CN107294419A - Pulse power supply circuit, the pulse power, the control method of electromagnetic launch system and pulse power supply circuit - Google Patents
Pulse power supply circuit, the pulse power, the control method of electromagnetic launch system and pulse power supply circuit Download PDFInfo
- Publication number
- CN107294419A CN107294419A CN201710639713.6A CN201710639713A CN107294419A CN 107294419 A CN107294419 A CN 107294419A CN 201710639713 A CN201710639713 A CN 201710639713A CN 107294419 A CN107294419 A CN 107294419A
- Authority
- CN
- China
- Prior art keywords
- thyristor
- inductor
- power supply
- pulse power
- inductance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000003990 capacitor Substances 0.000 claims abstract description 75
- 238000006243 chemical reaction Methods 0.000 claims abstract description 72
- 230000001133 acceleration Effects 0.000 claims description 10
- 230000001960 triggered effect Effects 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 5
- 238000011084 recovery Methods 0.000 claims description 5
- 238000004146 energy storage Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/53—Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
- H03K3/57—Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
Landscapes
- Generation Of Surge Voltage And Current (AREA)
Abstract
本发明公开了一种脉冲电源电路、脉冲电源、电磁发射装置和脉冲电源电路的控制方法。电源的正极与第一晶闸管的阳极相连接,负极与接地极连接。第二晶闸管与能量转换电容依次串联在第一晶闸管的阴极和接地极之间。第二晶闸管的阴极与第一晶闸管的阴极相连。第一电感和第二电感异名端相接并连接在第一晶闸管的阴极和接地极之间。第三电感的一端连接在第一电感和第二电感之间,另一端与第三晶闸管的阳极相连。第三晶闸管的阴极与第二晶闸管的阳极相连。二极管的阴极连接在第一电感和第二电感之间。第四晶闸管的阴极连接在第一电感和第二电感之间。阳极与第二晶闸管的阳极连接。能量转换电容能够后收集所述第二电感的余能,提高了能源利用率。
The invention discloses a pulse power supply circuit, a pulse power supply, an electromagnetic emitting device and a control method for the pulse power supply circuit. The positive pole of the power supply is connected with the anode of the first thyristor, and the negative pole is connected with the ground pole. The second thyristor and the energy conversion capacitor are sequentially connected in series between the cathode of the first thyristor and the ground electrode. The cathode of the second thyristor is connected to the cathode of the first thyristor. The opposite ends of the first inductor and the second inductor are connected and connected between the cathode of the first thyristor and the ground electrode. One end of the third inductor is connected between the first inductor and the second inductor, and the other end is connected to the anode of the third thyristor. The cathode of the third thyristor is connected to the anode of the second thyristor. The cathode of the diode is connected between the first inductor and the second inductor. The cathode of the fourth thyristor is connected between the first inductor and the second inductor. The anode is connected to the anode of the second thyristor. The energy conversion capacitor can subsequently collect the residual energy of the second inductance, thereby improving the energy utilization rate.
Description
技术领域technical field
本发明涉及能源领域,特别是涉及一种脉冲电源电路、脉冲电源、电磁发射装置和脉冲电源电路的控制方法。The invention relates to the energy field, in particular to a pulse power supply circuit, a pulse power supply, an electromagnetic emission device and a control method for the pulse power supply circuit.
背景技术Background technique
电磁发射是以电磁力加速物体的新兴技术。与传统发射技术相比,电磁发射具有能量效率高、控制精度高和响应速度快等优势。随着科学技术(特别是计算机控制技术和电力电子技术)的不断发展,电磁发射技术的实用化进程不断加速。电磁发射装置一般由发射器、被发射组件和脉冲电源构成。脉冲电源一般需要在毫秒级时间内提供兆安级脉冲电流和兆焦级脉冲能量。用于电磁发射的脉冲电源一般由电源、中间储能环节和脉冲形成网络三部分构成。电源在较长时间内为中间储能环节充电,充电完成之后,中间储能环节在较短时间内将能量传递给脉冲形成网络,脉冲形成网络通过快速压缩转换向负载输出高功率脉冲电流。Electromagnetic emission is the emerging technology of accelerating objects by electromagnetic force. Compared with traditional emission technology, electromagnetic emission has the advantages of high energy efficiency, high control precision and fast response speed. With the continuous development of science and technology (especially computer control technology and power electronics technology), the practical process of electromagnetic emission technology is constantly accelerating. The electromagnetic emission device is generally composed of a transmitter, a component to be emitted and a pulse power supply. Pulse power supplies generally need to provide megaampere-level pulse current and megajoule-level pulse energy within milliseconds. The pulse power supply used for electromagnetic emission is generally composed of three parts: power supply, intermediate energy storage link and pulse forming network. The power supply charges the intermediate energy storage link for a long time. After the charging is completed, the intermediate energy storage link transfers energy to the pulse forming network in a short period of time. The pulse forming network outputs high-power pulse current to the load through rapid compression conversion.
就电感储能型脉冲电源的主要缺点而言,被发射组件出膛之后,电感线圈中仍残存较多能量。这部分能量在总预充能量中的占比较高,使得系统整体的能量利用效率较低。目前对余能的主要处理方式是通过熄弧电阻为电感线圈提供续流路径,使余能以热量的形式耗散在电感线圈内阻和熄弧电阻上,造成了能源的浪费。As far as the main disadvantage of the inductive energy storage type pulse power supply is concerned, after the fired component is out of the chamber, there is still a lot of energy remaining in the inductive coil. This part of energy accounts for a relatively high proportion of the total pre-charging energy, making the overall energy utilization efficiency of the system low. At present, the main treatment method for residual energy is to provide a freewheeling path for the inductor coil through the arc-extinguishing resistor, so that the residual energy is dissipated in the form of heat on the internal resistance of the inductor coil and the arc-extinguishing resistor, resulting in a waste of energy.
发明内容Contents of the invention
基于此,有必要针对传统的电感储能型脉冲电源在发射组件出膛后电感线圈中仍残存较多能量被浪费的问题,提供一种能够重新储存利用电感线圈中留存的多余能量的脉冲电源电路。Based on this, it is necessary to provide a pulse power supply that can re-storage and utilize the excess energy retained in the inductance coil for the problem that the traditional inductive energy storage pulse power supply still has a lot of energy remaining in the inductance coil after the launch assembly is released. circuit.
一种脉冲电源电路,包括电源、第一晶闸管、第二晶闸管、第三晶闸管、第一电感、第二电感、第三电感,能量转换电容、二极管;A pulse power supply circuit, comprising a power supply, a first thyristor, a second thyristor, a third thyristor, a first inductor, a second inductor, a third inductor, an energy conversion capacitor, and a diode;
所述电源的正极与所述第一晶闸管的阳极相连接,所述电源的负极与接地极连接;The positive pole of the power supply is connected to the anode of the first thyristor, and the negative pole of the power supply is connected to the ground electrode;
所述第二晶闸管与所述能量转换电容依次串联在所述第一晶闸管的阴极和接地极之间,所述第二晶闸管的阴极与所述第一晶闸管的阴极相连;The second thyristor and the energy conversion capacitor are sequentially connected in series between the cathode of the first thyristor and the ground electrode, and the cathode of the second thyristor is connected to the cathode of the first thyristor;
所述第一电感和所述第二电感异名端相接并连接在所述第一晶闸管的阴极和接地极之间;The opposite ends of the first inductor and the second inductor are connected and connected between the cathode of the first thyristor and the ground electrode;
所述第三电感的一端连接在所述第一电感和所述第二电感之间,所述第三电感的另一端与所述第三晶闸管的阳极相连,所述第三晶闸管的阴极与所述第二晶闸管的阳极相连;One end of the third inductor is connected between the first inductor and the second inductor, the other end of the third inductor is connected to the anode of the third thyristor, and the cathode of the third thyristor is connected to the third thyristor. The anode of the second thyristor is connected;
所述二极管的阴极连接在所述第一电感和所述第二电感之间,所述二极管的阳极用于接负载;The cathode of the diode is connected between the first inductor and the second inductor, and the anode of the diode is connected to a load;
还包括第四晶闸管,所述第四晶闸管的阴极连接在所述第一电感和所述第二电感之间,所述第四晶闸管的阳极与所述第二晶闸管的阳极连接。A fourth thyristor is also included, the cathode of the fourth thyristor is connected between the first inductor and the second inductor, and the anode of the fourth thyristor is connected to the anode of the second thyristor.
在其中一个实施例中,所述第一电感和所述第二电感耦合系数大于95%。In one of the embodiments, the coupling coefficients of the first inductance and the second inductance are greater than 95%.
在其中一个实施例中,所述第一晶闸管为快速恢复型晶闸管。In one of the embodiments, the first thyristor is a fast recovery thyristor.
在其中一个实施例中,所述能量转换电容为脉冲电容。In one of the embodiments, the energy conversion capacitor is a pulse capacitor.
一种脉冲电源,包括所述的脉冲电源电路。A pulse power supply includes the pulse power supply circuit.
在其中一个实施例中,包括所述的脉冲电源,所述负载为轨道炮,所述轨道炮的一端与所述二极管的阳极连接,所述轨道炮的另一端与接地极连接。In one embodiment, the pulse power supply is included, the load is a rail gun, one end of the rail gun is connected to the anode of the diode, and the other end of the rail gun is connected to the ground electrode.
一种脉冲电源电路的控制方法,用于控制所述脉冲电源电路,包括以下步骤:A control method for a pulse power supply circuit, for controlling the pulse power supply circuit, comprising the following steps:
所述能量转换电容预充电;The energy conversion capacitor is precharged;
所述电源为所述第一电感和所述第二电感充电,所述第二电感、所述能量转换电容向负载放电;The power supply charges the first inductor and the second inductor, and the second inductor and the energy conversion capacitor discharge to a load;
所述能量转换电容通过所述第四晶闸管收集所述第二电感的余能。The energy conversion capacitor collects residual energy of the second inductor through the fourth thyristor.
在其中一个实施例中,所述能量转换电容预充电的形式为:In one of the embodiments, the form of precharging the energy conversion capacitor is:
所述能量转换电容与所述第二晶闸管连接的一端预充负压,所述能量转换电容与接地极连接的一端预充正压。One end of the energy conversion capacitor connected to the second thyristor is pre-charged with a negative voltage, and one end of the energy conversion capacitor connected to the ground electrode is pre-charged with a positive voltage.
在其中一个实施例中,所述电源为所述第一电感和所述第二电感充电,所述第二电感、所述能量转换电容向负载放电的步骤包括:In one of the embodiments, the power supply charges the first inductor and the second inductor, and the step of discharging the second inductor and the energy conversion capacitor to the load includes:
触发导通所述第一晶闸管,以使所述电源为所述第一电感和所述第二电感充电至预设值;triggering and turning on the first thyristor, so that the power supply charges the first inductor and the second inductor to a preset value;
触发导通所述第三晶闸管,以使所述能量转换电容向负载放电,通过所述第三晶闸管的电流为零时所述第三晶闸管关断;triggering and turning on the third thyristor, so that the energy conversion capacitor is discharged to the load, and the third thyristor is turned off when the current passing through the third thyristor is zero;
触发导通所述第二晶闸管使所述能量转换电容收集所述第一电感、所述第二电感之间的漏感能量;triggering and turning on the second thyristor so that the energy conversion capacitor collects leakage inductance energy between the first inductor and the second inductor;
触发导通所述第三晶闸管,所述能量转换电容将所收集的漏感能量向负载放电,直至经过所述第三晶闸管的电流为零使所述第三晶闸管关断;triggering and turning on the third thyristor, and the energy conversion capacitor discharges the collected leakage inductance energy to the load until the current passing through the third thyristor is zero to turn off the third thyristor;
所述第二电感直接向负载放电,直至负载断开或经过所述二极管电流降至零。The second inductor discharges directly to the load until the load is disconnected or the current through the diode drops to zero.
在其中一个实施例中,所述能量转换电容通过所述第四晶闸管收集所述第二电感的余能的为:In one of the embodiments, the energy conversion capacitor collects the residual energy of the second inductor through the fourth thyristor as follows:
在负载断开或经过所述二极管的电流降至零之前触发所述第四晶闸管,所述能量转换电容收集所述第二电感的余能。The fourth thyristor is triggered before the load is disconnected or the current passing through the diode drops to zero, and the energy conversion capacitor collects residual energy of the second inductor.
本发明提供的脉冲电源电路中,所述第四晶闸管的阴极连接在所述第一电感和所述第二电感之间。所述第四晶闸管的阳极与所述第二晶闸管的阳极连接。所述能量转换电容能够通过所述第四晶闸管在负载断开或经过所述二极管的电流为零后收集所述第二电感的余能以备下次使用,提高了能源利用率。In the pulse power supply circuit provided by the present invention, the cathode of the fourth thyristor is connected between the first inductor and the second inductor. The anode of the fourth thyristor is connected to the anode of the second thyristor. The energy conversion capacitor can collect the residual energy of the second inductor through the fourth thyristor after the load is disconnected or the current passing through the diode is zero for the next use, which improves the energy utilization rate.
附图说明Description of drawings
图1为本发明实施例提供的脉冲电源电路的电路图;Fig. 1 is the circuit diagram of the pulse power supply circuit that the embodiment of the present invention provides;
图2为本发明实施例提供的脉冲电源电路的第一电感电流和第二电感电流示意图;2 is a schematic diagram of a first inductance current and a second inductance current of a pulse power supply circuit provided by an embodiment of the present invention;
图3为本发明实施例提供的脉冲电源电路的附在电流和电枢速度示意图;Fig. 3 is the attached current and the armature speed schematic diagram of the pulse power supply circuit provided by the embodiment of the present invention;
图4为本发明实施例提供的脉冲电源电路的能量转换电容的电流和电压示意图;4 is a schematic diagram of the current and voltage of the energy conversion capacitor of the pulse power supply circuit provided by the embodiment of the present invention;
图5为本发明实施例提供的脉冲电源电路的加速装置的示意图。FIG. 5 is a schematic diagram of an acceleration device for a pulse power supply circuit provided by an embodiment of the present invention.
主要元件符号说明Description of main component symbols
脉冲电源电路10、电源110、第一晶闸管120、第二晶闸管130、第三晶闸管140、第三电感150、第一电感160、第二电感170、能量转换电容180、二极管190、第四晶闸管200、负载210、加速装置300、导轨310、电枢320、弹丸330。Pulse power supply circuit 10, power supply 110, first thyristor 120, second thyristor 130, third thyristor 140, third inductor 150, first inductor 160, second inductor 170, energy conversion capacitor 180, diode 190, fourth thyristor 200 , load 210, acceleration device 300, guide rail 310, armature 320, projectile 330.
具体实施方式detailed description
为了使本发明的发明目的、技术方案及技术效果更加清楚明白,以下结合附图对本发明的具体实施例进行描述。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solution and technical effect of the present invention clearer, specific embodiments of the present invention will be described below in conjunction with the accompanying drawings. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
请参见图1,本发明提供一种脉冲电源电路10。所述脉冲电源电路包括电源110、第一晶闸管120、第二晶闸管130、第三晶闸管140、第一电感160、第二电感170、第三电感150、能量转换电容180、以及二极管190。所述电源110的正极与所述第一晶闸管120的阳极相连接。所述电源110的负极与接地极连接。所述第二晶闸管130与所述能量转换电容180依次串联在所述第一晶闸管120的阴极和接地极之间。所述第二晶闸管130的阴极与所述第一晶闸管120的阴极相连。所述第一电感160和所述第二电感170异名端相接并连接在所述第一晶闸管120的阴极和接地极之间。所述第三电感150的一端连接在所述第一电感160和所述第二电感170之间,所述第三电感150的另一端与所述第三晶闸管140的阳极相连。所述第三晶闸管140的阴极与所述第二晶闸管130的阳极相连。所述二极管190的阴极连接在所述第一电感160和所述第二电感170之间。所述二极管190的阳极用于接负载210。所述脉冲电源电路10还包括第四晶闸管200。所述第四晶闸管200的阴极连接在所述第一电感160和所述第二电感170之间。所述第四晶闸管200的阳极与所述第二晶闸管130的阳极连接。Referring to FIG. 1 , the present invention provides a pulse power supply circuit 10 . The pulse power supply circuit includes a power supply 110 , a first thyristor 120 , a second thyristor 130 , a third thyristor 140 , a first inductor 160 , a second inductor 170 , a third inductor 150 , an energy conversion capacitor 180 , and a diode 190 . The anode of the power supply 110 is connected to the anode of the first thyristor 120 . The negative electrode of the power supply 110 is connected to the ground electrode. The second thyristor 130 and the energy conversion capacitor 180 are sequentially connected in series between the cathode of the first thyristor 120 and the ground electrode. The cathode of the second thyristor 130 is connected to the cathode of the first thyristor 120 . The opposite ends of the first inductor 160 and the second inductor 170 are connected and connected between the cathode of the first thyristor 120 and the ground electrode. One end of the third inductor 150 is connected between the first inductor 160 and the second inductor 170 , and the other end of the third inductor 150 is connected to the anode of the third thyristor 140 . The cathode of the third thyristor 140 is connected to the anode of the second thyristor 130 . The cathode of the diode 190 is connected between the first inductor 160 and the second inductor 170 . The anode of the diode 190 is used to connect to the load 210 . The pulse power supply circuit 10 also includes a fourth thyristor 200 . The cathode of the fourth thyristor 200 is connected between the first inductor 160 and the second inductor 170 . The anode of the fourth thyristor 200 is connected to the anode of the second thyristor 130 .
所述第一晶闸管120、所述第二晶闸管130、所述第三晶闸管140、所述第四晶闸管200均可以包括阴极、阳极和门极。所述第一晶闸管120、所述第二晶闸管130、所述第三晶闸管140、所述第四晶闸管200的工作原理如下:Each of the first thyristor 120 , the second thyristor 130 , the third thyristor 140 and the fourth thyristor 200 may include a cathode, an anode and a gate. The working principles of the first thyristor 120, the second thyristor 130, the third thyristor 140, and the fourth thyristor 200 are as follows:
在受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时晶闸管处于正向导通状态;When subjected to a forward anode voltage, the thyristor conducts only when the gate is subjected to a forward voltage. At this time, the thyristor is in the forward conduction state;
在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。门极只起触发作用;In the case of conduction, as long as there is a certain positive anode voltage, the thyristor remains on regardless of the gate voltage, that is, after the thyristor is turned on, the gate loses its function. The gate only acts as a trigger;
在导通情况下,当主回路电压或电流减小到接近于零时,晶闸管关断。In the case of conduction, when the main circuit voltage or current decreases to close to zero, the thyristor is turned off.
所述电源可以为任意直流电源,比如干电池、蓄电池、直流发电机等。所述二极管190可以为锗二极管Ge管和硅二极管Si管,只要所述二极管190具有单向导通的功能即可。The power source can be any DC power source, such as a dry battery, a storage battery, a DC generator, and the like. The diode 190 can be a germanium diode Ge tube or a silicon diode Si tube, as long as the diode 190 has the function of unidirectional conduction.
所述第一电感160和所述第二电感170异名端相接并且依次串联在所述第一晶闸管120的阴极和接地极之间可以使得所述第一电感160和所述第二电感170具有相互耦合增强的作用,增强电感强度。The opposite ends of the first inductor 160 and the second inductor 170 are connected and serially connected in series between the cathode of the first thyristor 120 and the ground electrode so that the first inductor 160 and the second inductor 170 It has the effect of mutual coupling enhancement and enhances the inductance strength.
所述脉冲电源电路10中,所述第四晶闸管200的阴极连接在所述第一电感160和所述第二电感170之间。所述第四晶闸管200的阳极与所述第二晶闸管130的阳极连接。所述能量转换电容180能够通过所述第四晶闸管200在负载210断开或经过所述二极管190的电流为零后收集所述第二电感的余能以备下次使用,提高了能源利用率。所述第二电感170的设置改变了所述脉冲电源电路10的工作状态,大大提高提高了所述脉冲电源电路10的实用性能。In the pulse power supply circuit 10 , the cathode of the fourth thyristor 200 is connected between the first inductor 160 and the second inductor 170 . The anode of the fourth thyristor 200 is connected to the anode of the second thyristor 130 . The energy conversion capacitor 180 can collect the residual energy of the second inductor through the fourth thyristor 200 after the load 210 is disconnected or the current passing through the diode 190 is zero for the next use, which improves the energy utilization rate . The setting of the second inductance 170 changes the working state of the pulse power supply circuit 10 and greatly improves the practical performance of the pulse power supply circuit 10 .
在其中一个实施例中,所述第一电感160和所述第二电感170耦合系数大于95%。耦合系数大于95%可以更好传递功率,增强等效电感,为向负载210放大储存更多能量,提高能源利用率。In one embodiment, the coupling coefficient between the first inductor 160 and the second inductor 170 is greater than 95%. When the coupling coefficient is greater than 95%, power can be transferred better, the equivalent inductance can be enhanced, more energy can be stored for amplification to the load 210, and the energy utilization rate can be improved.
在其中一个实施例中,所述第一晶闸管120为快速恢复型晶闸管。快速恢复型晶闸管可以用于较高频率的整流、斩波、逆变和变频电路。所述快速恢复型晶闸管导通和关断的速度更快,对晶闸管的的损坏程度低,更为耐用。所述第一晶闸管120直接控制所述电源110的电流输出、因此具有更好的灵活性,可以提高电路的工作效率。In one embodiment, the first thyristor 120 is a fast recovery thyristor. Fast recovery thyristors can be used in higher frequency rectification, chopping, inverter and frequency conversion circuits. The fast recovery type thyristor has a faster turn-on and turn-off speed, less damage to the thyristor, and is more durable. The first thyristor 120 directly controls the current output of the power supply 110 , so it has better flexibility and can improve the working efficiency of the circuit.
在其中一个实施例中,所述能量转换电容180为脉冲电容。所述脉冲电容能够在较长时间间隔内将对所述脉冲电容充电的能量储存起来。并可以在极短的时间间隔内将所储存的能量迅速释放出来,形成强大的冲击电流和强大的冲击功率。In one of the embodiments, the energy conversion capacitor 180 is a pulse capacitor. The pulse capacitor can store the energy charged to the pulse capacitor in a relatively long time interval. And it can quickly release the stored energy in a very short time interval to form a strong impact current and a strong impact power.
本发明实施例还提供一种脉冲电源,包括所述的脉冲电源电路10。所述脉冲电源可以在毫秒级时间内提供兆安级脉冲电流和兆焦级脉冲能量。可以应用在电磁发射领域。并可以在工作完成后回收所述脉冲电源中所述第二电感170中的能量,具有节约能源的优点。The embodiment of the present invention also provides a pulse power supply, including the pulse power supply circuit 10 described above. The pulse power supply can provide megaampere-level pulse current and megajoule-level pulse energy within millisecond-level time. It can be applied in the field of electromagnetic emission. And the energy in the second inductor 170 in the pulse power supply can be recovered after the work is completed, which has the advantage of saving energy.
本发明实施例还提供一种电磁发射装置,所述电磁发射装置包括所述的脉冲电源。所述负载210可以为加速装置。所述加速装置300中可以设置有电枢320、轨道310和弹丸330。所述轨道310的两端可以连接在所述脉冲电源的输入输出端。所述脉冲电源输出的电流经过所述轨道310输送给所述电枢320。所述电枢320带动所述弹丸330加速,最终将所述弹丸330高速发射。所述加速装置的一端与所述二极管190的阳极连接,所述加速装置的另一端与接地极连接。所述加速装置中设置有电枢,所述电磁发射装置可以为电枢提供瞬时高能量,使得所述电枢加速向外运动。所述电磁发射装置工作完成后能够回收所述第二电感170中的能量。An embodiment of the present invention also provides an electromagnetic emission device, which includes the pulse power supply. The load 210 may be an acceleration device. The acceleration device 300 may be provided with an armature 320 , a rail 310 and a projectile 330 . Both ends of the track 310 can be connected to the input and output ends of the pulse power supply. The current output by the pulse power supply is delivered to the armature 320 through the track 310 . The armature 320 drives the projectile 330 to accelerate, and finally launches the projectile 330 at a high speed. One end of the acceleration device is connected to the anode of the diode 190, and the other end of the acceleration device is connected to the ground electrode. An armature is arranged in the acceleration device, and the electromagnetic emission device can provide instantaneous high energy to the armature to accelerate the outward movement of the armature. The energy in the second inductor 170 can be recovered after the electromagnetic emitting device is finished working.
本发明实施例还提供一种脉冲电源电路的控制方法,用于控制所述脉冲电源电路,所述脉冲电源电路的控制方法包括以下步骤:The embodiment of the present invention also provides a control method of a pulse power supply circuit, which is used to control the pulse power supply circuit, and the control method of the pulse power supply circuit includes the following steps:
S100,所述能量转换电容180预充电;S100, the energy conversion capacitor 180 is precharged;
S200,所述电源110为所述第一电感160和所述第二电感170充电,所述第二电感170、所述能量转换电容180向负载210放电;S200, the power supply 110 charges the first inductor 160 and the second inductor 170, and the second inductor 170 and the energy conversion capacitor 180 discharge to a load 210;
S300,所述能量转换电容180通过所述第四晶闸管200收集所述第二电感170的余能。S300, the energy conversion capacitor 180 collects residual energy of the second inductor 170 through the fourth thyristor 200 .
通过对所述能量转换电容180预充电能够在所述能量转换电容180与所述负载210导通后为所述负载210放电,提高能量利用率。所述电源110可以为所述第一电感160和所述第二电感170提供能量,所述第一电感160和所述第二电感170通电后能够具有强耦合效应,增强等效电感。为向所述负载210放电做准备。在对所述负载210放电后所述能量转换电容180可以将所述第二电感170中剩余的能量回收,并可以在下次向所述负载210放电的时候使用,能够提高能源的利用率。By precharging the energy conversion capacitor 180 , the load 210 can be discharged after the energy conversion capacitor 180 is connected to the load 210 , thereby improving the energy utilization rate. The power supply 110 can provide energy for the first inductance 160 and the second inductance 170, and the first inductance 160 and the second inductance 170 can have a strong coupling effect after electrification, thereby enhancing the equivalent inductance. Prepare for discharging to the load 210 . After the load 210 is discharged, the energy conversion capacitor 180 can recover the remaining energy in the second inductor 170 and use it when discharging the load 210 next time, which can improve energy utilization.
在其中一个实施例中,所述能量转换电容180预充电的步骤包括:In one of the embodiments, the step of precharging the energy conversion capacitor 180 includes:
所述能量转换电容180与所述第二晶闸管130连接的一端预充负压,所述能量转换电容180与接地极连接的一端预充正压。所述能量转换电容180与所述第二晶闸管130连接的一端预充负压,所述能量转换电容180与接地极连接的一端预充正压的充电方式可在所述第三晶闸管140导通后使得所述能量转换电容180与所述负载210形成回路。所述能量转换电容180可以为所述负载210充电。One end of the energy conversion capacitor 180 connected to the second thyristor 130 is pre-charged with a negative voltage, and one end of the energy conversion capacitor 180 connected to the ground electrode is pre-charged with a positive voltage. One end of the energy conversion capacitor 180 connected to the second thyristor 130 is pre-charged with a negative voltage, and the end of the energy conversion capacitor 180 connected to the ground electrode is pre-charged with a positive voltage so that the third thyristor 140 can be turned on. Afterwards, the energy conversion capacitor 180 and the load 210 form a loop. The energy conversion capacitor 180 can charge the load 210 .
在其中一个实施例中,所述电源110为所述第一电感160和所述第二电感170充电,所述第二电感170、所述能量转换电容180向负载210放电的步骤S200包括:In one embodiment, the power supply 110 charges the first inductor 160 and the second inductor 170, and the step S200 of discharging the second inductor 170 and the energy conversion capacitor 180 to the load 210 includes:
S210,触发导通所述第一晶闸管120,以使所述电源110为所述第一电感160和所述第二电感170充电至预设值;S210, triggering and turning on the first thyristor 120, so that the power supply 110 charges the first inductor 160 and the second inductor 170 to a preset value;
S220,触发导通所述第三晶闸管140,以使所述能量转换电容180向负载210放电,通过所述第三晶闸管140的电流为零时所述第三晶闸管140关断;S220, triggering and turning on the third thyristor 140, so that the energy conversion capacitor 180 discharges to the load 210, and the third thyristor 140 is turned off when the current passing through the third thyristor 140 is zero;
S230,触发导通所述第三晶闸管140,所述能量转换电容180将所收集的漏感能量向负载210放电,直至经过所述第三晶闸管140的电流为零使所述第三晶闸管140关断;S230, triggering and turning on the third thyristor 140, and the energy conversion capacitor 180 discharges the collected leakage inductance energy to the load 210 until the current passing through the third thyristor 140 is zero and the third thyristor 140 is turned off broken;
S240,触发导通所述第三晶闸管140,所述能量转换电容180将所收集的漏感能量向负载210放电,直至经过所述第三晶闸管140的电流为零使所述第三晶闸管140关断;S240, triggering and turning on the third thyristor 140, and the energy conversion capacitor 180 discharges the collected leakage inductance energy to the load 210 until the current passing through the third thyristor 140 is zero to turn off the third thyristor 140 broken;
S250,所述第二电感170直接向负载210放电,直至负载210断开或经过所述二极管190电流降至零。S250, the second inductor 170 discharges directly to the load 210 until the load 210 is disconnected or the current through the diode 190 drops to zero.
在步骤S210中,所述电源110为所述第一电感160和所述第二电感170充电至预设值,所述预设值根据工程实际需要的电流和功率设置。In step S210, the power supply 110 charges the first inductor 160 and the second inductor 170 to a preset value, and the preset value is set according to the current and power actually required by the project.
在步骤S220中,所述第三晶闸管140关断后,所述电源110继续为所述第一电感160、所述第二电感170充电。In step S220, after the third thyristor 140 is turned off, the power supply 110 continues to charge the first inductor 160 and the second inductor 170 .
在步骤S230中,触发导通所述第二晶闸管130时,所述能量转换电容180电流增大至所述第一电感160的充电电流,所述第一晶闸管120受反压关断;所述能量转换电容180继续为所述第一电感160和所述第二电感170充电,直至其预充能量完全耗尽;所述二极管190导通,负载210电流增大;所述能量转换电容180收集所述第一电感160、所述第二电感170之间的漏感能量;经过所述第二晶闸管130的电流为零,所述第二晶闸管130关断,所述第二电感170直接向负载210放电。In step S230, when the second thyristor 130 is triggered to be turned on, the current of the energy conversion capacitor 180 increases to the charging current of the first inductor 160, and the first thyristor 120 is turned off by back pressure; the The energy conversion capacitor 180 continues to charge the first inductance 160 and the second inductance 170 until its pre-charging energy is completely exhausted; the diode 190 is turned on, and the load 210 current increases; the energy conversion capacitor 180 collects The leakage inductance energy between the first inductance 160 and the second inductance 170; the current passing through the second thyristor 130 is zero, the second thyristor 130 is turned off, and the second inductance 170 directly flows to the load 210 discharge.
其中,所述第一晶闸管120受反压时电流会减小到零而关断。所述二极管190导通后,所述第一电感160的电流迅速减小到零,所述第二电感的电流迅速增大。所述能量转换电容180可以收集所述第一电感160、所述第二电感170之间的漏感能量。Wherein, when the first thyristor 120 receives back pressure, the current will decrease to zero and be turned off. After the diode 190 is turned on, the current of the first inductor 160 rapidly decreases to zero, and the current of the second inductor rapidly increases. The energy conversion capacitor 180 can collect leakage inductance energy between the first inductor 160 and the second inductor 170 .
在其中一个实施例中,所述能量转换电容180通过所述第四晶闸管200收集所述第二电感170的余能的步骤S300为:In one of the embodiments, the step S300 of collecting the residual energy of the second inductor 170 by the energy conversion capacitor 180 through the fourth thyristor 200 is as follows:
在负载210断开或经过所述二极管190的电流降至零之前触发所述第四晶闸管200,所述能量转换电容180收集所述第二电感170的余能。可以理解,在所述负载210断开的前的瞬间所述第二电感170中的电流能量很大,在所述第二电感170中能量即将释放时开启所述第四晶闸管200可以将所述第二电感170中的能量快速回收到所述能量转换电容180。The fourth thyristor 200 is triggered before the load 210 is disconnected or the current passing through the diode 190 drops to zero, and the energy conversion capacitor 180 collects the residual energy of the second inductor 170 . It can be understood that the current energy in the second inductance 170 is very large at the moment before the load 210 is disconnected, and turning on the fourth thyristor 200 when the energy in the second inductance 170 is about to be released can turn on the The energy in the second inductor 170 is quickly recovered to the energy conversion capacitor 180 .
所述脉冲电源电路的控制方法通过控制不同晶闸管的开闭时间来控制电路的工作状态。其中,晶闸管开闭的时间可以通过设置在单片机中的程序控制。单片机可以集成在电路板中。The control method of the pulse power supply circuit controls the working state of the circuit by controlling the switching time of different thyristors. Wherein, the opening and closing time of the thyristor can be controlled by a program set in the single-chip microcomputer. The microcontroller can be integrated in the circuit board.
在其中一个实施例中,对各个元件的物理参数和触发参数进行设置:In one of the embodiments, the physical parameters and trigger parameters of each element are set:
电源110电压 500VPower supply 110 voltage 500V
第一电感160感值 1mHThe first inductance 160 inductance value 1mH
第二电感170感值 0.25mHThe second inductance 170 inductance value 0.25mH
电感耦合系数 97.5%Inductive coupling coefficient 97.5%
第一电感160阻值 50mΩThe resistance of the first inductor 160 is 50mΩ
第二电感170阻值 10mΩThe resistance of the second inductor 170 is 10mΩ
能量转换电容180容值 1mFEnergy conversion capacitor 180 capacitance 1mF
能量转换电容180预充电压 -4000VEnergy conversion capacitor 180 pre-charge voltage -4000V
能量转换电容180阻值 2mΩEnergy conversion capacitor 180 resistance 2mΩ
第四电感150感值 50μHThe fourth inductance 150 inductance value 50μH
第一晶闸管120触发时刻 0msThe triggering time of the first thyristor 120 is 0ms
第三晶闸管140第一次触发时刻 28msThe first triggering time of the third thyristor 140 is 28ms
第二晶闸管130触发时刻 30msThe triggering time of the second thyristor 130 is 30ms
第三晶闸管140第二次触发时刻 33msThe second triggering time of the third thyristor 140 is 33ms
第四晶闸管200触发时刻 38.5msThe triggering time of the fourth thyristor 200 is 38.5ms
负载引线电阻 5mΩLoad lead resistance 5mΩ
电枢质量 3gArmature mass 3g
电枢初始位置 0.1mArmature initial position 0.1m
轨道长度 0.5mTrack length 0.5m
轨道电感梯度 0.45μH/mTrack inductance gradient 0.45μH/m
轨道电阻梯度 0.5mΩ/mTrack resistance gradient 0.5mΩ/m
炮尾引线电阻 2mΩGun Tail Lead Resistance 2mΩ
请参见图2,在所述第三晶闸管140第一次触发时刻,所述第二电感170的电流迅速减小,所述第一电感160的电流迅速增加。在所述第三晶闸管140第二次触发后所述第二电感170的电流迅速增大,所述第一电感160的电流迅速减小。在第四晶闸管200触发后,所述第一电感160的电流、所述第二电感170的电流迅速降为零。Referring to FIG. 2 , when the third thyristor 140 is triggered for the first time, the current of the second inductor 170 decreases rapidly, and the current of the first inductor 160 increases rapidly. After the third thyristor 140 is triggered for the second time, the current of the second inductor 170 increases rapidly, and the current of the first inductor 160 decreases rapidly. After the fourth thyristor 200 is triggered, the current of the first inductor 160 and the current of the second inductor 170 drop to zero rapidly.
请参见图3,在所述第三晶闸管140第一次触发后,所述电枢开始缓慢启动,所述负载210电流迅速增大,在所述第三晶闸管140第二次触发后所述负载210电流再次迅速增大,所述电枢速度快速增加,并在所述第四晶闸管200触发前可以使得电枢出膛。Please refer to FIG. 3, after the first trigger of the third thyristor 140, the armature starts to start slowly, and the current of the load 210 increases rapidly, and after the second trigger of the third thyristor 140, the load 210 the current increases rapidly again, the armature speed increases rapidly, and the armature can be ejected before the fourth thyristor 200 triggers.
请参见图4,所述能量转换电容180可以在在所述第三晶闸管140第一次触发后电流迅速大,电压由负变正。在所述第二晶闸管130触发时,所述能量转换电容180负向电流增大,电压由正变负。在所述第三晶闸管140触发时,所述能量转换电容180的电流由零变为正向电流,电压由负变正。在所述第四晶闸管200触发时,所述能量转换电容180的电流由零变为负向电流并逐渐归零,电压由正向电压变为负向电压。恢复到初始储能状态,准备下次使用。Please refer to FIG. 4 , the current of the energy conversion capacitor 180 can rapidly increase after the first trigger of the third thyristor 140 , and the voltage changes from negative to positive. When the second thyristor 130 is triggered, the negative current of the energy conversion capacitor 180 increases, and the voltage changes from positive to negative. When the third thyristor 140 is triggered, the current of the energy conversion capacitor 180 changes from zero to positive current, and the voltage changes from negative to positive. When the fourth thyristor 200 is triggered, the current of the energy conversion capacitor 180 changes from zero to a negative current and gradually returns to zero, and the voltage changes from a positive voltage to a negative voltage. Restore to the original energy storage state, ready for the next use.
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。It should be noted that when an element is referred to as being “fixed” to another element, it can be directly on the other element or there can also be an intervening element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" another element, there are no intervening elements present. The terms "vertical," "horizontal," "left," "right," and similar expressions are used herein for purposes of illustration only.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710639713.6A CN107294419B (en) | 2017-07-31 | 2017-07-31 | Pulse power supply circuit, pulse power supply, electromagnetic emission device and control method for pulse power supply circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710639713.6A CN107294419B (en) | 2017-07-31 | 2017-07-31 | Pulse power supply circuit, pulse power supply, electromagnetic emission device and control method for pulse power supply circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107294419A true CN107294419A (en) | 2017-10-24 |
CN107294419B CN107294419B (en) | 2019-10-18 |
Family
ID=60103898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710639713.6A Active CN107294419B (en) | 2017-07-31 | 2017-07-31 | Pulse power supply circuit, pulse power supply, electromagnetic emission device and control method for pulse power supply circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107294419B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112398362A (en) * | 2019-08-14 | 2021-02-23 | 清华大学 | Capacitor self-charging pulse power supply circuit and pulse power supply |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105932898A (en) * | 2016-06-02 | 2016-09-07 | 清华大学 | Capacitance hybrid type induction energy storage type pulse power source for electromagnetic emission |
-
2017
- 2017-07-31 CN CN201710639713.6A patent/CN107294419B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105932898A (en) * | 2016-06-02 | 2016-09-07 | 清华大学 | Capacitance hybrid type induction energy storage type pulse power source for electromagnetic emission |
Non-Patent Citations (2)
Title |
---|
B. VURAL等: "A Novel Inductive-Capacitive Pulse Forming Circuit for Pulse Power Load Applications", 《IECON 2012 - 38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY》 * |
RUI WU等: "Design and Experimental Realization of a New Pulsed Power Supply Based on the Energy Transfer Between Two Capacitors and an HTS Air-Core Pulsed Transformer", 《IEEE TRANSACTIONS ON PLASMA SCIENCE》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112398362A (en) * | 2019-08-14 | 2021-02-23 | 清华大学 | Capacitor self-charging pulse power supply circuit and pulse power supply |
Also Published As
Publication number | Publication date |
---|---|
CN107294419B (en) | 2019-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205403588U (en) | Multistage electromagnetic emitting device of photo -electric control formula | |
CN105897033B (en) | A kind of capacitance multiplexing type inductive energy storage type pulse power for Electromagnetic Launching | |
CN104682763B (en) | Energy regenerative constant pressure clamper high speed turn-off method and apparatus | |
CN109186334B (en) | A kind of electromagnetic coil transmitter for reuse of armature and transmitting method | |
CN102624239A (en) | Bidirectional DC-DC converter and control method of bidirectional DC-DC converter | |
CN103982386B (en) | Ignition method of plasma hall thruster | |
CN206494687U (en) | A kind of fork truck energy saver | |
CN105932898B (en) | A kind of hybrid inductive energy storage type pulse power of capacitance for Electromagnetic Launching | |
CN104617807B (en) | Inductive energy storing type pulse power supply for electromagnetic emission | |
CN107294419B (en) | Pulse power supply circuit, pulse power supply, electromagnetic emission device and control method for pulse power supply circuit | |
CN117174527A (en) | An electromagnetic repulsion operating mechanism control circuit, control method and electronic equipment | |
CN102412753B (en) | High-voltage and high-power repetitive pulse power supply | |
WO2019015152A1 (en) | Electromagnetic repulsion-based actuating mechanism, energy storage module for same, and energy storage device | |
CN110880883B (en) | A kind of inductive energy storage pulse power supply with energy recovery | |
CN104197779A (en) | Energy recovery damper for electromagnetic coil launcher | |
CN103968709A (en) | Coaxial coil electromagnetism propulsion system | |
CN108183700A (en) | A kind of repetitive frequency pulsed power supply of the superconducting energy storage of multi-module mode | |
CN111082694B (en) | Pulse circuit, pulse power supply and electromagnetic transmitting device | |
CN104124886B (en) | A kind of sequential multiplication current type pulse power for Electromagnetic Launching | |
CN115313686B (en) | Positive and negative charge-discharge repetition frequency pulse magnetic field device | |
CN112161515B (en) | A magnetoresistive electromagnetic emission energy recovery device | |
CN110460232B (en) | A DC power supply with an isolation module | |
TWI532301B (en) | Passive soft switching of the power factor correction circuit | |
CN104467403B (en) | Buck soft switching circuit for super capacitor charging and control method | |
CN114567059B (en) | Method for Eliminating Reverse Voltage of Pulse Capacitor Load in Cascade High Voltage Power Supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |