[go: up one dir, main page]

CN107322059A - Enveloping worm hob CAD/CAM approach based on universal numerical control milling machine - Google Patents

Enveloping worm hob CAD/CAM approach based on universal numerical control milling machine Download PDF

Info

Publication number
CN107322059A
CN107322059A CN201710542592.3A CN201710542592A CN107322059A CN 107322059 A CN107322059 A CN 107322059A CN 201710542592 A CN201710542592 A CN 201710542592A CN 107322059 A CN107322059 A CN 107322059A
Authority
CN
China
Prior art keywords
hob
margin
worm gear
relief
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710542592.3A
Other languages
Chinese (zh)
Other versions
CN107322059B (en
Inventor
李海涛
龙新佳妮
魏文军
芮成杰
杨杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201710542592.3A priority Critical patent/CN107322059B/en
Publication of CN107322059A publication Critical patent/CN107322059A/en
Application granted granted Critical
Publication of CN107322059B publication Critical patent/CN107322059B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Gear Processing (AREA)

Abstract

本发明涉及一种基于四轴及四轴以上联动通用数控铣床的环面蜗轮滚刀CAD/CAM方法,属于环面蜗轮滚刀的设计和制造方法。利用环面蜗轮滚刀螺旋面和侧后角面成形原理,分别求得均布滚刀左右侧螺旋面、左右刃带终止线和左右侧后角面上的点族;将点族导入三维软件中拟合成滚刀左右侧螺旋面、左右刃带终止线和左右侧后角面;根据参数通过简单特征命令建立剩余曲面结构,得到完整的环面蜗轮滚刀三维模型。将模型导入四轴或四轴以上联动通用数控铣床系统中,仅通过粗铣、热处理和精铣三道工序实现滚刀自动化加工。简化了滚刀加工工艺,提高了滚刀制造精度。

The invention relates to a CAD/CAM method for a toroidal worm gear hob based on a four-axis or more linkage universal numerical control milling machine, which belongs to the design and manufacturing method of the torus worm gear hob. Using the forming principle of the helical surface and side relief surface of the toroidal worm gear hob, the point families on the left and right side helical surfaces, the left and right margin band termination lines, and the left and right relief surfaces of the uniform hob are respectively obtained; the point families are imported into the 3D software The left and right side helical surfaces, the left and right margin band termination lines and the left and right back angle surfaces of the hob are fitted in the middle; the remaining surface structure is established through simple feature commands according to the parameters, and a complete 3D model of the torus worm gear hob is obtained. Import the model into the four-axis or more linkage universal CNC milling machine system, and realize the automatic processing of the hob only through the three processes of rough milling, heat treatment and fine milling. The processing technology of the hob is simplified, and the manufacturing precision of the hob is improved.

Description

基于通用数控铣床的环面蜗轮滚刀CAD/CAM方法CAD/CAM method of toroidal worm gear hob based on general CNC milling machine

技术领域technical field

本发明涉及一种基于四轴或四轴以上联动通用数控铣床的环面蜗轮滚刀CAD/CAM方法,属于环面蜗轮滚刀的设计和制造方法。The invention relates to a CAD/CAM method for a toroidal worm gear hob based on a universal numerically controlled milling machine linked by four or more axes, and belongs to the design and manufacturing method of a toroidal worm gear hob.

背景技术Background technique

环面蜗杆传动与圆柱蜗杆传动相比,其承载能力强、体积小、传动效率高且使用寿命长,被广泛应用于高效、重载场合。但环面蜗杆传动啮合理论复杂,啮合传动性能对误差和变形十分敏感,需要高精度的加工制造。然而,环面蜗轮的加工所使用的环面蜗轮滚刀是一种结构复杂、设计和制造难度大的特殊刀具。现有的整体式环面蜗轮滚刀的加工工艺过程繁琐,需要采用蜗杆数控机床、铣床、热处理装备等不同的设备,将车削、磨削、铣削、热处理以及手工磨削等多种工艺组合起来制造滚刀,多次装卡工件,不易保证精度,工序复杂且得到的滚刀精度低。滚刀精度不高导致滚切蜗轮的切削性能不高,得到的环面蜗杆副精度不高,啮合性能欠佳,需要跑合才能正常使用。因此,需要探寻一种脱离传统复杂繁琐的加工工艺,并且能够提高滚刀精度和切削性能的环面蜗轮滚刀设计和制造新方法。Compared with the cylindrical worm drive, the toroidal worm drive has strong bearing capacity, small size, high transmission efficiency and long service life, and is widely used in high-efficiency and heavy-duty occasions. However, the meshing theory of the toroidal worm drive is complex, and the meshing transmission performance is very sensitive to errors and deformations, requiring high-precision manufacturing. However, the toroidal worm gear hob used in the machining of the toroidal worm gear is a special tool with complex structure and great difficulty in design and manufacture. The processing process of the existing integral toroidal worm gear hob is cumbersome, and it is necessary to use different equipment such as worm CNC machine tools, milling machines, and heat treatment equipment to combine various processes such as turning, grinding, milling, heat treatment, and manual grinding. To manufacture the hob, the workpiece is clamped many times, it is difficult to ensure the accuracy, the process is complicated and the precision of the obtained hob is low. The low precision of the hob leads to low cutting performance of the hobbing worm gear, and the resulting toroidal worm pair has low precision and poor meshing performance, and needs running-in to be used normally. Therefore, it is necessary to find a new method of designing and manufacturing the toroidal worm gear hob that breaks away from the traditional complex and cumbersome processing technology and can improve the accuracy and cutting performance of the hob.

中国农业大学2013年博士论文“包络环面蜗杆副蜗轮滚刀数控加工技术的研究”提出了一种滚刀后角面的车削加工的设计方法,建立包含刀齿侧后角面的滚刀三维模型,并采用铣削的方法初步探讨了包含刀齿侧后角面的滚刀关键曲面在四轴联动铣床上的直接成形,但这种方法只是关注滚刀刀齿侧后角面的铣削成形,没有考虑刀顶后角面,没有滚刀的完整制造工艺,还不能用于蜗轮的滚切。中国专利ZL201410613061.5“平面二次包络环面蜗轮滚刀侧后角面的数控磨削加工方法”提出一种基于四轴联动环面蜗杆磨床的平面二次包络环面蜗轮滚刀后角面磨削技术,实现了滚刀后角面的自动磨削,并可以按设计的刃带宽度和后角角度进行磨削,但仅仅是后角面的磨削。都没有实现基于通用数控铣床的环面蜗轮滚刀的完整设计与制造。China Agricultural University's 2013 doctoral thesis "Research on Numerical Control Machining Technology of Enveloping Toroidal Worm Gear Hobs" proposed a design method for the turning process of the flank of the hob, and established a hob including the flank of the tooth side Three-dimensional model, and using the milling method to preliminarily discuss the direct forming of the key surface of the hob including the relief surface of the tooth side on a four-axis linkage milling machine, but this method only focuses on the milling of the flank surface of the hob , without considering the back angle of the top of the knife, there is no complete manufacturing process of the hob, and it cannot be used for the hobbing of the worm gear. Chinese patent ZL201410613061.5 "Numerical Control Grinding Method for Side Back Angle Surface of Plane Secondary Enveloping Toroidal Worm Gear Hob" proposes a planar secondary enveloping toroidal worm gear hob rear surface based on four-axis linkage toroidal worm grinding machine Angle surface grinding technology realizes the automatic grinding of the back angle of the hob, and can be ground according to the designed land width and back angle, but it is only the grinding of the back angle. All have not realized the complete design and manufacture of the toroidal worm gear hob based on the general CNC milling machine.

发明内容Contents of the invention

本发明的目的是要提供一种在四轴及四轴以上联动通用数控铣床上,仅通过两次装夹和一次热处理工艺实现环面蜗轮滚刀自动化加工的方法。为了达到本发明的目的所采取的技术方案如下:The object of the present invention is to provide a method for automatic machining of the toroidal worm gear hob on a universal CNC milling machine with four or more axes linked by only two clamping and one heat treatment process. The technical scheme taken in order to achieve the object of the present invention is as follows:

环面蜗轮滚刀CAD:利用环面蜗轮滚刀螺旋面成形原理,计算出均布于滚刀的左侧螺旋面点族(1)和右侧螺旋面点族(2)的三维坐标数据,根据给定刀齿排数、前刀面和刃带宽度,计算均布于各个刀齿的左侧刃带终止线点族(3)和右侧刃带终止线点族(4)的三维坐标数据,根据滚刀螺旋面导程角计算方法和采用车刀刀尖车削滚刀后角面的方法以及后角面角度,计算均布各个刀齿的左侧后角面点族(5)和右侧后角面点族(6)的三维坐标数据,将计算出滚刀的左侧螺旋面点族(1)和右侧螺旋面点族(2)的三维坐标数据、各个刀齿的左侧刃带终止线点族(3)和右侧刃带终止线点族(4)的三维坐标数据、刀齿左侧后角面点族(5)和侧后角面点族(6)的三维坐标数据导入三维建模软件中,分别拟合出滚刀的左侧螺旋面(7)和右侧螺旋面(8)、刀齿的左侧刃带终止线(9)和右侧刃带终止线(10)、刀齿的左侧后角面(11)和右侧后角面(12),根据滚刀相关参数建立滚刀的齿顶圆环面(13)和齿根圆环面(14)、刀齿的前刀面(15)和后刀面(16),通过前刀面(15)和左侧后角面(11)对左侧螺旋面(7)的剪切,得到刀齿的左侧刃带面(17),通过前刀面(15)和右侧后角面(12)对右侧螺旋面(8)的剪切,得到刀齿的右侧刃带面(18),将前刀面(15)向后刀面(16)的方向平移一个刃带宽的距离与齿顶圆环面(13)相交得到刀齿的顶部刃带终止线(19),齿顶圆环面(13)位于前刀面(15)和顶部刃带终止线(19)之间的部分就是刀齿的顶部刃带面(20),将齿顶圆环面(13)位于顶部刃带终止线(19)、左侧螺旋面(7)、右侧螺旋面(8)和后刀面(16)之间部分绕顶部刃带终止线(19)向齿根环面(14)转过一个后角面角度,即得到刀齿的顶部后角面(21),这样,由前刀面(15)、左侧刃带面(17)、左侧后角面(11)、顶部刃带面(20)、顶部后角面(21)、右侧刃带面(18)、右侧后角面(12)和后刀面(16)围成了一个刀齿的三维实体模型,同理,可以得到其他刀齿的三维实体模型,从而得到滚刀的三维实体模型(22)。Torus worm gear hob CAD: Utilize the helicoid forming principle of torus worm gear hob to calculate the three-dimensional coordinate data of the left helicoid point family (1) and the right helicoid point family (2) uniformly distributed on the hob, According to the given number of rows of teeth, rake face and margin width, calculate the three-dimensional coordinates of the left margin end line point family (3) and the right margin end line point family (4) uniformly distributed on each tooth Data, according to the calculation method of the lead angle of the helical surface of the hob and the method of turning the rear face of the hob with the tip of the turning tool and the angle of the rear face, calculate the point family (5) and The three-dimensional coordinate data of the right back angle point family (6) will calculate the three-dimensional coordinate data of the left helicoid point family (1) and the right helicoid point family (2) of the hob, and the left The three-dimensional coordinate data of the point family of the end line of the side margin (3) and the point family of the end line of the right margin (4), the point family of the left relief surface of the tooth (5) and the point family of the side relief surface (6) The 3D coordinate data is imported into the 3D modeling software, and the left helicoid (7) and right helicoid (8) of the hob, the left margin end line (9) and the right margin of the cutter tooth are respectively fitted The end line (10), the left relief surface (11) and the right relief surface (12) of the cutter tooth, and the tooth top torus (13) and tooth root torus of the hob are established according to the relevant parameters of the hob (14), the rake face (15) and the flank face (16) of the cutter tooth, through the cutting of the left helical face (7) by the rake face (15) and the left flank face (11), obtain The left margin surface (17) of the cutter tooth is cut by the rake face (15) and the right flank surface (12) to the right helical surface (8), to obtain the right margin surface ( 18), the rake face (15) is translated in the direction of the flank face (16) by a distance of the land width and intersects with the addendum ring surface (13) to obtain the top margin end line (19) of the cutter tooth, and the addendum The portion of the torus (13) between the rake face (15) and the top margin end line (19) is the top margin surface (20) of the cutter tooth, and the tooth top torus (13) is located at the top edge The portion between the belt end line (19), the left helicoid (7), the right helicoid (8) and the flank (16) turns around the top margin end line (19) to the tooth root annulus (14) After a relief angle, the top relief surface (21) of the cutter tooth is obtained. In this way, the rake surface (15), the left margin surface (17), the left relief surface (11), the top edge Band surface (20), top relief surface (21), right side margin surface (18), right relief surface (12) and flank surface (16) enclose a three-dimensional solid model of cutter tooth, and The three-dimensional solid model of other cutter teeth can be obtained, and thus the three-dimensional solid model of the hob can be obtained (22).

环面蜗轮滚刀CAM:将环面蜗轮滚刀三维实体模型(22)输入CAM软件中,基于K轴联动通用数控铣床,其中K为正整数,K的取值范围为4、5和6,给定刀齿的前刀面(15)、左侧刃带面(17)、右侧刃带面(18)和顶部刃带面(20)精加工余量L,其中L在0.05mm-1.00mm范围内给定,编制数控铣削程序,在K轴联动通用数控铣床上对环面蜗轮滚刀粗加工,再对环面蜗轮滚刀热处理,按加工余量为零,编制数控程序,然后在K轴联动通用数控铣床上对环面蜗轮滚刀每个刀齿的前刀面(15)、左侧刃带面(17)、右侧刃带面(18)和顶部刃带面(20)精加工,即得到蜗轮滚刀成品。CAM of the toroidal worm gear hob: input the 3D solid model (22) of the toroidal worm gear hob into the CAM software, based on the K-axis linkage general-purpose CNC milling machine, where K is a positive integer, and the value range of K is 4, 5 and 6, The finishing allowance L of the rake face (15), the left margin face (17), the right margin face (18) and the top margin face (20) of a given cutter tooth, where L is in the range of 0.05mm-1.00 Given within the range of mm, compile the NC milling program, rough machine the toroidal worm gear hob on the K-axis linkage general NC milling machine, and then heat treat the torus worm gear hob, make the machining allowance zero, compile the NC program, and then The rake surface (15), the left margin surface (17), the right margin surface (18) and the top margin surface (20) of each tooth of the toroidal worm gear hob on a K-axis linkage universal CNC milling machine Finishing, that is, the finished product of the worm gear hob.

本发明的有益效果在于:基于CAD/CAM技术,仅利用四轴及四轴以上联动的通用数控铣床,经过粗和精加工和一次热处理工艺可以实现环面蜗轮滚刀的加工。这种方法在简化了滚刀加工工艺的同时,还保证了滚刀各刀齿切削刃的位置和形状以及刃带宽、后角角度,进而得到较传统加工出的滚刀更佳的制造精度和切削性能的环面蜗轮滚刀。The beneficial effect of the present invention is that: based on CAD/CAM technology, only a general-purpose numerical control milling machine with four or more axes linked can be used to process the toroidal worm gear hob through rough and finish machining and a heat treatment process. This method not only simplifies the processing technology of the hob, but also ensures the position and shape of the cutting edge of each tooth of the hob, the width of the edge, and the angle of the relief angle, thereby obtaining better manufacturing accuracy and Cutting performance of the toroidal worm gear hob.

附图说明Description of drawings

图1为本发明环面蜗轮滚刀的设计和制造方法流程图Fig. 1 is the flow chart of the design and manufacturing method of the toroidal worm gear hob of the present invention

图2为本发明环面蜗轮滚刀外形关键曲面上点族的分布示意图Fig. 2 is a schematic diagram of the distribution of point families on the key curved surface of the profile of the toroidal worm gear hob of the present invention

图3为本发明方法中在三维软件里根据滚刀右侧螺旋面点族建立滚刀右侧螺旋面过程示意图Fig. 3 is the schematic diagram of the process of establishing the right helicoid of the hob according to the helicoid point family on the right of the hob in the three-dimensional software in the method of the present invention

图4为本发明方法中建立的滚刀单个刀齿三维实体模型示意图Fig. 4 is the schematic diagram of the single cutter tooth three-dimensional solid model of the hob set up in the method of the present invention

图5为本发明方法中建立的环面蜗轮滚刀三维模型图Fig. 5 is the three-dimensional model diagram of the toroidal worm gear hob set up in the method of the present invention

图6为基于CAM软件编制数控铣削程序时环面蜗轮滚刀在数控铣床中的位置示意图Figure 6 is a schematic diagram of the position of the toroidal worm gear hob in the CNC milling machine when the CNC milling program is compiled based on the CAM software

具体实施方式detailed description

下面根据附图对本发明的实例进行描述。Examples of the present invention are described below with reference to the accompanying drawings.

以平面二次包络环面蜗轮滚刀为例,相关参数为:环面蜗杆副的中心距a=175mm,滚刀齿根圆弧半径Rf0=152.4mm,滚刀齿顶圆弧半径Ra0=158mm,刀齿排数Nz=6,容屑槽为直槽,在圆周方向均布,各前刀面圆周夹角为60°,其中有一排刀齿的前刀面经过滚刀喉部齿厚点。滚刀一共有31个刀齿,刀齿后角角度χ=5°,刃带宽lE=1mm,刀齿齿厚η=15mm。Taking the planar quadratic enveloping toroidal worm gear hob as an example, the relevant parameters are: the center distance of the toroidal worm pair a = 175mm, the hob root arc radius R f0 = 152.4mm, the hob addendum arc radius R a0 =158mm, the number of rows of cutter teeth N z =6, the chip flutes are straight grooves, evenly distributed in the circumferential direction, the angle between the circumference of each rake face is 60°, and the rake face of a row of cutter teeth passes through the throat of the hob The teeth are thicker. The hob has a total of 31 cutter teeth, the cutter tooth relief angle χ=5°, the edge width l E =1mm, and the cutter tooth thickness η=15mm.

图2所示为环面蜗轮滚刀外形曲面上点族的分布示意图。利用环面蜗轮滚刀螺旋面成形原理和所给出的上述参数,计算出均布于滚刀的左侧螺旋面点族(1)和右侧螺旋面点族(2)的三维坐标数据,其中单侧螺旋面上,齿高方向23个点,滚刀轴向127个点,共23×127=2921个点。根据给定刀齿排数确定各个前刀面(15)的位置,将各前刀面(15)沿前刀面的法向向刀齿实体平移一个刃带宽度lE的距离,与左侧螺旋面(7)和右侧螺旋面(8)相交得到左侧刃带终止线(9)和右侧刃带终止线(10),从而可以计算均布于各个刀齿的左侧刃带终止线点族(3)和右侧刃带终止线点族(4)的三维坐标数据各17个点。根据滚刀螺旋面导程角计算方法和采用车刀刀尖车削滚刀后角面的方法,根据侧后角面角度χ,后角面起始线上点的导程角和车削传动比的关系,得到侧后角面上一系列螺旋线,从而得到侧后角面的数学模型,利用侧后角面数学模型,计算出均布各个刀齿的左侧后角面点族(5)和右侧后角面点族(6)的三维坐标数据,其中齿高方向17个点,滚刀齿长方向16个点,滚刀单个刀齿一侧后角面共17×16=272个点。Figure 2 is a schematic diagram of the distribution of the point family on the contour surface of the toroidal worm gear hob. Using the helicoid forming principle of the toroidal worm gear hob and the given parameters above, the three-dimensional coordinate data of the left helicoid point family (1) and the right helicoid point family (2) uniformly distributed on the hob are calculated, Among them, on the one-sided helical surface, there are 23 points in the tooth height direction and 127 points in the hob axial direction, a total of 23×127=2921 points. Determine the position of each rake face (15) according to the number of rows of given cutter teeth, each rake face (15) is translated to the cutter tooth entity along the normal direction of the rake face by a distance of the land width l E , and the left side The intersection of the helicoid (7) and the right helicoid (8) results in the termination of the left margin (9) and the termination of the right margin (10), so that the termination of the left margin evenly distributed on each tooth can be calculated The three-dimensional coordinate data of the line point family (3) and the right margin termination line point family (4) each have 17 points. According to the calculation method of the lead angle of the helical surface of the hob and the method of turning the rear face of the hob by the tip of the turning tool, according to the angle χ of the side relief face, the lead angle of the point on the starting line of the relief face and the turning transmission ratio relationship, a series of helical lines on the side relief surface are obtained, and thus the mathematical model of the side relief surface is obtained. Using the mathematical model of the side relief surface, the point family (5) and The three-dimensional coordinate data of the point family (6) on the right relief surface, including 17 points in the tooth height direction, 16 points in the hob tooth length direction, and a total of 17×16=272 points in the relief surface on one side of a single tooth of the hob .

图3所示为基于建模软件逆向工程原理的滚刀右侧螺旋面(8)拟合过程图。在右侧螺旋面点族(2)上,沿滚刀轴向将每127个点拟合成1条螺旋线,一共23条螺旋线,再将23条螺旋线拟合成右侧螺旋面(8),同理可得到左侧螺旋面(7)。在右侧刃带终止线点族(4)上,沿齿高方向将17个点拟合成一条曲线,即右侧刃带终止线(10),同理可得到左侧刃带终止线(9)。在刀齿的右侧后角面点族(6)上,沿齿长方向将每16个点拟合成一条曲线,一共17条曲线,再将17条曲线拟合成右侧后角面(12),同理可得到左侧后角面(11)。Fig. 3 shows the fitting process diagram of the helicoid (8) on the right side of the hob based on the reverse engineering principle of the modeling software. On the right helicoid point family (2), fit every 127 points along the hob axis into a helical line, a total of 23 helical lines, and then fit the 23 helical lines into the right helicoid ( 8), similarly, the left helicoid (7) can be obtained. On the point family (4) of the right margin end line, 17 points are fitted into a curve along the tooth height direction, that is, the right margin end line (10). Similarly, the left margin end line ( 9). On the point family (6) of the right flank surface of the cutter tooth, every 16 points are fitted into a curve along the tooth length direction, a total of 17 curves, and then 17 curves are fitted into the right relief surface ( 12), in the same way, the left back angle surface (11) can be obtained.

图4所示为建立的滚刀单个刀齿三维实体模型示意图。根据环面蜗杆副的中心距a=175mm,滚刀齿根圆弧半径Rf0=152.4mm,滚刀齿顶圆弧半径Ra0=158mm,由“圆弧回转成片体”命令建立滚刀的齿顶圆环面(13)和齿根圆环面(14)。按容屑槽为直槽、第一排刀齿的前刀面经过滚刀喉部齿厚点和各前刀面圆周夹角为60°以及刀齿齿厚η为15mm,由“直线拉伸成片体”命令建立刀齿的前刀面(15)和后刀面(16)。由“裁剪片体”命令通过前刀面(15)和左侧后角面(11)对左侧螺旋面(7)的剪切,得到刀齿的左侧刃带面(17),通过前刀面(15)和右侧后角面(12)对右侧螺旋面(8)的剪切,得到刀齿的右侧刃带面(18)。由“平移”命令和“相交成曲线”命令将前刀面(15)向后刀面(16)的方向平移一个刃带宽度lE的距离与齿顶圆环面(13)相交得到刀齿的顶部刃带终止线(19),齿顶圆环面(13)位于前刀面(15)和顶部刃带终止线(19)之间的部分就是刀齿的顶部刃带面(20)。Figure 4 is a schematic diagram of the established three-dimensional solid model of a single tooth of the hob. According to the center distance of the toroidal worm pair a = 175mm, the hob root arc radius R f0 = 152.4mm, and the hob addendum arc radius R a0 = 158mm, the hob is established by the command "arc rotation into pieces" The addendum torus (13) and root torus (14). According to the fact that the chip flute is a straight groove, the rake face of the first row of cutter teeth passes through the tooth thickness point of the throat of the hob and the angle between the circumference of each rake face is 60°, and the tooth thickness η of the cutter teeth is 15mm, it is determined by "straight line stretching" Into a sheet" command to establish the rake face (15) and flank face (16) of the cutter tooth. Cut the left helical surface (7) through the rake surface (15) and the left flank surface (11) by the command "Cut sheet", to obtain the left margin surface (17) of the cutter tooth, and pass the front The cutting of the right side helical surface (8) by the knife face (15) and the right flank surface (12) obtains the right side land surface (18) of the knife tooth. Translate the rake face (15) to the flank face (16) by the "translation" command and the "intersect to form a curve" command for a distance of a margin width l E and intersect the addendum torus (13) to obtain the cutter tooth The top margin end line (19) of the tooth top, the part of the addendum torus (13) between the rake face (15) and the top margin end line (19) is the top margin surface (20) of the cutter tooth.

将齿顶圆环面(13)位于顶部刃带终止线(19)、左侧螺旋面(7)、右侧螺旋面(8)和后刀面(16)之间的部分绕顶部刃带终止线(19)向齿根环面(14)转过后角面角度χ=5°,得到刀齿的顶部后角面(21)。由“延伸曲面”命令延伸顶部后角面(21),与左侧后角面(11)、右侧后角面(12)和后刀面(16)相交,由“裁剪片体”命令裁剪掉左侧后角面(11)、右侧后角面(12)和后刀面(16)超出顶部后角面(21)的部分,这样,由前刀面(15)、后刀面(16)、左侧刃带面(17)、左侧后角面(11)、顶部刃带面(20)、顶部后角面(21)、右侧刃带面(18)和右侧后角面(12)就围成了一个刀齿的三维实体模型,同理,可以得到其他刀齿的三维实体模型,即得到环面蜗轮滚刀三维实体模型(22)。Terminate the portion of the addendum torus (13) located between the top margin termination line (19), the left helicoid (7), the right helicoid (8) and the flank (16) around the top margin Line (19) turns back angle x=5 ° to dedendum annulus (14), obtains the top relief face (21) of knife tooth. The top relief face (21) is extended by the Extend Surface command to intersect the left relief face (11), right relief face (12) and relief face (16), and trimmed by the Trim Body command Remove the part of the left relief face (11), right relief face (12) and flank face (16) beyond the top relief face (21), so that the rake face (15), flank face ( 16), left margin face (17), left relief face (11), top margin face (20), top relief face (21), right margin face (18) and right relief face The surface (12) has just surrounded a three-dimensional solid model of a cutter tooth, and in the same way, the three-dimensional solid models of other cutter teeth can be obtained, that is, the three-dimensional solid model (22) of the toroidal worm gear hob is obtained.

图6所示为基于CAM软件编制数控铣削程序时环面蜗轮滚刀在数控铣床中的位置示意图。将得到的环面蜗轮滚刀三维实体模型(22)输入UG软件中,基于X轴、Y轴、Z轴和C轴的4轴联动通用数控铣床,环面蜗轮滚刀轴线(23)与C轴重合,铣刀(24)相对于环面蜗轮滚刀三维实体模型(22)的相对位置变化有X轴、Y轴、Z轴三个直线移动轴,以及环面蜗轮滚刀三维实体模型(22)随C轴的转动。给定刀齿的前刀面(15)、左侧刃带面(17)、右侧刃带面(18)和顶部刃带面(20)精加工余量L,取L=0.5mm,编制数控铣削程序,在4轴联动通用数控铣床上对环面蜗轮滚刀粗加工,再对环面蜗轮滚刀热处理,按加工余量为零,编制数控程序,然后在4轴联动通用数控铣床上对环面蜗轮滚刀每个刀齿的前刀面(15)、左侧刃带面(17)、右侧刃带面(18)和顶部刃带面(20)精加工,即得到蜗轮滚刀成品。Figure 6 is a schematic diagram of the position of the toroidal worm gear hob in the CNC milling machine when the CNC milling program is compiled based on the CAM software. Input the three-dimensional solid model (22) of the toroidal worm gear hob into the UG software, based on the 4-axis linkage universal CNC milling machine of the X axis, Y axis, Z axis and C axis, the axis of the torus worm gear hob (23) and C Axes overlap, the relative position change of milling cutter (24) with respect to the three-dimensional solid model (22) of toroidal worm gear hob has three linear movement axes of X axis, Y axis and Z axis, and the three-dimensional solid model of toroidal worm gear hob ( 22) Follow the rotation of the C axis. Given the rake surface (15), left margin surface (17), right margin surface (18) and top margin surface (20) finishing allowance L of the given cutter tooth, take L=0.5mm, compile CNC milling program, rough machining of the toroidal worm gear hob on the 4-axis linkage general-purpose CNC milling machine, and then heat-treat the torus-surface worm gear hob, according to the machining allowance being zero, compile the NC program, and then run it on the 4-axis linkage general-purpose CNC milling machine The rake surface (15), the left margin surface (17), the right margin surface (18) and the top margin surface (20) of each tooth of the toroidal worm gear hob are finished, and the worm gear hob is obtained. Finished knife.

Claims (1)

1.基于通用数控铣床的环面蜗轮滚刀CAD/CAM方法,其特征在于,包括基于环面蜗轮滚刀CAD,利用环面蜗轮滚刀螺旋面成形原理,计算出均布于滚刀的左侧螺旋面点族(1)和右侧螺旋面点族(2)的三维坐标数据,根据给定刀齿排数、前刀面和刃带宽度,计算均布于各个刀齿的左侧刃带终止线点族(3)和右侧刃带终止线点族(4)的三维坐标数据,根据滚刀螺旋面导程角计算方法和采用车刀刀尖车削滚刀后角面的方法以及后角面角度,计算均布各个刀齿的左侧后角面点族(5)和右侧后角面点族(6)的三维坐标数据,将计算出滚刀的左侧螺旋面点族(1)和右侧螺旋面点族(2)的三维坐标数据、各个刀齿的左侧刃带终止线点族(3)和右侧刃带终止线点族(4)的三维坐标数据、刀齿左侧后角面点族(5)和侧后角面点族(6)的三维坐标数据导入三维建模软件中,分别拟合出滚刀的左侧螺旋面(7)和右侧螺旋面(8)、刀齿的左侧刃带终止线(9)和右侧刃带终止线(10)、刀齿的左侧后角面(11)和右侧后角面(12),根据滚刀相关参数建立滚刀的齿顶圆环面(13)和齿根圆环面(14)、刀齿的前刀面(15)和后刀面(16),通过前刀面(15)和左侧后角面(11)对左侧螺旋面(7)的剪切,得到刀齿的左侧刃带面(17),通过前刀面(15)和右侧后角面(12)对右侧螺旋面(8)的剪切,得到刀齿的右侧刃带面(18),将前刀面(15)向后刀面(16)的方向平移一个刃带宽的距离与齿顶圆环面(13)相交得到刀齿的顶部刃带终止线(19),齿顶圆环面(13)位于前刀面(15)和顶部刃带终止线(19)之间的部分就是刀齿的顶部刃带面(20),将齿顶圆环面(13)位于顶部刃带终止线(19)、左侧螺旋面(7)、右侧螺旋面(8)和后刀面(16)之间部分绕顶部刃带终止线(19)向齿根环面(14)转过一个后角面角度,即得到刀齿的顶部后角面(21),这样,由前刀面(15)、左侧刃带面(17)、左侧后角面(11)、顶部刃带面(20)、顶部后角面(21)、右侧刃带面(18)、右侧后角面(12)和后刀面(16)围成了一个刀齿的三维实体模型,同理,可以得到其他刀齿的三维实体模型,从而得到滚刀的三维实体模型(22);基于环面蜗轮滚刀CAM,将环面蜗轮滚刀三维实体模型(22)输入CAM软件中,基于K轴联动通用数控铣床,其中K为正整数,K的取值范围为4、5和6,给定刀齿的前刀面(15)、左侧刃带面(17)、右侧刃带面(18)和顶部刃带面(20)精加工余量L,其中L在0.05mm-1.00mm范围内给定,编制数控铣削程序,在K轴联动通用数控铣床上对环面蜗轮滚刀粗加工,再对环面蜗轮滚刀热处理,按加工余量为零,编制数控程序,然后在K轴联动通用数控铣床上对环面蜗轮滚刀每个刀齿的前刀面(15)、左侧刃带面(17)、右侧刃带面(18)和顶部刃带面(20)精加工,即得到蜗轮滚刀成品。1. The CAD/CAM method of the toroidal worm wheel hob based on the general CNC milling machine is characterized in that it includes the CAD/CAM method based on the torus worm wheel hob, and utilizes the helical surface forming principle of the torus worm wheel hob to calculate the uniform distribution on the left side of the hob. The three-dimensional coordinate data of the side helicoid point family (1) and the right helicoid point family (2), according to the given number of rows of teeth, rake face and land width, calculate the left edge The three-dimensional coordinate data of the point family with the end line (3) and the point family (4) of the right margin end line, according to the calculation method of the lead angle of the helical surface of the hob and the method of turning the rear face of the hob with the tip of the turning tool and Relief angle, calculate the three-dimensional coordinate data of the left relief surface point family (5) and the right relief surface point family (6) uniformly distributed on each cutter tooth, and calculate the left helical surface point family of the hob (1) and the three-dimensional coordinate data of the right helicoid point family (2), the three-dimensional coordinate data of the left margin end line point family (3) and the right margin end line point family (4) of each cutter tooth, The three-dimensional coordinate data of the left relief surface point family (5) and the side relief surface point family (6) of the cutter tooth are imported into the three-dimensional modeling software, and the left helical surface (7) and the right helical surface of the hob are respectively fitted. the helical surface (8), the left margin end line (9) and the right margin end line (10) of the cutter tooth, the left relief angle surface (11) and the right relief angle surface (12) of the cutter tooth, According to relevant parameters of the hob, the tooth top torus (13) and dedendum torus (14), the rake face (15) and the flank (16) of the cutter tooth are established, and the rake face (15) ) and left relief surface (11) to the left helical surface (7) to obtain the left margin surface (17) of the cutter tooth, through the rake surface (15) and right relief surface (12 ) to the right helical surface (8) to obtain the right margin surface (18) of the cutter tooth, and translate the rake surface (15) to the direction of the flank surface (16) by a distance of the land width and the tooth The top annular surface (13) intersects to obtain the top margin termination line (19) of the tooth, and the part of the addendum annular surface (13) between the rake face (15) and the top margin termination line (19) is For the top margin surface (20) of the cutter tooth, place the tooth top annular surface (13) on the top margin termination line (19), the left helicoid (7), the right helicoid (8) and the flank ( 16) The part between them turns around the top margin end line (19) to the tooth root annulus (14) through a relief angle, that is, the top relief surface (21) of the cutter tooth is obtained. In this way, the rake surface ( 15), left margin surface (17), left relief angle surface (11), top margin surface (20), top relief angle surface (21), right margin surface (18), right relief angle Face (12) and flank (16) have surrounded the three-dimensional solid model of a cutter tooth, similarly, can obtain the three-dimensional solid model of other cutter teeth, thereby obtain the three-dimensional solid model (22) of hob; Worm gear hob CAM, input the three-dimensional solid model (22) of the toroidal worm gear hob into the CAM software, based on the K-axis linkage general-purpose CNC milling machine, where K is a positive integer, and the value range of K is 4, 5 and 6. Given The rake face (15) of the cutter tooth, the left edge The finishing allowance L of the land surface (17), the right land surface (18) and the top land surface (20), where L is given within the range of 0.05mm-1.00mm, is programmed for CNC milling, and the K-axis linkage Rough machining of the worm gear hob on the general CNC milling machine, and then heat treatment of the worm gear hob on the general NC milling machine. The rake surface (15), the left side land surface (17), the right side land surface (18) and the top land surface (20) of the cutter tooth are finished, and the finished product of the worm gear hob is obtained.
CN201710542592.3A 2017-07-05 2017-07-05 CAD/CAM Method of Toroidal Worm Gear Hob Based on Universal CNC Milling Machine Active CN107322059B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710542592.3A CN107322059B (en) 2017-07-05 2017-07-05 CAD/CAM Method of Toroidal Worm Gear Hob Based on Universal CNC Milling Machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710542592.3A CN107322059B (en) 2017-07-05 2017-07-05 CAD/CAM Method of Toroidal Worm Gear Hob Based on Universal CNC Milling Machine

Publications (2)

Publication Number Publication Date
CN107322059A true CN107322059A (en) 2017-11-07
CN107322059B CN107322059B (en) 2019-02-15

Family

ID=60196803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710542592.3A Active CN107322059B (en) 2017-07-05 2017-07-05 CAD/CAM Method of Toroidal Worm Gear Hob Based on Universal CNC Milling Machine

Country Status (1)

Country Link
CN (1) CN107322059B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108109199A (en) * 2017-12-20 2018-06-01 厦门理工学院 A kind of planar-formed surface three dimension modeling method of end mill processing
CN108346412A (en) * 2017-12-22 2018-07-31 湖北大学 The piano saddle milling method of capotasto saddle point three-dimensional modeling
CN108345733A (en) * 2018-01-31 2018-07-31 厦门理工学院 Screw-on cutter plane machining shapes surface three dimension modeling method
CN114147419A (en) * 2021-12-08 2022-03-08 天津理工大学 Design method of side relief surface of toroidal worm gear hob

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004391C1 (en) * 1990-09-21 1993-12-15 Днепродзержинский индустриальный институт Worm mill
CN101104245A (en) * 2007-08-08 2008-01-16 燕山大学 Four-Axis CNC Ellipsoidal and Spherical Hob Relief Grinding Machine
DE102011115241A1 (en) * 2011-01-18 2012-07-19 Liebherr-Verzahntechnik Gmbh Method for milling a worm wheel and device for this purpose
CN102601457A (en) * 2012-03-22 2012-07-25 沈阳飞机工业(集团)有限公司 Method for machining worm gear hob tooth profile by means of relief grinding
CN105382313A (en) * 2015-12-25 2016-03-09 西安航天动力机械厂 Machining method for numerical control milling of thin-wall curved-surface irregular parts
CN205254269U (en) * 2015-12-28 2016-05-25 中能(天津)智能传动设备有限公司 Hobbing cutter is rough milled to double enveloping wormwheel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004391C1 (en) * 1990-09-21 1993-12-15 Днепродзержинский индустриальный институт Worm mill
CN101104245A (en) * 2007-08-08 2008-01-16 燕山大学 Four-Axis CNC Ellipsoidal and Spherical Hob Relief Grinding Machine
DE102011115241A1 (en) * 2011-01-18 2012-07-19 Liebherr-Verzahntechnik Gmbh Method for milling a worm wheel and device for this purpose
CN102601457A (en) * 2012-03-22 2012-07-25 沈阳飞机工业(集团)有限公司 Method for machining worm gear hob tooth profile by means of relief grinding
CN105382313A (en) * 2015-12-25 2016-03-09 西安航天动力机械厂 Machining method for numerical control milling of thin-wall curved-surface irregular parts
CN205254269U (en) * 2015-12-28 2016-05-25 中能(天津)智能传动设备有限公司 Hobbing cutter is rough milled to double enveloping wormwheel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108109199A (en) * 2017-12-20 2018-06-01 厦门理工学院 A kind of planar-formed surface three dimension modeling method of end mill processing
CN108346412A (en) * 2017-12-22 2018-07-31 湖北大学 The piano saddle milling method of capotasto saddle point three-dimensional modeling
CN108346412B (en) * 2017-12-22 2021-07-27 湖北大学 A method of milling piano string code based on 3D modeling of nut string code point
CN108345733A (en) * 2018-01-31 2018-07-31 厦门理工学院 Screw-on cutter plane machining shapes surface three dimension modeling method
CN114147419A (en) * 2021-12-08 2022-03-08 天津理工大学 Design method of side relief surface of toroidal worm gear hob
CN114147419B (en) * 2021-12-08 2022-08-19 天津理工大学 Design method of side rear angle surface of torus worm gear hob

Also Published As

Publication number Publication date
CN107322059B (en) 2019-02-15

Similar Documents

Publication Publication Date Title
CN109702567B (en) Grinding track solving method for front cutter face of arc edge of arc-head end mill
CN105499712B (en) Method for machining cylindrical gear with ultra-large modulus and small tooth number
CN106774167A (en) A kind of gear with little teeth number numerical-control processing method
CN107322059A (en) Enveloping worm hob CAD/CAM approach based on universal numerical control milling machine
CN101774029B (en) Method for turning helical surface of enveloping worm
CN104384586A (en) Method for processing integral impeller by using four-axis numerical-control milling machine
CN101733482B (en) Method for digital control processing of arc-shaped end teeth based on calibration of machining accuracy indexes
CN101700576B (en) Rough machining method of helical surface of hourglass worm
CN108568567A (en) A kind of Machining Spiral Bevel Gear method based on general four-shaft numerically controlled lathe and rose cutter
CN104759702B (en) Topology shape correcting method for cylindrical gear
CN112989517A (en) Trajectory solving method for grinding rear cutter face of ball head by adopting parallel grinding wheel
CN112558550B (en) Method for machining special-shaped threads by CAM software
CN106735612B (en) A method of improving gear honing processing
CN104440419B (en) The numerical control grinding and machining method of planar secondary enveloping ring surface worm gear hob side relief
CN101837484B (en) Milling method of spiral surface of ring surface worm
CN109530768B (en) Machining method for blade tip edging thinning area
CN101837483B (en) Milling and processing method of spiral surface of ring surface worm
He et al. The second envelope method of point-vector and its application on worm wheel grinding modified gear
CN110508879B (en) A CNC turning flash and chamfering method for an involute enveloping toroidal worm
CN111441894A (en) Small-size impeller and five-axis milling method thereof
CN114101807B (en) Edge shape design method of gear workpiece end face continuous equidistant chamfering cutting tool
CN212250317U (en) A small size impeller
CN116442012A (en) A Calculation Method of Grinding Trajectory of Partitioned Arc Head Rotary File
CN106513864B (en) A kind of five axis high-efficiency machining method of planar double-enveloping worm
CN106312817B (en) A kind of abrasive grinding wheel feed control method of spiral ring gear broaching tooth

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant