiconductor, method for producing buffer layer for CZTS semiconductor, and photoelectric device | |
US20120006687A1 (en) | Method of forming cigs thin film | |
Al-Zahrani et al. | Enhanced photoelectrochemical performance of Bi2S3/Ag2S/ZnO novel ternary heterostructure nanorods | |
TWI536588B (en) | Compound semiconductor thin film solar cell and method of manufacturing same | |
CN102169910B (en) | Thin film solar cell based on sulfur compound nanocrystalline | |
CN103400903A (en) | Preparation method for improving grain size and density of CZTS film | |
CN107364836B (en) | Tin-germanium-sulfur selenide thin film, preparation method thereof and photoelectric conversion device | |
Yimamu et al. | Cathodic deposition voltage-dependent properties of electrodeposited stoichiometric CdSe thin films for solar energy application | |
Al‐Hadeethi et al. | Role of triethanolamine in forming Cu2ZnSnS4 nanoparticles during solvothermal processing for solar cell applications | |
CN107134507B (en) | Preparation method of copper indium sulfide selenide thin film of solar cell absorber layer with gradient composition | |
CN109904255B (en) | A kind of preparation method of Cr-Se co-doped zinc sulfide solar cell buffer layer film material | |
CN106098814A (en) | A kind of oxide nano particles prepares the method for solar battery obsorbing layer CTSSe thin film | |
CN102629632B (en) | CIGS nanostructure thin-film photovoltaic battery and preparation method thereof | |
CN106057973A (en) | Method for preparing solar cell absorbing layer CTS film through oxide nanometer particles | |
CN105489672A (en) | Method for preparing copper indium diselenide photoelectric thin film by chloride system through two-step method | |
CN114188442A (en) | Preparation method of antimony-doped electrochemical deposition copper-zinc-tin-sulfur solar cell absorption layer | |
CN109830571B (en) | A method for preparing copper-tin-sulfur solar cell thin film material by electrodepositing copper after annealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |