CN101232045A - Field effect transistor multilayer field plate device and manufacturing method thereof - Google Patents
Field effect transistor multilayer field plate device and manufacturing method thereof Download PDFInfo
- Publication number
- CN101232045A CN101232045A CNA200710062987XA CN200710062987A CN101232045A CN 101232045 A CN101232045 A CN 101232045A CN A200710062987X A CNA200710062987X A CN A200710062987XA CN 200710062987 A CN200710062987 A CN 200710062987A CN 101232045 A CN101232045 A CN 101232045A
- Authority
- CN
- China
- Prior art keywords
- algan
- field plate
- source
- gan
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 230000005669 field effect Effects 0.000 title claims abstract description 5
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 77
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229910052751 metal Inorganic materials 0.000 claims abstract description 47
- 239000002184 metal Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims abstract description 31
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract 26
- 239000000758 substrate Substances 0.000 claims description 33
- 238000000206 photolithography Methods 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 10
- 238000001704 evaporation Methods 0.000 claims description 10
- 229910052594 sapphire Inorganic materials 0.000 claims description 9
- 239000010980 sapphire Substances 0.000 claims description 9
- 238000000137 annealing Methods 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 5
- 238000004151 rapid thermal annealing Methods 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 13
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
Images
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明涉及半导体材料中微波功率器件技术领域,公开了一种制作铝镓氮/氮化镓高电子迁移率场效应晶体管(AlGaN/GaN HEMT)多层场板器件的方法,该方法基于常规的AlGaN/GaN HEMT器件制作工艺,在形成栅金属接触后,先制作栅连接场板,再制作源连接场板,形成AlGaN/GaNHEMT多层场板器件。本发明同时公开了一种AlGaN/GaN HEMT多层场板器件。利用本发明,大大提高了AlGaN/GaN HEMT器件的击穿特性,并有效地抑制了AlGaN/GaN HEMT器件的电流崩塌现象。
The invention relates to the technical field of microwave power devices in semiconductor materials, and discloses a method for manufacturing an aluminum gallium nitride/gallium nitride high electron mobility field effect transistor (AlGaN/GaN HEMT) multilayer field plate device. The method is based on conventional In the manufacturing process of AlGaN/GaN HEMT devices, after the gate metal contact is formed, the gate connection field plate is firstly fabricated, and then the source connection field plate is fabricated to form an AlGaN/GaN HEMT multilayer field plate device. The invention also discloses an AlGaN/GaN HEMT multilayer field plate device. The invention greatly improves the breakdown characteristic of the AlGaN/GaN HEMT device, and effectively suppresses the current collapse phenomenon of the AlGaN/GaN HEMT device.
Description
技术领域 technical field
本发明涉及半导体材料中微波功率器件技术领域,尤其涉及一种铝镓氮/氮化镓高电子迁移率场效应晶体管(AlGaN/GaN HEMT)多层场板器件及其制作方法。The invention relates to the technical field of microwave power devices in semiconductor materials, in particular to an aluminum gallium nitride/gallium nitride high electron mobility field effect transistor (AlGaN/GaN HEMT) multilayer field plate device and a manufacturing method thereof.
背景技术 Background technique
氮化镓(GaN)作为第三代宽禁带半导体材料,以其禁带宽度大(3.4eV)、击穿电压高(3.3MV/cm)、二维电子气浓度高(大于1013cm2)、饱和电子速度大(2.8×107cm/s)等特性在国际上受到广泛关注。Gallium nitride (GaN), as the third-generation wide-bandgap semiconductor material, has a large bandgap (3.4eV), a high breakdown voltage (3.3MV/cm), and a high two-dimensional electron gas concentration (greater than 10 13 cm 2 ), high saturation electron velocity (2.8×10 7 cm/s) and other characteristics have attracted extensive attention in the world.
目前,AlGaN/GaN HEMT器件的高频、高压、高温以及大功率特性使之在微波功率器件方面有着巨大的前景。At present, the high frequency, high voltage, high temperature and high power characteristics of AlGaN/GaN HEMT devices make them have great prospects in microwave power devices.
对于常规的AlGaN/GaN HEMT器件,通常的工艺步骤如图1所示,图1为目前制作常规AlGaN/GaN HEMT器件的方法流程图,该方法具体包括以下步骤:For conventional AlGaN/GaN HEMT devices, the usual process steps are shown in Figure 1. Figure 1 is a flow chart of the current method for manufacturing conventional AlGaN/GaN HEMT devices. The method specifically includes the following steps:
步骤101:光学光刻,形成对准标记,蒸发标记金属;Step 101: optical lithography, forming an alignment mark, and evaporating the mark metal;
步骤102:光学光刻源漏图形,并蒸发源漏金属;Step 102: Optically lithography the source and drain pattern, and evaporate the source and drain metal;
步骤103:退火,使源漏金属与衬底材料形成良好的欧姆接触;Step 103: annealing, so that the source and drain metals form a good ohmic contact with the substrate material;
步骤104:有源区隔离;Step 104: active area isolation;
步骤105:光学光刻制作栅线条;Step 105: making grid lines by optical lithography;
步骤106:蒸发栅金属;Step 106: evaporating grid metal;
步骤107:金属布线;Step 107: metal wiring;
步骤108:制作空气桥;Step 108: Make the air bridge;
步骤109:测试分析。Step 109: Test analysis.
但是,AlGaN/GaN HEMT功率器件中仍有很多问题没有解决,关键的两个问题是电流崩塌效应和过大的栅反向漏电。研究发现,这两个现象都和AlGaN的表面态有直接的关系。However, there are still many problems in AlGaN/GaN HEMT power devices that have not been resolved. The two key problems are the current collapse effect and excessive gate reverse leakage. The study found that both phenomena are directly related to the surface states of AlGaN.
为了降低表面陷阱效应以达到抑制电流崩塌的作用,氮化硅(SiN)被采用做为介质膜对器件进行钝化工艺处理。钝化工艺的采用有效地抑制了电流崩塌效应,增大了器件微波功率输出的能力。但是,也同时减小了器件的击穿电压。In order to reduce the surface trap effect and achieve the effect of suppressing current collapse, silicon nitride (SiN) is used as a dielectric film to passivate the device. The adoption of the passivation process effectively suppresses the current collapse effect and increases the microwave power output capability of the device. However, the breakdown voltage of the device is also reduced at the same time.
如何折衷处理电流崩塌与击穿电压的关系,是使得AlGaN/GaN器件应用在高频高压大功率领域的重要问题。为此,引入了栅连接场板的工艺。栅连接场板的引入起到了调制栅-漏间的表面态陷阱的作用,以起到抑制电流崩塌的作用;同时,场板的引入,使得栅-漏间的电场得到重新分布。How to compromise the relationship between current collapse and breakdown voltage is an important issue to make AlGaN/GaN devices applied in the field of high frequency, high voltage and high power. For this reason, the process of connecting the gate to the field plate is introduced. The introduction of the gate connection field plate plays a role in modulating the surface state trap between the gate and the drain to suppress the current collapse; at the same time, the introduction of the field plate redistributes the electric field between the gate and the drain.
未做场板前,栅-漏间电场强度最大点位于栅金属边缘,而栅-漏间的场板使得电场强度最大值区域向漏端扩张,峰值降低,大大提高了器件的击穿电压。Before the field plate is made, the maximum point of the electric field intensity between the gate and the drain is located at the edge of the gate metal, and the field plate between the gate and the drain makes the area of the maximum electric field intensity expand to the drain end, the peak value is reduced, and the breakdown voltage of the device is greatly improved.
但是,栅连接场板的加入增加了栅漏间的电容,同时也增加了耗尽区的长度,导致了增益的下降。为了解决这个问题,提出了源连接场板的概念。在这种结构中,场板和沟道间的电容是漏-源电容,可以被输出匹配网络吸收,而栅场板场板结构带来的Miller反馈电容也不存在了。因此,有效地同时提高了器件的输出功率和增益。However, the addition of the gate connection field plate increases the capacitance between the gate and the drain, and also increases the length of the depletion region, resulting in a decrease in gain. To solve this problem, the concept of source-connected field plates is proposed. In this structure, the capacitance between the field plate and the channel is the drain-source capacitance, which can be absorbed by the output matching network, and the Miller feedback capacitance brought by the field plate structure of the gate field plate does not exist. Therefore, the output power and gain of the device are effectively improved at the same time.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
有鉴于此,本发明的一个目的在于提供一种AlGaN/GaN HEMT多层场板器件,以提高AlGaN/GaN HEMT器件的击穿特性,并抑制AlGaN/GaNHEMTs器件的电流崩塌现象。In view of this, an object of the present invention is to provide an AlGaN/GaN HEMT multilayer field plate device to improve the breakdown characteristics of the AlGaN/GaN HEMT device and suppress the current collapse phenomenon of the AlGaN/GaN HEMTs device.
本发明的另一个目的在于提供一种制作AlGaN/GaN HEMT多层场板器件的方法,以提高AlGaN/GaN HEMTs器件的击穿特性,并抑制AlGaN/GaN HEMTs器件的电流崩塌现象。Another object of the present invention is to provide a method for fabricating an AlGaN/GaN HEMT multilayer field plate device, so as to improve the breakdown characteristics of the AlGaN/GaN HEMTs device and suppress the current collapse phenomenon of the AlGaN/GaN HEMTs device.
(二)技术方案(2) Technical solution
为达到上述一个目的,本发明提供了一种AlGaN/GaN HEMT多层场板器件,该器件包括栅极,位于栅极两侧的源极和漏极;其中,In order to achieve the above-mentioned purpose, the present invention provides a kind of AlGaN/GaN HEMT multilayer field plate device, and this device comprises gate, is positioned at the source electrode and the drain of gate both sides; Wherein,
栅极、源极和漏极位于衬底材料顶层AlGaN外延层上,源极与AlGaN外延层以及漏极与AlGaN外延层之间通过退火合金形成欧姆接触;The gate, source and drain are located on the AlGaN epitaxial layer on the top layer of the substrate material, and ohmic contacts are formed between the source and the AlGaN epitaxial layer and the drain and the AlGaN epitaxial layer by annealing the alloy;
形成了栅极、源极和漏极的器件表面淀积氮化硅(SiN)介质膜,在该层介质膜上蒸发栅连接场板的图形;随后在已经形成的器件表面再次淀积SiN介质膜,在该层介质膜上蒸发源连接场板的图形。Deposit a silicon nitride (SiN) dielectric film on the surface of the device where the gate, source and drain are formed, and evaporate the pattern of the gate connection field plate on the dielectric film; then deposit the SiN dielectric again on the surface of the device that has been formed film, on which the evaporation source is connected to the pattern of the field plate on the dielectric film.
所述衬底材料由下至上依次包括蓝宝石衬底、氮化镓GaN和AlGaN外延层三层结构;其中,蓝宝石衬底,用于作为生长GaN外延层的衬底材料;AlGaN/GaN外延层结构,AlGaN外延层和GaN外延层间形成异质结,产生高浓度的二维电子气,提供大的电流密度和功率输出能力。The substrate material includes a three-layer structure of sapphire substrate, gallium nitride GaN and AlGaN epitaxial layer from bottom to top; among them, the sapphire substrate is used as the substrate material for growing GaN epitaxial layer; AlGaN/GaN epitaxial layer structure , A heterojunction is formed between the AlGaN epitaxial layer and the GaN epitaxial layer to generate a high concentration of two-dimensional electron gas, providing a large current density and power output capability.
为达到上述另一个目的,本发明提供了一种制作AlGaN/GaN HEMT多层场板器件的方法,该方法基于常规的AlGaN/GaN HEMT器件制作工艺,在形成栅金属接触后,先制作栅连接场板,再制作源连接场板,形成AlGaN/GaN HEMT多层场板器件。In order to achieve the above-mentioned another object, the present invention provides a method for manufacturing AlGaN/GaN HEMT multilayer field plate devices. The method is based on the conventional AlGaN/GaN HEMT device manufacturing process. After the gate metal contact is formed, the gate connection is first made. Field plate, and then make source connection field plate to form AlGaN/GaN HEMT multilayer field plate device.
该方法具体包括:The method specifically includes:
A、在衬底材料上进行光学光刻,形成对准标记,蒸发标记金属;A. Perform optical lithography on the substrate material to form an alignment mark and evaporate the mark metal;
B、在蒸发过标记金属后,在AlGaN外延层上光学光刻源漏图形,并蒸发源漏金属,然后高温快速热退火,在源漏金属与衬底材料之间形成欧姆接触,形成源极和漏极;B. After evaporating the marking metal, optically lithography the source and drain pattern on the AlGaN epitaxial layer, and evaporate the source and drain metal, and then high temperature rapid thermal annealing to form an ohmic contact between the source and drain metal and the substrate material to form the source and drain;
C、进行离子注入,对有源区进行隔离;C. Perform ion implantation to isolate the active area;
D、在衬底材料上源极和漏极之间的位置光学光刻制作栅线条,蒸发栅金属,形成栅极;D. Make gate lines by optical lithography at the position between the source and drain on the substrate material, evaporate the gate metal, and form the gate;
E、在制作有源极、漏极和栅极的衬底材料表面淀积SiN介质膜;E. Deposit a SiN dielectric film on the surface of the substrate material with source, drain and gate;
F、光学光刻栅场板图形,蒸发金属;F. Optical lithography grid field plate pattern, evaporated metal;
G、二次淀积SiN介质膜;G, secondary deposition of SiN dielectric film;
H、光学光刻源场板图形,蒸发金属;H. Optical lithography source field plate pattern, evaporated metal;
I、光学光刻金属布线图形,蒸发金属。I. Optical lithography metal wiring pattern, evaporated metal.
所述衬底材料从上到下依次为AlGaN、GaN和蓝宝石。The substrate materials are AlGaN, GaN and sapphire in order from top to bottom.
所述衬底材料在AlGaN与GaN之间进一步包括一层AlN。The substrate material further includes a layer of AlN between AlGaN and GaN.
步骤B中所述蒸发的源漏金属为Ti/Al/Ti/Au,所述高温快速热退火的条件为:在750℃至800℃的氮气氛围中退火30秒。The evaporated source-drain metal in step B is Ti/Al/Ti/Au, and the high-temperature rapid thermal annealing condition is: annealing in a nitrogen atmosphere at 750° C. to 800° C. for 30 seconds.
步骤C中所述进行离子注入时注入的离子为高能He+离子;The ions implanted during the ion implantation described in step C are high-energy He + ions;
步骤D中所述蒸发的栅金属为Ni/Au,步骤F中所述蒸发的金属为Ni/Au,步骤H中所述蒸发的金属为Ni/Au,步骤I中所述蒸发的金属为Ti/Au。The evaporated gate metal in step D is Ni/Au, the evaporated metal in step F is Ni/Au, the evaporated metal in step H is Ni/Au, and the evaporated metal in step I is Ti /Au.
步骤E中所述淀积采用PECVD方法,淀积介质膜种类为Si3N4,淀积的介质膜的厚度为;The deposition in step E adopts the PECVD method, the type of the deposited dielectric film is Si 3 N 4 , and the thickness of the deposited dielectric film is ;
步骤G中所述淀积采用PECVD方法,淀积介质膜种类为Si3N4,淀积的介质膜的厚度为。The deposition in step G adopts the PECVD method, the type of the deposited dielectric film is Si 3 N 4 , and the thickness of the deposited dielectric film is .
该方法进一步包括:J、制作空气桥和测试分析。The method further includes: J, making an air bridge and testing and analyzing.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:
1、本发明提供的这种AlGaN/GaN HEMT多层场板器件及其制作方法,由于基于常规的AlGaN/GaN HEMT器件制作工艺,在形成栅金属接触后,先制作栅连接场板,再制作源连接场板,形成AlGaN/GaN HEMT多层场板器件,所以大大提高了AlGaN/GaN HEMT器件的击穿特性,并有效地抑制了AlGaN/GaN HEMT器件的电流崩塌现象。1. The AlGaN/GaN HEMT multilayer field plate device and its manufacturing method provided by the present invention are based on the conventional AlGaN/GaN HEMT device manufacturing process. After the gate metal contact is formed, the gate connection field plate is firstly fabricated, and then fabricated The source is connected to the field plate to form an AlGaN/GaN HEMT multilayer field plate device, so the breakdown characteristics of the AlGaN/GaN HEMT device are greatly improved, and the current collapse of the AlGaN/GaN HEMT device is effectively suppressed.
2、利用本发明制作的AlGaN/GaN HEMT多层场板器件,从击穿电压测试可以看出,该结构的击穿电压远比只采用栅连接场板或源连接场板结构的击穿电压大,这是因为,两层场板的采用,使得栅一漏间的电场由一层场板的两个尖峰变成了三个尖峰的E型结构,峰值变小,也就是最大电场值变小,所以击穿电压得到提高。2. Using the AlGaN/GaN HEMT multilayer field plate device manufactured by the present invention, it can be seen from the breakdown voltage test that the breakdown voltage of this structure is much higher than that of the structure that only uses the gate-connected field plate or the source-connected field plate structure This is because the use of two-layer field plates makes the electric field between the gate and the drain change from two peaks of one field plate to an E-shaped structure with three peaks, and the peaks become smaller, that is, the maximum electric field value becomes smaller. Small, so the breakdown voltage is improved.
3、利用本发明制作的AlGaN/GaN HEMT多层场板器件,在功率输出方面,基本完全消除了电流崩塌现象。而且,不同于常规结构的是,常规结构HEMT器件在二十几伏的漏压下功率就达到饱和,即使漏压可以加上去,输出功率基本不增加,而采用两层场板结构的HEMT器件,在大电压情况时,当漏压大于40伏,随着漏压的增加,输出功率仍然增加,证明这种结构的HEMT结构充分发挥了AlGaN/GaN材料体系在功率输出上的潜力。3. The AlGaN/GaN HEMT multilayer field plate device manufactured by the present invention basically completely eliminates the current collapse phenomenon in terms of power output. Moreover, unlike the conventional structure, the power of the conventional structure HEMT device reaches saturation at a drain voltage of more than 20 volts. Even if the drain voltage can be added, the output power basically does not increase. , in the case of high voltage, when the drain voltage is greater than 40 volts, the output power still increases with the increase of the drain voltage, which proves that the HEMT structure of this structure has fully utilized the potential of the AlGaN/GaN material system in terms of power output.
附图说明 Description of drawings
图1为目前制作常规AlGaN/GaN HEMT器件的方法流程图;Fig. 1 is the flow chart of the current method for making conventional AlGaN/GaN HEMT devices;
图2为本发明提供的AlGaN/GaN HEMT多层场板器件的结构示意图;Fig. 2 is the structural representation of the AlGaN/GaN HEMT multilayer field plate device provided by the present invention;
图3为本发明提供的制作AlGaN/GaN HEMT多层场板器件的方法流程图;Fig. 3 is the flow chart of the method for making AlGaN/GaN HEMT multilayer field plate device provided by the present invention;
图4为本发明提供的制作AlGaN/GaN HEMT多层场板器件的工艺流程图;Fig. 4 is the process flow chart of making AlGaN/GaN HEMT multilayer field plate device provided by the present invention;
图5为本发明提供的AlGaN/GaN HEMT多层场板器件的击穿特性示意图。Fig. 5 is a schematic diagram of the breakdown characteristics of the AlGaN/GaN HEMT multilayer field plate device provided by the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
如图2所示,图2为本发明提供的AlGaN/GaN HEMT多层场板器件的结构示意图。该AlGaN/GaN HEMT多层场板器件包括:As shown in FIG. 2, FIG. 2 is a schematic structural diagram of an AlGaN/GaN HEMT multilayer field plate device provided by the present invention. The AlGaN/GaN HEMT multilayer field plate device includes:
栅极,位于栅极两侧的源极和漏极;其中,gate, source and drain on either side of the gate; where,
栅极、源极和漏极位于衬底材料顶层铝镓氮(AlGaN)外延层上,源极与AlGaN外延层以及漏极与AlGaN外延层之间通过退火合金形成欧姆接触;The gate, source and drain are located on the top aluminum gallium nitride (AlGaN) epitaxial layer of the substrate material, and an ohmic contact is formed between the source and the AlGaN epitaxial layer and the drain and the AlGaN epitaxial layer through an annealing alloy;
形成了栅极、源极和漏极的器件表面淀积SiN介质膜,在该层介质膜上蒸发栅连接场板的图形;随后在已经形成的器件表面再次淀积SiN介质膜,在该层介质膜上蒸发源连接场板的图形。Deposit a SiN dielectric film on the surface of the device where the gate, source and drain are formed, and evaporate the pattern of the gate connection field plate on the dielectric film; then deposit the SiN dielectric film again on the surface of the device that has been formed. The graph of the evaporation source connected to the field plate on the dielectric film.
所述衬底材料由下至上依次包括蓝宝石衬底、氮化镓(GaN)和AlGaN外延层三层结构;其中,蓝宝石衬底,用于作为生长GaN外延层的衬底材料;AlGaN/GaN外延层结构,AlGaN外延层和GaN外延层间形成异质结,产生高浓度的二维电子气,提供大的电流密度和功率输出能力。The substrate material includes a three-layer structure of sapphire substrate, gallium nitride (GaN) and AlGaN epitaxial layer from bottom to top; among them, the sapphire substrate is used as the substrate material for growing GaN epitaxial layer; AlGaN/GaN epitaxial layer Layer structure, AlGaN epitaxial layer and GaN epitaxial layer form a heterojunction to generate a high concentration of two-dimensional electron gas, providing large current density and power output capability.
基于图2所示的AlGaN/GaN HEMT多层场板器件,图3示出了本发明提供的制作AlGaN/GaN HEMT多层场板器件的方法流程图。该方法基于常规的GaN HEMT器件制作工艺,在形成栅金属接触后,先制作栅连接场板,再制作源连接场板,形成AlGaN/GaN HEMT多层场板结构。该方法具体包括以下步骤:Based on the AlGaN/GaN HEMT multilayer field plate device shown in FIG. 2, FIG. 3 shows a flowchart of a method for manufacturing an AlGaN/GaN HEMT multilayer field plate device provided by the present invention. This method is based on the conventional GaN HEMT device manufacturing process. After the gate metal contact is formed, the gate connection field plate is first fabricated, and then the source connection field plate is fabricated to form an AlGaN/GaN HEMT multilayer field plate structure. The method specifically includes the following steps:
步骤301:在衬底材料上进行光学光刻,形成对准标记,蒸发标记金属;Step 301: performing optical lithography on the substrate material to form an alignment mark, and evaporating the mark metal;
在本步骤中,所述衬底材料从上到下依次为AlGaN、GaN和蓝宝石,或者也可以在AlGaN与GaN之间进一步包括一层AlN。In this step, the substrate material is AlGaN, GaN and sapphire in sequence from top to bottom, or a layer of AlN may be further included between AlGaN and GaN.
步骤302:在蒸发过标记金属后,在AlGaN外延层上光学光刻源漏图形,并蒸发源漏金属(Ti/Al/Ti/Au),然后高温快速热退火,在源漏金属与衬底材料之间形成欧姆接触,形成源极和漏极;Step 302: After evaporating the marking metal, optically lithographic source-drain pattern on the AlGaN epitaxial layer, and evaporate the source-drain metal (Ti/Al/Ti/Au), and then high-temperature rapid thermal annealing, the source-drain metal and the substrate Ohmic contacts are formed between the materials to form source and drain electrodes;
在本步骤中,所述高温快速热退火的条件为:在750℃至800℃的氮气氛围中退火30秒;与本步骤对应的工艺流程图如图4(a)所示。In this step, the high-temperature rapid thermal annealing condition is: annealing in a nitrogen atmosphere at 750° C. to 800° C. for 30 seconds; the process flow chart corresponding to this step is shown in FIG. 4( a ).
步骤303:进行离子注入,对有源区进行隔离;Step 303: performing ion implantation to isolate the active region;
在本步骤中,使用高能He+离子对隔离区进行离子注入,与本步骤对应的工艺流程图如图4(b)所示。In this step, high-energy He + ions are used to perform ion implantation on the isolation region, and the process flow chart corresponding to this step is shown in Figure 4(b).
步骤304:在衬底材料上源极和漏极之间的位置光学光刻制作栅线条,蒸发栅金属Ni/Au,形成栅极;与本步骤对应的工艺流程图如图4(c)所示。Step 304: Make gate lines by optical lithography at the position between the source and the drain on the substrate material, and evaporate the gate metal Ni/Au to form a gate; the process flow chart corresponding to this step is shown in Figure 4(c) Show.
步骤305:在制作有源极、漏极和栅极的衬底材料表面淀积SiN介质膜;Step 305: depositing a SiN dielectric film on the surface of the substrate material on which the source, drain and gate are formed;
在本步骤中,所述淀积采用PECVD方法,淀积介质膜种类为Si3N4,淀积的介质膜的厚度为;与本步骤对应的工艺流程图如图4(d)所示。In this step, the deposition adopts the PECVD method, the type of the deposited dielectric film is Si 3 N 4 , and the thickness of the deposited dielectric film is ; The process flow diagram corresponding to this step is shown in Figure 4 (d).
步骤306:光学光刻栅场板图形,蒸发金属Ni/Au;Step 306: optically lithographically patterning the grid field plate, and evaporating metal Ni/Au;
步骤307:二次淀积SiN介质膜;Step 307: secondly depositing a SiN dielectric film;
在本步骤中,所述淀积采用PECVD方法,淀积介质膜种类为Si3N4,淀积的介质膜的厚度为;与本步骤对应的工艺流程图如图4(f)所示。In this step, the deposition adopts the PECVD method, the type of the deposited dielectric film is Si 3 N 4 , and the thickness of the deposited dielectric film is ; The process flow diagram corresponding to this step is shown in Figure 4 (f).
步骤308:光学光刻源场板图形,蒸发金属Ni/Au;与本步骤对应的工艺流程图如图4(g)所示。Step 308: Optically lithography source field plate patterns, and evaporate metal Ni/Au; the process flow chart corresponding to this step is shown in FIG. 4(g).
步骤309:光学光刻金属布线图形,蒸发金属Ti/Au。Step 309: Optically lithographic metal wiring patterns, and evaporate metal Ti/Au.
步骤310:制作空气桥;Step 310: Make the air bridge;
步骤311:测试分析。在本步骤中,对本发明提供的AlGaN/GaN HEMT多层场板器件的击穿特性示意图如图5所示。Step 311: Test analysis. In this step, a schematic diagram of the breakdown characteristics of the AlGaN/GaN HEMT multilayer field plate device provided by the present invention is shown in FIG. 5 .
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200710062987XA CN101232045A (en) | 2007-01-24 | 2007-01-24 | Field effect transistor multilayer field plate device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200710062987XA CN101232045A (en) | 2007-01-24 | 2007-01-24 | Field effect transistor multilayer field plate device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101232045A true CN101232045A (en) | 2008-07-30 |
Family
ID=39898347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA200710062987XA Pending CN101232045A (en) | 2007-01-24 | 2007-01-24 | Field effect transistor multilayer field plate device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101232045A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011026393A1 (en) | 2009-09-07 | 2011-03-10 | Zhang Naiqian | Semiconductor device and fabrication method thereof |
WO2013071699A1 (en) * | 2011-11-18 | 2013-05-23 | 中国科学院苏州纳米技术与纳米仿生研究所 | Group iii nitride hemt device |
CN103563060A (en) * | 2011-05-25 | 2014-02-05 | 夏普株式会社 | Switching element |
CN103954658A (en) * | 2014-04-03 | 2014-07-30 | 西安电子科技大学 | Dynamic real-time measuring apparatus for cell membrane potential |
WO2016033977A1 (en) * | 2014-09-01 | 2016-03-10 | 苏州捷芯威半导体有限公司 | Inclined field plate power device and method for fabricating the inclined field plate power device |
CN107068739A (en) * | 2017-03-29 | 2017-08-18 | 西安电子科技大学 | Arc grid field plate current apertures power device |
CN107068740A (en) * | 2017-03-29 | 2017-08-18 | 西安电子科技大学 | Source ladder field plate vertical-type power transistor |
CN107134491A (en) * | 2017-03-29 | 2017-09-05 | 西安电子科技大学 | Vertical stratification power electronic devices based on arcuate source field plate |
CN107134490A (en) * | 2017-03-29 | 2017-09-05 | 西安电子科技大学 | Vertical-type power device based on arcuate source field plate and arc leakage field plate and preparation method thereof |
CN107170795A (en) * | 2017-03-29 | 2017-09-15 | 西安电子科技大学 | Source and drain composite field plate vertical-type power electronic devices |
CN107170819A (en) * | 2017-03-29 | 2017-09-15 | 西安电子科技大学 | The vertical-type hetero junction field effect device of field plate is leaked based on floating source field plate and floating |
CN107275385A (en) * | 2017-06-23 | 2017-10-20 | 深圳市晶相技术有限公司 | Gallium nitride semiconductor device and preparation method thereof |
CN107316890A (en) * | 2017-06-23 | 2017-11-03 | 深圳市晶相技术有限公司 | Gallium nitride semiconductor device and preparation method thereof |
CN107316892A (en) * | 2017-06-23 | 2017-11-03 | 深圳市晶相技术有限公司 | Gallium nitride semiconductor device and preparation method thereof |
CN107644833A (en) * | 2017-09-22 | 2018-01-30 | 叶顺闵 | A kind of gallium nitride device Making programme of effectively lifting high frequency performance |
CN109061429A (en) * | 2018-06-22 | 2018-12-21 | 北京工业大学 | A method of utilizing trap parameters in transient voltage response characterization GaN HEMT device |
CN109346407A (en) * | 2018-09-21 | 2019-02-15 | 张海涛 | Manufacturing method of gallium nitride HEMT |
CN109950668A (en) * | 2019-03-20 | 2019-06-28 | 上海华虹宏力半导体制造有限公司 | The forming method and RF switching devices of RF switching devices |
CN109962101A (en) * | 2019-04-23 | 2019-07-02 | 窦祥峰 | Structure of a gallium nitride MISHEMT power device |
US10720497B2 (en) | 2017-10-24 | 2020-07-21 | Raytheon Company | Transistor having low capacitance field plate structure |
WO2024131375A1 (en) * | 2022-12-21 | 2024-06-27 | 厦门市三安集成电路有限公司 | Nitride semiconductor device and manufacturing method therefor |
-
2007
- 2007-01-24 CN CNA200710062987XA patent/CN101232045A/en active Pending
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011026393A1 (en) | 2009-09-07 | 2011-03-10 | Zhang Naiqian | Semiconductor device and fabrication method thereof |
CN103563060A (en) * | 2011-05-25 | 2014-02-05 | 夏普株式会社 | Switching element |
CN103563060B (en) * | 2011-05-25 | 2016-03-23 | 夏普株式会社 | switching element |
WO2013071699A1 (en) * | 2011-11-18 | 2013-05-23 | 中国科学院苏州纳米技术与纳米仿生研究所 | Group iii nitride hemt device |
US9070756B2 (en) | 2011-11-18 | 2015-06-30 | Suzhou Institute Of Nano-Tech And Nano-Bionics Of Chinese Academy Of Sciences | Group III nitride high electron mobility transistor (HEMT) device |
CN103954658A (en) * | 2014-04-03 | 2014-07-30 | 西安电子科技大学 | Dynamic real-time measuring apparatus for cell membrane potential |
CN103954658B (en) * | 2014-04-03 | 2017-02-15 | 西安电子科技大学 | Dynamic real-time measuring apparatus for cell membrane potential |
WO2016033977A1 (en) * | 2014-09-01 | 2016-03-10 | 苏州捷芯威半导体有限公司 | Inclined field plate power device and method for fabricating the inclined field plate power device |
CN107134491A (en) * | 2017-03-29 | 2017-09-05 | 西安电子科技大学 | Vertical stratification power electronic devices based on arcuate source field plate |
CN107068740A (en) * | 2017-03-29 | 2017-08-18 | 西安电子科技大学 | Source ladder field plate vertical-type power transistor |
CN107134491B (en) * | 2017-03-29 | 2019-11-29 | 西安电子科技大学 | Vertical structure power electronic devices based on arcuate source field plate |
CN107134490A (en) * | 2017-03-29 | 2017-09-05 | 西安电子科技大学 | Vertical-type power device based on arcuate source field plate and arc leakage field plate and preparation method thereof |
CN107170795A (en) * | 2017-03-29 | 2017-09-15 | 西安电子科技大学 | Source and drain composite field plate vertical-type power electronic devices |
CN107170819A (en) * | 2017-03-29 | 2017-09-15 | 西安电子科技大学 | The vertical-type hetero junction field effect device of field plate is leaked based on floating source field plate and floating |
CN107170819B (en) * | 2017-03-29 | 2020-05-05 | 西安电子科技大学 | Vertical Heterojunction Field Effect Device Based on Floating Source Field Plate and Floating Drain Field Plate |
CN107134490B (en) * | 2017-03-29 | 2020-04-14 | 西安电子科技大学 | Vertical power device based on arc-shaped source field plate and arc-shaped drain field plate and its fabrication method |
CN107068739A (en) * | 2017-03-29 | 2017-08-18 | 西安电子科技大学 | Arc grid field plate current apertures power device |
CN107170795B (en) * | 2017-03-29 | 2020-04-14 | 西安电子科技大学 | Source-drain composite field plate vertical power electronic device |
CN107068739B (en) * | 2017-03-29 | 2019-12-03 | 西安电子科技大学 | Curved grid field plate current aperture power device |
CN107068740B (en) * | 2017-03-29 | 2019-12-03 | 西安电子科技大学 | Source echelon field plate vertical power transistor |
CN107316892A (en) * | 2017-06-23 | 2017-11-03 | 深圳市晶相技术有限公司 | Gallium nitride semiconductor device and preparation method thereof |
CN107316890A (en) * | 2017-06-23 | 2017-11-03 | 深圳市晶相技术有限公司 | Gallium nitride semiconductor device and preparation method thereof |
CN107275385A (en) * | 2017-06-23 | 2017-10-20 | 深圳市晶相技术有限公司 | Gallium nitride semiconductor device and preparation method thereof |
CN107644833B (en) * | 2017-09-22 | 2019-12-03 | 叶顺闵 | A kind of effective gallium nitride device production process for promoting high frequency performance |
CN107644833A (en) * | 2017-09-22 | 2018-01-30 | 叶顺闵 | A kind of gallium nitride device Making programme of effectively lifting high frequency performance |
US10720497B2 (en) | 2017-10-24 | 2020-07-21 | Raytheon Company | Transistor having low capacitance field plate structure |
US11038030B2 (en) | 2017-10-24 | 2021-06-15 | Raytheon Company | Transistor having low capacitance field plate structure |
CN109061429A (en) * | 2018-06-22 | 2018-12-21 | 北京工业大学 | A method of utilizing trap parameters in transient voltage response characterization GaN HEMT device |
CN109061429B (en) * | 2018-06-22 | 2021-02-02 | 北京工业大学 | A method for characterizing trap parameters in GaN HEMT devices using transient voltage response |
CN109346407A (en) * | 2018-09-21 | 2019-02-15 | 张海涛 | Manufacturing method of gallium nitride HEMT |
CN109950668A (en) * | 2019-03-20 | 2019-06-28 | 上海华虹宏力半导体制造有限公司 | The forming method and RF switching devices of RF switching devices |
CN109950668B (en) * | 2019-03-20 | 2021-07-02 | 上海华虹宏力半导体制造有限公司 | Forming method of radio frequency switch device and radio frequency switch device |
CN109962101A (en) * | 2019-04-23 | 2019-07-02 | 窦祥峰 | Structure of a gallium nitride MISHEMT power device |
CN109962101B (en) * | 2019-04-23 | 2024-04-16 | 窦祥峰 | A structure of a gallium nitride MISHEMT power device |
WO2024131375A1 (en) * | 2022-12-21 | 2024-06-27 | 厦门市三安集成电路有限公司 | Nitride semiconductor device and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101232045A (en) | Field effect transistor multilayer field plate device and manufacturing method thereof | |
US10886381B2 (en) | Epitaxial structure of N-face group III nitride, active device, and method for fabricating the same with integration and polarity inversion | |
CN102386223B (en) | High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method | |
CN110648914B (en) | Method for improving breakdown voltage of gallium nitride transistor | |
CN107799590B (en) | A GaN-based microwave power device with large gate width and a manufacturing method thereof | |
CN101276837A (en) | AlGaN/GaN HEMT multilayer field plate device with concave gate groove and its manufacturing method | |
CN106298887B (en) | Preparation method of groove gate MOSFET with high threshold voltage and high mobility | |
CN101552288A (en) | Semiconductor device and manufacturing method | |
CN103715255B (en) | A kind of sag GaN HEMT device and preparation method thereof | |
CN106847895B (en) | GaN-based high electron mobility transistor based on TiN/Cu/Ni gate electrode and manufacturing method | |
CN102945859A (en) | GaN heterojunction HEMT (High Electron Mobility Transistor) device | |
CN107393959A (en) | GaN hyperfrequencies device and preparation method based on sag | |
CN110299407A (en) | Power device and preparation method thereof | |
TW201431078A (en) | Semiconductor device and manufacturing method thereof, power supply device and high frequency amplifier | |
CN109037326A (en) | A kind of enhanced HEMT device and preparation method thereof with p type buried layer structure | |
CN101414627B (en) | Insulated gate source-drain compound field plate high electron mobility transistor and manufacturing method thereof | |
CN107180759A (en) | A kind of preparation method of enhanced p-type grid GaN HEMT devices | |
CN100505304C (en) | GaN-based field effect transistor and manufacturing method thereof | |
CN100594591C (en) | A Method of Improving the Performance of Gallium Nitride-Based Field Effect Transistors | |
CN211929496U (en) | GaN-based MIS-HEMT device with Г-type gate | |
CN206441733U (en) | A kind of high threshold voltage high mobility notched gates MOSFET structure | |
CN106601806A (en) | Semiconductor device and manufacture method thereof | |
CN107302022A (en) | Low injured surface processing high efficiency device and preparation method thereof | |
CN104393045A (en) | Novel GaN-base reinforced HEMT device and manufacturing method thereof | |
CN108321199B (en) | GaN high electron mobility transistor based on three-dimensional composite drain electrode and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080730 |