[go: up one dir, main page]

CN107255501B - Gas-liquid mixed flow vortex flowmeter calibration detection device system and control method - Google Patents

Gas-liquid mixed flow vortex flowmeter calibration detection device system and control method Download PDF

Info

Publication number
CN107255501B
CN107255501B CN201710418725.6A CN201710418725A CN107255501B CN 107255501 B CN107255501 B CN 107255501B CN 201710418725 A CN201710418725 A CN 201710418725A CN 107255501 B CN107255501 B CN 107255501B
Authority
CN
China
Prior art keywords
calibration
gas
flow
vortex flowmeter
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710418725.6A
Other languages
Chinese (zh)
Other versions
CN107255501A (en
Inventor
张宇
张贤雨
程海栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Chuanyi Automation Co Ltd
Original Assignee
Chongqing Chuanyi Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Chuanyi Automation Co Ltd filed Critical Chongqing Chuanyi Automation Co Ltd
Priority to CN201710418725.6A priority Critical patent/CN107255501B/en
Publication of CN107255501A publication Critical patent/CN107255501A/en
Application granted granted Critical
Publication of CN107255501B publication Critical patent/CN107255501B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明提供一种气液混合流式涡街流量计标定检测装置系统及控制方法,其系统包括标定溶液输出单元、注气单元、标定管道、流量控制单元、标准计量桶和标定检测单元;本发明中的气液混合流式涡街流量计标定检测装置系统及控制方法,不仅能够输出与永磁式涡街流量计输出相同的工程参数,还可以输出气液混合式导电性被测介质溶液中气泡含量的流速,气泡总量等参数,既能满足永磁式涡街流量计产品的标定,又能满足气液混合流式涡街流量计产品的标定;本发明可以广泛应用于石油化工、城市供水管道等领域,可以有效的检测管道是否存在泄漏,通过本发明具有标定检测精度高,适用范围广的特点。

The invention provides a gas-liquid mixed flow vortex flowmeter calibration and detection device system and a control method. The system includes a calibration solution output unit, a gas injection unit, a calibration pipeline, a flow control unit, a standard measuring barrel and a calibration detection unit; The gas-liquid mixed flow vortex flowmeter calibration detection device system and control method in the invention can not only output the same engineering parameters as the output of the permanent magnet vortex flowmeter, but also output the gas-liquid mixed conductivity measured medium solution The parameters such as the flow rate of the bubble content in the medium, the total amount of bubbles, etc., can not only meet the calibration of the permanent magnet vortex flowmeter product, but also meet the calibration of the gas-liquid mixed flow vortex flowmeter product; the invention can be widely used in petrochemical industry. , urban water supply pipelines and other fields, can effectively detect whether there is leakage in the pipeline, the invention has the characteristics of high calibration detection accuracy and wide application range.

Description

气液混合流式涡街流量计标定检测装置系统及控制方法Gas-liquid mixed flow vortex flowmeter calibration detection device system and control method

技术领域technical field

本发明涉及流量计标定领域,尤其涉及一种气液混合流式涡街流量计标定检测装置系统及控制方法。The invention relates to the field of flowmeter calibration, in particular to a gas-liquid mixed flow vortex flowmeter calibration and detection device system and a control method.

背景技术Background technique

涡街流量计是应用卡门涡街原理和现代电子技术设计而制造的一种流量计,是根据卡门涡街原理(Kármán Vortex Street)研究生产的,主要用于工业管道介质流体的流量测量,如气体、液体、蒸汽等多种介质。涡街流量计按检测方法主要分为热敏式、超声式、电容式、应力式、应变式、振动体式、光电式、光纤式、电磁式,其中,永磁式涡街流量计主要是应用于石油化工、冶金机械、食品、造纸,以及城市供热、供水等领域。但是,永磁式涡街流量计现有标定方法与计算输出上较单一,只输出与信号涡旋频率相关的导电性被测介质溶液的流速,进而得到计算输出与导电性被测介质溶液的流速相关的体积流量,体积总量等工程参数,但是,永磁式涡街流量计不能输出气液混合式导电性被测介质溶液中气泡含量的流速,气泡总量等参数。Vortex flowmeter is a kind of flowmeter designed and manufactured by applying the principle of Karman vortex street and modern electronic technology. It is researched and produced according to the principle of Karman vortex street (Kármán Vortex Street). Gas, liquid, steam and other media. Vortex flowmeters are mainly divided into thermal type, ultrasonic type, capacitive type, stress type, strain type, vibrating body type, photoelectric type, optical fiber type and electromagnetic type according to the detection method. In petrochemical, metallurgical machinery, food, paper, and urban heating, water supply and other fields. However, the existing calibration method and calculation output of the permanent magnet vortex flowmeter are relatively simple, and only output the flow rate of the conductivity measured medium solution related to the signal vortex frequency, and then obtain the calculation output and the conductivity of the measured medium solution. However, the permanent magnet vortex flowmeter cannot output parameters such as the flow rate and the total amount of bubbles in the gas-liquid mixed conductivity measured medium solution.

气液混合流式涡街流量的工作原理与永磁式涡街流量计的工作原理基本相同,永磁式涡街流量计所能应用的领域气液混合流式涡街流量计均可使用,并且,气液混合流式涡街流量计在能够输出与永磁式涡街流量计输出相同的工程参数外,还能够输出气液混合式导电性被测介质溶液中气泡含量的流速,气泡总量等参数,因此,气液混合流式涡街流量计可以应用一些比较特殊的场合,而这些场合在石油化工、城市供水管道应用都比较广泛,但是,现有的标定装置无法提供气液混合式导电性被测介质溶液,不能够满足气液混合流式涡街流量计产品标定的需求,因此,有必要提出一种新的装置系统及控制方法,以解决上述技术问题。The working principle of the gas-liquid mixed flow vortex flowmeter is basically the same as that of the permanent magnet vortex flowmeter. The gas-liquid mixed flow vortex flowmeter can be used in the fields where the permanent magnet vortex flowmeter can be applied. In addition, the gas-liquid mixed flow vortex flowmeter can output the same engineering parameters as the output of the permanent magnet vortex flowmeter, and can also output the flow rate of the bubble content in the gas-liquid mixed conductivity measured medium solution. Therefore, the gas-liquid mixed flow vortex flowmeter can be used in some special occasions, and these occasions are widely used in petrochemical and urban water supply pipelines. However, the existing calibration devices cannot provide gas-liquid mixing. Therefore, it is necessary to propose a new device system and control method to solve the above technical problems.

发明内容SUMMARY OF THE INVENTION

鉴于以上所述现有技术的缺点,本发明提供一种气液混合流式涡街流量计标定检测装置系统及控制方法,以解决上述技术问题。In view of the above-mentioned shortcomings of the prior art, the present invention provides a gas-liquid mixed flow vortex flowmeter calibration and detection device system and a control method to solve the above-mentioned technical problems.

本发明提供的气液混合流式涡街流量计标定检测装置系统,包括:The gas-liquid mixed flow vortex flowmeter calibration and detection device system provided by the present invention includes:

标定溶液输出单元,用于输出标定溶液;Calibration solution output unit for outputting calibration solution;

注气单元,用于对输出的标定溶液进行注气;The gas injection unit is used to inject gas to the output calibration solution;

标定管道,用于使输出的标定溶液依次通过待标定气液混合流式涡街流量计;The calibration pipeline is used to make the output calibration solution pass through the gas-liquid mixed flow vortex flowmeter to be calibrated in turn;

流量控制单元,用于控制气体流量和标定溶液流量;Flow control unit for controlling gas flow and calibration solution flow;

标准计量桶,用于气液混合流式涡街流量计进行生产标定与检测的标准计量;Standard measuring barrel, used for standard measurement of gas-liquid mixed flow vortex flowmeter for production calibration and testing;

标定检测单元,用于计算标定输出系数和计算气体体积流量的精度。The calibration detection unit is used to calculate the calibration output coefficient and calculate the accuracy of the gas volume flow.

进一步,还包括流量积算仪,用于控制输出稳定恒流的气体流量至标定溶液,所述标定溶液为导电性被测介质溶液;Further, it also includes a flow totalizer, which is used to control the gas flow rate of outputting a stable constant current to a calibration solution, and the calibration solution is a conductive medium solution to be measured;

通过如下公式计算气体体积流量的精度:Calculate the accuracy of the gas volume flow by the following formula:

FS%=fabs(Va-Va1)/Va×100%FS%=fabs(V a -V a1 )/V a ×100%

其中,FS为气体体积流量的精度,Va1为输出气体体积流量,Va为流量积算仪控制输出的气体体积流量示数。Among them, FS is the accuracy of the gas volume flow, Va1 is the output gas volume flow, and Va is the gas volume flow indication that the flow totalizer controls and outputs.

进一步,通过如下公式计算标定输出系数:Further, the calibration output coefficient is calculated by the following formula:

Kp=Kp1Va/Va1 K p =K p1 V a /V a1

其中,Kp为标定输出系数,Kp1为气液混合式涡街流量计标定前,转换器预先设定的系数。Among them, K p is the calibration output coefficient, and K p1 is the coefficient preset by the converter before the gas-liquid mixing vortex flowmeter is calibrated.

进一步,流量控制单元控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,标定检测单元延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的标定点;Further, the flow control unit controls the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit delays recording the signal frequency output by the gas-liquid hybrid vortex flowmeter, and sequentially records the signal frequencies. Perform segmental value interception, respectively as the calibration point of the flow;

流量控制单元调节标定溶液流量,使其满足标定点的频率值;The flow control unit adjusts the calibration solution flow to make it meet the frequency value of the calibration point;

标定检测单元将气液混合式涡街流量计的计量输出的总量清零,并排出标定溶液;The calibration detection unit clears the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharges the calibration solution;

流量控制单元控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,标定检测单元记录待标定气液混合式涡街流量计的总体积示数和标准计量桶的示数;The flow control unit controls the calibration solution to refill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit records the total volume indication of the gas-liquid hybrid vortex flowmeter to be calibrated and the indication of the standard measuring barrel;

重复上述步骤,直至完成所有标定点的标定。Repeat the above steps until all calibration points are calibrated.

进一步,流量控制单元控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,标定检测单元延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的检定点;Further, the flow control unit controls the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit delays recording the signal frequency output by the gas-liquid hybrid vortex flowmeter, and sequentially records the signal frequencies. Perform segmental numerical interception, respectively as the verification point of the flow;

调节导电性被测介质溶液流量,使其满足检定点的频率值;Adjust the flow rate of the conductive medium solution to meet the frequency value of the verification point;

标定检测单元将气液混合式涡街流量计的计量输出的总量清零,并排出标定溶液;The calibration detection unit clears the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharges the calibration solution;

流量控制单元控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,标定检测单元记录所有气液混合式涡街流量计的总体积示数以及标准计量桶的示数;The flow control unit controls the calibration solution to refill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit records the total volume indication of all gas-liquid hybrid vortex flowmeters and the indication of the standard measuring barrel;

重复上述步骤,直至完成所有检测点的标定检测;Repeat the above steps until the calibration detection of all detection points is completed;

标定检测单元按照与所述检定点同样的信号频率依次进行分段数值截取,并作为导电性被测介质溶液恒流下气体含量检测流量点;The calibration detection unit performs segmental value interception in sequence according to the same signal frequency as the calibration point, and serves as the gas content detection flow point under the constant flow of the conductive measured medium solution;

标定检测单元选取不同数值的注气量点,分别注入导电性被测介质溶液中;The calibration detection unit selects gas injection points with different values and injects them into the conductive measured medium solution respectively;

调节导电性被测介质溶液流量,使其满足检定点的频率值,流量控制单元控制输出与选取的注气量点相同数值的注气量,标定检测单元延时记录当前注气量数值,以及各气液混合式涡街流量计输出的导电性被测介质溶液中气泡含量;Adjust the flow rate of the conductive measured medium solution to meet the frequency value of the verification point. The flow control unit controls the output gas injection volume with the same value as the selected gas injection volume point. The calibration detection unit delays and records the current gas injection volume value, as well as the gas and liquid The bubble content in the conductive measured medium solution output by the hybrid vortex flowmeter;

重复上述步骤直至完成所有注气量点的导电性被测介质溶液中含气量的检定,以及所有频点下的所有注气量点的导电性被测介质溶液中含气量的检定,完成气泡含量检测。Repeat the above steps until the verification of the gas content in the conductive measured medium solution at all gas injection volume points and the gas content in the conductive measured medium solution at all gas injection volume points at all frequency points are completed, and the bubble content detection is completed.

本发明还提供一种气液混合流式涡街流量计标定检测控制方法,包括:The present invention also provides a method for calibration and detection of a gas-liquid mixed flow vortex flowmeter, comprising:

抽取标定溶液并输出;Extract the calibration solution and output;

对输出的标定溶液进行注气,并使输出的标定溶液依次通过待标定气液混合流式涡街流量计;Inject gas to the output calibration solution, and make the output calibration solution pass through the gas-liquid mixed flow vortex flowmeter to be calibrated in turn;

控制气体流量和标定溶液流量;Control gas flow and calibration solution flow;

根据气体流量和标定溶液流量以及标准计量桶的示数,计算标定输出系数和计算气体体积流量的精度,完成待标定气液混合流式涡街流量计的标定和测量。Calculate the calibration output coefficient and the accuracy of the calculated gas volume flow according to the gas flow, the calibration solution flow and the indication of the standard measuring barrel, and complete the calibration and measurement of the gas-liquid mixed flow vortex flowmeter to be calibrated.

进一步,控制输出稳定恒流的气体流量至标定溶液,所述标定溶液为导电性被测介质溶液;Further, control the gas flow rate of outputting a stable constant current to a calibration solution, and the calibration solution is a conductive measured medium solution;

通过如下公式计算气体体积流量的精度:Calculate the accuracy of the gas volume flow by the following formula:

FS%=fabs(Va-Va1)/Va×100%FS%=fabs(V a -V a1 )/V a ×100%

其中,FS为气体体积流量的精度,Va1为输出气体体积流量,Va为流量积算仪控制输出的气体体积流量示数。Among them, FS is the accuracy of the gas volume flow, V a1 is the output gas volume flow, and V a is the gas volume flow indication that the flow totalizer controls and outputs.

进一步,通过如下公式计算标定输出系数:Further, the calibration output coefficient is calculated by the following formula:

Kp=Kp1Va/Va1 K p =K p1 V a /V a1

其中,Kp为标定输出系数,Kp1为气液混合式涡街流量计标定前,转换器预先设定的系数。Among them, K p is the calibration output coefficient, and K p1 is the coefficient preset by the converter before the gas-liquid mixing vortex flowmeter is calibrated.

进一步,控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的标定点;Further, control the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, record the signal frequency output by the gas-liquid hybrid vortex flowmeter in a delayed manner, and perform segmental numerical interception of the signal frequency in turn, are used as the calibration points of the flow;

通过流量控制单元调节标定溶液流量,使其满足标定点的频率值;Adjust the calibration solution flow through the flow control unit to make it meet the frequency value of the calibration point;

将气液混合式涡街流量计的计量输出的总量清零,并排出标定溶液;Clear the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharge the calibration solution;

控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,记录待标定气液混合式涡街流量计的总体积示数和标准计量桶的示数;Control the calibration solution to refill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and record the total volume indication of the gas-liquid hybrid vortex flowmeter to be calibrated and the indication of the standard measuring barrel;

重复上述步骤,直至完成所有标定点的标定。Repeat the above steps until all calibration points are calibrated.

进一步,控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的检定点;Further, control the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, record the signal frequency output by the gas-liquid hybrid vortex flowmeter in a delayed manner, and perform segmental numerical interception of the signal frequency in turn, They are respectively used as the verification points of the flow;

通过流量控制单元调节标定溶液流量,使其满足检定点的频率值;Adjust the calibration solution flow through the flow control unit to make it meet the frequency value of the calibration point;

将气液混合式涡街流量计的计量输出的总量清零,并排出标定溶液;Clear the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharge the calibration solution;

控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,记录所有气液混合式涡街流量计的总体积示数以及标准计量桶的示数;Control the calibration solution to refill the calibration pipeline and the gas-liquid mixed vortex flowmeter to be calibrated, and record the total volume indication of all gas-liquid mixed vortex flowmeters and the indication of the standard measuring barrel;

重复上述步骤,直至完成所有检测点的标定检测;Repeat the above steps until the calibration detection of all detection points is completed;

按照与所述检定点同样的信号频率依次进行分段数值截取,并作为导电性被测介质溶液恒流下气体含量检测流量点;According to the same signal frequency as the verification point, the segmented numerical value is intercepted in turn, and it is used as the gas content detection flow point under the constant flow of the conductive measured medium solution;

选取不同数值的注气量点,分别注入导电性被测介质溶液中;Select gas injection volume points with different values, and inject them into the conductive measured medium solution respectively;

通过流量控制单元调节导电性被测介质溶液流量,使其满足检定点的频率值,控制输出与选取的注气量点相同数值的注气量,延时记录当前注气量数值,以及各气液混合式涡街流量计输出的导电性被测介质溶液中气泡含量;Adjust the flow rate of the conductive measured medium solution through the flow control unit to make it meet the frequency value of the verification point, control the output gas injection volume with the same value as the selected gas injection volume point, record the current gas injection volume value with a delay, and each gas-liquid mixed type The content of bubbles in the conductive measured medium solution output by the vortex flowmeter;

重复上述步骤直至完成所有注气量点的导电性被测介质溶液中含气量的检定,以及所有频点下的所有注气量点的导电性被测介质溶液中含气量的检定,完成气泡含量检测。Repeat the above steps until the verification of the gas content in the conductive measured medium solution at all gas injection volume points and the gas content in the conductive measured medium solution at all gas injection volume points at all frequency points are completed, and the bubble content detection is completed.

本发明的有益效果:本发明中的气液混合流式涡街流量计标定检测装置系统及控制方法,不仅能够输出与永磁式涡街流量计输出相同的工程参数,还可以输出气液混合式导电性被测介质溶液中气泡含量的流速,气泡总量等参数,既能满足永磁式涡街流量计产品的标定,又能满足气液混合流式涡街流量计产品的标定;本发明可以广泛应用于石油化工、城市供水管道等领域,可以有效的检测管道是否存在泄漏,通过本发明具有标定检测精度高,适用范围广的特点。The beneficial effects of the present invention: the gas-liquid mixed flow vortex flowmeter calibration detection device system and control method in the present invention can not only output the same engineering parameters as the permanent magnet vortex flowmeter output, but also output gas-liquid mixed flow The parameters such as the flow rate of the bubble content in the measured medium solution, the total amount of bubbles and other parameters can not only meet the calibration of permanent magnet vortex flowmeter products, but also meet the calibration of gas-liquid mixed flow vortex flowmeter products; The invention can be widely used in petrochemical, urban water supply pipelines and other fields, and can effectively detect whether there is leakage in the pipeline. The invention has the characteristics of high calibration detection accuracy and wide application range.

附图说明Description of drawings

图1是本发明的系统结构示意图。FIG. 1 is a schematic diagram of the system structure of the present invention.

图2是本发明的方法流程示意图。Figure 2 is a schematic flow chart of the method of the present invention.

附图标记说明:Description of reference numbers:

1-标定溶液装置,2-溶液泵,3-氩气瓶,4-减压阀,5-气阀开关,6-流量控制器,7-流量积算仪,8-第一电动阀,9-液压缸,10-第一涡街流量计,11-固定支架,12-安装固定台,13-第二涡街流量计,14-第三涡街流量计,15-第二电动阀,16-标定管道,17-标准计量桶,18-排水气动阀,19-恒压恒流罐。1- calibration solution device, 2- solution pump, 3- argon gas cylinder, 4- pressure reducing valve, 5- gas valve switch, 6- flow controller, 7- flow totalizer, 8- first electric valve, 9 -Hydraulic cylinder, 10-first vortex flowmeter, 11-fixing bracket, 12-installation fixing table, 13-second vortex flowmeter, 14-third vortex flowmeter, 15-second electric valve, 16 - Calibration pipeline, 17- Standard measuring barrel, 18- Drain pneumatic valve, 19- Constant pressure and constant flow tank.

具体实施方式Detailed ways

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the following embodiments and features in the embodiments may be combined with each other under the condition of no conflict.

需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the drawings provided in the following embodiments are only used to illustrate the basic concept of the present invention in a schematic way, so the drawings only show the components related to the present invention rather than the number, shape and number of components in actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.

如图1所示,本实施例中的气液混合流式涡街流量计标定检测装置系统,包括:As shown in Figure 1, the gas-liquid mixed flow vortex flowmeter calibration and detection device system in this embodiment includes:

标定溶液输出单元,用于输出标定溶液;Calibration solution output unit for outputting calibration solution;

注气单元,用于对输出的标定溶液进行注气;The gas injection unit is used to inject gas to the output calibration solution;

标定管道16,用于使输出的标定溶液依次通过待标定气液混合流式涡街流量计;The calibration pipeline 16 is used to make the output calibration solution pass through the gas-liquid mixed flow vortex flowmeter to be calibrated in sequence;

流量控制单元,用于控制气体流量和标定溶液流量;Flow control unit for controlling gas flow and calibration solution flow;

标准计量桶17,用于气液混合流式涡街流量计进行生产标定与检测的标准计量装置;标定检测单元,用于计算标定输出系数和计算气体体积流量的精度。The standard measuring barrel 17 is a standard measuring device used for the production calibration and detection of the gas-liquid mixed flow vortex flowmeter; the calibration detection unit is used to calculate the calibration output coefficient and the accuracy of the gas volume flow.

本实施例中的标定溶液输出单元包括标定溶液装置1、溶液泵2和恒流恒压罐19,注气单元包括氩气瓶3、流量控制单元包括减压阀4、气阀开关5、流量控制器6、液压缸9、电动阀8和电动阀15,通过标记检测单元计算标定输出系数和计算气体体积流量的精度,完成气液混合流式涡街流量计标定检测。The calibration solution output unit in this embodiment includes a calibration solution device 1, a solution pump 2 and a constant current and constant pressure tank 19, the gas injection unit includes an argon gas bottle 3, the flow control unit includes a pressure reducing valve 4, a gas valve switch 5, a flow rate The controller 6, the hydraulic cylinder 9, the electric valve 8 and the electric valve 15 calculate the calibration output coefficient and the accuracy of the calculated gas volume flow through the marking detection unit, and complete the calibration and detection of the gas-liquid mixed flow vortex flowmeter.

在本实施例中,气液混合式涡街流量计计量被测的介质溶液必须具有导电特性,由于传感器检测输出漩涡信号的频率大小正比例于导电性被测介质溶液的流速,因此,建立漩涡信号频率f1与导电性被测介质溶液体积流速v1数学关系式:In this embodiment, the gas-liquid mixed vortex flowmeter must have conductive properties to measure the measured medium solution. Since the frequency of the vortex signal detected by the sensor is proportional to the flow rate of the conductive measured medium solution, the vortex signal is established. The mathematical relationship between the frequency f1 and the volume flow rate v1 of the conductivity measured medium solution:

v1=k1f1 (1)v 1 =k 1 f 1 (1)

式中,v1为通过传感器管道内的导电性被测介质溶液平均流速,m/s;f1为漩涡信号频率,Hz;k1为与体积流量相关的系数,也是实际生产标定中需要标定求解的系数,无量纲;In the formula, v 1 is the average flow rate of the conductive measured medium solution passing through the sensor pipeline, m/s; f1 is the vortex signal frequency, Hz; k1 is the coefficient related to the volume flow, which is also required in the actual production calibration. coefficient, dimensionless;

应用公式(1)求解的导电性被测介质溶液在管道内的流速v1,依据传感器自身管道的截面积和通过截面积的单位时间的累计量即可得出流经涡街流量计导电性被测介质溶液的体积总量:The flow velocity v 1 of the conductive measured medium solution in the pipeline calculated by formula (1), according to the cross-sectional area of the sensor's own pipeline and the cumulative amount per unit time passing through the cross-sectional area, the electrical conductivity flowing through the vortex flowmeter can be obtained. The total volume of the measured medium solution:

Figure BDA0001314394560000061
Figure BDA0001314394560000061

式中,q1为导电性被测介质溶液的体积总量,m3;S为涡街流量计传感器测量管道的截面积,m2;ti为单位时间,S。In the formula, q 1 is the total volume of the conductive measured medium solution, m 3 ; S is the cross-sectional area of the measuring pipe of the vortex flowmeter sensor, m 2 ; t i is the unit time, S.

在进行气液混合式涡街流量计计量标定前,预先设定系数k,并赋初值;然后使导电性被测介质溶液处于完全充满管道状态流经涡流发生器一段时间,然后依据涡街流量计输出计量的总量q和标准计量桶的计量示数q1进行标定输出系数k1计算Before the measurement and calibration of the gas-liquid mixed vortex flowmeter, set the coefficient k in advance and assign the initial value; then make the conductive measured medium solution flow through the vortex generator for a period of time in a state of completely filling the pipeline, and then according to the vortex flowmeter Calculate the total output q of the flowmeter and the measurement indication q 1 of the standard measuring barrel to calculate the calibration output coefficient k 1

Figure BDA0001314394560000062
Figure BDA0001314394560000062

在本实施例中,当被测的介质溶液中含有一定比例的气泡流经传感器信号检测电极时,在漩涡发生体后产生的涡街信号强烈且稳定,随着气液两相流中含气率的增加,气泡的存在影响了漩涡的形成和脱落,涡街信号和近似涡街信号的能量逐渐减弱,建立漩涡信号信噪比与导电性被测介质溶液气泡含量体积流速Va数学关系式:In this embodiment, when the measured medium solution contains a certain proportion of air bubbles flowing through the sensor signal detection electrode, the vortex street signal generated after the vortex generator is strong and stable. As the rate increases, the existence of bubbles affects the formation and shedding of the vortex, and the energy of the vortex signal and the approximate vortex signal gradually weakens. The mathematical relationship between the signal-to-noise ratio of the vortex signal and the volume flow rate Va of the bubble content in the conductivity measured medium solution is established:

Va=Kp/(10×lg(Ps/Pn)) (4)V a =K p /(10×lg(P s /P n )) (4)

式中,Va为导电性被测介质溶液气泡含量的体积流量,L/min;Kp为气液混合式涡街流量计传感器测量导电性被测介质溶液气泡含量相关的系数,无量纲;Ps为导电性被测介质溶液不含气泡时流量信号的功率谱密度,W/Hz;Pn为导电性被测介质溶液含气泡时流量信号的功率谱密度,W/Hz。In the formula, Va is the volume flow rate of the bubble content of the conductive measured medium solution, L/min; K p is the coefficient related to the measurement of the conductive measured medium solution bubble content by the gas-liquid hybrid vortex flowmeter sensor, dimensionless; P s is the power spectral density of the flow signal when the conductive measured medium solution does not contain bubbles, W/Hz; P n is the power spectral density of the flow signal when the conductive measured medium solution contains bubbles, W/Hz.

在进行气液混合式涡街流量计计量标定前,预先设定系数Kp1,并赋初值;然后开启流量积算仪7,设置并控制流量控制器6,使导电性被测介质溶液被注入稳定恒流的气体,工作一段时间后,依据气液混合式涡街流量计计算输出气泡体积流量Va1和流量积算仪的计量输出的气体体积流量示数Va进行标定输出系数kp计算,即仪表检测介质溶液体积流量输出与体积总量输出所需的最终系数。Before the gas-liquid mixed vortex flowmeter measurement and calibration, the coefficient K p1 is preset and assigned an initial value; then the flow totalizer 7 is turned on, and the flow controller 6 is set and controlled, so that the conductivity of the measured medium solution is Inject stable and constant flow of gas, and after working for a period of time, calculate the output bubble volume flow V a1 according to the gas-liquid mixed vortex flowmeter and the gas volume flow indication V a measured by the flow totalizer to calibrate the output coefficient k p Calculation, that is, the final coefficient required by the instrument to detect the volume flow output of the medium solution and the total volume output.

Kp=Kp1Va/Va1 (5)K p =K p1 V a /V a1 (5)

本实施例中还包括流量积算仪7,用于控制输出稳定恒流的气体流量至标定溶液,通过流量积算仪控制气体输出量大小,通过如下公式计算气体体积流量的精度:In this embodiment, a flow totalizer 7 is also included, which is used to control the gas flow rate of outputting a stable and constant flow to the calibration solution, and the gas output is controlled by the flow totalizer, and the accuracy of the gas volume flow is calculated by the following formula:

FS%=fabs(Va-Va1)/Va×100% (6)FS%=fabs(V a -V a1 )/V a ×100% (6)

其中,FS为气体体积流量的精度,Va1为输出气体体积流量,Va为流量积算仪控制输出的气体体积流量示数。Among them, FS is the accuracy of the gas volume flow, V a1 is the output gas volume flow, and V a is the gas volume flow indication that the flow totalizer controls and outputs.

相应地,本实施例还提供一种气液混合流式涡街流量计标定检测控制方法,包括抽取标定溶液并输出;Correspondingly, the present embodiment also provides a method for calibration and detection of a gas-liquid mixed flow vortex flowmeter, including extracting and outputting a calibration solution;

对输出的标定溶液进行注气,并使输出的标定溶液依次通过待标定气液混合流式涡街流量计;Inject gas to the output calibration solution, and make the output calibration solution pass through the gas-liquid mixed flow vortex flowmeter to be calibrated in turn;

控制气体流量和标定溶液流量;Control gas flow and calibration solution flow;

根据气体流量和标定溶液流量,计算标定输出系数和计算气体体积流量的精度,完成待标定气液混合流式涡街流量计的标定和测量。According to the gas flow rate and the calibration solution flow rate, the calibration output coefficient and the accuracy of calculating the gas volume flow rate are calculated to complete the calibration and measurement of the gas-liquid mixed flow vortex flowmeter to be calibrated.

在本实施例中,流量控制单元控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,标定检测单元延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的标定点;In this embodiment, the flow control unit controls the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, the calibration detection unit delays recording the signal frequency output by the gas-liquid hybrid vortex flowmeter, and calculates the The frequency of the signal is intercepted by segment values in turn, and they are used as the calibration points of the flow;

调节标定溶液流量,使其满足标定点的频率值;Adjust the flow rate of the calibration solution to make it meet the frequency value of the calibration point;

标定检测单元将气液混合式涡街流量计的计量输出的总量清零,并排出标定溶液;The calibration detection unit clears the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharges the calibration solution;

流量控制单元控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,标定检测单元记录待标定气液混合式涡街流量计的总体积示数和标准计量桶的示数;The flow control unit controls the calibration solution to refill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit records the total volume indication of the gas-liquid hybrid vortex flowmeter to be calibrated and the indication of the standard measuring barrel;

重复上述步骤,直至完成所有标定点的标定。Repeat the above steps until all calibration points are calibrated.

流量控制单元控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,标定检测单元延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的检定点;The flow control unit controls the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit records the signal frequency output by the gas-liquid hybrid vortex flowmeter in a delayed manner, and divides the signal frequency into sequence. The value of the segment is intercepted and used as the verification point of the flow;

调节标定溶液流量,使其满足检定点的频率值;Adjust the flow rate of the calibration solution to make it meet the frequency value of the calibration point;

标定检测单元将气液混合式涡街流量计的计量输出的总量清零,并排出标定溶液;The calibration detection unit clears the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharges the calibration solution;

流量控制单元控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,标定检测单元记录所有气液混合式涡街流量计的总体积示数以及标准计量桶的示数;The flow control unit controls the calibration solution to refill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit records the total volume indication of all gas-liquid hybrid vortex flowmeters and the indication of the standard measuring barrel;

重复上述步骤,直至完成所有检测点的标定检测;Repeat the above steps until the calibration detection of all detection points is completed;

标定检测单元按照与所述检定点同样的信号频率依次进行分段数值截取,并作为导电性被测介质溶液恒流下气体含量检测流量点;The calibration detection unit performs segmental value interception in sequence according to the same signal frequency as the calibration point, and serves as the gas content detection flow point under the constant flow of the conductive measured medium solution;

标定检测单元选取不同数值的注气量点,分别注入导电性被测介质溶液中;The calibration detection unit selects gas injection volume points with different values, and injects them into the conductive measured medium solution respectively;

调节导电性被测介质溶液流量,使其满足检定点的频率值,流量控制单元控制输出与选取的注气量点相同数值的注气量,标定检测单元延时记录当前注气量数值,以及各气液混合式涡街流量计输出的导电性被测介质溶液中气泡含量;Adjust the flow rate of the conductive measured medium solution to meet the frequency value of the verification point. The flow control unit controls the output gas injection volume with the same value as the selected gas injection volume point. The bubble content in the conductive measured medium solution output by the hybrid vortex flowmeter;

重复上述步骤直至完成所有注气量点的导电性被测介质溶液中含气量的检定,以及所有频点下的所有注气量点的导电性被测介质溶液中含气量的检定,完成气泡含量检测。Repeat the above steps until the verification of the gas content in the conductive measured medium solution at all gas injection volume points and the gas content in the conductive measured medium solution at all gas injection volume points at all frequency points are completed, and the bubble content detection is completed.

下面列举一个具体实施例进行详细说明:A specific embodiment is listed below for detailed description:

以DN40口径为例,Take DN40 caliber as an example,

1)将第一电动阀8和第二电动阀15调节至全开状态,使导电性标定介质溶液充分充满标定管道16和待标定的第一气液混合式涡街流量计10、第二气液混合式涡街流量计13、第三气液混合式涡街流量计14;1) Adjust the first electric valve 8 and the second electric valve 15 to the fully open state, so that the conductive calibration medium solution fully fills the calibration pipeline 16 and the first gas-liquid mixed vortex flowmeter 10 and the second gas to be calibrated. Liquid-mixed vortex flowmeter 13, third gas-liquid mixed vortex flowmeter 14;

2)延时2分钟,然后记录气液混合式涡街流量计10输出的信号频率,并将该频率按照1.0、0.8、0.6、0.4、0.2、0.1、0.05、0.02的比例进行数值截取,作为流量的标定点,从前至后共计8个流量标定点;2) Delay for 2 minutes, then record the signal frequency output by the gas-liquid mixed vortex flowmeter 10, and intercept the frequency according to the ratio of 1.0, 0.8, 0.6, 0.4, 0.2, 0.1, 0.05, and 0.02, as The flow calibration points, from front to back, a total of 8 flow calibration points;

3)调节电动阀8的开度,使其满足第1个标定的频率值,然后关闭第二电动阀15,并将第一气液混合式涡街流量计10上计量输出的总量进行清零操作,同时开启排水气动阀18,将标准计量桶17内的导电性被测介质溶液通排出,最大限度除净;3) Adjust the opening of the electric valve 8 to make it meet the first calibrated frequency value, then close the second electric valve 15, and clear the total amount of metered output on the first gas-liquid mixed vortex flowmeter 10. Zero operation, open the drainage pneumatic valve 18 at the same time, and discharge the conductive measured medium solution in the standard measuring barrel 17, and remove it to the maximum extent;

4)延时1分钟,关闭排水气动阀18;4) After a delay of 1 minute, close the drainage pneumatic valve 18;

5)手动快速开启电动阀15至全开状态,延时3-5分钟左右计量,然后关闭第二电动阀15;5) Manually and quickly open the electric valve 15 to the fully open state, delay the measurement for about 3-5 minutes, and then close the second electric valve 15;

6)从前至后依次记录第一至第三气液混合式涡街流量计的总体积示数,然后再记录标准计量桶17的示数;6) Record the total volume indication of the first to the third gas-liquid mixed vortex flowmeter in turn from front to back, and then record the indication of the standard measuring barrel 17;

7)重复步骤3)至步骤6),完成其它频率输出点的标定;7) Repeat step 3) to step 6) to complete the calibration of other frequency output points;

8)从前之后依次进行待标定气液混合式涡街流量计的仪表系数k,然后将每台对应计算输出的的系数k写入至对应待标定气液混合式涡街流量计的转换器中;8) Perform the meter coefficient k of the gas-liquid hybrid vortex flowmeter to be calibrated in sequence from the front to the back, and then write the coefficient k corresponding to the calculated output of each set into the converter corresponding to the gas-liquid hybrid vortex flowmeter to be calibrated ;

9)依据步骤2)中记录气液混合式涡街流量计10输出的信号频率,同样按照该频率1.0、0.8、0.6、0.4、0.2、0.1的比例进行数值截取,作为恒流下气体流量标定的选择;9) According to the signal frequency output by the gas-liquid mixed vortex flowmeter 10 recorded in step 2), the numerical value is also intercepted according to the ratio of the frequency 1.0, 0.8, 0.6, 0.4, 0.2, 0.1, as the gas flow calibration under constant flow. choose;

10)调节第一电动阀8的开度,使其满足步骤9)中第1个恒流点的频率值,保持第二电动阀15和排水气动阀18处于全开状态;10) Adjust the opening of the first electric valve 8 to make it meet the frequency value of the first constant current point in step 9), and keep the second electric valve 15 and the drainage pneumatic valve 18 in a fully open state;

11)依据气液混合式涡街流量计传感器口径不同,选择一定数量点的气体流量标定,该实例中选择了一台口径为DN40的气液混合式涡街流量计进行气体流量的标定,分别选取6.0L/min、5.0L/min、4.0L/min 3.0L/min、2.0L/min、1.0L/min、0.5L/min7个点的注气量进行导电性被测介质溶液中含气量标定点;11) According to the different diameters of the gas-liquid mixed vortex flowmeter sensors, select a certain number of points for gas flow calibration. In this example, a gas-liquid mixed vortex flowmeter with a diameter of DN40 is selected to calibrate the gas flow, respectively. Select the gas injection volume at 7 points of 6.0L/min, 5.0L/min, 4.0L/min, 3.0L/min, 2.0L/min, 1.0L/min, 0.5L/min to measure the gas content in the conductivity measured medium solution fixed point;

12)开启气阀开关5,然后依据步骤11)中的第1个点注气量(6.0L/min)的大小来设置流量计计算仪7,延时2分钟,等待注气稳定;12) Turn on the gas valve switch 5, then set the flowmeter calculator 7 according to the size of the first point gas injection (6.0L/min) in step 11), delay 2 minutes, and wait for the gas injection to stabilize;

12)记录当前注气量的值,然后从前至后记录第一至第三气液混合式涡街流量计整机仪表上输出的漩涡信号信噪比,即10×lg(Ps/Pn);12) Record the value of the current gas injection, and then record the signal-to-noise ratio of the vortex signal output from the first to third gas-liquid mixed vortex flowmeters on the instrument from front to back, that is, 10×lg(P s /P n ) ;

14)重复步骤12)至13),完成其它注气量点的导电性被测介质溶液中含气量的标定;14) Repeat steps 12) to 13) to complete the calibration of the gas content in the conductive measured medium solution at other gas injection points;

15)重复步骤10)至14),完成所有频率点下的所有注气量点的导电性被测介质溶液中含气量的标定;15) Repeat steps 10) to 14) to complete the calibration of the gas content in the conductivity measured medium solution at all gas injection volume points under all frequency points;

16)从前之后依次进行待标定气液混合式涡街流量计仪表的与气泡含量输出相关系数Kp的计算,然后将计算的结果写入到对应每台待标定气液混合式涡街流量计的转换器中;16) Calculate the correlation coefficient Kp of the gas-liquid hybrid vortex flowmeter instrument to be calibrated and the output of the bubble content in sequence, and then write the calculated results into the corresponding to each gas-liquid hybrid vortex flowmeter to be calibrated. in the converter;

17)将步骤2)第一气液混合式涡街流量计10输出的最大信号频率分别按照1.0、0.75、0.5、0.25和0.1的比例进行数值截取,作为流量的检定点;17) Carry out numerical interception of the maximum signal frequency output by the first gas-liquid mixed vortex flowmeter 10 in step 2) respectively according to the ratio of 1.0, 0.75, 0.5, 0.25 and 0.1, as the verification point of the flow;

18)手动调节第一电动阀8的开度,使其满足第1个检定的频率值,然后关闭第二电动阀15,并将涡街流量计上计量输出的总量进行清零操作,同时开启排水气动阀18,将标准计量桶17内的导电性被测介质溶液通排出,最大限度除净;18) Manually adjust the opening of the first electric valve 8 to make it meet the frequency value of the first verification, then close the second electric valve 15, and clear the total amount of metering output on the vortex flowmeter, and at the same time Open the drainage pneumatic valve 18, and discharge the conductive medium solution in the standard measuring barrel 17 to the maximum extent;

19)延时1分钟,关闭排水气动阀18;19) After a delay of 1 minute, close the drainage pneumatic valve 18;

20)手动快速开启第二电动阀15至全开状态,延时3-5分钟左右计量,然后关闭第二电动阀15;20) Manually and quickly open the second electric valve 15 to the fully open state, delay the measurement for about 3-5 minutes, and then close the second electric valve 15;

21)从前至后依次第一至第三记录气液混合式涡街流量计的总体积示数,然后再记录标准计量桶的示数;21) Record the total volume indication of the gas-liquid mixed vortex flowmeter from the first to the third sequentially from front to back, and then record the indication of the standard measuring barrel;

22)重复步骤18)至步骤21),完成其它频率输出点的检定;22) Repeat step 18) to step 21) to complete the verification of other frequency output points;

23)从前之后依次进行待检定气液混合式涡街流量计的仪表的精度FS%计算,完成标定检测;23) Calculate the accuracy FS% of the instrument of the gas-liquid hybrid vortex flowmeter to be calibrated in sequence from the front to the back, and complete the calibration detection;

24)依据步骤17)中记录第一气液混合式涡街流量计10输出的5个信号频率点作为气体流量检测的,同样按照该频率1.0、0.8、0.6、0.4、0.2、0.1的比例进行数值截取,作为导电性被测介质溶液恒流下气体含量检测流量点;24) According to the 5 signal frequency points output by the first gas-liquid mixed vortex flowmeter 10 recorded in step 17) as the gas flow detection, it is also carried out according to the ratio of the frequency 1.0, 0.8, 0.6, 0.4, 0.2, 0.1 Numerical interception, as the flow point of gas content detection under constant flow of conductivity measured medium solution;

25)选取6.0L/min、4.0L/min、2.0L/min、1.0L/min、0.5L/min5个点的注气量进行导电性被测介质溶液中含气量检测点;25) Select the gas injection volume of 6.0L/min, 4.0L/min, 2.0L/min, 1.0L/min, 0.5L/min 5 points to detect the gas content in the conductive medium solution;

26)手动调节第一电动阀8的开度,使其满足第1个检定的频率值,保持第二电动阀15和排水气动阀处于全开状态;26) Manually adjust the opening of the first electric valve 8 to make it meet the frequency value of the first verification, and keep the second electric valve 15 and the drainage pneumatic valve in a fully open state;

27)控制调节流量积算仪7,使其控制质量流量控制器输出6.0L/min的注气量;27) Control and adjust the flow totalizer 7 so that it controls the mass flow controller to output a gas injection volume of 6.0L/min;

28)延时2分钟左右,记录当前注气量的值,然后从前至后记录气液混合式涡街流量计1-3整机仪表上输出的导电性被测介质溶液中气泡含量;28) After a delay of about 2 minutes, record the value of the current gas injection, and then record the air bubble content in the conductive measured medium solution output from the gas-liquid mixed vortex flowmeter 1-3 complete instrument from front to back;

29)重复步骤27)至步骤28),完成其它注气量点的导电性被测介质溶液中含气量的检定;29) Repeat steps 27) to 28) to complete the verification of the gas content in the conductive measured medium solution at other gas injection points;

30)重复步骤24)至步骤29),完成所有频率点下的所有注气量点的导电性被测介质溶液中含气量的检定;30) Repeat steps 24) to 29) to complete the verification of the gas content in the conductive measured medium solution at all gas injection volume points under all frequency points;

31)从前之后依次进行气液混合式涡街流量计的仪表气液混合体重气泡含量的精度计算,完成气泡含量的检测。31) Carry out the precision calculation of the gas-liquid mixture weight bubble content of the gas-liquid mixed vortex flowmeter in sequence from the front to the back, and complete the detection of the air bubble content.

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.

Claims (8)

1.一种气液混合流式涡街流量计标定检测装置系统,其特征在于,包括:1. a gas-liquid mixed flow vortex flowmeter calibration detection device system, is characterized in that, comprises: 标定溶液输出单元,用于输出标定溶液;Calibration solution output unit for outputting calibration solution; 注气单元,用于对输出的标定溶液进行注气;The gas injection unit is used to inject gas to the output calibration solution; 标定管道,用于使输出的标定溶液依次通过待标定气液混合流式涡街流量计;The calibration pipeline is used to make the output calibration solution pass through the gas-liquid mixed flow vortex flowmeter to be calibrated in turn; 流量控制单元,用于控制气体流量和标定溶液流量;Flow control unit for controlling gas flow and calibration solution flow; 标准计量桶,用于气液混合流式涡街流量计进行生产标定与检测的标准计量;Standard measuring barrel, used for standard measurement of gas-liquid mixed flow vortex flowmeter for production calibration and testing; 标定检测单元,用于计算标定输出系数和计算气体体积流量的精度;The calibration detection unit is used to calculate the calibration output coefficient and the accuracy of calculating the gas volume flow; 还包括流量积算仪,用于控制输出稳定恒流的气体流量至标定溶液,所述标定溶液为导电性被测介质溶液;It also includes a flow totalizer, which is used to control the gas flow rate of outputting a stable constant current to a calibration solution, and the calibration solution is a conductive medium solution to be measured; 通过如下公式计算气体体积流量的精度:Calculate the accuracy of the gas volume flow by the following formula: FS%=fabs(Va-Va1)/Va×100%FS%=fabs(V a -V a1 )/V a ×100% 其中,FS为气体体积流量的精度,Va1为气液混合流式涡街流量计输出的标定介质溶液的体积总量,Va为标定计量桶计量的标定介质溶液体积总量;Among them, FS is the accuracy of the gas volume flow, V a1 is the total volume of the calibration medium solution output by the gas-liquid mixed flow vortex flowmeter, and V a is the total volume of the calibration medium solution measured by the calibration metering barrel; 流量控制单元控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,标定检测单元延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的检定点。The flow control unit controls the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit records the signal frequency output by the gas-liquid hybrid vortex flowmeter in a delayed manner, and divides the signal frequency into sequence. The value of the segment is intercepted and used as the verification point of the flow. 2.根据权利要求1所述的气液混合流式涡街流量计标定检测装置系统,其特征在于:通过如下公式计算标定输出系数:2. The gas-liquid mixed flow vortex flowmeter calibration detection device system according to claim 1 is characterized in that: the calibration output coefficient is calculated by the following formula: Kp=Kp1Va/Va1 K p =K p1 V a /V a1 其中,Kp为标定输出系数,Kp1为气液混合式涡街流量计标定前,预先设定的系数。Among them, K p is the calibration output coefficient, and K p1 is the preset coefficient before the calibration of the gas-liquid mixed vortex flowmeter. 3.根据权利要求2所述的气液混合流式涡街流量计标定检测装置系统,其特征在于:3. gas-liquid mixed flow vortex flowmeter calibration detection device system according to claim 2, is characterized in that: 流量控制单元控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,标定检测单元延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的标定点;The flow control unit controls the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit records the signal frequency output by the gas-liquid hybrid vortex flowmeter in a delayed manner, and divides the signal frequency into sequence. The value of the segment is intercepted and used as the calibration point of the flow; 流量控制单元调节控制标定介质溶液在标定管道内的流量,使其满足标定点的频率值;The flow control unit adjusts and controls the flow of the calibration medium solution in the calibration pipeline to make it meet the frequency value of the calibration point; 标定检测单元将气液混合式涡街流量计的计量输出的总量清零,并排出标定溶液;The calibration detection unit clears the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharges the calibration solution; 流量控制单元控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,标定检测单元记录待标定气液混合式涡街流量计的总体积示数和标准计量桶的示数;The flow control unit controls the calibration solution to refill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit records the total volume indication of the gas-liquid hybrid vortex flowmeter to be calibrated and the indication of the standard measuring barrel; 重复上述步骤,直至完成所有标定点的记录,并根据记录计算标定输出系数。Repeat the above steps until all calibration points are recorded, and calculate the calibration output coefficient according to the records. 4.根据权利要求3所述的气液混合流式涡街流量计标定检测装置系统,其特征在于:4. gas-liquid mixed flow vortex flowmeter calibration detection device system according to claim 3, is characterized in that: 流量控制单元控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,标定检测单元延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的检定点;The flow control unit controls the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, and the calibration detection unit records the signal frequency output by the gas-liquid hybrid vortex flowmeter in a delayed manner, and divides the signal frequency into sequence. The value of the segment is intercepted and used as the verification point of the flow; 流量控制单元调节导电性被测介质溶液流量,使其满足检定点的频率值;The flow control unit adjusts the flow rate of the conductive measured medium solution to make it meet the frequency value of the verification point; 标定检测单元将气液混合式涡街流量计的计量输出的总量清零,并排出导电性被测介质溶液流量;The calibration detection unit clears the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharges the flow rate of the conductive measured medium solution; 流量控制单元控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,标定检测单元记录所有气液混合式涡街流量计的总体积示数以及标准计量桶的示数,计算气体体积流量的精度,完成标定检测;The flow control unit controls the calibration solution to refill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated. The calibration detection unit records the total volume indication of all gas-liquid hybrid vortex flowmeters and the indication of the standard measuring barrel, and calculates Accuracy of gas volume flow, complete calibration detection; 重复上述步骤,直至完成所有检定点的标定检测;Repeat the above steps until the calibration detection of all calibration points is completed; 标定检测单元按照与所述检定点同样的信号频率依次进行分段数值截取,并作为导电性被测介质溶液恒流下气体含量检测流量点;The calibration detection unit performs segmented numerical interception in sequence according to the same signal frequency as the calibration point, and serves as the gas content detection flow point under the constant flow of the conductive measured medium solution; 标定检测单元选取不同数值的注气量点,分别注入导电性被测介质溶液中;The calibration detection unit selects gas injection points with different values and injects them into the conductive measured medium solution respectively; 流量控制单元调节导电性被测介质溶液流量,使其满足检定点的频率值,流量控制单元控制输出与选取的注气量点相同数值的注气量,标定检测单元延时记录当前注气量数值,以及各气液混合式涡街流量计输出的导电性被测介质溶液中气泡含量;The flow control unit adjusts the flow rate of the conductive measured medium solution to make it meet the frequency value of the verification point, the flow control unit controls the output gas injection volume of the same value as the selected gas injection volume point, the calibration detection unit delays recording the current gas injection volume value, and The bubble content in the conductive measured medium solution output by each gas-liquid mixed vortex flowmeter; 重复上述步骤直至完成所有注气量点的导电性被测介质溶液中含气量的检定,以及所有频点下的所有注气量点的导电性被测介质溶液中含气量的检定,完成气泡含量检测。Repeat the above steps until the verification of the gas content in the conductive measured medium solution at all gas injection volume points and the gas content in the conductive measured medium solution at all gas injection volume points at all frequency points are completed, and the bubble content detection is completed. 5.一种气液混合流式涡街流量计标定检测控制方法,其特征在于,包括:5. A gas-liquid mixed flow vortex flowmeter calibration detection control method, characterized in that, comprising: 抽取标定溶液并输出;Extract the calibration solution and output; 对输出的标定溶液进行注气,并使输出的标定溶液依次通过待标定气液混合流式涡街流量计;Inject gas to the output calibration solution, and make the output calibration solution pass through the gas-liquid mixed flow vortex flowmeter to be calibrated in turn; 控制气体流量和标定溶液流量;Control gas flow and calibration solution flow; 根据气体流量和标定溶液流量以及标准计量桶的示数,计算标定输出系数和计算气体体积流量的精度,完成待标定气液混合流式涡街流量计的标定和测量;Calculate the calibration output coefficient and the accuracy of the calculated gas volume flow according to the gas flow, the calibration solution flow and the indication of the standard measuring barrel, and complete the calibration and measurement of the gas-liquid mixed flow vortex flowmeter to be calibrated; 控制输出稳定恒流的气体流量至标定溶液,所述标定溶液为导电性被测介质溶液;Control the gas flow rate of outputting a stable and constant current to the calibration solution, and the calibration solution is a conductive measured medium solution; 通过如下公式计算气体体积流量的精度:Calculate the accuracy of the gas volume flow by the following formula: FS%=fabs(Va-Va1)/Va×100%FS%=fabs(V a -V a1 )/V a ×100% 其中,FS为气体体积流量的精度,Va1为输出气体体积流量,Va为流量积算仪控制输出的气体体积流量;Among them, FS is the precision of the gas volume flow, Va1 is the output gas volume flow, and Va is the gas volume flow controlled by the flow totalizer; 控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的检定点。Control the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, record the signal frequency output by the gas-liquid hybrid vortex flowmeter in a delayed manner, and perform segmental numerical interception of the signal frequency in turn, respectively as Flow check point. 6.根据权利要求5所述的气液混合流式涡街流量计标定检测控制方法,其特征在于:通过如下公式计算标定输出系数:6. The gas-liquid mixed flow vortex flowmeter calibration detection control method according to claim 5, characterized in that: the calibration output coefficient is calculated by the following formula: Kp=Kp1Va/Va1 K p =K p1 V a /V a1 其中,Kp为标定输出系数,Kp1为气液混合式涡街流量计标定前,转换器预先设定的系数。Among them, K p is the calibration output coefficient, and K p1 is the coefficient preset by the converter before the gas-liquid mixing vortex flowmeter is calibrated. 7.根据权利要求6所述的气液混合流式涡街流量计标定检测控制方法,其特征在于:7. The gas-liquid mixed flow vortex flowmeter calibration detection control method according to claim 6, is characterized in that: 控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的标定点;Control the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, record the signal frequency output by the gas-liquid hybrid vortex flowmeter in a delayed manner, and perform segmental numerical interception of the signal frequency in turn, respectively as The calibration point of the flow; 通过流量控制单元调节标定溶液流量,使其满足标定点的频率值;Adjust the calibration solution flow through the flow control unit to make it meet the frequency value of the calibration point; 将气液混合式涡街流量计的计量输出的总量清零,并排出标定溶液;Clear the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharge the calibration solution; 控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,记录待标定气液混合式涡街流量计输出的气体总体积示数和标准计量桶的示数;Control the calibration solution to refill the calibration pipeline and the gas-liquid mixed vortex flowmeter to be calibrated, and record the total volume of gas output by the gas-liquid mixed vortex flowmeter to be calibrated and the indication of the standard measuring barrel; 重复上述步骤,直至完成所有标定点的标定。Repeat the above steps until all calibration points are calibrated. 8.根据权利要求7所述的气液混合流式涡街流量计标定检测控制方法,其特征在于:8. The gas-liquid mixed flow vortex flowmeter calibration detection control method according to claim 7, is characterized in that: 控制标定溶液充满标定管道和待标定的气液混合式涡街流量计,延时记录气液混合式涡街流量计输出的信号频率,并将所述信号频率依次进行分段数值截取,分别作为流量的检定点;Control the calibration solution to fill the calibration pipeline and the gas-liquid hybrid vortex flowmeter to be calibrated, record the signal frequency output by the gas-liquid hybrid vortex flowmeter in a delayed manner, and perform segmental numerical interception of the signal frequency in turn, respectively as flow check point; 通过流量控制单元调节标定溶液流量,使其满足检定点的频率值;Adjust the calibration solution flow through the flow control unit to make it meet the frequency value of the calibration point; 将气液混合式涡街流量计的计量输出的总量清零,并排出标定溶液;Clear the total amount of metering output of the gas-liquid mixed vortex flowmeter, and discharge the calibration solution; 控制标定溶液重新充满标定管道和待标定的气液混合式涡街流量计,记录所有气液混合式涡街流量计的总体积示数以及标准计量桶的示数;Control the calibration solution to refill the calibration pipeline and the gas-liquid mixed vortex flowmeter to be calibrated, and record the total volume indication of all gas-liquid mixed vortex flowmeters and the indication of the standard measuring barrel; 重复上述步骤,直至完成所有检测点的标定检测;Repeat the above steps until the calibration detection of all detection points is completed; 按照与所述检定点同样的信号频率依次进行分段数值截取,并作为导电性被测介质溶液恒流下气体含量检测流量点;According to the same signal frequency as the verification point, the segmented numerical value is intercepted in turn, and it is used as the gas content detection flow point under the constant flow of the conductive measured medium solution; 选取不同数值的注气量点,分别注入导电性被测介质溶液中;Select gas injection volume points with different values, and inject them into the conductive measured medium solution respectively; 通过流量控制单元调节导电性被测介质溶液流量,使其满足检定点的频率值,控制输出与选取的注气量点相同数值的注气量,延时记录当前注气量数值,以及各气液混合式涡街流量计输出的导电性被测介质溶液中气泡含量;Adjust the flow rate of the conductive measured medium solution through the flow control unit to make it meet the frequency value of the verification point, control the output gas injection volume with the same value as the selected gas injection volume point, record the current gas injection volume value with a delay, and each gas-liquid mixed type The content of bubbles in the conductive measured medium solution output by the vortex flowmeter; 重复上述步骤直至完成所有注气量点的导电性被测介质溶液中含气量的检定,以及所有频点下的所有注气量点的导电性被测介质溶液中含气量的检定,完成气泡含量检测。Repeat the above steps until the verification of the gas content in the conductive measured medium solution at all gas injection volume points and the gas content in the conductive measured medium solution at all gas injection volume points at all frequency points are completed, and the bubble content detection is completed.
CN201710418725.6A 2017-06-06 2017-06-06 Gas-liquid mixed flow vortex flowmeter calibration detection device system and control method Active CN107255501B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710418725.6A CN107255501B (en) 2017-06-06 2017-06-06 Gas-liquid mixed flow vortex flowmeter calibration detection device system and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710418725.6A CN107255501B (en) 2017-06-06 2017-06-06 Gas-liquid mixed flow vortex flowmeter calibration detection device system and control method

Publications (2)

Publication Number Publication Date
CN107255501A CN107255501A (en) 2017-10-17
CN107255501B true CN107255501B (en) 2020-02-18

Family

ID=60023111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710418725.6A Active CN107255501B (en) 2017-06-06 2017-06-06 Gas-liquid mixed flow vortex flowmeter calibration detection device system and control method

Country Status (1)

Country Link
CN (1) CN107255501B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113405732B (en) * 2021-06-02 2024-04-26 威海威源仪表有限公司 Precession vortex flowmeter gas tightness detection device
CN118670485B (en) * 2024-06-27 2025-01-14 重庆市三峡生态环境技术创新中心有限公司 Electromagnetic flowmeter production calibration method capable of being used for non-full pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427892C (en) * 2006-11-13 2008-10-22 浙江大学 Method and device for measuring gas-liquid two-phase bubbly flow rate and volumetric gas fraction
CN102230817B (en) * 2011-03-18 2012-09-26 西北工业大学 Recycled two-phase flow flowmeter calibrating platform of wet steam
CN202305563U (en) * 2011-07-25 2012-07-04 天津空中代码工程应用软件开发有限公司 Calibration device of sensor measuring speed of gas-liquid two-phase flow and gas content
WO2016048146A1 (en) * 2014-09-22 2016-03-31 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and vortex flow meter system for determining a physical property of a gas-liquid two phase flow
CN104964729B (en) * 2015-07-28 2018-04-27 云南卓烁科技有限公司 A kind of calibrating installation of fluid metering instrument
CN106679770B (en) * 2016-11-22 2024-02-27 重庆川仪自动化股份有限公司 Mass calibration system and method for mass flowmeter

Also Published As

Publication number Publication date
CN107255501A (en) 2017-10-17

Similar Documents

Publication Publication Date Title
Xing et al. A combination method for metering gas–liquid two-phase flows of low liquid loading applying ultrasonic and Coriolis flowmeters
EP2192391A1 (en) Apparatus and a method of measuring the flow of a fluid
CN204085645U (en) With the gas flow standard device of self calibration structure
CA2539640A1 (en) Detection and measurement of two-phase flow
CN102494742B (en) Method for on-line calibration of large-caliber flow meter
CN107131932A (en) The detection means and detection method of a kind of gas turbine meter
CN106679770A (en) Mass calibration system and method for mass flow meter
Gajan et al. The influence of pulsating flows on orifice plate flowmeters
CN107255501B (en) Gas-liquid mixed flow vortex flowmeter calibration detection device system and control method
CN104458107B (en) A kind of detection method of easy differential pressure device
Foucault et al. Unsteady flowmeter
CN101251397A (en) Bypass in-line flowmeter
CN206891542U (en) Flow meter calibration detection means
Catania et al. Development and assessment of a new operating principle for the measurement of unsteady flow rates in high-pressure pipelines
CN201740553U (en) Double-parameter mass flow meter
Yu et al. Note: Ultrasonic liquid flow meter for small pipes
Reshmin et al. Turbulent flow in a circular separationless diffuser at Reynolds numbers smaller than 2000
CN103528922A (en) Method and device for measuring dynamic sediment volume concentration
CN102735587A (en) Jet flow density measurement device and method
Peng et al. Response of a swirlmeter to oscillatory flow
CN207050788U (en) A kind of new online throttling flow meter
Chen et al. Internal flow characteristics and aft-cone angle on performance of swirlmeter
Tan et al. Modification to mass flow rate correlation in oil–water two-phase flow by a V-cone flow meter in consideration of the oil–water viscosity ratio
Yue-Zhong et al. Numerical simulating nonlinear effects of ultrasonic propagation on high-speed ultrasonic gas flow measurement
CN208847264U (en) A kind of tandem coriolis mass flowmeters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant