CN107142410B - CrMoNbTiZr high entropy alloy materials and preparation method thereof - Google Patents
CrMoNbTiZr high entropy alloy materials and preparation method thereof Download PDFInfo
- Publication number
- CN107142410B CN107142410B CN201710458007.1A CN201710458007A CN107142410B CN 107142410 B CN107142410 B CN 107142410B CN 201710458007 A CN201710458007 A CN 201710458007A CN 107142410 B CN107142410 B CN 107142410B
- Authority
- CN
- China
- Prior art keywords
- alloy
- melting
- crmonbtizr
- entropy alloy
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 78
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 69
- 238000002844 melting Methods 0.000 claims abstract description 18
- 230000008018 melting Effects 0.000 claims abstract description 18
- 238000003723 Smelting Methods 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- 239000010936 titanium Substances 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000010891 electric arc Methods 0.000 claims description 3
- 239000011812 mixed powder Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims 1
- 229910052774 Proactinium Inorganic materials 0.000 claims 1
- 238000007499 fusion processing Methods 0.000 claims 1
- 239000004615 ingredient Substances 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 14
- 230000007797 corrosion Effects 0.000 abstract description 14
- 239000000203 mixture Substances 0.000 abstract description 10
- 238000002156 mixing Methods 0.000 abstract description 5
- 229910001068 laves phase Inorganic materials 0.000 abstract description 4
- 239000006104 solid solution Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 241001062472 Stokellia anisodon Species 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明涉及一种高熵合金材料及其制备技术。高熵合金材料成分为CrMoNbTiZr,其中,Cr:Mo:Nb:Ti:Zr的摩尔比依次为:1:1:1:1:1。其制备过程如下:(1)粉末配制:按照等摩尔比配制各金属粉末;(2)粉末混合:将配制好的粉末在V型混粉机上混合均匀;(3)压制成块:将混合后的粉末在压力机下冷压成形;(4)熔炼合金:使用真空非自耗电弧熔炼炉对压制成块的样品进行熔炼。本发明制备的CrMoNbTiZr高熵合金主要组成相为BCC固溶体相和少量的Laves相,同时具有硬度高和耐蚀性强等优点。该合金在耐磨和耐蚀领域具有很好的应用前景。
The invention relates to a high-entropy alloy material and its preparation technology. The composition of the high-entropy alloy material is CrMoNbTiZr, wherein the molar ratio of Cr:Mo:Nb:Ti:Zr is: 1:1:1:1:1. The preparation process is as follows: (1) Powder preparation: Prepare metal powders according to equimolar ratio; (2) Powder mixing: Mix the prepared powder evenly on a V-type powder mixer; (3) Press into blocks: Mix the The powder is cold-pressed under a press; (4) Smelting alloy: a vacuum non-consumable arc melting furnace is used to melt the pressed block sample. The main composition phase of the CrMoNbTiZr high-entropy alloy prepared by the invention is a BCC solid solution phase and a small amount of Laves phase, and has the advantages of high hardness, strong corrosion resistance, and the like. The alloy has good application prospects in the fields of wear resistance and corrosion resistance.
Description
技术领域technical field
本发明涉及一种高熵合金及其制备方法,具体地说,涉及一种耐磨、耐蚀的CrMoNbTiZr高熵合金及其制备方法,属于合金材料及其制备技术领域。The invention relates to a high-entropy alloy and a preparation method thereof, in particular to a wear-resistant and corrosion-resistant CrMoNbTiZr high-entropy alloy and a preparation method thereof, belonging to the technical field of alloy materials and preparation thereof.
背景技术Background technique
传统观念对合金性能的理解在于,合金性能可以通过添加微量合金元素来改善和提高,如提高强度、硬度、抗压强度、耐蚀性、热稳定性等,但是这种方法并不是没有缺点的,如果添加过多会导致出现大量脆性金属间化合物甚至是脆性的复杂相,使得合金的机械性能降低。另外,化合物过多会对合金组织的研究产生不利的影响。因此,长期以来,学者在开发新型合金和改善合金的过程中,都是以一种合金元素为主元(一般超过50%),利用添加少量合金元素和改善工艺的方法,从而获得优良的组织和性能的合金。但是随着现今工业工程技术的高速发展,单一材料性能的不足已经成为制约其在工程领域进一步发展的一个难题。因此研发人员越来越倾向于采用高新技术开发制备高性能的新型材料,研究开发强度、韧性、硬度等各项性能皆优的新型材料,已成为材料领域发展的主要方向。高熵合金作为近年来出现并快速发展的一种新型高强度合金,受到了材料领域专家的高度关注。中国台湾清华大学的叶均蔚等率先跳出传统合金的发展框架,于2004年首次提出了多组元高熵合金的设计思想,多主元高熵合金一般具有5种或5种以上的主要元素,这些主要元素以等摩尔比或者近似等摩尔比配置。合金的混合熵极高,在凝固过程中,传统多元合金中脆性相的析出被抑制,例如金属间化合物;凝固后一般形成BCC或FCC结构的单一固溶体,大大降低了多元合金的脆性。多主元高熵合金打破了以一种合金元素为基的传统合金设计模式,可通过合金成分优化设计,获得具有显微结构简单化、纳米析出物、非晶结构、纳米晶粒等组织特征和高强度、高硬度、耐磨、耐腐蚀、耐高温蠕变、耐高温氧化、耐回火软化等优异的性能组合合金,广泛应用于耐高压、耐腐蚀化工容器及工程用高强度耐蚀件。The traditional understanding of alloy performance is that alloy performance can be improved and improved by adding trace alloy elements, such as increasing strength, hardness, compressive strength, corrosion resistance, thermal stability, etc., but this method is not without disadvantages , if added too much, it will lead to a large number of brittle intermetallic compounds or even brittle complex phases, which will reduce the mechanical properties of the alloy. In addition, too many compounds will have an adverse effect on the study of the alloy structure. Therefore, for a long time, in the process of developing new alloys and improving alloys, scholars have always used an alloy element as the main component (generally more than 50%), and used the method of adding a small amount of alloy elements and improving the process to obtain excellent microstructure. and performance alloys. However, with the rapid development of today's industrial engineering technology, the lack of performance of a single material has become a problem that restricts its further development in the engineering field. Therefore, researchers are more and more inclined to use high-tech to develop and prepare new materials with high performance. Research and development of new materials with excellent strength, toughness, hardness and other properties have become the main direction of the development of the material field. As a new type of high-strength alloy that has emerged and developed rapidly in recent years, high-entropy alloys have attracted great attention from experts in the field of materials. Ye Junwei of Tsinghua University in Taiwan, China, took the lead in jumping out of the development framework of traditional alloys, and first proposed the design idea of multi-component high-entropy alloys in 2004. Multi-principal high-entropy alloys generally have 5 or more main elements. The main elements are arranged in an equimolar ratio or an approximately equimolar ratio. The mixing entropy of the alloy is extremely high. During the solidification process, the precipitation of brittle phases in traditional multi-component alloys is suppressed, such as intermetallic compounds; after solidification, a single solid solution with BCC or FCC structure is generally formed, which greatly reduces the brittleness of multi-component alloys. Multi-principal element high-entropy alloys break the traditional alloy design mode based on one alloy element, and can obtain structural characteristics such as simplified microstructure, nano-precipitates, amorphous structure, and nano-grains through the optimization design of alloy components. Combining alloys with excellent properties such as high strength, high hardness, wear resistance, corrosion resistance, high temperature creep resistance, high temperature oxidation resistance, and temper softening resistance, are widely used in high-pressure resistant, corrosion-resistant chemical containers and high-strength corrosion-resistant engineering pieces.
发明内容Contents of the invention
本发明的目的在于开发出具有优异性能的耐磨耐蚀高熵合金——CrMoNbTiZr高熵合金,使其满足在现代工业中人们对材料耐磨耐性性能的要求,使得高熵合金在应用领域得到广泛应用。The purpose of the present invention is to develop a wear-resistant and corrosion-resistant high-entropy alloy with excellent performance——CrMoNbTiZr high-entropy alloy, so that it can meet people's requirements for material wear resistance in modern industry, so that the high-entropy alloy can be obtained in the application field widely used.
本发明为解决上述技术问题而采取的技术方案为:一种高熵合金材料,成分为CrMoNbTiZr,其中,Cr:Mo:Nb:Ti:Zr的摩尔比依次为:1:1:1:1:1。The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: a high-entropy alloy material, the composition is CrMoNbTiZr, wherein, the molar ratio of Cr:Mo:Nb:Ti:Zr is: 1:1:1:1: 1.
本发明为解决上述技术问题而采取的技术方案还包括:一种成分为CrMoNbTiZr的高熵合金材料的制备方法,其特征在于具体是按以下步骤完成的:The technical solution adopted by the present invention to solve the above-mentioned technical problems also includes: a preparation method of a high-entropy alloy material whose composition is CrMoNbTiZr, which is characterized in that it is specifically completed according to the following steps:
一、采用纯度99.5%以上的冶金原料Cr、Mo、Nb、Ti和Zr金属粉末,按照等摩尔比例进行精确的称量配比,将其混合均匀;1. Use metallurgical raw materials Cr, Mo, Nb, Ti and Zr metal powders with a purity of more than 99.5%, accurately weigh and mix them according to the equimolar ratio;
二、使用压样机将混合的粉末压制成块,供熔料制备合金使用;2. Use a press to press the mixed powder into blocks for the preparation of alloys from molten materials;
三、使用真空非自耗电极电弧炉熔炼合金,首先将块状的样品放置在外围的熔炼槽内,并将纯钛粒放置在最中间的熔炼槽内,放置完毕之后关闭炉门,拧紧样品室四个封闭旋钮;3. Use a vacuum non-consumable electrode arc furnace to smelt alloys. First, place the blocky samples in the peripheral smelting tank, and place the pure titanium particles in the middle smelting tank. After placing, close the furnace door and tighten it. Four closed knobs in the sample chamber;
四、对样品室抽真空,当真空度达到5×10-3Pa后,充入纯度为99.99%氩气直到炉内压力达到半个大气压,并重复此步骤2~3次;重复抽真空的目的在于洗气,反复充放氩气使得熔炼炉中的空气尽量减到最小;4. Vacuum the sample chamber. When the vacuum degree reaches 5×10 -3 Pa, fill in argon gas with a purity of 99.99% until the pressure in the furnace reaches half an atmosphere, and repeat this step 2 or 3 times; The purpose is to wash the gas, repeatedly filling and discharging argon to minimize the air in the melting furnace;
五、真空抽完之后充放氩气直到炉内压力达到半个大气压,此时便可开始进行熔炼;在熔炼样品之前先将熔炼池中的纯钛粒熔炼一遍,尽量将炉中残留的氧气消耗殆尽;5. After vacuuming, fill and release argon until the pressure in the furnace reaches half an atmospheric pressure, then you can start melting; before melting the sample, first melt the pure titanium particles in the melting pool, and try to remove the remaining oxygen in the furnace. depleted;
六、熔炼过程中为了使原料更好地混合均匀,每次熔炼合金熔化后,电弧保持时间在90~120s,待合金块冷却后将其翻转,如此重复4次以上;6. In order to mix the raw materials evenly during the smelting process, after each smelting alloy is melted, the arc is kept for 90-120s, and the alloy block is turned over after it cools down, and this is repeated more than 4 times;
七、熔炼完成之后,根据所需产品的尺寸形状,可将重复熔炼后的合金液浇铸在模具内,然后冷却获得。7. After the smelting is completed, according to the size and shape of the required product, the alloy liquid after repeated smelting can be cast in the mold, and then cooled to obtain it.
本发明的原理及有益效果在于:Principle of the present invention and beneficial effect are:
1.本发明提供了一种CrMoNbTiZr高熵合金,所述高熵合金由简单结构的固溶体相以及少量的laves相组成,合金组织均匀,具有较高的硬度和优异的耐腐蚀性能,该合金的显微硬度高达689HV。具有广阔的应用前景;1. The present invention provides a kind of CrMoNbTiZr high-entropy alloy, described high-entropy alloy is made up of the solid solution phase of simple structure and a small amount of laves phase, alloy structure is uniform, has higher hardness and excellent corrosion resistance, the alloy's The microhardness is as high as 689HV. with broadly application foreground;
2.本发明提供了一种CrMoNbTiZr高熵合金的制备方法,采用高真空合金电弧熔炼进行制备,制备方法简单可靠。2. The present invention provides a method for preparing a CrMoNbTiZr high-entropy alloy, which is prepared by high-vacuum alloy arc melting, and the preparation method is simple and reliable.
附图说明Description of drawings
图1为实施例中制备的CrMoNbTiZr高熵合金的X射线衍射图谱。Fig. 1 is the X-ray diffraction pattern of the CrMoNbTiZr high entropy alloy prepared in the embodiment.
图2为实施例中制备的CrMoNbTiZr高熵合金的扫描电子显微组织。Fig. 2 is the scanning electron microstructure of the CrMoNbTiZr high-entropy alloy prepared in the embodiment.
具体实施方式Detailed ways
以下由特定的具体实施例说明本发明的制备方式及工艺性能,本领域技术人员可由本说明书所揭示的内容全面地了解本发明的优点及作用。The preparation method and process performance of the present invention are illustrated by specific specific examples below, and those skilled in the art can fully understand the advantages and functions of the present invention from the contents disclosed in this specification.
1、CrMoNbTiZr高熵合金成分设计。1. CrMoNbTiZr high entropy alloy composition design.
本实施方式是一种由Cr、Mo、Nb、Ti和Zr五种元素组成的CrMoNbTiZr高熵合金,其中,Cr:Mo:Nb:Ti:Zr的摩尔比依次为:1:1:1:1:1。This embodiment is a CrMoNbTiZr high-entropy alloy composed of five elements: Cr, Mo, Nb, Ti and Zr, wherein the molar ratio of Cr:Mo:Nb:Ti:Zr is: 1:1:1:1 :1.
2、CrMoNbTiZr高熵合金的制备。2. Preparation of CrMoNbTiZr high entropy alloy.
高熵合金的制备是最关键的一个步骤,制备过程如下:The preparation of high-entropy alloys is the most critical step, and the preparation process is as follows:
1)原料准备:本发明采用的合金冶炼原料为高纯(纯度在99.5%以上)Cr、Mo、Nb、Ti和Zr元素,所用的原材料全部为粉末状材料;1) Raw material preparation: the alloy smelting raw materials used in the present invention are high-purity (purity above 99.5%) Cr, Mo, Nb, Ti and Zr elements, and all raw materials used are powder materials;
2)称重配粉:按照摩尔比例进行精确的称重配比,并将称重之后的粉末材料混合在一起,使用V型混粉机上匀速混合10h;2) Weighing and mixing powder: Carry out accurate weighing and mixing ratio according to the molar ratio, and mix the weighed powder materials together, and use a V-type powder mixing machine to mix at a constant speed for 10 hours;
3)压制成块:将混合好的粉末在冷压机上以200MPa的压力冷压成形,保压时间约为90-120s;3) Pressing into blocks: cold press the mixed powder on a cold press with a pressure of 200MPa, and the holding time is about 90-120s;
4)熔炼高熵合金:①使用真空非自耗电极电弧炉熔炼合金,首先将块状的样品放置在外围四个熔炼槽内,并将纯钛粒放置在最中间的熔炼槽内,放置完毕之后关闭炉门,拧紧样品室四个封闭旋钮;②对样品室抽真空,当真空度达到5×10-3Pa后,充入纯度为99.99%氩气直到炉内压力达到半个大气压,并重复此步骤2~3次;重复抽真空的目的在于洗气,反复充放氩气使得熔炼炉中的空气尽量减到最小;③真空抽完之后充放氩气直到炉内压力达到半个大气压,此时便可开始进行熔炼;在熔炼样品之前先将熔炼池中的纯钛粒熔炼一遍,尽量将炉中残留的氧气消耗殆尽;④熔炼过程中为了使原料更好地混合均匀,每次熔炼合金熔化后,电弧保持时间在90~120s,待合金块冷却后将其翻转,如此重复4次以上;⑤熔炼完成之后,待合金随炉冷却至室温后打开非自耗真空电弧熔炼炉取出样品,最终得到一个椭球状的CrMoNbTiZr高熵合金铸锭。4) Melting high-entropy alloys: ①Use a vacuum non-consumable electrode electric arc furnace to melt the alloy. First, place the blocky samples in the four peripheral melting tanks, and place the pure titanium particles in the middle melting tank. After completion, close the furnace door and tighten the four closed knobs of the sample chamber; ② Vacuumize the sample chamber. When the vacuum reaches 5×10 -3 Pa, fill in argon with a purity of 99.99% until the pressure in the furnace reaches half an atmosphere. And repeat this step 2 to 3 times; the purpose of repeated vacuuming is to wash the gas, repeatedly filling and discharging argon to minimize the air in the melting furnace; ③After vacuuming, fill and discharge argon until the pressure in the furnace reaches half Atmospheric pressure, the smelting can start at this time; before smelting the sample, smelt the pure titanium particles in the smelting pool to try to consume the residual oxygen in the furnace; After each smelting alloy is melted, the arc is kept for 90~120s, and the alloy block is turned over after cooling, and this is repeated more than 4 times; The sample was taken out of the furnace, and finally an ellipsoidal CrMoNbTiZr high-entropy alloy ingot was obtained.
3、CrMoNbTiZr高熵合金的组织结构及性能。3. Microstructure and properties of CrMoNbTiZr high-entropy alloys.
1)X射线衍射(XRD)测试及相组成分析1) X-ray diffraction (XRD) test and phase composition analysis
利用线切割将获得的铸锭切割成5mm×5mm×4mm尺寸的方形样品,再依次将样品依次使用800#、1200#、1500#和2000#的金相砂纸仔细研磨,再使用抛光机进行抛光。X射线衍射物相分析在日本理学Rigaku D/Max 2500 X射线衍射仪上进行。设备技术规格:使用Cu作为辐射源,石墨单色器,操作电压40kV、电流250mA,自转靶。扫描速率8°/min,选择衍射角范围为2θ=5-90°。利用MDI-Jade 6.0软件分析实验数据,确定物相。如图1所示的CrMoNbTiZr高熵合金的XRD测试结果显示CrMoNbTiZr高熵合金的主要组成相为体心立方结构固熔体相和少量的Laves相。而这其中的Laves相主要为CrTi2、Mo3Nb金属间化合物。Cut the obtained ingot into a square sample with a size of 5mm×5mm×4mm by wire cutting, and then carefully grind the sample with 800#, 1200#, 1500# and 2000# metallographic sandpaper in turn, and then polish it with a polishing machine . X-ray diffraction phase analysis was performed on a Rigaku D/Max 2500 X-ray diffractometer. Technical specifications of the equipment: use Cu as the radiation source, graphite monochromator, operating voltage 40kV, current 250mA, self-rotating target. The scan rate is 8°/min, and the diffraction angle range is selected to be 2θ=5-90°. MDI-Jade 6.0 software was used to analyze the experimental data and determine the phase. The XRD test results of the CrMoNbTiZr high-entropy alloy shown in Figure 1 show that the main constituent phase of the CrMoNbTiZr high-entropy alloy is a solid solution phase with a body-centered cubic structure and a small amount of Laves phase. The Laves phases are mainly CrTi 2 , Mo 3 Nb intermetallic compounds.
2)显微组织分析2) Microstructure analysis
利用线切割将获得的铸锭切割成5mm×5mm×4mm尺寸的方形样品,再依次将样品依次使用800#、1200#、1500#和2000#的金相砂纸仔细研磨,再使用抛光机进行抛光。用扫描电子显微镜观察试样组织形貌。由图2可知CrMoNbTiZr高熵合金生成的胞状晶组织。Cut the obtained ingot into a square sample with a size of 5mm×5mm×4mm by wire cutting, and then carefully grind the sample with 800#, 1200#, 1500# and 2000# metallographic sandpaper in turn, and then polish it with a polishing machine . The morphology of the samples was observed with a scanning electron microscope. It can be seen from Figure 2 that the cellular structure of the CrMoNbTiZr high-entropy alloy is formed.
3)显微硬度测定及分析3) Microhardness measurement and analysis
利用线切割将获得的铸锭切割成5mm×5mm×4mm尺寸的方形样品,再依次将样品依次使用800#、1200#、1500#和2000#的金相砂纸仔细研磨,再使用抛光机进行抛光。采用HZr-1000型显微硬度计测试试样的硬度,该显微硬度计的试验力为9.807N(1kgf),加载15s。试样选取7个不同位置测量其显微硬度,去掉最高硬度值和最低硬度值,取其余硬度值的平均数值作为试样的显微硬度值,最终得到该合金的显微硬度值为689HV。Cut the obtained ingot into a square sample with a size of 5mm×5mm×4mm by wire cutting, and then carefully grind the sample with 800#, 1200#, 1500# and 2000# metallographic sandpaper in turn, and then polish it with a polishing machine . A HZr-1000 microhardness tester was used to test the hardness of the sample, the test force of the microhardness tester was 9.807N (1kgf), and the load was 15s. Select 7 different positions of the sample to measure its microhardness, remove the highest hardness value and the lowest hardness value, take the average value of the remaining hardness values as the microhardness value of the sample, and finally obtain the microhardness value of the alloy as 689HV.
4)合金的耐腐蚀性能4) Corrosion resistance of the alloy
利用线切割将获得的铸锭切割成5mm×5mm×4mm尺寸的方形样品,再依次将样品依次使用800#、1200#、1500#和2000#的金相砂纸仔细研磨,再使用抛光机进行抛光。将研磨抛光好的样品放入酒精中用超声波清洗仪清洗30min,并干燥称量,之后将样品分别全浸入浓度为5%、15%、30%的HNO3溶液以及3.5%的NaCl溶液中,保持6h、12h、24h、48h、96h后取出,分析腐蚀前后试样表面状态及重量变化。Cut the obtained ingot into a square sample with a size of 5mm×5mm×4mm by wire cutting, and then carefully grind the sample with 800#, 1200#, 1500# and 2000# metallographic sandpaper in turn, and then polish it with a polishing machine . Put the ground and polished samples into alcohol and clean them with an ultrasonic cleaner for 30 minutes, dry and weigh them, and then immerse the samples in 5%, 15%, 30% HNO3 solutions and 3.5% NaCl solutions respectively. After keeping for 6h, 12h, 24h, 48h, 96h, take it out, and analyze the surface state and weight change of the sample before and after corrosion.
从表1中看出,合金在不同腐蚀液中的质量变化很小,且合金的表面几无改变,表明本申请制备的CrMoNbTiZr高熵合金具有优良的耐腐蚀性能。It can be seen from Table 1 that the quality of the alloy changes little in different corrosive solutions, and the surface of the alloy hardly changes, indicating that the CrMoNbTiZr high-entropy alloy prepared by the present application has excellent corrosion resistance.
表1实例中CrMoNbTiZr高熵合金在3.5%的NaCl溶液以及5%、15%、30%的HNO3溶液中
浸泡96h后的质量变化
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710458007.1A CN107142410B (en) | 2017-06-16 | 2017-06-16 | CrMoNbTiZr high entropy alloy materials and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710458007.1A CN107142410B (en) | 2017-06-16 | 2017-06-16 | CrMoNbTiZr high entropy alloy materials and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107142410A CN107142410A (en) | 2017-09-08 |
CN107142410B true CN107142410B (en) | 2018-08-24 |
Family
ID=59781494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710458007.1A Expired - Fee Related CN107142410B (en) | 2017-06-16 | 2017-06-16 | CrMoNbTiZr high entropy alloy materials and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107142410B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108220740B (en) * | 2018-01-15 | 2020-07-07 | 湘潭大学 | Wear-resistant and corrosion-resistant high-entropy alloy material and preparation method thereof |
CN108441744B (en) * | 2018-02-06 | 2020-04-21 | 湘潭大学 | A kind of self-lubricating anti-friction and wear-resistant alloy material and preparation method thereof |
CN108220741B (en) * | 2018-02-14 | 2019-11-05 | 哈尔滨工业大学 | A kind of bio-medical high-entropy alloy and preparation method thereof |
CN109161776A (en) * | 2018-10-10 | 2019-01-08 | 湘潭大学 | A kind of porous high-entropy alloy of pre-alloyed CrMoNbTiZr and preparation method thereof |
CN109252199A (en) * | 2018-11-23 | 2019-01-22 | 西安工业大学 | A kind of high entropy alloy material of surface ceramic deposition and preparation method thereof |
CN109402482B (en) * | 2018-12-10 | 2022-07-05 | 北京中辰至刚科技有限公司 | Light high-entropy alloy with high strength and high plasticity and preparation method thereof |
CN110358964B (en) * | 2019-07-24 | 2021-11-05 | 中国科学院金属研究所 | A kind of MoVNbTiCrx high-entropy alloy for nuclear power and preparation method thereof |
CN111058076B (en) * | 2019-12-30 | 2020-11-20 | 安徽工业大学 | A Zr-based high-entropy alloy material and a method for synthesizing a porous spherical structure on the surface of a Zr-based high-entropy alloy |
CN111850372B (en) * | 2020-06-23 | 2021-12-07 | 湘潭大学 | A series of FeCoCrNiW (VC)XPreparation of high-entropy alloy and precipitation strengthening process thereof |
CN112553517B (en) * | 2020-12-04 | 2022-06-21 | 湘潭大学 | Preparation method and process of wear-resistant CrMoNiTaHfW high-entropy alloy |
CN115505813B (en) * | 2022-09-20 | 2023-05-23 | 中国科学院兰州化学物理研究所 | B-doped high-entropy alloy wear-resistant material with multistage precipitation strengthening function, and preparation method and application thereof |
CN116024480B (en) * | 2023-01-10 | 2024-10-11 | 昆明理工大学 | High-entropy alloy material and preparation method thereof |
CN116334453A (en) * | 2023-03-03 | 2023-06-27 | 山东创新金属科技有限公司 | High-wear-resistance aluminum alloy material and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101728936B1 (en) * | 2014-07-28 | 2017-04-21 | 세종대학교산학협력단 | High entropy alloy having excellent strength and ductility |
CN105671404B (en) * | 2014-11-19 | 2017-11-03 | 北京科技大学 | A kind of TiZrHfNb base high-entropy alloys of the common alloying of nitrogen oxygen and preparation method thereof |
CN105671392B (en) * | 2014-11-19 | 2017-11-03 | 北京科技大学 | A kind of TiZrHfNb base high-entropy alloys of nitrogen reinforcing and preparation method thereof |
KR101708763B1 (en) * | 2015-05-04 | 2017-03-08 | 한국과학기술연구원 | Bcc alloys with strong resistance against high temperature neutron irradiation damage |
CN105296836B (en) * | 2015-11-17 | 2017-12-08 | 北京科技大学 | A kind of N with SMExMyHigh-entropy alloy and preparation method thereof |
-
2017
- 2017-06-16 CN CN201710458007.1A patent/CN107142410B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN107142410A (en) | 2017-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107142410B (en) | CrMoNbTiZr high entropy alloy materials and preparation method thereof | |
CN107267841B (en) | A kind of CrMoNbTaV high-entropy alloys and preparation method thereof | |
CN107523740B (en) | CuCrFeNiTi high-entropy alloy material and preparation method thereof | |
CN108220740B (en) | Wear-resistant and corrosion-resistant high-entropy alloy material and preparation method thereof | |
CN104213013B (en) | A kind of TiZrNbMoxHfy multi-principal superalloy and preparation method thereof | |
CN108130470A (en) | A kind of MoNbTaZrHf high-entropy alloys and preparation method thereof | |
CN108179345B (en) | A kind of wear-resistant, corrosion-resistant CrVNiHfNb high-entropy alloy and preparation method thereof | |
CN108642399A (en) | One kind having base high-entropy alloy and preparation method thereof | |
CN111549270A (en) | A kind of high-entropy alloy material with low density, high strength and high plasticity and preparation method thereof | |
CN110616341B (en) | CoCrNiNbx eutectic medium-entropy alloy and preparation method thereof | |
CN113789464B (en) | Ceramic phase reinforced refractory high-entropy alloy and preparation method thereof | |
CN107034410A (en) | A kind of many pivot high-entropy alloys and preparation method thereof | |
CN110541103B (en) | Quaternary refractory high-entropy alloy with high strength and high plasticity and preparation method thereof | |
CN106319260B (en) | A kind of high-melting-point high-entropy alloy and its coating production | |
CN109252082A (en) | A kind of multi-element alloyed infusibility high-entropy alloy and preparation method thereof | |
CN112647008A (en) | AlCrMoNbTaTi high-entropy alloy material and preparation method thereof | |
CN110938769B (en) | Eutectic medium-entropy alloy and preparation method thereof | |
CN113373366B (en) | Multi-element refractory high-entropy alloy and preparation method thereof | |
CN104152781A (en) | A high-entropy alloy of AlCoFeNiSi and a preparation method thereof | |
CN112553488B (en) | A kind of CrAlNbTiVZr high entropy alloy material and preparation method thereof | |
CN112553517B (en) | Preparation method and process of wear-resistant CrMoNiTaHfW high-entropy alloy | |
CN110923750B (en) | Preparation method of high-entropy alloy | |
CN109023015A (en) | CrCuNiMoV high entropy alloy material and preparation method thereof | |
CN109518018A (en) | MnNbTaTiV high entropy alloy material and preparation method thereof that one kind is wear-resisting, anti-corrosion | |
CN111440980A (en) | Zirconium-containing high-hardness corrosion-resistant high-entropy alloy material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Xiao Yifeng Inventor after: Kuang Wenhui Inventor after: Weng Chao Inventor after: Gong Weiwei Inventor after: Gong Wenjuan Inventor after: Wu Jing Inventor after: Xu Yanfei Inventor after: Qian Jinwen Inventor before: Xiao Yifeng Inventor before: Kuang Wenhui Inventor before: Gong Weiwei Inventor before: Gong Wenjuan Inventor before: Wu Jing Inventor before: Xu Yanfei Inventor before: Qian Jinwen |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180824 Termination date: 20210616 |
|
CF01 | Termination of patent right due to non-payment of annual fee |