CN107134491B - Vertical structure power electronic devices based on arcuate source field plate - Google Patents
Vertical structure power electronic devices based on arcuate source field plate Download PDFInfo
- Publication number
- CN107134491B CN107134491B CN201710198250.4A CN201710198250A CN107134491B CN 107134491 B CN107134491 B CN 107134491B CN 201710198250 A CN201710198250 A CN 201710198250A CN 107134491 B CN107134491 B CN 107134491B
- Authority
- CN
- China
- Prior art keywords
- layer
- source
- barrier layer
- thickness
- barrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 149
- 238000002161 passivation Methods 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 39
- 239000002184 metal Substances 0.000 claims abstract description 39
- 230000008569 process Effects 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000005036 potential barrier Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 352
- 239000000463 material Substances 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 27
- 239000004065 semiconductor Substances 0.000 claims description 19
- 239000003989 dielectric material Substances 0.000 claims description 14
- 239000011241 protective layer Substances 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 10
- 238000002513 implantation Methods 0.000 claims 2
- 230000003628 erosive effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 38
- 230000000903 blocking effect Effects 0.000 abstract description 31
- 238000005516 engineering process Methods 0.000 description 50
- 230000005669 field effect Effects 0.000 description 22
- 230000005684 electric field Effects 0.000 description 19
- 238000005566 electron beam evaporation Methods 0.000 description 14
- 230000008020 evaporation Effects 0.000 description 12
- 238000001704 evaporation Methods 0.000 description 12
- 238000001451 molecular beam epitaxy Methods 0.000 description 9
- 238000001020 plasma etching Methods 0.000 description 8
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000007943 implant Substances 0.000 description 7
- 238000005468 ion implantation Methods 0.000 description 7
- 229910002704 AlGaN Inorganic materials 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229910052733 gallium Inorganic materials 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- LKJPSUCKSLORMF-UHFFFAOYSA-N Monolinuron Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C=C1 LKJPSUCKSLORMF-UHFFFAOYSA-N 0.000 description 1
- -1 Sc 2 O 3 Inorganic materials 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/477—Vertical HEMTs or vertical HHMTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
- H10D64/112—Field plates comprising multiple field plate segments
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种基于弧形源场板的垂直结构电力电子器件,其包括:衬底(1)、漂移层(2)、孔径层(3)、左、右两个对称的电流阻挡层(4)、沟道层(6)、势垒层(7)和钝化层(12),沟道层(6)和势垒层(7)的两侧刻蚀有源槽(8),两侧源槽(8)中淀积有两个源极(9),源极(9)之间的势垒层上面淀积有栅极(10),衬底(1)下面淀积有漏极(11),钝化层(12)完全包裹在除漏极(11)底部以外的所有区域,钝化层两边刻有弧形源台阶(13),弧形源台阶处淀积有金属,形成弧形源场板(14),该弧形场板与源极电气连接。本发明击穿电压高、工艺简单、导通电阻小、成品率高,可用于电力电子系统。
The invention discloses a vertical structure power electronic device based on an arc-shaped source field plate, which comprises: a substrate (1), a drift layer (2), an aperture layer (3), and two symmetrical current blocking layers on the left and right (4), channel layer (6), potential barrier layer (7) and passivation layer (12), the both sides of channel layer (6) and potential barrier layer (7) etch active groove (8), Two sources (9) are deposited in the source grooves (8) on both sides, a gate (10) is deposited on the barrier layer between the sources (9), and a drain is deposited under the substrate (1). electrode (11), the passivation layer (12) is completely wrapped around all areas except the bottom of the drain electrode (11), arc-shaped source steps (13) are engraved on both sides of the passivation layer, metal is deposited on the arc-shaped source steps, An arcuate source field plate (14) is formed which is electrically connected to the source. The invention has the advantages of high breakdown voltage, simple process, small conduction resistance and high yield, and can be used in power electronic systems.
Description
技术领域technical field
本发明属于微电子技术领域,涉及半导体器件,特别是基于弧形源场板的垂直结构电力电子器件,可用于电力电子系统。The invention belongs to the technical field of microelectronics and relates to a semiconductor device, in particular to a power electronic device with a vertical structure based on an arc-shaped source field plate, which can be used in a power electronic system.
技术背景technical background
功率半导体器件是电力电子技术的核心元件,随着能源和环境问题的日益突出,研发新型高性能、低损耗功率器件就成为提高电能利用率、节约能源、缓解能源危机的有效途径之一。而在功率器件研究中,高速、高压与低导通电阻之间存在着严重的制约关系,合理、有效地改进这种制约关系是提高器件整体性能的关键。随着微电子技术的发展,传统第一代Si半导体和第二代GaAs半导体功率器件性能已接近其材料本身决定的理论极限。为了能进一步减少芯片面积、提高工作频率、提高工作温度、降低导通电阻、提高击穿电压、降低整机体积、提高整机效率,以GaN为代表的宽禁带半导体材料,凭借其更大的禁带宽度、更高的临界击穿电场和更高的电子饱和漂移速度,且化学性能稳定、耐高温、抗辐射等突出优点,在制备高性能功率器件方面脱颖而出,应用潜力巨大。特别是采用GaN基异质结结构的横向高电子迁移率晶体管,即横向GaN基高电子迁移率晶体管HEMT器件,更是因其低导通电阻、高击穿电压、高工作频率等特性,成为了国内外研究和应用的热点、焦点。Power semiconductor devices are the core components of power electronics technology. As energy and environmental issues become increasingly prominent, research and development of new high-performance, low-loss power devices has become one of the effective ways to improve power utilization, save energy, and alleviate energy crises. In the research of power devices, there is a serious restrictive relationship between high speed, high voltage and low on-resistance. Reasonable and effective improvement of this restrictive relationship is the key to improving the overall performance of the device. With the development of microelectronics technology, the performance of traditional first-generation Si semiconductors and second-generation GaAs semiconductor power devices has approached the theoretical limit determined by their materials themselves. In order to further reduce the chip area, increase the operating frequency, increase the operating temperature, reduce the on-resistance, increase the breakdown voltage, reduce the volume of the whole machine, and improve the efficiency of the whole machine, the wide bandgap semiconductor material represented by GaN, with its larger The bandgap width, higher critical breakdown electric field and higher electron saturation drift velocity, as well as the outstanding advantages of stable chemical properties, high temperature resistance, and radiation resistance, stand out in the preparation of high-performance power devices and have great application potential. In particular, lateral high electron mobility transistors using a GaN-based heterojunction structure, that is, lateral GaN-based high electron mobility transistor HEMT devices, are becoming more popular due to their low on-resistance, high breakdown voltage, and high operating frequency. The hot spot and focus of research and application at home and abroad.
然而,在横向GaN基HEMT器件中,为了获得更高的击穿电压,需要增加栅漏间距,这会增大器件尺寸和导通电阻,减小单位芯片面积上的有效电流密度和芯片性能,从而导致芯片面积和研制成本的增加。此外,在横向GaN基HEMT器件中,由高电场和表面态所引起的电流崩塌问题较为严重,尽管当前已有众多抑制措施,但电流崩塌问题依然没有得到彻底解决。为了解决上述问题,研究者们提出了垂直型GaN基电流孔径异质结场效应器件,也是一种垂直结构电力电子器件,参见AlGaN/GaN current aperture vertical electrontransistors,IEEE Device Research Conference,pp.31-32,2002。GaN基电流孔径异质结场效应器件可通过增加漂移区厚度提高击穿电压,避免了牺牲器件尺寸和导通电阻的问题,因此可以实现高功率密度芯片。而且在GaN基电流孔径异质结场效应器件中,高电场区域位于半导体材料体内,这可以彻底地消除电流崩塌问题。2004年,Ilan Ben-Yaacov等人利用刻蚀后MOCVD再生长沟道技术研制出AlGaN/GaN电流孔径异质结场效应器件,该器件未采用钝化层,最大输出电流为750mA/mm,跨导为120mS/mm,两端栅击穿电压为65V,且电流崩塌效应得到显著抑制,参见AlGaN/GaN current aperture vertical electrontransistors with regrown channels,Journal of Applied Physics,Vol.95,No.4,pp.2073-2078,2004。2012年,Srabanti Chowdhury等人利用Mg离子注入阻挡层结合等离子辅助MBE再生长AlGaN/GaN异质结的技术,研制出基于GaN衬底的电流孔径异质结场效应器件,该器件采用3μm漂移区,最大输出电流为4kA·cm-2,导通电阻为2.2mΩ·cm2,击穿电压为250V,且抑制电流崩塌效果好,参见CAVET on Bulk GaN Substrates Achieved WithMBE-Regrown AlGaN/GaN Layers to Suppress Dispersion,IEEE Electron DeviceLetters,Vol.33,No.1,pp.41-43,2012。同年,由Masahiro Sugimoto等人提出的一种增强型GaN基电流孔径异质结场效应器件获得授权,参见Transistor,US8188514B2,2012。此外,2014年,Hui Nie等人基于GaN衬底研制出一种增强型GaN基电流孔径异质结场效应器件,该器件阈值电压为0.5V,饱和电流大于2.3A,击穿电压为1.5kV,导通电阻为2.2mΩ·cm2,参见1.5-kV and 2.2-mΩ-cm2Vertical GaN Transistors on Bulk-GaN Substrates,IEEEElectron Device Letters,Vol.35,No.9,pp.939-941,2014。However, in lateral GaN-based HEMT devices, in order to obtain a higher breakdown voltage, the gate-drain spacing needs to be increased, which will increase the device size and on-resistance, and reduce the effective current density per unit chip area and chip performance. This leads to an increase in chip area and development cost. In addition, in lateral GaN-based HEMT devices, the problem of current collapse caused by high electric field and surface states is more serious. Although there are many suppression measures, the problem of current collapse has not been completely solved. In order to solve the above problems, researchers have proposed a vertical GaN-based current aperture heterojunction field effect device, which is also a vertical structure power electronic device, see AlGaN/GaN current aperture vertical electrontransistors, IEEE Device Research Conference, pp.31- 32, 2002. GaN-based current aperture heterojunction field effect devices can increase the breakdown voltage by increasing the thickness of the drift region, avoiding the problem of sacrificing device size and on-resistance, so high power density chips can be realized. Moreover, in GaN-based current aperture heterojunction field effect devices, the high electric field region is located in the semiconductor material body, which can completely eliminate the current collapse problem. In 2004, Ilan Ben-Yaacov and others used MOCVD regrowth channel technology after etching to develop an AlGaN/GaN current aperture heterojunction field effect device. The device does not use a passivation layer, and the maximum output current is 750mA/mm. The conductance is 120mS/mm, the gate breakdown voltage at both ends is 65V, and the current collapse effect is significantly suppressed, see AlGaN/GaN current aperture vertical electron transistors with regrown channels, Journal of Applied Physics, Vol.95, No.4, pp. 2073-2078, 2004. In 2012, Srabanti Chowdhury and others used the technology of Mg ion implantation barrier layer combined with plasma-assisted MBE to re-grow AlGaN/GaN heterojunction, and developed a current aperture heterojunction field effect device based on GaN substrate. The device adopts a 3μm drift region, the maximum output current is 4kA·cm -2 , the on-resistance is 2.2mΩ·cm 2 , the breakdown voltage is 250V, and the effect of suppressing current collapse is good. See CAVET on Bulk GaN Substrates Achieved With MBE-Regrown AlGaN/GaN Layers to Suppress Dispersion, IEEE Electron Device Letters, Vol.33, No.1, pp.41-43, 2012. In the same year, an enhanced GaN-based current aperture heterojunction field effect device proposed by Masahiro Sugimoto et al. was authorized, see Transistor, US8188514B2, 2012. In addition, in 2014, Hui Nie et al. developed an enhanced GaN-based current aperture heterojunction field effect device based on a GaN substrate. The threshold voltage of the device is 0.5V, the saturation current is greater than 2.3A, and the breakdown voltage is 1.5kV. , the on-resistance is 2.2mΩ·cm 2 , see 1.5-kV and 2.2-mΩ-cm 2 Vertical GaN Transistors on Bulk-GaN Substrates, IEEE Electron Device Letters, Vol.35, No.9, pp.939-941, 2014 .
传统GaN基电流孔径异质结场效应器件是基于GaN基宽禁带半导体异质结结构,其包括:衬底1、漂移层2、孔径层3、左、右两个对称的电流阻挡层4、孔径5、沟道层6、势垒层7和钝化层12;沟道层6和势垒层7的两侧刻蚀有源槽8,两侧源槽8中淀积有两个源极9,源极之间的势垒层上面淀积有栅极10,衬底1下面淀积有漏极11,钝化层12完全包裹除了漏极底部以外的所有区域,如图1所示。Traditional GaN-based current aperture heterojunction field effect devices are based on GaN-based wide-bandgap semiconductor heterojunction structures, which include: substrate 1, drift layer 2, aperture layer 3, and two symmetrical current blocking layers 4 on the left and right , aperture 5, channel layer 6, potential barrier layer 7 and passivation layer 12; the two sides of channel layer 6 and potential barrier layer 7 etch active groove 8, and two sources are deposited in source groove 8 on both sides The gate 10 is deposited on the barrier layer between the source electrodes 9, the drain 11 is deposited under the substrate 1, and the passivation layer 12 completely covers all regions except the bottom of the drain, as shown in Figure 1 .
经过十多年的理论和实验研究,研究者们发现,上述传统GaN基电流孔径异质结场效应器件结构上存在固有缺陷,会导致器件中电场强度分布极不均匀,尤其是在阻挡层与孔径区域交界面下方附近的半导体材料中存在极高的电场峰值,从而引起器件过早击穿。这使得实际工艺中很难实现通过增加n型GaN漂移层的厚度来持续提高器件的击穿电压。因此,传统结构GaN基电流孔径异质结场效应器件的击穿电压普遍不高。为了获得更高的器件击穿电压,并可以通过增加n型GaN漂移层的厚度来持续提高器件的击穿电压,2013年,Zhongda Li等人利用数值仿真技术研究了一种基于超结的增强型GaN基电流孔径异质结场效应器件,研究结果表明超结结构可以有效调制器件内部的电场分布,使处于关态时器件内部各处电场强度趋于均匀分布,因此器件击穿电压可达5~20kV,且采用3μm半柱宽时击穿电压为12.4kV,而导通电阻仅为4.2mΩ·cm2,参见Design and Simulation of 5-20-kVGaN Enhancement-Mode Vertical Superjunction HEMT,IEEE Transactions onElectron Decices,Vol.60,No.10,pp.3230-3237,2013。采用超结的GaN基电流孔径异质结场效应器件从理论上可以获得高击穿电压,且可实现击穿电压随n型GaN漂移层厚度的增加而持续提高,是目前国内外已报道文献中击穿电压最高的一种非常有效的大功率器件结构。然而,超结结构的制造工艺难度非常大,尤其是厚n型GaN漂移层情况下,几乎无法实现高性能超结结构的制作。因此,探索和研发制造工艺简单、击穿电压高、导通电阻小的新型GaN基电流孔径异质结场效应器件,非常必要、迫切,具有重要的现实意义。After more than ten years of theoretical and experimental research, the researchers found that the above-mentioned traditional GaN-based current aperture heterojunction field effect device has inherent defects in the structure, which will lead to extremely uneven electric field intensity distribution in the device, especially in the barrier layer and Extremely high electric field peaks exist in the semiconductor material near the interface below the aperture region, causing premature breakdown of the device. This makes it difficult to continuously increase the breakdown voltage of the device by increasing the thickness of the n-type GaN drift layer in the actual process. Therefore, the breakdown voltage of GaN-based current aperture heterojunction field effect devices with traditional structures is generally not high. In order to obtain a higher breakdown voltage of the device and continuously increase the breakdown voltage of the device by increasing the thickness of the n-type GaN drift layer, in 2013, Zhongda Li et al. used numerical simulation technology to study a superjunction-based enhanced Type GaN-based current aperture heterojunction field effect device. The research results show that the superjunction structure can effectively modulate the electric field distribution inside the device, so that the electric field intensity inside the device tends to be evenly distributed when it is in the off state, so the breakdown voltage of the device can reach 5-20kV, and the breakdown voltage is 12.4kV when using 3μm half column width, and the on-resistance is only 4.2mΩ·cm 2 , see Design and Simulation of 5-20-kVGaN Enhancement-Mode Vertical Superjunction HEMT, IEEE Transactions on Electron Decices, Vol.60, No.10, pp.3230-3237, 2013. GaN-based current aperture heterojunction field-effect devices using superjunctions can theoretically obtain high breakdown voltages, and the breakdown voltage can continue to increase with the increase in the thickness of the n-type GaN drift layer, which has been reported in the literature at home and abroad. A very efficient high-power device structure with the highest breakdown voltage. However, the manufacturing process of the super junction structure is very difficult, especially in the case of a thick n-type GaN drift layer, it is almost impossible to realize the fabrication of a high performance super junction structure. Therefore, it is very necessary and urgent to explore and develop new GaN-based current aperture heterojunction field effect devices with simple manufacturing process, high breakdown voltage and low on-resistance, and has important practical significance.
场板结构已成为横向GaN基HEMT器件中用于提高器件击穿电压和可靠性的一种成熟、有效的场终端技术,且该技术可以实现器件击穿电压随场板的长度和结构变化而持续增加。近年来,通过利用场板结构已使横向GaN基HEMT器件的性能取得了突飞猛进的提升,参见High Breakdown Voltage AlGaN–GaN Power-HEMT Design and High CurrentDensity Switching Behavior,IEEE Transactions on Electron Devices,Vol.50,No.12,pp.2528-2531,2003,和High Breakdown Voltage AlGaN–GaN HEMTs Achieved byMultiple Field Plates,IEEE Electron Device Letters,Vol.25,No.4,pp.161-163,2004,以及High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With IntegratedSlant Field Plates,IEEE Electron Device Letters,Vol.27,No.9,pp.713-715,2006。然而,截至目前国内外仍然没有将场板结构成功应用于GaN基电流孔径异质结场效应器件中的先例,这主要是由于GaN基电流孔径异质结场效应器件结构上的固有缺陷,会导致器件漂移层中最强电场峰位于阻挡层与孔径层交界面下方附近,该电场峰远离漂移层两侧表面,因此场板结构几乎无法发挥有效调制器件中电场分布的作用,即使在GaN基电流孔径异质结场效应器件中采用了场板结构,器件性能也几乎没有任何提高。The field plate structure has become a mature and effective field termination technology for improving the device breakdown voltage and reliability in lateral GaN-based HEMT devices, and this technology can realize that the device breakdown voltage varies with the length and structure of the field plate. Continued to increase. In recent years, the performance of lateral GaN-based HEMT devices has been improved by leaps and bounds by using the field plate structure, see High Breakdown Voltage AlGaN–GaN Power-HEMT Design and High CurrentDensity Switching Behavior, IEEE Transactions on Electron Devices, Vol.50, No.12, pp.2528-2531, 2003, and High Breakdown Voltage AlGaN–GaN HEMTs Achieved by Multiple Field Plates, IEEE Electron Device Letters, Vol.25, No.4, pp.161-163, 2004, and High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates, IEEE Electron Device Letters, Vol.27, No.9, pp.713-715, 2006. However, up to now, there is still no precedent of the field plate structure being successfully applied to GaN-based current aperture heterojunction field-effect devices at home and abroad. This is mainly due to the inherent defects in the structure of GaN-based current aperture heterojunction field-effect devices. As a result, the strongest electric field peak in the drift layer of the device is located near the interface between the barrier layer and the aperture layer, and the electric field peak is far away from the surfaces on both sides of the drift layer. Therefore, the field plate structure can hardly play the role of effectively modulating the electric field distribution in the device, even in GaN-based The field plate structure is adopted in the current aperture heterojunction field effect device, and there is almost no improvement in device performance.
发明内容Contents of the invention
本发明的目的在于针对上述已有技术的不足,提供一种基于弧形源场板的垂直结构电力电子器件,以减小器件的制作难度,实现击穿电压的可持续增加,缓解器件击穿电压与导通电阻之间的矛盾,改善器件的击穿特性和可靠性。The purpose of the present invention is to address the shortcomings of the above-mentioned prior art, and provide a vertical structure power electronic device based on arc-shaped source field plates, so as to reduce the difficulty of making the device, realize the sustainable increase of the breakdown voltage, and alleviate the breakdown of the device. The contradiction between voltage and on-resistance improves the breakdown characteristics and reliability of the device.
为实现上述目的,本发明的技术方案是这样实现的:To achieve the above object, the technical solution of the present invention is achieved in that:
一、器件结构1. Device structure
一种基于弧形源场板的垂直结构电力电子器件,包括:衬底1、漂移层2、孔径层3、左、右两个对称的电流阻挡层4、沟道层6、势垒层7和钝化层12,沟道层6和势垒层7的两侧刻蚀有源槽8,两侧源槽8中淀积有两个源极9,源极9之间的势垒层上面淀积有栅极10,衬底1下面淀积有漏极11,钝化层12完全包裹在除漏极11底部以外的所有区域,两个对称的电流阻挡层4之间形成孔径5,其特征在于:A vertical structure power electronic device based on an arc-shaped source field plate, including: a substrate 1, a drift layer 2, an aperture layer 3, two symmetrical current blocking layers 4 on the left and right, a channel layer 6, and a barrier layer 7 and the passivation layer 12, the active trenches 8 are etched on both sides of the channel layer 6 and the barrier layer 7, two sources 9 are deposited in the source trenches 8 on both sides, and the barrier layer between the sources 9 A gate 10 is deposited, a drain 11 is deposited under the substrate 1, a passivation layer 12 is completely wrapped around all areas except the bottom of the drain 11, and an aperture 5 is formed between two symmetrical current blocking layers 4. Features:
所述两个电流阻挡层4,采用由第一阻挡层41和第二阻挡层42构成的二级台阶结构,且第一阻挡层41位于第二阻挡层42的外侧;The two current blocking layers 4 adopt a two-level stepped structure composed of a first blocking layer 41 and a second blocking layer 42, and the first blocking layer 41 is located outside the second blocking layer 42;
所述钝化层12,采用弧形结构,即在钝化层的两边刻有弧形源台阶13,弧形源台阶上淀积有金属,形成对称的两个弧形源场板14,该弧形源场板与源极电气连接。The passivation layer 12 adopts an arc-shaped structure, that is, arc-shaped source steps 13 are engraved on both sides of the passivation layer, and metal is deposited on the arc-shaped source steps to form two symmetrical arc-shaped source field plates 14. The arc-shaped source field plate is electrically connected with the source.
所述弧形源场板14,其上方以及钝化层12上方均覆盖有绝缘介质材料,形成保护层15。The arc-shaped source field plate 14 and the passivation layer 12 are covered with an insulating dielectric material to form a protective layer 15 .
二、制作方法2. Production method
本发明制作基于弧形源场板的垂直结构电力电子器件的方法,包括如下过程:The method of the present invention for manufacturing a vertical structure power electronic device based on an arc-shaped source field plate includes the following process:
A.在衬底1上外延厚度为3~50μm、掺杂浓度为1×1015~1×1018cm-3的n-型GaN半导体材料,形成漂移层2;A. epitaxial n - type GaN semiconductor material with a thickness of 3-50 μm and a doping concentration of 1×10 15 to 1×10 18 cm -3 on the substrate 1 to form a drift layer 2 ;
B.在漂移层2上外延n型GaN半导体材料,形成厚度u为1.2~3μm、掺杂浓度为1×1015~1×1018cm-3的孔径层3;B. Epitaxial n-type GaN semiconductor material on the drift layer 2 to form an aperture layer 3 with a thickness u of 1.2-3 μm and a doping concentration of 1×10 15 to 1×10 18 cm −3 ;
C.在孔径层3上第一次制作掩模,利用该掩模在孔径层内的两侧位置注入剂量为1×1015~1×1016cm-2的p型杂质,制作厚度a与孔径层厚度u相同,宽度b为0.2~1μm的两个第一阻挡层41;C. Make a mask on the aperture layer 3 for the first time, use the mask to implant p-type impurities with a dose of 1×10 15 to 1×10 16 cm -2 on both sides of the aperture layer, and make a thickness a and Two first barrier layers 41 with the same aperture layer thickness u and a width b of 0.2-1 μm;
D.在孔径层3和第一阻挡层41上第二次制作掩模,利用该掩模在左右第一阻挡层41之间的孔径层内的两侧注入剂量为1×1015~1×1016cm-2的p型杂质,制作厚度d为0.3~1μm,宽度e等于1.1a的两个第二阻挡层42,两个第一阻挡层41和两个第二阻挡层42构成两个二级台阶结构的电流阻挡层4,两个对称的电流阻挡层4之间形成孔径5;D. Make a mask for the second time on the aperture layer 3 and the first barrier layer 41, and use the mask to implant doses of 1×10 15 to 1× on both sides of the aperture layer between the left and right first barrier layers 41 10 16 cm -2 of p-type impurities, making two second barrier layers 42 with a thickness d of 0.3-1 μm and a width e equal to 1.1a, two first barrier layers 41 and two second barrier layers 42 constitute two A current blocking layer 4 with a two-stage step structure, and an aperture 5 is formed between two symmetrical current blocking layers 4;
E.在两个第一阻挡层41、两个第二阻挡层42和孔径5上部外延GaN半导体材料,形成厚度为0.04~0.2μm的沟道层6;E. Epitaxial GaN semiconductor material on the two first barrier layers 41, the two second barrier layers 42 and the aperture 5 to form a channel layer 6 with a thickness of 0.04-0.2 μm;
F.在沟道层6上部外延GaN基宽禁带半导体材料,形成厚度为5~50nm的势垒层7;F. Epitaxial GaN-based wide-bandgap semiconductor material on the upper part of the channel layer 6 to form a barrier layer 7 with a thickness of 5-50 nm;
G.在势垒层7上第三次制作掩模,利用该掩模在势垒层7左、右两侧进行刻蚀,且刻蚀深度大于势垒层7的厚度,但小于沟道层6与势垒层7的总厚度,形成左、右两个源槽8;G. Make a mask on the barrier layer 7 for the third time, use the mask to etch the left and right sides of the barrier layer 7, and the etching depth is greater than the thickness of the barrier layer 7, but less than the channel layer 6 and the total thickness of the barrier layer 7 to form two left and right source grooves 8;
H.在两个源槽8上部和势垒层7的上部第四次制作掩模,利用该掩模在两个源槽中淀积金属,且所淀积金属的厚度大于源槽8的深度,以制作源极9;H. Make a mask for the fourth time on the upper part of the two source grooves 8 and the upper part of the barrier layer 7, use the mask to deposit metal in the two source grooves, and the thickness of the deposited metal is greater than the depth of the source groove 8 , to make source 9;
I.在源极9上部和势垒层7上部第五次制作掩模,利用该掩模在左、右两侧源极9之间的势垒层7上部淀积金属,以制作栅极10,栅极10与两个电流阻挡层4之间均存在水平方向上的交叠,交叠长度大于0μm;1. Make a mask for the fifth time on the top of the source electrode 9 and the top of the barrier layer 7, and utilize the mask to deposit metal on the top of the barrier layer 7 between the source electrodes 9 on the left and right sides to make the gate 10 , there is overlap in the horizontal direction between the gate 10 and the two current blocking layers 4, and the overlap length is greater than 0 μm;
J.在衬底1的背面上淀积金属,以制作漏极11;J. Deposit metal on the back side of the substrate 1 to make the drain 11;
K.在除了漏极11底部以外的其他所有区域淀积绝缘介质材料,形成包裹的钝化层12;K. Deposit an insulating dielectric material in all other regions except the bottom of the drain electrode 11 to form a wrapped passivation layer 12;
L.在钝化层12上部制作第六次掩模,利用该掩模在钝化层12的左右两边内进行刻蚀,形成弧形源台阶13,该弧形源台阶13的表面上低于第一阻挡层41下边缘的任意一点,与第一阻挡层41下边缘的垂直距离为g,与漂移层2的水平距离为r,且近似满足关系g=9.5-10.5exp(-0.6r),0μm<g≤8.5μm;该弧形源台阶13表面与第一阻挡层41下边缘处于同一水平高度的部位,与漂移层2的水平距离t为0.18μm;L. make the sixth mask on the passivation layer 12 top, use this mask to etch in the left and right sides of the passivation layer 12, form the arc source step 13, the surface of the arc source step 13 is lower than At any point on the lower edge of the first barrier layer 41, the vertical distance from the lower edge of the first barrier layer 41 is g, the horizontal distance from the drift layer 2 is r, and approximately satisfies the relationship g=9.5-10.5exp(-0.6r) , 0 μm<g≤8.5 μm; the surface of the arc-shaped source step 13 is at the same level as the lower edge of the first barrier layer 41, and the horizontal distance t from the drift layer 2 is 0.18 μm;
M.在钝化层12的上部制作第七次掩模,利用该掩模在左右两边的弧形源台阶13上淀积金属,形成左右对称的两个弧形源场板14,并将该两侧的弧形源场板14与源极9电气连接,弧形源场板14的上边缘所在高度等于或高于第一阻挡层41下边缘所在高度;M. Make the mask for the seventh time on the top of the passivation layer 12, utilize the mask to deposit metal on the arc source steps 13 on the left and right sides to form two symmetrical arc source field plates 14, and place the The arc-shaped source field plates 14 on both sides are electrically connected to the source 9, and the height of the upper edge of the arc-shaped source field plate 14 is equal to or higher than the height of the lower edge of the first barrier layer 41;
N.淀积绝缘介质材料,以完全覆盖两个弧形源场板14上部及钝化层12上部的区域,制作保护层15,完成整个器件的制作。N. Deposit insulating dielectric material to completely cover the upper part of the two arc-shaped source field plates 14 and the upper part of the passivation layer 12, and make a protective layer 15 to complete the manufacturing of the entire device.
本发明器件与传统GaN基电流孔径异质结场效应器件比较,具有以下优点:Compared with the traditional GaN-based current aperture heterojunction field effect device, the device of the present invention has the following advantages:
a.实现击穿电压持续增加。a. Realize continuous increase in breakdown voltage.
本发明采用二级台阶形式的电流阻挡层,使器件内部的第一阻挡层、第二阻挡层与孔径层交界面下方附近均会产生一个电场峰值,且前者电场峰值大于后者电场峰值;由于前者电场峰值非常接近漂移层两侧表面,便可以利用弧形源场板有效调制漂移层两侧表面附近的电场峰值,以在弧形源场板处漂移层两侧表面附近形成连续平缓的较高电场区;The present invention adopts the current blocking layer in the form of two steps, so that an electric field peak value will be generated near the interface between the first blocking layer, the second blocking layer and the aperture layer inside the device, and the former electric field peak value is greater than the latter electric field peak value; because The peak value of the former electric field is very close to the surfaces on both sides of the drift layer, so the arc-shaped source field plate can be used to effectively modulate the peak value of the electric field near the surfaces on both sides of the drift layer, so as to form a continuous and gentle gradient near the surfaces on both sides of the drift layer at the arc-shaped source field plate. High electric field area;
通过调整弧形源场板与漂移层之间钝化层的厚度、电流阻挡层的尺寸和掺杂等,可使得电流阻挡层与孔径层交界面下方附近的电场峰值与弧形源场板对应的漂移层内各电场峰值相等,且小于GaN基宽禁带半导体材料的击穿电场,从而提高了器件的击穿电压,且通过增加弧形源场板的长度可实现击穿电压的持续增加。By adjusting the thickness of the passivation layer between the arc-shaped source field plate and the drift layer, the size and doping of the current blocking layer, the peak value of the electric field near the interface between the current blocking layer and the aperture layer can be made to correspond to the arc-shaped source field plate The peak values of the electric fields in the drift layer are equal and smaller than the breakdown electric field of the GaN-based wide bandgap semiconductor material, thereby improving the breakdown voltage of the device, and the continuous increase of the breakdown voltage can be achieved by increasing the length of the arc-shaped source field plate .
b.在提高器件击穿电压的同时,器件导通电阻几乎恒定。b. While increasing the breakdown voltage of the device, the on-resistance of the device is almost constant.
本发明通过在器件两侧采用弧形源场板的方法来提高器件击穿电压,由于场板不会影响器件导通电阻,当器件导通时,在器件内部漂移层只存在由阻挡层所产生的耗尽区,并未引入其它耗尽区,因此,随着弧形源场板长度增加,器件的击穿电压持续增加,而导通电阻几乎保持恒定。The present invention improves the breakdown voltage of the device by adopting arc-shaped source field plates on both sides of the device. Since the field plates will not affect the on-resistance of the device, when the device is turned on, only the drift layer inside the device is formed by the barrier layer. The resulting depletion region does not introduce other depletion regions. Therefore, as the length of the arc-shaped source field plate increases, the breakdown voltage of the device continues to increase, while the on-resistance remains almost constant.
c.工艺简单,易于实现,提高了成品率。c. The process is simple, easy to implement, and the yield rate is improved.
本发明器件结构中,弧形源场板的制作是通过在漂移层两侧的钝化层中刻蚀弧形源台阶并淀积金属而实现的,其工艺简单,且不会对器件中半导体材料产生损伤,避免了采用超结的GaN基电流孔径异质结场效应器件结构所带来的工艺复杂化问题,大大提高了器件的成品率。In the device structure of the present invention, the manufacture of the arc source field plate is realized by etching arc source steps and depositing metal in the passivation layer on both sides of the drift layer. The material is damaged, which avoids the complex process problem caused by the structure of the GaN-based current aperture heterojunction field effect device using a superjunction, and greatly improves the yield of the device.
以下结合附图和实施例进一步说明本发明的技术内容和效果。The technical contents and effects of the present invention will be further described below in conjunction with the accompanying drawings and embodiments.
附图说明Description of drawings
图1是传统GaN基电流孔径异质结场效应器件的结构图;Figure 1 is a structural diagram of a traditional GaN-based current aperture heterojunction field effect device;
图2是本发明基于弧形源场板的垂直结构电力电子器件的结构图;Fig. 2 is the structural diagram of the vertical structure power electronic device based on the arc source field plate of the present invention;
图3是本发明制作基于弧形源场板的垂直结构电力电子器件的流程图;Fig. 3 is a flow chart of the present invention for making a vertical structure power electronic device based on an arc-shaped source field plate;
图4是对传统器件及本发明器件仿真所得的击穿曲线图。Fig. 4 is a graph of breakdown curves obtained by simulating the conventional device and the device of the present invention.
具体实施方式Detailed ways
参照图2,本发明是基于GaN基宽禁带半导体异质结结构,其包括:衬底1、漂移层2、孔径层3、左右两个对称的电流阻挡层4、孔径5、沟道层6、势垒层7和钝化层12,沟道层6和势垒层7的两侧刻蚀有源槽8,两侧源槽8中淀积有两个源极9,源极9之间的势垒层上面淀积有栅极10,衬底1下面淀积有漏极11,钝化层12完全包裹在除漏极11底部以外的所有区域。其中:Referring to Fig. 2, the present invention is based on a GaN-based wide bandgap semiconductor heterojunction structure, which includes: a substrate 1, a drift layer 2, an aperture layer 3, two symmetrical current blocking layers 4 on the left and right, an aperture 5, and a channel layer 6. The barrier layer 7 and the passivation layer 12, the active groove 8 is etched on both sides of the channel layer 6 and the barrier layer 7, and two source electrodes 9 are deposited in the source groove 8 on both sides. A gate 10 is deposited on the barrier layer between them, a drain 11 is deposited under the substrate 1 , and a passivation layer 12 completely covers all areas except the bottom of the drain 11 . in:
所述漂移层2,位于衬底1上部,其厚度为3~50μm、掺杂浓度为1×1015~1×1018cm-3;The drift layer 2 is located on the upper part of the substrate 1, has a thickness of 3-50 μm, and a doping concentration of 1×10 15 to 1×10 18 cm -3 ;
所述孔径层3,位于漂移层2上部,其厚度u为1.2~3μm、掺杂浓度为1×1015~1×1018cm-3;The aperture layer 3 is located on the upper part of the drift layer 2, its thickness u is 1.2-3 μm, and its doping concentration is 1×10 15 to 1×10 18 cm -3 ;
所述电流阻挡层4,是由第一阻挡层41和第二阻挡层42构成的二级台阶结构,其中:两个第一阻挡层位于孔径层3内的左右两侧,两个第二阻挡层42位于两个第一阻挡层41内侧,各阻挡层均采用p型掺杂;该第一阻挡层41的厚度a为1.2~3μm,宽度b为0.2~1μm,该第二阻挡层42的厚度d为0.3~1μm,宽度为e,且a>d,e=1.1a;The current blocking layer 4 is a two-level stepped structure composed of a first blocking layer 41 and a second blocking layer 42, wherein: the two first blocking layers are located on the left and right sides of the aperture layer 3, and the two second blocking layers The layer 42 is located inside the two first barrier layers 41, and each barrier layer adopts p-type doping; the thickness a of the first barrier layer 41 is 1.2-3 μm, and the width b is 0.2-1 μm. The second barrier layer 42 Thickness d is 0.3-1 μm, width is e, and a>d, e=1.1a;
所述孔径5,位于两个电流阻挡层4之间;The aperture 5 is located between the two current blocking layers 4;
所述沟道层6,位于两个电流阻挡层4和孔径5上部,其厚度为0.04~0.2μm;The channel layer 6 is located on the upper part of the two current blocking layers 4 and the aperture 5, and its thickness is 0.04-0.2 μm;
所述势垒层7,位于沟道层6上部,其由若干层相同或不同的GaN基宽禁带半导体材料组成,厚度为5~50nm;The barrier layer 7 is located on the upper part of the channel layer 6, which is composed of several layers of the same or different GaN-based wide bandgap semiconductor materials, with a thickness of 5-50 nm;
所述源槽8,其刻蚀深度大于势垒层7的厚度,但小于沟道层6与势垒层7的总厚度;The etching depth of the source trench 8 is greater than the thickness of the barrier layer 7, but less than the total thickness of the channel layer 6 and the barrier layer 7;
所述源极9,其金属厚度大于源槽8的深度;The metal thickness of the source electrode 9 is greater than the depth of the source trench 8;
所述栅极10,其与两个电流阻挡层4之间均存在水平方向上的交叠,交叠长度大于0μm;The grid 10 overlaps with the two current blocking layers 4 in the horizontal direction, and the overlapping length is greater than 0 μm;
所述器件两边的钝化层12,其上刻有弧形源台阶13,该弧形源台阶上淀积金属,形成左、右两个弧形源场板14;弧形源台阶13的表面上低于第一阻挡层41下边缘的任意一点,与第一阻挡层41下边缘的垂直距离为g,与漂移层2的水平距离为r,且近似满足关系g=9.5-10.5exp(-0.6r),0μm<g≤8.5μm;该弧形源台阶13表面与第一阻挡层41下边缘处于同一水平高度的部位,与漂移层2的水平距离t为0.18μm。The passivation layer 12 on both sides of the device is engraved with an arc-shaped source step 13, and metal is deposited on the arc-shaped source step to form two left and right arc-shaped source field plates 14; the surface of the arc-shaped source step 13 At any point below the lower edge of the first barrier layer 41, the vertical distance from the lower edge of the first barrier layer 41 is g, the horizontal distance from the drift layer 2 is r, and approximately satisfies the relationship g=9.5-10.5exp(- 0.6r), 0 μm<g≤8.5 μm; the surface of the arc-shaped source step 13 is at the same level as the lower edge of the first barrier layer 41 , and the horizontal distance t from the drift layer 2 is 0.18 μm.
所述弧形源场板14,其上边缘所在高度等于或高于第一阻挡层41下边缘所在高度;两个弧形源场板14与源极9电气连接;两个弧形源场板14的上方以及钝化层12上方均覆盖有保护层15;保护层15和钝化层12均可采用SiO2、SiN、Al2O3、Sc2O3、HfO2、TiO2中的任意一种或其它绝缘介质材料;The height of the upper edge of the arc-shaped source field plate 14 is equal to or higher than the height of the lower edge of the first barrier layer 41; the two arc-shaped source field plates 14 are electrically connected to the source 9; the two arc-shaped source field plates 14 and the passivation layer 12 are covered with a protective layer 15; the protective layer 15 and the passivation layer 12 can be any of SiO 2 , SiN, Al 2 O 3 , Sc 2 O 3 , HfO 2 , TiO 2 one or other insulating dielectric material;
参照图3,本发明制作基于弧形源场板的垂直结构电力电子器件的过程,给出如下三种实施例:Referring to Fig. 3, the process of making the vertical structure power electronic device based on the arc-shaped source field plate of the present invention provides the following three embodiments:
实施例一:制作钝化层和保护层均为SiN的基于弧形源场板的垂直结构电力电子器件。Embodiment 1: Fabricate a vertical structure power electronic device based on an arc-shaped source field plate in which both the passivation layer and the protective layer are SiN.
步骤1.在衬底上外延n-型GaN,形成漂移层2,如图3a。Step 1. Epitaxial n - type GaN on the substrate to form a drift layer 2, as shown in Figure 3a.
采用n+型GaN做衬底1,使用金属有机物化学气相淀积技术,在衬底1上外延厚度为3μm、掺杂浓度为1×1015cm-3的n-型GaN材料,形成漂移层2,其中:Use n + type GaN as the substrate 1, and use metal organic chemical vapor deposition technology to epitaxially n - type GaN material with a thickness of 3 μm and a doping concentration of 1×10 15 cm -3 on the substrate 1 to form a drift layer 2, of which:
外延采用的工艺条件为:温度为950℃,压强为40Torr,以SiH4为掺杂源,氢气流量为4000sccm,氨气流量为4000sccm,镓源流量为100μmol/min。The process conditions used for epitaxy are: temperature 950°C, pressure 40Torr, SiH 4 as doping source, hydrogen gas flow rate 4000 sccm, ammonia gas flow rate 4000 sccm, gallium source flow rate 100 μmol/min.
步骤2.在漂移层上外延n型GaN,形成孔径层3,如图3b。Step 2. Epitaxial n-type GaN on the drift layer to form an aperture layer 3, as shown in FIG. 3b.
使用金属有机物化学气相淀积技术,在漂移层2上外延厚度u为1.2μm、掺杂浓度为1×1015cm-3的n型GaN材料,形成孔径层3,其中:Using metal-organic chemical vapor deposition technology, epitaxial n-type GaN material with a thickness u of 1.2 μm and a doping concentration of 1×10 15 cm -3 on the drift layer 2 to form an aperture layer 3, in which:
外延采用的工艺条件为:温度为950℃,压强为40Torr,以SiH4为掺杂源,氢气流量为4000sccm,氨气流量为4000sccm,镓源流量为100μmol/min。The process conditions used for epitaxy are: temperature 950°C, pressure 40Torr, SiH 4 as doping source, hydrogen gas flow rate 4000 sccm, ammonia gas flow rate 4000 sccm, gallium source flow rate 100 μmol/min.
步骤3.制作第一阻挡层41,如图3c。Step 3. Fabricate the first barrier layer 41, as shown in Figure 3c.
先在孔径层3上第一次制作掩模;Make a mask for the first time on the aperture layer 3;
再使用离子注入技术,在孔径层内的两侧位置注入剂量为1×1015cm-2的p型杂质Mg,制作厚度a为1.2μm,宽度b为0.2μm的两个第一阻挡层41。Then use ion implantation technology to implant p-type impurity Mg with a dose of 1×10 15 cm -2 on both sides of the aperture layer to form two first barrier layers 41 with a thickness a of 1.2 μm and a width b of 0.2 μm .
步骤4.制作第二阻挡层42,如图3d。Step 4. Fabricate the second barrier layer 42, as shown in Figure 3d.
先在孔径层3和两个第一阻挡层41上第二次制作掩模;First make a mask for the second time on the aperture layer 3 and the two first barrier layers 41;
再使用离子注入技术,在左、右两个第一阻挡层41之间的孔径层内两侧注入剂量为1×1015cm-2的p型杂质Mg,制作厚度d为0.3μm,宽度e为1.32μm的两个第二阻挡层42,两个第一阻挡层41和两个第二阻挡层42构成两个二级台阶结构的电流阻挡层4,两个对称的电流阻挡层4之间形成孔径5。Then, using ion implantation technology, p-type impurity Mg with a dose of 1×10 15 cm -2 is implanted on both sides of the aperture layer between the left and right first barrier layers 41 to make a thickness d of 0.3 μm and a width e Two second barrier layers 42 with a thickness of 1.32 μm, two first barrier layers 41 and two second barrier layers 42 form two current barrier layers 4 of two-level stepped structure, and between the two symmetrical current barrier layers 4 Aperture 5 is formed.
步骤5.外延GaN材料制作沟道层6,如图3e。Step 5. Epitaxial GaN material to make channel layer 6, as shown in Fig. 3e.
使用分子束外延技术,在两个第一阻挡层41、两个第二阻挡层42和孔径5的上部外延厚度为0.04μm的GaN材料,形成沟道层6。Using molecular beam epitaxy, GaN material with a thickness of 0.04 μm is epitaxially grown on the two first barrier layers 41 , the two second barrier layers 42 and the upper part of the aperture 5 to form the channel layer 6 .
所述分子束外延技术,其工艺条件为:真空度小于等于1.0×10-10mbar,射频功率为400W,反应剂采用N2、高纯Ga源。The process conditions of the molecular beam epitaxy technology are: the degree of vacuum is less than or equal to 1.0×10 -10 mbar, the radio frequency power is 400W, and the reactant uses N 2 and high-purity Ga source.
步骤6.外延Al0.5Ga0.5N,制作势垒层7,如图3f。Step 6. Epitaxial Al 0.5 Ga 0.5 N to form a barrier layer 7, as shown in Figure 3f.
使用分子束外延技术在沟道层6上外延厚度为5nm的的Al0.5Ga0.5N材料,形成势垒层7,其中:Using molecular beam epitaxy technology, epitaxial Al 0.5 Ga 0.5 N material with a thickness of 5 nm on the channel layer 6 to form a barrier layer 7, wherein:
分子束外延的工艺条件为:真空度小于等于1.0×10-10mbar,射频功率为400W,反应剂采用N2、高纯Ga源、高纯Al源。The technological conditions of molecular beam epitaxy are: the degree of vacuum is less than or equal to 1.0×10 -10 mbar, the radio frequency power is 400W, and the reactant uses N 2 , high-purity Ga source, and high-purity Al source.
步骤7.在势垒层7和沟道层6左右两侧刻蚀制作源槽8,如图3g。Step 7. Etching and forming source grooves 8 on the left and right sides of the barrier layer 7 and the channel layer 6, as shown in FIG. 3g.
在势垒层7上第三次制作掩模,使用反应离子刻蚀技术,在势垒层7和沟道层6的左、右两侧进行刻蚀,刻蚀深度为0.01μm,形成左、右两个源槽8;Make a mask on the barrier layer 7 for the third time, and use reactive ion etching technology to etch the left and right sides of the barrier layer 7 and the channel layer 6 with an etching depth of 0.01 μm to form the left and right sides of the channel layer 6. Right two source slots 8;
反应离子刻蚀的工艺条件为:Cl2流量为15sccm,压强为10mTorr,功率为100W。The technological conditions of the reactive ion etching are as follows: the flow rate of Cl 2 is 15 sccm, the pressure is 10 mTorr, and the power is 100 W.
步骤8.制作源极9,如图3h。Step 8. Fabricate the source electrode 9, as shown in Figure 3h.
先在两个源槽8上部和势垒层7的上部第四次制作掩模;Make a mask for the fourth time on the top of the two source grooves 8 and the top of the barrier layer 7;
再使用电子束蒸发技术,在两个源槽8上部淀积Ti/Au/Ni组合金属,形成源极9,其中:所淀积的金属,自下而上,Ti的厚度为0.02μm、Au的厚度为0.3μm、Ni的厚度为0.05μm;Then use electron beam evaporation technology to deposit Ti/Au/Ni composite metal on the top of the two source grooves 8 to form the source electrode 9, wherein: the deposited metal is from bottom to top, the thickness of Ti is 0.02 μm, Au The thickness of Ni is 0.3μm, and the thickness of Ni is 0.05μm;
电子束蒸发的工艺条件为:真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于 The process conditions of electron beam evaporation are: the degree of vacuum is less than 1.8×10 -3 Pa, the power range is 200-1000W, and the evaporation rate is less than
步骤9.制作栅极10,如图3i。Step 9. Fabricate the grid 10, as shown in Figure 3i.
9.1)在源极9上部和势垒层7的上部第五次制作掩模;9.1) Make a mask for the fifth time on the upper part of the source electrode 9 and the upper part of the barrier layer 7;
9.2)使用电子束蒸发技术,在势垒层7上淀积Ni/Au/Ni组合金属,形成栅极10,其中:所淀积的金属自下而上,Ni的厚度为0.02μm、Au的厚度为0.2μm、Ni的厚度为0.04μm,栅极10与两个电流阻挡层4在水平方向上的交叠长度为0.4μm;9.2) Using electron beam evaporation technology, deposit Ni/Au/Ni combined metal on the barrier layer 7 to form the gate 10, wherein: the deposited metal is from bottom to top, the thickness of Ni is 0.02 μm, and the thickness of Au is 0.02 μm. The thickness is 0.2 μm, the thickness of Ni is 0.04 μm, and the overlap length between the gate 10 and the two current blocking layers 4 in the horizontal direction is 0.4 μm;
电子束蒸发的工艺条件为:真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于 The process conditions of electron beam evaporation are: the degree of vacuum is less than 1.8×10 -3 Pa, the power range is 200-1000W, and the evaporation rate is less than
步骤10.制作漏极11,如图3j。Step 10. Fabricate the drain electrode 11, as shown in Figure 3j.
使用电子束蒸发技术,在整个衬底1的背面上依次淀积金属Ti、Au、Ni,形成漏极11,其中:所淀积的金属,Ti的厚度为0.02μm,Au的厚度为0.7μm,Ni的厚度为0.05μm;Using electron beam evaporation technology, metal Ti, Au, Ni are sequentially deposited on the back of the entire substrate 1 to form the drain 11, wherein: the thickness of the deposited metal is 0.02 μm for Ti and 0.7 μm for Au , the thickness of Ni is 0.05 μm;
淀积金属所采用的工艺条件为:真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于 The process conditions used for metal deposition are: the degree of vacuum is less than 1.8×10 -3 Pa, the power range is 200-1000W, and the evaporation rate is less than
步骤11.淀积SiN绝缘介质材料,形成包裹的钝化层12,如图3k。Step 11. Deposit SiN insulating dielectric material to form a wrapped passivation layer 12, as shown in FIG. 3k.
使用等离子体增强化学气相淀积技术,在除了漏极11底部以外的其他所有区域淀积SiN绝缘介质材料,形成包裹的钝化层12,其中:Using plasma-enhanced chemical vapor deposition technology, deposit SiN insulating dielectric material on all regions except the bottom of the drain electrode 11 to form a wrapped passivation layer 12, wherein:
淀积钝化层的工艺条件是:气体为NH3、N2及SiH4,气体流量分别为2.5sccm、950sccm和250sccm,温度、射频功率和压强分别为300℃、25W和950mTorr。The process conditions for depositing the passivation layer are: the gas is NH 3 , N 2 and SiH 4 , the gas flow rates are 2.5 sccm, 950 sccm and 250 sccm respectively, and the temperature, radio frequency power and pressure are 300°C, 25W and 950mTorr respectively.
步骤12.在钝化层内的左、右两边刻蚀弧形源台阶13,如图3l。Step 12. Etching arc-shaped source steps 13 on the left and right sides of the passivation layer, as shown in FIG. 3l.
在钝化层12是上部制作第六次掩模,使用反应离子刻蚀技术在钝化层12左右两边内进行刻蚀,形成弧形源台阶13,且该弧形源台阶13的表面上低于第一阻挡层41下边缘的任意一点,与第一阻挡层41下边缘的垂直距离g,与漂移层2的水平距离r,近似满足关系g=9.5-10.5exp(-0.6r),g最大为2μm;弧形源台阶13表面与第一阻挡层41下边缘处于同一水平高度的部位,与漂移层2的水平距离t为0.18μm,其中:The sixth mask is made on the upper part of the passivation layer 12, and the left and right sides of the passivation layer 12 are etched using reactive ion etching technology to form an arc-shaped source step 13, and the surface of the arc-shaped source step 13 is low At any point on the lower edge of the first barrier layer 41, the vertical distance g from the lower edge of the first barrier layer 41 and the horizontal distance r from the drift layer 2 approximately satisfy the relationship g=9.5-10.5exp(-0.6r), g The maximum is 2 μm; the surface of the arc-shaped source step 13 is at the same level as the lower edge of the first barrier layer 41, and the horizontal distance t from the drift layer 2 is 0.18 μm, where:
反应离子刻蚀的工艺条件为:CF4流量为45sccm,O2流量为5sccm,压强为15mTorr,功率为250W。The technological conditions of the reactive ion etching are as follows: the flow rate of CF 4 is 45 sccm, the flow rate of O 2 is 5 sccm, the pressure is 15 mTorr, and the power is 250W.
步骤13.制作弧形源场板14,如图3m。Step 13. Make a curved source field plate 14, as shown in Figure 3m.
13.1)在带有弧形源台阶13的钝化层12上部制作第七次掩模;13.1) Make a seventh mask on the upper part of the passivation layer 12 with the arc-shaped source step 13;
13.2)使用电子束蒸发技术,即在真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于的工艺条件下,在左、右两边的弧形源台阶上淀积金属Ni,制作左、右对称的两个弧形源场板14,并将该两侧的弧形源场板与源极电气连接,该弧形源场板14的上边缘所在高度等于第一阻挡层41下边缘所在高度。13.2) Electron beam evaporation technology is used, that is, the vacuum degree is less than 1.8×10 -3 Pa, the power range is 200-1000W, and the evaporation rate is less than Under the process conditions, metal Ni is deposited on the arc-shaped source steps on the left and right sides, and two arc-shaped source field plates 14 with left and right symmetry are produced, and the arc-shaped source field plates 14 on the two sides are connected to the source For electrical connection, the height of the upper edge of the arc-shaped source field plate 14 is equal to the height of the lower edge of the first barrier layer 41 .
步骤14.淀积SiN绝缘介质材料,制作保护层15,如图3n。Step 14. Deposit SiN insulating dielectric material to form a protective layer 15, as shown in FIG. 3n.
使用等离子体增强化学气相淀积技术,在两个弧形源场板14上部区域完全填充SiN绝缘介质材料制作保护层15,完成整个器件的制作;Using plasma-enhanced chemical vapor deposition technology, the upper regions of the two arc-shaped source field plates 14 are completely filled with SiN insulating dielectric material to form a protective layer 15 to complete the fabrication of the entire device;
所述等离子体增强化学气相淀积技术,其工艺条件为:气体为NH3、N2及SiH4,气体流量分别为2.5sccm、950sccm和250sccm,温度、射频功率和压强分别为300℃、25W和950mTorr。The process conditions of the plasma-enhanced chemical vapor deposition technology are as follows: the gas is NH 3 , N 2 and SiH 4 , the gas flow rates are 2.5 sccm, 950 sccm and 250 sccm respectively, and the temperature, radio frequency power and pressure are 300°C and 25W respectively. and 950mTorr.
实施例二:制作钝化层和保护层均为SiO2的的基于弧形源场板的垂直结构电力电子器件。Embodiment 2: Fabricate a vertical structure power electronic device based on an arc-shaped source field plate in which both the passivation layer and the protective layer are SiO 2 .
第一步.在衬底上外延n-型GaN,形成漂移层2,如图3a。Step 1. Epitaxial n - type GaN on the substrate to form a drift layer 2, as shown in Figure 3a.
在温度为1000℃,压强为45Torr,以SiH4为掺杂源,氢气流量为4400sccm,氨气流量为4400sccm,镓源流量为110μmol/min的工艺条件下,采用n+型GaN做衬底1,使用金属有机物化学气相淀积技术,在衬底1上外延厚度为10μm、掺杂浓度为4×1016cm-3的n-型GaN材料,完成漂移层2的制作。Under the process conditions of temperature 1000°C, pressure 45 Torr, SiH 4 as doping source, hydrogen gas flow rate 4400 sccm, ammonia gas flow rate 4400 sccm, gallium source flow rate 110 μmol/min, n + type GaN was used as the substrate1 , using metal-organic chemical vapor deposition technology, epitaxial n - type GaN material with a thickness of 10 μm and a doping concentration of 4×10 16 cm -3 on the substrate 1 to complete the fabrication of the drift layer 2 .
第二步.在漂移层上外延n型GaN,形成孔径层3,如图3b。Step 2. Epitaxial n-type GaN on the drift layer to form an aperture layer 3, as shown in FIG. 3b.
在温度为1000℃,压强为45Torr,掺杂源为SiH4,氢气流量为4400sccm,氨气流量为4400sccm,镓源流量为110μmol/min的工艺条件下,使用金属有机物化学气相淀积技术,在漂移层2上外延厚度u为1.5μm、掺杂浓度为4×1016cm-3的n型GaN材料,完成孔径层3的制作。Under the process conditions of temperature 1000°C, pressure 45Torr, dopant source SiH 4 , hydrogen gas flow rate 4400 sccm, ammonia gas flow rate 4400 sccm, gallium source flow rate 110 μmol/min, metal-organic chemical vapor deposition technology was used. An n-type GaN material with a thickness u of 1.5 μm and a doping concentration of 4×10 16 cm −3 is epitaxially grown on the drift layer 2 to complete the manufacture of the aperture layer 3 .
第三步.制作第一阻挡层41,如图3c。Step 3. Fabricate the first barrier layer 41, as shown in Figure 3c.
3.1)在孔径层3上第一次制作掩模;3.1) Make a mask for the first time on the aperture layer 3;
3.2)使用离子注入技术,在孔径层内的两侧位置注入剂量为5.5×1015cm-2的p型杂质Mg,形成厚度a为1.5μm,宽度b为0.4μm的两个第一阻挡层41。3.2) Using ion implantation technology, implant p-type impurity Mg with a dose of 5.5×10 15 cm -2 on both sides of the aperture layer to form two first barrier layers with a thickness a of 1.5 μm and a width b of 0.4 μm 41.
第四步.制作第二阻挡层42,如图3d。Step 4. Fabricate the second barrier layer 42, as shown in Figure 3d.
4.1)在孔径层3和两个第一阻挡层41上第二次制作掩模;4.1) Make a mask for the second time on the aperture layer 3 and the two first barrier layers 41;
4.2)使用离子注入技术,在左、右第一阻挡层41之间的孔径层内的两侧注入剂量为5.1×1015cm-2的p型杂质Mg,形成厚度d为0.5μm,宽度e为1.65μm的两个第二阻挡层42,两个第一阻挡层41和两个第二阻挡层42构成两个二级台阶结构的电流阻挡层4,两个对称的电流阻挡层4之间形成孔径5。4.2) Using ion implantation technology, implant p-type impurity Mg with a dose of 5.1×10 15 cm −2 on both sides of the aperture layer between the left and right first barrier layers 41 to form a thickness d of 0.5 μm and a width e Two second barrier layers 42 with a thickness of 1.65 μm, two first barrier layers 41 and two second barrier layers 42 form two current barrier layers 4 of two-level stepped structure, between the two symmetrical current barrier layers 4 Aperture 5 is formed.
第五步.外延GaN材料,制作沟道层6,如图3e。Step 5. Epitaxial GaN material to make channel layer 6, as shown in Fig. 3e.
在真空度小于等于1.0×10-10mbar,射频功率为400W,反应剂采用N2、高纯Ga源的工艺条件下,使用分子束外延技术,在两个第一阻挡层41、两个第二阻挡层42和孔径5上部,外延厚度为0.1μm的GaN材料,完成沟道层6的制作。Under the conditions of a vacuum degree of less than or equal to 1.0×10 -10 mbar, a radio frequency power of 400W, and N 2 as a reactant and a high-purity Ga source, using molecular beam epitaxy technology, two first barrier layers 41 and two second barrier layers 41 are formed. The GaN material with a thickness of 0.1 μm is epitaxially grown on the second barrier layer 42 and the upper part of the aperture 5 to complete the fabrication of the channel layer 6 .
第六步.外延Al0.3Ga0.7N,制作势垒层7,如图3f。Step 6. Epitaxial Al 0.3 Ga 0.7 N to form a barrier layer 7, as shown in Figure 3f.
在真空度小于等于1.0×10-10mbar,射频功率为400W,反应剂采用N2、高纯Ga源、高纯Al源的工艺条件下,使用分子束外延技术,在沟道层6上外延厚度为20nm的Al0.3Ga0.7N材料,完成势垒层7的制作。Under the conditions of a vacuum degree of less than or equal to 1.0×10 -10 mbar, a radio frequency power of 400W, and N 2 , a high-purity Ga source, and a high-purity Al source as reactants, epitaxy is carried out on the channel layer 6 using molecular beam epitaxy technology. Al 0.3 Ga 0.7 N material with a thickness of 20 nm to complete the fabrication of the barrier layer 7 .
第七步.在势垒层7和沟道层6的左右两侧刻蚀制作源槽8,如图3g。Step 7. Etching and forming source grooves 8 on the left and right sides of the barrier layer 7 and the channel layer 6, as shown in FIG. 3g.
在势垒层7上第三次制作掩模,在Cl2流量为15sccm,压强为10mTorr,功率为100W的工艺条件下,使用反应离子刻蚀技术,在势垒层7和沟道层6的左、右两侧进行刻蚀形成左、右两个源槽8,源槽刻蚀深度为0.05μm。Make a mask on the barrier layer 7 for the third time, under the process conditions that the Cl flow rate is 15sccm , the pressure is 10mTorr, and the power is 100W, using reactive ion etching technology, on the barrier layer 7 and the channel layer 6 The left and right sides are etched to form two left and right source grooves 8, and the etching depth of the source grooves is 0.05 μm.
第八步.制作源极9,如图3h。Step 8. Make the source electrode 9, as shown in Figure 3h.
8.1)在两个源槽8上部和势垒层7的上部第四次制作掩模;8.1) Make a mask for the fourth time on the top of the two source grooves 8 and the top of the barrier layer 7;
8.2)在真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于的工艺条件下,使用电子束蒸发技术,在两个源槽8上部淀积Ti/Au/Ni组合金属,形成源极9,其中:所淀积的金属自下而上,Ti的厚度为0.02μm、Au的厚度为0.03μm、Ni的厚度为0.05μm。8.2) When the vacuum degree is less than 1.8×10 -3 Pa, the power range is 200~1000W, and the evaporation rate is less than Under the process conditions, using electron beam evaporation technology, deposited Ti/Au/Ni combined metal on the top of the two source grooves 8 to form the source electrode 9, wherein: the deposited metal is from bottom to top, and the thickness of Ti is 0.02 μm, the thickness of Au is 0.03 μm, and the thickness of Ni is 0.05 μm.
第九步.制作栅极10,如图3i。Step 9. Fabricate the grid 10, as shown in Figure 3i.
9.1)在两个源极9上部和势垒层7上部第五次制作掩模;9.1) Make a mask for the fifth time on the top of the two source electrodes 9 and the top of the barrier layer 7;
9.2)在真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于的工艺条件下,使用电子束蒸发技术,在势垒层7上淀积Ni/Au/Ni组合金属,完成栅极10的制作,且自下而上,Ni的厚度为0.02μm、Au的厚度为0.2μm、Ni的厚度为0.04μm,该栅极10与两个电流阻挡层4在水平方向上的交叠长度为0.45μm。9.2) When the vacuum degree is less than 1.8×10 -3 Pa, the power range is 200-1000W, and the evaporation rate is less than Under certain process conditions, use electron beam evaporation technology to deposit Ni/Au/Ni composite metal on the barrier layer 7 to complete the fabrication of the gate 10, and from bottom to top, the thickness of Ni is 0.02 μm, and the thickness of Au The thickness of Ni is 0.2 μm, the thickness of Ni is 0.04 μm, and the overlapping length between the gate 10 and the two current blocking layers 4 in the horizontal direction is 0.45 μm.
第十步.制作漏极11,如图3j。Step 10. Fabricate the drain electrode 11, as shown in Figure 3j.
在真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于的工艺条件下,使用电子束蒸发技术,在整个衬底1的背面上依次淀积金属Ti、Au、Ni,形成漏极11,其中:所淀积的金属,Ti的厚度为0.02μm,Au的厚度为0.7μm,Ni的厚度为0.05μm。When the vacuum degree is less than 1.8×10 -3 Pa, the power range is 200-1000W, and the evaporation rate is less than Under the process conditions, using electron beam evaporation technology, metal Ti, Au, Ni are sequentially deposited on the back of the entire substrate 1 to form the drain electrode 11, wherein: the thickness of the deposited metal, Ti is 0.02 μm, Au The thickness of Ni is 0.7 μm, and the thickness of Ni is 0.05 μm.
第十一步.淀积SiO2绝缘介质材料,形成包裹的钝化层12,如图3k。Step 11. Deposit SiO 2 insulating dielectric material to form a wrapped passivation layer 12, as shown in FIG. 3k.
在N2O流量为850sccm,SiH4流量为200sccm,温度为250℃,射频功率为25W,压力为1100mTorr的工艺条件下,使用等离子体增强化学气相淀积技术,淀积SiO2绝缘介质材料,以包裹除了漏极11底部以外的其他所有区域,完成钝化层12的制作。Under the process conditions of N2O flow rate of 850sccm, SiH4 flow rate of 200sccm, temperature of 250°C, RF power of 25W, and pressure of 1100mTorr, the SiO2 insulating dielectric material was deposited using plasma enhanced chemical vapor deposition technology. The fabrication of the passivation layer 12 is completed by wrapping all other regions except the bottom of the drain electrode 11 .
第十二步.在钝化层内的左、右两侧刻蚀弧形源台阶13,如图3l。Step 12. Etching arc-shaped source steps 13 on the left and right sides of the passivation layer, as shown in FIG. 3l.
12.1)在钝化层12上部制作第六次掩模;12.1) Make a sixth mask on the upper part of the passivation layer 12;
12.2)在CF4流量为20sccm,O2流量为2sccm,压强为20mTorr,偏置电压为100V的工艺条件下,使用反应离子刻蚀技术,在左、右两边钝化层内进行刻蚀,完成弧形源台阶13的制作,且该弧形源台阶13的表面上低于第一阻挡层41下边缘的任意一点,与第一阻挡层41下边缘的垂直距离g,与漂移层2的水平距离r,近似满足关系g=9.5-10.5exp(-0.6r),g最大为5μm;弧形源台阶13表面与第一阻挡层41下边缘处于同一水平高度的部位,与漂移层2的水平距离t为0.18μm。12.2) Under the process conditions of CF 4 flow of 20sccm, O 2 flow of 2sccm, pressure of 20mTorr, and bias voltage of 100V, use reactive ion etching technology to etch in the passivation layers on the left and right sides, and complete The manufacture of the arc-shaped source step 13, and any point on the surface of the arc-shaped source step 13 lower than the lower edge of the first barrier layer 41, the vertical distance g from the lower edge of the first barrier layer 41, and the level of the drift layer 2 The distance r approximately satisfies the relationship g=9.5-10.5exp(-0.6r), and the maximum value of g is 5 μm; the surface of the arc-shaped source step 13 is at the same level as the lower edge of the first barrier layer 41, and the level of the drift layer 2 The distance t is 0.18 μm.
第十三步.制作弧形源场板14,如图3m。Step 13. Make a curved source field plate 14, as shown in Figure 3m.
13.1)在钝化层12的上部制作第七次掩模;13.1) Make a seventh mask on the upper part of the passivation layer 12;
13.2)在真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于的工艺条件下,使用电子束蒸发技术,在钝化层12左、右两边的弧形源台阶13上淀积金属Ti/Au,完成弧形源场板14的制作,并将弧形源场板与源极电气连接,该弧形源场板14的上边缘所在高度高于第一阻挡层41下边缘所在高度0.2μm。13.2) When the vacuum degree is less than 1.8×10 -3 Pa, the power range is 200-1000W, and the evaporation rate is less than Under certain process conditions, using electron beam evaporation technology, metal Ti/Au is deposited on the arc-shaped source steps 13 on the left and right sides of the passivation layer 12 to complete the manufacture of the arc-shaped source field plate 14, and the arc-shaped source field plate The plate is electrically connected to the source, and the height of the upper edge of the arc-shaped source field plate 14 is 0.2 μm higher than the height of the lower edge of the first barrier layer 41 .
第十四步.淀积SiO2材料,制作保护层15,如图3n。Step 14. Deposit SiO 2 material to make protective layer 15, as shown in Fig. 3n.
在N2O流量为850sccm,SiH4流量为200sccm,温度为250℃,射频功率为25W,压力为1100mTorr的工艺条件下,使用等离子体增强化学气相淀积技术,在两个弧形源场板14上部区域完全填充SiO2形成保护层15,从而完成整个器件的制作。Under the process conditions of N 2 O flow rate of 850 sccm, SiH 4 flow rate of 200 sccm, temperature of 250°C, RF power of 25W, and pressure of 1100mTorr, using plasma-enhanced chemical vapor deposition technology, two arc source field plates The upper region of 14 is completely filled with SiO 2 to form a protective layer 15, thereby completing the fabrication of the entire device.
实施例三:制作钝化层为SiO2,保护层为SiN的基于弧形源场板的垂直结构电力电子器件。Embodiment 3: Fabricate a vertical structure power electronic device based on an arc-shaped source field plate with a passivation layer of SiO 2 and a protective layer of SiN.
步骤A.选用n+型GaN做衬底1,采用温度为950℃,压强为40Torr,以SiH4为掺杂源,氢气流量为4000sccm,氨气流量为4000sccm,镓源流量为100μmol/min的工艺条件,使用金属有机物化学气相淀积技术,在衬底上外延厚度为50μm、掺杂浓度为1×1018cm-3的n-型GaN材料,制作漂移层2,如图3a。Step A. Select n + type GaN as the substrate 1, adopt a temperature of 950°C, a pressure of 40Torr, SiH 4 as the doping source, a flow rate of hydrogen gas of 4000 sccm, a flow rate of ammonia gas of 4000 sccm, and a flow rate of gallium source of 100 μmol/min Process conditions: use metal-organic chemical vapor deposition technology to epitaxially n - type GaN material with a thickness of 50 μm and a doping concentration of 1×10 18 cm -3 on the substrate to form the drift layer 2 , as shown in Figure 3a.
步骤B.采用温度为950℃,压强为40Torr,以SiH4为掺杂源,氢气流量为4000sccm,氨气流量为4000sccm,镓源流量为100μmol/min的工艺条件,使用金属有机物化学气相淀积技术,在漂移层2上外延厚度为3μm、掺杂浓度为1×1018cm-3的n型GaN材料,制作孔径层3,如图3b。Step B. Using the process conditions of temperature 950°C, pressure 40Torr, SiH 4 as doping source, hydrogen gas flow rate 4000 sccm, ammonia gas flow rate 4000 sccm, gallium source flow rate 100 μmol/min, metal organic chemical vapor deposition technology, epitaxial n-type GaN material with a thickness of 3 μm and a doping concentration of 1×10 18 cm -3 on the drift layer 2 to make an aperture layer 3 , as shown in Figure 3b.
步骤C.在孔径层3上第一次制作掩模,再使用离子注入技术,在孔径层内的两侧位置注入剂量为1×1016cm-2的p型杂质Mg,形成厚度a为3μm,宽度b为1μm的两个第一阻挡层41,如图3c。Step C. Make a mask on the aperture layer 3 for the first time, and then use ion implantation technology to implant p-type impurity Mg with a dose of 1×10 16 cm -2 on both sides of the aperture layer to form a thickness a of 3 μm , two first barrier layers 41 with a width b of 1 μm, as shown in FIG. 3c.
步骤D.在孔径层3和两个第一阻挡层41上第二次制作掩模,再使用离子注入技术,在左、右第一阻挡层41之间的孔径层内的两侧位置注入剂量为1×1016cm-2的p型杂质Mg,形成厚度d为1μm,宽度e为3.3μm的两个第二阻挡层42,两个第一阻挡层41和两个第二阻挡层42构成两个二级台阶结构的电流阻挡层4,两个对称的电流阻挡层4之间形成孔径5,如图3d。Step D. Make a mask for the second time on the aperture layer 3 and the two first barrier layers 41, and then use ion implantation technology to implant doses on both sides of the aperture layer between the left and right first barrier layers 41 The p-type impurity Mg of 1×10 16 cm -2 forms two second barrier layers 42 with a thickness d of 1 μm and a width e of 3.3 μm, consisting of two first barrier layers 41 and two second barrier layers 42 There are two current blocking layers 4 with a two-stage stepped structure, and an aperture 5 is formed between the two symmetrical current blocking layers 4, as shown in FIG. 3d.
步骤E.采用真空度小于等于1.0×10-10mbar,射频功率为400W,反应剂采用N2、高纯Ga源的工艺条件,使用分子束外延技术,在两个第一阻挡层41、两个第二阻挡层42和孔径5上部外延厚度为0.2μm的GaN材质的沟道层6,如图3e。Step E. Using the process conditions of vacuum degree less than or equal to 1.0×10 -10 mbar, radio frequency power of 400W, reactants using N 2 and high-purity Ga source, using molecular beam epitaxy technology, two first barrier layers 41, two A second barrier layer 42 and a GaN channel layer 6 with a thickness of 0.2 μm are epitaxially formed on the top of the aperture 5 , as shown in FIG. 3 e .
步骤F.采用真空度小于等于1.0×10-10mbar,射频功率为400W,反应剂采用N2、高纯Ga源、高纯Al源的工艺条件,使用分子束外延技术,在沟道层6上外延厚度为50nm的Al0.1Ga0.9N材质的势垒层7,如图3f。Step F. Using the process conditions of vacuum degree less than or equal to 1.0×10 -10 mbar, radio frequency power of 400W, reactants using N 2 , high-purity Ga source, and high-purity Al source, using molecular beam epitaxy technology, in the channel layer 6 A barrier layer 7 made of Al 0.1 Ga 0.9 N material with a thickness of 50 nm is epitaxially, as shown in FIG. 3f.
步骤G.在势垒层7上第三次制作掩模,再采用Cl2流量为15sccm,压强为10mTorr,功率为100W的工艺条件,使用反应离子刻蚀技术,在势垒层7和沟道层6的左、右两侧进行刻蚀,刻蚀深度为0.06μm,形成左、右两个源槽8,如图3g。Step G. Make a mask on the barrier layer 7 for the third time, and then adopt the process conditions of Cl 2 flow rate of 15 sccm, pressure of 10 mTorr, and power of 100 W, and use reactive ion etching technology to form a mask on the barrier layer 7 and the channel The left and right sides of the layer 6 are etched to a depth of 0.06 μm to form two left and right source grooves 8, as shown in FIG. 3g.
步骤H.在两个源槽8上部和势垒层7的上部第四次制作掩模,再采用真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于的工艺条件,使用电子束蒸发技术,在两个源槽8上部淀积Ti/Au/Ni组合金属,制作源极9,其中所淀积的金属自下而上,Ti的厚度是0.02μm、Au的厚度是0.3μm、Ni的厚度是0.05μm,如图3h。Step H. Make a mask for the fourth time on the top of the two source grooves 8 and the top of the barrier layer 7, and then use a vacuum degree of less than 1.8×10 -3 Pa, a power range of 200 to 1000 W, and an evaporation rate of less than Using electron beam evaporation technology, deposit Ti/Au/Ni composite metal on the upper part of the two source grooves 8 to make the source electrode 9, wherein the deposited metal is from bottom to top, and the thickness of Ti is 0.02 μm, The thickness of Au is 0.3 μm, and the thickness of Ni is 0.05 μm, as shown in Figure 3h.
步骤I.在源极9上部和势垒层7的上部第五次制作掩模;再采用真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于的工艺条件,使用电子束蒸发技术,在势垒层7上淀积金属,制作栅极10,其中所淀积的金属为Ni/Au/Ni金属组合,且Ni的厚度为0.02μm,Au的厚度为0.2μm,Ni的厚度为0.04μm,该栅极10与两个电流阻挡层4在水平方向上的交叠长度为0.55μm如图3i。Step I. Make a mask for the fifth time on the top of the source electrode 9 and the top of the barrier layer 7; then use a vacuum degree of less than 1.8 × 10 -3 Pa, a power range of 200 to 1000 W, and an evaporation rate of less than According to the process conditions, the electron beam evaporation technology is used to deposit metal on the barrier layer 7 to make the gate 10, wherein the deposited metal is a Ni/Au/Ni metal combination, and the thickness of Ni is 0.02 μm, and the thickness of Au is 0.02 μm. The thickness is 0.2 μm, the thickness of Ni is 0.04 μm, and the overlap length between the gate 10 and the two current blocking layers 4 in the horizontal direction is 0.55 μm, as shown in Fig. 3i.
步骤J.采用真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于的工艺条件,使用电子束蒸发技术,在整个衬底1的背面上依次淀积金属Ti、Au、Ni,形成漏极11,其中:所淀积的金属,Ti的厚度为0.02μm,Au的厚度为0.7μm,Ni的厚度为0.05μm,如图3j。Step J. The vacuum degree is less than 1.8×10 -3 Pa, the power range is 200-1000W, and the evaporation rate is less than Under the process conditions, electron beam evaporation technology is used to sequentially deposit metal Ti, Au, Ni on the back of the entire substrate 1 to form the drain electrode 11, wherein: the thickness of the deposited metal is 0.02 μm, and the thickness of Au is 0.02 μm. The thickness is 0.7 μm, and the thickness of Ni is 0.05 μm, as shown in Fig. 3j.
步骤K.采用N2O流量为850sccm,SiH4流量为200sccm,温度为250℃,射频功率为25W,压力为1100mTorr的工艺条件,使用等离子体增强化学气相淀积技术,淀积SiO2绝缘介质材料,以包裹除了漏极11底部以外的其他所有区域,完成钝化层12的制作,如图3k。Step K. Using the process conditions of N 2 O flow rate of 850 sccm, SiH 4 flow rate of 200 sccm, temperature of 250° C., radio frequency power of 25 W, and pressure of 1100 mTorr, use plasma enhanced chemical vapor deposition technology to deposit SiO 2 insulating medium material, so as to wrap all other regions except the bottom of the drain electrode 11, and complete the fabrication of the passivation layer 12, as shown in FIG. 3k.
步骤L.在钝化层12上部制作第六次掩模,再采用CF4流量为20sccm,O2流量为2sccm,压强为20mTorr,偏置电压为100V的工艺条件,使用反应离子刻蚀技术,在左、右两边钝化层内刻蚀,形成弧形源台阶13,且该弧形源台阶13的表面上低于第一阻挡层41下边缘的任意一点,与第一阻挡层41下边缘的垂直距离g,与漂移层2的水平距离r,近似满足关系g=9.5-10.5exp(-0.6r),g最大为8.5μm;弧形源台阶13表面与第一阻挡层41下边缘处于同一水平高度的部位,与漂移层2的水平距离t为0.18μm,如图3l。Step L. Make a sixth mask on the upper part of the passivation layer 12, and then adopt the process conditions of CF 4 flow rate of 20 sccm, O 2 flow rate of 2 sccm, pressure of 20 mTorr, and bias voltage of 100 V, using reactive ion etching technology, Etch in the passivation layer on the left and right sides to form an arc-shaped source step 13, and any point on the surface of the arc-shaped source step 13 that is lower than the lower edge of the first barrier layer 41 is connected to the lower edge of the first barrier layer 41. The vertical distance g and the horizontal distance r from the drift layer 2 approximately satisfy the relationship g=9.5-10.5exp(-0.6r), and g is at most 8.5 μm; the surface of the arc-shaped source step 13 and the lower edge of the first barrier layer 41 are in the For parts at the same level, the horizontal distance t from the drift layer 2 is 0.18 μm, as shown in Figure 3l.
步骤M.在钝化层12上部,制作第七次掩模,再采用真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率小于的工艺条件,使用电子束蒸发技术,在左、右两边的各弧形源台阶13上淀积Ti/Au组合金属,完成弧形源场板14的制作,并将该弧形源场板与源极电气连接,该弧形源场板14的上边缘所在高度高于第一阻挡层41下边缘所在高度0.7μm,如图3m。Step M. On the upper part of the passivation layer 12, make a seventh mask, and then use a vacuum degree of less than 1.8×10 -3 Pa, a power range of 200-1000W, and an evaporation rate of less than According to the process conditions, electron beam evaporation technology is used to deposit Ti/Au combined metal on each arc source step 13 on the left and right sides to complete the manufacture of arc source field plate 14, and combine the arc source field plate with The source is electrically connected, and the height of the upper edge of the arc-shaped source field plate 14 is 0.7 μm higher than the height of the lower edge of the first barrier layer 41 , as shown in FIG. 3m .
步骤N.使用等离子体增强化学气相淀积技术,在两个弧形源场板14上部区域完全填充SiN绝缘介质材料,制作保护层15,完成整个器件的制作,如图3n。Step N. Use plasma-enhanced chemical vapor deposition technology to completely fill the upper regions of the two arc-shaped source field plates 14 with SiN insulating dielectric material to form a protective layer 15 to complete the fabrication of the entire device, as shown in Figure 3n.
所述等离子体增强化学气相淀积的工艺条件是:The processing condition of described plasma enhanced chemical vapor deposition is:
NH3气体的流量为2.5sccm;The flow rate of NH 3 gas is 2.5 sccm;
N2气体的流量为950sccm;The flow rate of N2 gas is 950 sccm;
SiH4气体的流量为250sccm;The flow rate of SiH 4 gas is 250 sccm;
温度为300℃,射频功率为25W,压强为950mTorr。The temperature is 300°C, the RF power is 25W, and the pressure is 950mTorr.
本发明的效果可通过以下仿真进一步说明。The effect of the present invention can be further illustrated by the following simulation.
仿真:对传统GaN基电流孔径异质结场效应器件与本发明器件的击穿特性进行仿真,结果如图4。Simulation: The breakdown characteristics of the conventional GaN-based current aperture heterojunction field effect device and the device of the present invention were simulated, and the results are shown in FIG. 4 .
由图4可以看出,传统GaN基电流孔径异质结场效应器件发生击穿,即漏源电流迅速增加,时的漏源电压大约在520V,而本发明器件发生击穿时的漏源电压大约在2200V,证明本发明器件的击穿电压远远大于传统GaN基电流孔径异质结场效应器件的击穿电压。It can be seen from Fig. 4 that when the traditional GaN-based current aperture heterojunction field effect device breaks down, that is, the drain-source current increases rapidly, the drain-source voltage is about 520V, while the drain-source voltage when the device of the present invention breaks down It is about 2200V, which proves that the breakdown voltage of the device of the present invention is far greater than that of the traditional GaN-based current aperture heterojunction field effect device.
以上描述仅是本发明的几个具体实施例,并不构成对本发明的限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,能够在不背离本发明的原理和范围的情况下,根据本发明的方法进行形式和细节上的各种修正和改变,但是这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。The above descriptions are only several specific embodiments of the present invention, and do not constitute a limitation to the present invention. Obviously, for those skilled in the art, after understanding the contents and principles of the present invention, they can Various modifications and changes in form and details are made according to the method of the present invention, but these modifications and changes based on the present invention are still within the protection scope of the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710198250.4A CN107134491B (en) | 2017-03-29 | 2017-03-29 | Vertical structure power electronic devices based on arcuate source field plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710198250.4A CN107134491B (en) | 2017-03-29 | 2017-03-29 | Vertical structure power electronic devices based on arcuate source field plate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107134491A CN107134491A (en) | 2017-09-05 |
CN107134491B true CN107134491B (en) | 2019-11-29 |
Family
ID=59714913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710198250.4A Active CN107134491B (en) | 2017-03-29 | 2017-03-29 | Vertical structure power electronic devices based on arcuate source field plate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107134491B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110634950A (en) * | 2018-06-22 | 2019-12-31 | 中国科学院苏州纳米技术与纳米仿生研究所 | Gallium oxide vertical structure semiconductor electronic device and manufacturing method thereof |
CN110634938A (en) * | 2018-06-22 | 2019-12-31 | 中国科学院苏州纳米技术与纳米仿生研究所 | Gallium oxide vertical structure semiconductor electronic device and manufacturing method thereof |
CN114256336A (en) * | 2021-12-15 | 2022-03-29 | 北京超弦存储器研究院 | A kind of semiconductor device and its manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5973360A (en) * | 1996-03-20 | 1999-10-26 | Siemens Aktiengesellschaft | Field effect-controllable semiconductor component |
CN1581506A (en) * | 2003-08-08 | 2005-02-16 | 三菱电机株式会社 | Vertical semiconductor device and manufacturing method thereof |
CN101221980A (en) * | 2007-01-11 | 2008-07-16 | 富士电机电子设备技术株式会社 | power semiconductor device |
CN101232045A (en) * | 2007-01-24 | 2008-07-30 | 中国科学院微电子研究所 | Field effect transistor multilayer field plate device and manufacturing method thereof |
JP2011171552A (en) * | 2010-02-19 | 2011-09-01 | Fuji Electric Co Ltd | Semiconductor device and method of manufacturing the same |
CN104409482A (en) * | 2014-11-18 | 2015-03-11 | 西安电子科技大学 | GaN-based T-shaped source field plate power device and manufacture method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7786533B2 (en) * | 2001-09-07 | 2010-08-31 | Power Integrations, Inc. | High-voltage vertical transistor with edge termination structure |
US7501669B2 (en) * | 2003-09-09 | 2009-03-10 | Cree, Inc. | Wide bandgap transistor devices with field plates |
-
2017
- 2017-03-29 CN CN201710198250.4A patent/CN107134491B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5973360A (en) * | 1996-03-20 | 1999-10-26 | Siemens Aktiengesellschaft | Field effect-controllable semiconductor component |
CN1581506A (en) * | 2003-08-08 | 2005-02-16 | 三菱电机株式会社 | Vertical semiconductor device and manufacturing method thereof |
CN101221980A (en) * | 2007-01-11 | 2008-07-16 | 富士电机电子设备技术株式会社 | power semiconductor device |
CN101232045A (en) * | 2007-01-24 | 2008-07-30 | 中国科学院微电子研究所 | Field effect transistor multilayer field plate device and manufacturing method thereof |
JP2011171552A (en) * | 2010-02-19 | 2011-09-01 | Fuji Electric Co Ltd | Semiconductor device and method of manufacturing the same |
CN104409482A (en) * | 2014-11-18 | 2015-03-11 | 西安电子科技大学 | GaN-based T-shaped source field plate power device and manufacture method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN107134491A (en) | 2017-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106887467B (en) | Drain-connected semi-superjunction gallium nitride-based vertical heterojunction power device and manufacturing method | |
CN111682064B (en) | High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof | |
CN111834455B (en) | Enhancement mode high electron mobility transistor and method of making the same | |
CN107068739B (en) | Curved grid field plate current aperture power device | |
CN104393035B (en) | Heterojunction field effect transistor of composite source field plate based on medium modulation | |
CN107146811B (en) | Current aperture power transistor based on barrier layer modulation structure and its manufacturing method | |
CN107134491B (en) | Vertical structure power electronic devices based on arcuate source field plate | |
CN106941117A (en) | Gallium nitride radical heterojunction current apertures device based on suspension superjunction and preparation method thereof | |
CN107170821B (en) | Floating type drain field plate current aperture device and method of making the same | |
CN112768508B (en) | Back gate full-control AlGaN/GaN heterojunction enhanced power HEMT device and preparation method thereof | |
CN107146812B (en) | Enhanced grid field plate GaN base current apertures hetero junction field effect device and preparation method thereof | |
CN107068740B (en) | Source echelon field plate vertical power transistor | |
CN107154435B (en) | Ladder current blocking layer vertical power device | |
CN111863950A (en) | Junction Gate-Drain Power Devices | |
CN107170797B (en) | Drainage field plate-based current aperture heterojunction transistor and fabrication method thereof | |
CN111863953A (en) | Power switch device and method of making the same | |
CN106960873B (en) | Vertical-type power transistor based on arc leakage field plate and Schottky drain | |
CN107170798B (en) | Vertical power device based on gate field plate and drain field plate and its fabrication method | |
CN107170804B (en) | Composite Source Field Plate Current Aperture Heterojunction Field Effect Transistor | |
CN107170820B (en) | Arc Gate-Drain Compound Field Plate Current Aperture Heterojunction Devices | |
CN107170819B (en) | Vertical Heterojunction Field Effect Device Based on Floating Source Field Plate and Floating Drain Field Plate | |
CN107170795B (en) | Source-drain composite field plate vertical power electronic device | |
CN107134490B (en) | Vertical power device based on arc-shaped source field plate and arc-shaped drain field plate and its fabrication method | |
CN104409481B (en) | Groove gate type right angle composite gate field plate heterojunction device and preparation method thereof | |
CN104393043B (en) | High-electron-mobility transistor of gallium nitride-based right-angle drain field plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |