CN107130159B - A kind of Ignition-proof Magnesium Alloy and preparation method thereof - Google Patents
A kind of Ignition-proof Magnesium Alloy and preparation method thereof Download PDFInfo
- Publication number
- CN107130159B CN107130159B CN201710364242.2A CN201710364242A CN107130159B CN 107130159 B CN107130159 B CN 107130159B CN 201710364242 A CN201710364242 A CN 201710364242A CN 107130159 B CN107130159 B CN 107130159B
- Authority
- CN
- China
- Prior art keywords
- flame
- magnesium alloy
- alloy material
- alloy
- retardant magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 78
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 239000000956 alloy Substances 0.000 claims abstract description 119
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 78
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000003063 flame retardant Substances 0.000 claims abstract description 59
- 239000011777 magnesium Substances 0.000 claims abstract description 31
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 24
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 23
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims abstract description 18
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 15
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 13
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 11
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 11
- 238000011282 treatment Methods 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 24
- 230000032683 aging Effects 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 11
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 7
- 238000005266 casting Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000002159 abnormal effect Effects 0.000 abstract description 3
- 230000002277 temperature effect Effects 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000005728 strengthening Methods 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/06—Alloys based on magnesium with a rare earth metal as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/008—Using a protective surface layer
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及一种阻燃镁合金材料及其制备方法,属于镁基合金及其制造技术领域。本发明的阻燃镁合金材料,由以下质量百分比的组分组成:Gd 8.6~10.4%,Nd 2.6~3.4%,Ce 1.6~2.9%,Al 1.1~1.5%,Sb 1.1~1.6%,Sr 0.26~0.38%,Ca 0.78~1.0%,余量为Mg和不可避免的杂质。与现有技术相比,本发明的阻燃镁合金材料通过合理搭配不同的组元,使得其综合性能得到显著提高,尤其是室温和高温的力学性能及阻燃特性得到明显提升,且其抗拉强度具有反常温度效应,即随着拉伸温度的提高,抗拉强度也随之提高。The invention relates to a flame-retardant magnesium alloy material and a preparation method thereof, belonging to the technical field of magnesium-based alloys and their manufacture. The flame-retardant magnesium alloy material of the present invention is composed of the following components in mass percentage: Gd 8.6-10.4%, Nd 2.6-3.4%, Ce 1.6-2.9%, Al 1.1-1.5%, Sb 1.1-1.6%, Sr 0.26 ~0.38%, Ca 0.78~1.0%, the balance is Mg and unavoidable impurities. Compared with the prior art, the flame-retardant magnesium alloy material of the present invention can significantly improve its overall performance through reasonable matching of different components, especially the mechanical properties and flame-retardant properties at room temperature and high temperature are significantly improved, and its resistance The tensile strength has an abnormal temperature effect, that is, as the stretching temperature increases, the tensile strength also increases.
Description
技术领域technical field
本发明涉及一种阻燃镁合金材料及其制备方法,属于镁基合金及其制造技术领域。The invention relates to a flame-retardant magnesium alloy material and a preparation method thereof, belonging to the technical field of magnesium-based alloys and their manufacture.
背景技术Background technique
在现有金属结构材料体系中,镁合金具有高的比强度和比刚度、优异的铸造性能以及高的阻尼抗振性能,易于回收利用,具有环保特性,有着非常广泛的应用前景,深受航空航天、电子通讯以及汽车工业等行业的青睐,成为目前极具潜力的金属结构材料之一。但是镁合金的应用受到以下因素的制约:一是镁合金的强韧性不够理想,限制了其广泛使用。二是镁合金非常易燃,由于金属镁较为活泼,故而镁合金在熔炼和加工过程中极易发生氧化燃烧,一般镁合金的熔炼都是在阻燃溶剂或者保护气氛下进行,镁合金的这种易于氧化燃烧的特点给合金的生产、加工和处理带来了非常大的困难,极大地阻碍了镁合金的广泛应用,获得理想的高强阻燃镁合金一直是镁合金研究领域的一个重要课题。In the existing metal structure material system, magnesium alloy has high specific strength and specific stiffness, excellent casting performance and high damping and anti-vibration performance, is easy to recycle, has environmental protection characteristics, and has a very wide application prospect. Aerospace, electronic communication, and automobile industries are favored, and it has become one of the most promising metal structural materials at present. However, the application of magnesium alloys is restricted by the following factors: First, the strength and toughness of magnesium alloys are not ideal, which limits their widespread use. The second is that magnesium alloys are very flammable. Because magnesium is relatively active, magnesium alloys are prone to oxidative combustion during smelting and processing. Generally, magnesium alloys are smelted in flame-retardant solvents or protective atmospheres. This characteristic of being easy to oxidize and burn brings great difficulties to the production, processing and treatment of alloys, which greatly hinders the wide application of magnesium alloys. Obtaining ideal high-strength flame-retardant magnesium alloys has always been an important topic in the field of magnesium alloy research. .
目前,工业上普遍采用熔剂覆盖法和气体保护法来解决镁合金熔炼过程中的燃烧问题,但是现有阻燃方法存在环境污染以及降低合金性能的问题。国内外对阻燃镁合金进行了很多研究,相关文献已经报道了通过Ca、Be、Re等元素合金化制备的阻燃镁合金,取得了一定的成果。中国专利ZL99113861.9“铸造阻燃镁合金及其熔炼和铸造工艺”中提出了一种含Al、Sr、Be和稀土元素的阻燃镁合金,其燃点温度可以达到740℃,但是其抗拉强度只有160MPa,延伸率只有2%,其强度和延伸率还不能满足现在的工业应用。中国专利ZL200810155894.6“一种新型阻燃高强耐热镁合金及其制备方法”中将Al-Ca、Al-RE、Al-Sr中间合金加入到熔融的镁合金AZ91D中,制备了阻燃性能和力学性能均较为优异的新型镁合金。专利ZL02132441.7报道了一种组分主要为Al、Zn、Mn、RE、Mg的强韧阻燃镁合金。现阶段,将提高镁合金的阻燃性能与改善镁合金的组织和室温和高温力学性能有机结合起来成为目前学者研究的重点。申请公布号为CN104233026A的中国发明专利申请中公开了一种耐热镁合金,由以下质量百分比的组分组成:3~8%Al、0.5~1.5%Zn、0.1~0.7%Sr、0.3~1.5%CaO,余量为Mg和不可以避免的杂质。该耐热镁合金抗拉强度和阻燃型难以满足生产需要。At present, the flux covering method and the gas protection method are generally used in the industry to solve the combustion problem in the magnesium alloy smelting process, but the existing flame retardant methods have the problems of environmental pollution and reduction of alloy properties. A lot of research has been done on flame-retardant magnesium alloys at home and abroad. Relevant literatures have reported flame-retardant magnesium alloys prepared by alloying elements such as Ca, Be, and Re, and achieved certain results. Chinese patent ZL99113861.9 "Casting flame-retardant magnesium alloy and its melting and casting process" proposes a flame-retardant magnesium alloy containing Al, Sr, Be and rare earth elements. Its ignition temperature can reach 740 ° C, but its tensile The strength is only 160MPa, and the elongation is only 2%, and its strength and elongation cannot meet the current industrial applications. Chinese patent ZL200810155894.6 "A new flame-retardant high-strength heat-resistant magnesium alloy and its preparation method" adds Al-Ca, Al-RE, Al-Sr master alloys to molten magnesium alloy AZ91D to prepare flame-retardant properties A new type of magnesium alloy with excellent mechanical properties. Patent ZL02132441.7 reports a strong and tough flame-retardant magnesium alloy whose main components are Al, Zn, Mn, RE, and Mg. At this stage, the organic combination of improving the flame retardancy of magnesium alloys and improving the microstructure and mechanical properties of magnesium alloys at room temperature and high temperature has become the focus of current scholars' research. The Chinese invention patent application with the application publication number CN104233026A discloses a heat-resistant magnesium alloy, which consists of the following components in mass percentage: 3-8% Al, 0.5-1.5% Zn, 0.1-0.7% Sr, 0.3-1.5% %CaO, balance Mg and unavoidable impurities. The tensile strength and flame retardancy of the heat-resistant magnesium alloy are difficult to meet production needs.
发明内容Contents of the invention
本发明的目的是提供一种室温和高温力学性能优良的阻燃镁合金材料。The object of the present invention is to provide a flame-retardant magnesium alloy material with excellent mechanical properties at room temperature and high temperature.
本发明还提供了一种上述阻燃镁合金材料的制备方法。The present invention also provides a preparation method of the flame-retardant magnesium alloy material.
为了实现以上目的,本发明的阻燃镁合金材料所采用的技术方案是:In order to achieve the above object, the technical scheme adopted by the flame-retardant magnesium alloy material of the present invention is:
一种阻燃镁合金材料,由以下质量百分比的组分组成:Gd 8.6~10.4%,Nd 2.6~3.4%,Ce 1.6~2.9%,Al 1.1~1.5%,Sb 1.1~1.6%,Sr 0.26~0.38%,Ca 0.78~1.0%,余量为Mg和不可避免的杂质。A flame-retardant magnesium alloy material, which is composed of the following components in mass percentage: Gd 8.6-10.4%, Nd 2.6-3.4%, Ce 1.6-2.9%, Al 1.1-1.5%, Sb 1.1-1.6%, Sr 0.26- 0.38%, Ca 0.78~1.0%, the balance is Mg and unavoidable impurities.
杂质元素Fe、Cu和Ni的质量百分比之和小于0.2%。The sum of the mass percentages of the impurity elements Fe, Cu and Ni is less than 0.2%.
本发明的阻燃镁合金材料的制备方法所采用的技术方案为:The technical scheme adopted in the preparation method of the flame-retardant magnesium alloy material of the present invention is:
一种上述阻燃镁合金材料的制备方法,包括以下步骤:A preparation method of the above-mentioned flame-retardant magnesium alloy material, comprising the following steps:
1)将原料镁、铝、锶、锑在CO2和SF6的混合气体保护下熔化,得到熔液A;1) melting raw materials magnesium, aluminum, strontium and antimony under the protection of a mixed gas of CO2 and SF6 to obtain melt A;
2)在CO2和SF6的混合气体保护下,将熔液A加热至740~750℃,然后添加Mg-Gd中间合金、Mg-Nd中间合金、Mg-Ce中间合金和CaO颗粒,待中间合金全部熔化后去除表面浮渣,搅拌均匀升温至760~770℃,再降温至710~730℃,然后进行浇注,得到铸态合金;2) Under the protection of a mixed gas of CO 2 and SF 6 , heat the melt A to 740-750°C, then add Mg-Gd master alloy, Mg-Nd master alloy, Mg-Ce master alloy and CaO particles, and wait for the intermediate After the alloy is completely melted, remove the scum on the surface, stir evenly and heat up to 760-770°C, then cool down to 710-730°C, and then pour to obtain the cast alloy;
3)将得到的铸态合金进行热处理,即得。3) heat-treating the obtained as-cast alloy.
所述CaO颗粒的粒径为3~5μm。The particle size of the CaO particles is 3-5 μm.
镁、铝、锶、锑、Mg-Gd中间合金、Mg-Nd中间合金、Mg-Ce中间合金和CaO颗粒在使用前进行预热处理。所述预热处理的温度为230~260℃,时间为1~3h。Magnesium, aluminum, strontium, antimony, Mg-Gd master alloy, Mg-Nd master alloy, Mg-Ce master alloy and CaO particles are preheated before use. The temperature of the preheating treatment is 230-260° C., and the time is 1-3 hours.
去除表面浮渣时,可以同时将生成的MgO一并除去。When removing surface scum, the generated MgO can be removed at the same time.
浇注采用模具在浇注前进行预热处理,预热处理的温度为300~350℃。Casting adopts the mold to carry out preheating treatment before pouring, and the temperature of preheating treatment is 300~350 ℃.
所述热处理是对铸态合金依次进行固溶处理和时效处理。The heat treatment is to carry out solid solution treatment and aging treatment on the as-cast alloy in sequence.
所述固溶处理的温度为540~550℃,时间为5~8h。固溶处理在氧化镁粉末覆盖下进行。这样可以以防止氧化燃烧现象的产生。固溶处理后采用热水淬火至室温。热水的温度为80~90℃。The temperature of the solution treatment is 540-550° C., and the time is 5-8 hours. Solution treatment is carried out under the cover of magnesium oxide powder. This can prevent the occurrence of oxidative combustion. After solution treatment, it was quenched to room temperature with hot water. The temperature of the hot water is 80-90°C.
所述时效处理的温度为230~250℃,时间为10~14h。时效处理后可以采用空冷的方式冷却至室温。The temperature of the aging treatment is 230-250° C., and the time is 10-14 hours. After aging treatment, it can be cooled to room temperature by air cooling.
本发明的阻燃镁合金材料采用Gd为第一组分,Gd在Mg固溶体中具有非常大的固溶度,最大固溶度达到为20.3%,并且Gd的固溶度随温度变化极其明显,200℃在Mg固溶体中的固溶度为3.8%,Gd在镁合金中能够形成较好的时效析出强化效果,为了保证合金得到良好的时效析出强化和固溶强化效果,Gd的加入量不低于8%,而又为了减少合金成本,防止合金密度增加太多及合金过分脆化,因此本发明的Gd加入量范围在8.6~10.4%;在该含Gd的高强阻燃镁合金添加2.6~3.4%的Nd和1.6~2.4%的Ce作为第二组元和第三组元,Nd、Ce的添加能够显著降低Gd在Mg中的固溶度,从而增加Gd的时效析出强化效应;作为轻稀土元素的Nd、Ce和重稀土元素Gd搭配添加能够起到更好的时效强化效果。Sb是一种镁合金强化元素和表面活性元素,能细化镁合金晶粒,且能形成稳定性好的六方结构Mg3Sb2化合物,适量的Sb还改善了合金液的流动性,Sb的添加使合金的常温和高温力学性能提高,并有效改善合金高温抗蠕变能力。Mg-RE系合金中添加少量Al的添加能够显著细化合金显微组织,是提高镁合金耐热性能的重要元素,而少量CaO颗粒的添加能够提高镁合金的耐热性能和阻燃性能,本发明的阻燃镁合金中Ca元素的添加通过合金元素Ca的氧化物即CaO添加至镁合金液实现,通过还原反应CaO还原为Ca,并与Mg及其他元素形成析出相。所述还原反应为:The flame-retardant magnesium alloy material of the present invention adopts Gd as the first component, and Gd has a very large solid solubility in the Mg solid solution, and the maximum solid solubility reaches 20.3%, and the solid solubility of Gd changes significantly with temperature, The solid solubility in Mg solid solution at 200°C is 3.8%. Gd can form a good aging precipitation strengthening effect in magnesium alloys. In order to ensure good aging precipitation strengthening and solid solution strengthening effects of the alloy, the addition of Gd is not low. 8%, and in order to reduce alloy cost, prevent alloy density from increasing too much and excessive embrittlement of alloy, so the Gd addition range of the present invention is 8.6~10.4%; Add 2.6~ 3.4% Nd and 1.6-2.4% Ce are used as the second component and the third component. The addition of Nd and Ce can significantly reduce the solid solubility of Gd in Mg, thereby increasing the aging precipitation strengthening effect of Gd; as a light The combination of Nd and Ce of rare earth elements and Gd of heavy rare earth elements can achieve a better aging strengthening effect. Sb is a magnesium alloy strengthening element and surface active element, which can refine the magnesium alloy grain and form a stable hexagonal structure Mg 3 Sb 2 compound. An appropriate amount of Sb can also improve the fluidity of the alloy liquid. Addition improves the normal and high temperature mechanical properties of the alloy, and effectively improves the high temperature creep resistance of the alloy. The addition of a small amount of Al in Mg-RE alloys can significantly refine the microstructure of the alloy, which is an important element to improve the heat resistance of magnesium alloys, and the addition of a small amount of CaO particles can improve the heat resistance and flame retardancy of magnesium alloys. The addition of Ca element in the flame-retardant magnesium alloy of the present invention is realized by adding CaO, the oxide of alloy element Ca, to the magnesium alloy liquid, and CaO is reduced to Ca through reduction reaction, and forms precipitated phases with Mg and other elements. The reduction reaction is:
CaO+Mg→Ca+MgO。CaO+Mg→Ca+MgO.
少量CaO颗粒的添加一方面能够提高镁合金的耐热性能和阻燃性能,另一方面能够降低该合金的成本。Sr具有较低的密度,少量Sr的添加可以显著提高阻燃镁合金的室温和高温力学性能,此外它能提高阻燃镁合金的固溶体的熔点,减慢阻燃镁合金中元素的扩散速度,且显著提高阻燃镁合金的阻燃性能,并且少量Sr的添加对合金的流动性没有明显影响。The addition of a small amount of CaO particles can improve the heat resistance and flame retardancy of the magnesium alloy on the one hand, and reduce the cost of the alloy on the other hand. Sr has a low density, and the addition of a small amount of Sr can significantly improve the room temperature and high temperature mechanical properties of flame-retardant magnesium alloys. In addition, it can increase the melting point of the solid solution of flame-retardant magnesium alloys and slow down the diffusion of elements in flame-retardant magnesium alloys. And significantly improve the flame retardant performance of flame retardant magnesium alloy, and the addition of a small amount of Sr has no obvious effect on the fluidity of the alloy.
与现有技术相比,本发明的阻燃镁合金材料通过合理搭配不同的组元,使得其综合性能得到显著提高,尤其是室温和高温的力学性能及阻燃特性得到明显提升,且其抗拉强度具有反常温度效应,即随着拉伸温度的提高,抗拉强度也随之提高。Compared with the prior art, the flame-retardant magnesium alloy material of the present invention can significantly improve its overall performance through reasonable matching of different components, especially the mechanical properties and flame-retardant properties at room temperature and high temperature are significantly improved, and its resistance The tensile strength has an abnormal temperature effect, that is, as the stretching temperature increases, the tensile strength also increases.
本发明的阻燃镁合金材料的制备方法,综合利用稀土元素Gd、Nd及Ce,其他元素Al、Sb及Sr,以及加入少量CaO颗粒对合金进行改性,并将得到的铸态合金进行热处理,将提高镁合金的综合力学性能和阻燃性能有效结合起来。跟现有技术相比,本发明的阻燃镁合金材料的熔炼及热处理工艺简单,能够通过合金化优化镁合金的显微组织,形成强化相提高其力学性能,制得的镁合金材料具有良好的力学性能及阻燃性能。The preparation method of the flame-retardant magnesium alloy material of the present invention comprehensively utilizes rare earth elements Gd, Nd and Ce, other elements Al, Sb and Sr, and adds a small amount of CaO particles to modify the alloy, and heat-treats the obtained cast alloy , will improve the comprehensive mechanical properties and flame retardancy of magnesium alloys effectively. Compared with the prior art, the smelting and heat treatment process of the flame-retardant magnesium alloy material of the present invention is simple, the microstructure of the magnesium alloy can be optimized through alloying, the strengthening phase can be formed to improve its mechanical properties, and the prepared magnesium alloy material has good mechanical properties and flame retardancy.
具体实施方式Detailed ways
以下结合具体实施方式对本发明的技术方案作进一步的说明。The technical solution of the present invention will be further described below in combination with specific embodiments.
具体实施方式中在制备阻燃镁合金材料时所采用的纯镁、纯铝、纯锶、纯锑、Mg-Gd中间合金、Mg-Nd中间合金、Mg-Ce中间合金和CaO颗粒均为市售产品。其中,Mg-Gd中间合金中Gd的质量为Mg-Gd中间合金的25%,Mg-Nd中间合金中Nd的质量为Mg-Nd中间合金的30%,Mg-Ce中间合金中Ce的质量为Mg-Ce中间合金的25%。The pure magnesium, pure aluminum, pure strontium, pure antimony, Mg-Gd master alloy, Mg-Nd master alloy, Mg-Ce master alloy and CaO particles used in the preparation of flame-retardant magnesium alloy materials are commercially available. sell products. Wherein, the quality of Gd in the Mg-Gd master alloy is 25% of the Mg-Gd master alloy, the quality of Nd in the Mg-Nd master alloy is 30% of the Mg-Nd master alloy, and the quality of Ce in the Mg-Ce master alloy is 25% of Mg-Ce master alloy.
实施例1Example 1
本实施例的阻燃镁合金材料由以下质量百分比的组分组成:Gd 8.6%,Nd 3.0%,Ce 2.2%,Al 1.3%,Sb 1.5%,Sr 0.33%,Ca 0.93%,余量为Mg和不可避免的杂质,杂质元素Fe、Cu和Ni的总质量分数小于0.2%。The flame retardant magnesium alloy material of this embodiment is composed of the following components in mass percentage: Gd 8.6%, Nd 3.0%, Ce 2.2%, Al 1.3%, Sb 1.5%, Sr 0.33%, Ca 0.93%, and the balance is Mg and unavoidable impurities, the total mass fraction of impurity elements Fe, Cu and Ni is less than 0.2%.
本实施例的阻燃镁合金材料的制备方法,包括以下步骤:The preparation method of the flame retardant magnesium alloy material of the present embodiment comprises the following steps:
1)将原料纯镁、纯铝、纯锶、纯锑、Mg-Gd中间合金、Mg-Nd中间合金、Mg-Ce中间合金及粒径3~5μm的CaO颗粒进行预热,预热温度为240℃,预热时间为2h;1) Preheat the raw materials of pure magnesium, pure aluminum, pure strontium, pure antimony, Mg-Gd master alloy, Mg-Nd master alloy, Mg-Ce master alloy and CaO particles with a particle size of 3-5 μm. The preheating temperature is 240℃, preheating time is 2h;
2)将预热后的纯镁、纯铝、纯锶、纯锑在CO2和SF6的混合气体保护下熔化,得到熔液A;2) melting the preheated pure magnesium, pure aluminum, pure strontium, and pure antimony under the protection of a mixed gas of CO2 and SF6 to obtain a melt A;
3)在CO2和SF6的混合气体保护下,将熔液A加热至740℃时添加Mg-Gd中间合金、Mg-Nd中间合金、Mg-Ce中间合金及粒径3~5μm的CaO颗粒,待中间合金全部熔化后去除表面浮渣,搅拌均匀升温至760℃,保温15min,再降至720℃,静止保温13min,然后将合金液浇注至预热的金属型模具中,得到铸态合金;金属型模具的预热温度为330℃;3) Under the protection of the mixed gas of CO2 and SF6 , add Mg-Gd master alloy, Mg-Nd master alloy, Mg-Ce master alloy and CaO particles with a particle size of 3-5 μm when the melt A is heated to 740 °C After the intermediate alloy is completely melted, remove the scum on the surface, stir evenly and heat up to 760°C, keep it warm for 15 minutes, then lower it to 720°C, keep it still for 13 minutes, and then pour the alloy liquid into the preheated metal mold to obtain the cast alloy ;The preheating temperature of the metal mold is 330°C;
4)将铸态合金在540℃进行固溶处理8h,然后采用80℃的热水淬火至室温,再在230℃进行时效处理14h,空冷至室温,即得;其中固溶处理在氧化镁粉末覆盖下进行,防止氧化燃烧。4) The as-cast alloy is subjected to solution treatment at 540°C for 8 hours, then quenched with hot water at 80°C to room temperature, then subjected to aging treatment at 230°C for 14 hours, and air-cooled to room temperature. Carry out under cover to prevent oxidative combustion.
实施例2Example 2
本实施例的阻燃镁合金材料由以下质量百分比的组分组成:Gd 9.0%,Nd 3.4%,Ce 1.6%,Al 1.5%,Sb 1.3%,Sr 0.38%,Ca 0.86%,余量为Mg和不可避免的杂质,杂质元素Fe、Cu和Ni的总质量分数小于0.2%。The flame retardant magnesium alloy material of this embodiment is composed of the following components in mass percentage: Gd 9.0%, Nd 3.4%, Ce 1.6%, Al 1.5%, Sb 1.3%, Sr 0.38%, Ca 0.86%, and the balance is Mg and unavoidable impurities, the total mass fraction of impurity elements Fe, Cu and Ni is less than 0.2%.
本实施例的阻燃镁合金材料的制备方法同实施例1。The preparation method of the flame-retardant magnesium alloy material of this embodiment is the same as that of Embodiment 1.
实施例3Example 3
本实施例的阻燃镁合金材料由以下质量百分比的组分组成:Gd 10.0%,Nd2.8%,Ce 2.4%,Al 1.1%,Sb 1.6%,Sr 0.26%,Ca 1.0%,余量为Mg和不可避免的杂质,杂质元素Fe、Cu和Ni的总质量分数小于0.2%。The flame retardant magnesium alloy material of the present embodiment is made up of the following components by mass percentage: Gd 10.0%, Nd2.8%, Ce 2.4%, Al 1.1%, Sb 1.6%, Sr 0.26%, Ca 1.0%, the balance is Mg and unavoidable impurities, the total mass fraction of impurity elements Fe, Cu and Ni is less than 0.2%.
本实施例的阻燃镁合金材料的制备方法同实施例1。The preparation method of the flame-retardant magnesium alloy material of this embodiment is the same as that of Embodiment 1.
实施例4Example 4
本实施例的阻燃镁合金材料由以下质量百分比的组分组成:Gd 10.4%,Nd2.6%,Ce 2.9%,Al 1.2%,Sb 1.1%,Sr 0.30%,Ca 0.78%,余量为Mg和不可避免的杂质,杂质元素Fe、Cu和Ni的总质量分数小于0.2%。The flame retardant magnesium alloy material of the present embodiment is made up of the following components by mass percentage: Gd 10.4%, Nd2.6%, Ce 2.9%, Al 1.2%, Sb 1.1%, Sr 0.30%, Ca 0.78%, the balance is Mg and unavoidable impurities, the total mass fraction of impurity elements Fe, Cu and Ni is less than 0.2%.
本实施例的阻燃镁合金材料额制备方法同实施例1。The preparation method of the flame-retardant magnesium alloy material of this embodiment is the same as that of Embodiment 1.
实施例5Example 5
本实施例的阻燃镁合金材料由以下质量百分比的组分组成:Gd 9.4%,Nd 3.2%,Ce 2.0%,Al 1.25%,Sb 1.4%,Sr 0.35%,Ca 0.88%,余量为Mg和不可避免的杂质,杂质元素Fe、Cu和Ni的总质量分数小于0.2%。The flame retardant magnesium alloy material of this embodiment is composed of the following components in mass percentage: Gd 9.4%, Nd 3.2%, Ce 2.0%, Al 1.25%, Sb 1.4%, Sr 0.35%, Ca 0.88%, and the balance is Mg and unavoidable impurities, the total mass fraction of impurity elements Fe, Cu and Ni is less than 0.2%.
本实施例的阻燃镁合金材料的制备方法,包括以下步骤:The preparation method of the flame retardant magnesium alloy material of the present embodiment comprises the following steps:
1)将原料纯镁、纯铝、纯锶、纯锑、Mg-Gd中间合金、Mg-Nd中间合金、Mg-Ce中间合金及粒径3~5μm的CaO颗粒进行预热,预热温度为260℃,预热时间为1h;1) Preheat the raw materials of pure magnesium, pure aluminum, pure strontium, pure antimony, Mg-Gd master alloy, Mg-Nd master alloy, Mg-Ce master alloy and CaO particles with a particle size of 3-5 μm. The preheating temperature is 260℃, preheating time is 1h;
2)将预热后的纯镁、纯铝、纯锶、纯锑在CO2和SF6的混合气体保护下熔化,得到熔液A;2) melting the preheated pure magnesium, pure aluminum, pure strontium, and pure antimony under the protection of a mixed gas of CO2 and SF6 to obtain a melt A;
3)在CO2和SF6的混合气体保护下,将熔液A加热至750℃时添加Mg-Gd中间合金、Mg-Nd中间合金、Mg-Ce中间合金及粒径3~5μm的CaO颗粒,待中间合金全部熔化后去除表面浮渣,搅拌均匀升温至765℃,保温13min,再降至710℃,静止保温15min,然后将合金液浇注至预热的金属型模具中,得到铸态合金;金属型模具的预热温度为350℃;3) Under the protection of the mixed gas of CO2 and SF6 , add Mg-Gd master alloy, Mg-Nd master alloy, Mg-Ce master alloy and CaO particles with a particle size of 3-5 μm when the melt A is heated to 750 °C After the intermediate alloy is completely melted, remove the scum on the surface, stir evenly and heat up to 765°C, keep it warm for 13 minutes, then lower it to 710°C, keep it still for 15 minutes, and then pour the alloy liquid into the preheated metal mold to obtain the cast alloy ;The preheating temperature of the metal mold is 350°C;
4)将铸态合金在550℃进行固溶处理5h,然后采用85℃的热水淬火至室温,再在240℃进行时效处理12h,空冷至室温,即得;固溶处理在氧化镁粉末覆盖下进行,防止氧化燃烧。4) The as-cast alloy is subjected to solution treatment at 550°C for 5 hours, then quenched with hot water at 85°C to room temperature, then subjected to aging treatment at 240°C for 12 hours, and air-cooled to room temperature to obtain; solution treatment is covered with magnesium oxide powder to prevent oxidative combustion.
实施例6Example 6
本实施例的阻燃镁合金材料由以下质量百分比的组分组成:Gd 9.7%,Nd 3.1%,Ce 2.6%,Al 1.4%,Sb 1.2%,Sr 0.28%,Ca 0.97%,余量为Mg和不可避免的杂质,杂质元素Fe、Cu和Ni的总质量分数小于0.2%。The flame retardant magnesium alloy material of this embodiment is composed of the following components in mass percentage: Gd 9.7%, Nd 3.1%, Ce 2.6%, Al 1.4%, Sb 1.2%, Sr 0.28%, Ca 0.97%, and the balance is Mg and unavoidable impurities, the total mass fraction of impurity elements Fe, Cu and Ni is less than 0.2%.
本实施例的阻燃镁合金材料的制备方法,包括以下步骤:The preparation method of the flame retardant magnesium alloy material of the present embodiment comprises the following steps:
1)将原料纯镁、纯铝、纯锶、纯锑、Mg-Gd中间合金、Mg-Nd中间合金、Mg-Ce中间合金及粒径3~5μm的CaO颗粒进行预热,预热温度为230℃,预热时间为3h;1) Preheat the raw materials of pure magnesium, pure aluminum, pure strontium, pure antimony, Mg-Gd master alloy, Mg-Nd master alloy, Mg-Ce master alloy and CaO particles with a particle size of 3-5 μm. The preheating temperature is 230℃, preheating time is 3h;
2)将预热后的纯镁、纯铝、纯锶、纯锑在CO2和SF6的混合气体保护下熔化,得到熔液A;2) melting the preheated pure magnesium, pure aluminum, pure strontium, and pure antimony under the protection of a mixed gas of CO2 and SF6 to obtain a melt A;
3)在CO2和SF6的混合气体保护下,将熔液A加热至740℃时添加Mg-Gd中间合金、Mg-Nd中间合金、Mg-Ce中间合金及粒径3~5μm的CaO颗粒,待中间合金全部熔化后去除表面浮渣,搅拌均匀升温至770℃,保温10min,再降至730℃,静止保温10min,然后将合金液浇注至预热的金属型模具中,得到铸态合金;金属型模具的预热温度为300℃;3) Under the protection of the mixed gas of CO2 and SF6 , add Mg-Gd master alloy, Mg-Nd master alloy, Mg-Ce master alloy and CaO particles with a particle size of 3-5 μm when the melt A is heated to 740 °C After the intermediate alloy is completely melted, remove the scum on the surface, stir evenly and heat up to 770°C, keep it warm for 10 minutes, then lower it to 730°C, keep it still for 10 minutes, and then pour the alloy liquid into the preheated metal mold to obtain the cast alloy ;The preheating temperature of the metal mold is 300°C;
4)将铸态合金在545℃进行固溶处理7h,然后采用90℃的热水淬火至室温,再在250℃进行时效处理10h,空冷至室温,即得;其中固溶处理在氧化镁粉末覆盖下进行,防止氧化燃烧。4) The as-cast alloy is subjected to solution treatment at 545°C for 7 hours, then quenched with hot water at 90°C to room temperature, then subjected to aging treatment at 250°C for 10 hours, and air-cooled to room temperature. Carry out under cover to prevent oxidative combustion.
实验例Experimental example
分别对实施例1~6的阻燃镁合金材料进行力学性能和燃点测试,测试结果见表1。从表中数据可以看出,实施例1~6的阻燃镁合金材料在室温和250℃下都具有很高的抗拉强度和屈服强度,且其抗拉强度具有反常温度效应,即随着拉伸温度的提高,抗拉强度也随之提高,燃点测试结果表明该合金具有优异的阻燃性能。The mechanical properties and ignition points of the flame-retardant magnesium alloy materials in Examples 1-6 were tested respectively, and the test results are shown in Table 1. It can be seen from the data in the table that the flame-retardant magnesium alloy materials of Examples 1-6 have high tensile strength and yield strength at room temperature and 250°C, and their tensile strength has an abnormal temperature effect, that is, with As the stretching temperature increases, the tensile strength also increases. The results of the ignition point test show that the alloy has excellent flame retardancy.
表1实施例1~6的阻燃镁合金材料的力学性能及阻燃性能The mechanical properties and flame retardant performance of the flame retardant magnesium alloy material of table 1 embodiment 1~6
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710364242.2A CN107130159B (en) | 2017-05-22 | 2017-05-22 | A kind of Ignition-proof Magnesium Alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710364242.2A CN107130159B (en) | 2017-05-22 | 2017-05-22 | A kind of Ignition-proof Magnesium Alloy and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107130159A CN107130159A (en) | 2017-09-05 |
CN107130159B true CN107130159B (en) | 2018-10-02 |
Family
ID=59731885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710364242.2A Active CN107130159B (en) | 2017-05-22 | 2017-05-22 | A kind of Ignition-proof Magnesium Alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107130159B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109280832B (en) * | 2018-10-17 | 2020-01-17 | 河南科技大学 | A kind of high-strength flame-retardant magnesium alloy and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1194111C (en) * | 2003-01-28 | 2005-03-23 | 东南大学 | Heat-resistant rare earth magnesium alloy |
CN103146972B (en) * | 2013-03-14 | 2015-12-23 | 河南科技大学 | A kind of Multielement rare-earth magnesium alloy and preparation method thereof |
CN103774019B (en) * | 2014-01-02 | 2016-08-17 | 河南科技大学 | A kind of heat resistance magnesium alloy of stable high-temperature strength |
CN104630586B (en) * | 2015-02-27 | 2017-03-22 | 河南科技大学 | Flame-retardant and heat-resistant magnesium alloy and preparation method |
CN105018813B (en) * | 2015-07-07 | 2017-08-25 | 河南科技大学 | A kind of Creep-resistant rare earth magnesium alloy and preparation method thereof |
CN105039817B (en) * | 2015-07-22 | 2017-05-31 | 河南科技大学 | The preparation method and multicomponent heat-resistant magnesium alloy of a kind of multicomponent heat-resistant magnesium alloy |
-
2017
- 2017-05-22 CN CN201710364242.2A patent/CN107130159B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107130159A (en) | 2017-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100387743C (en) | Preparation method of high-strength heat-resistant magnesium alloy | |
CN104975211B (en) | Strength aluminum alloy conductive monofilament in a kind of high conductivity heat treatment type | |
CN109022896A (en) | Heat-resisting Cu-Fe-Y-Mg alloy material of a kind of high-strength highly-conductive with electromagnetic wave shielding performance and preparation method thereof | |
CN110241345A (en) | A kind of high yield strength, corrosion-resistant magnesium alloy and preparation method thereof | |
CN104894438B (en) | A kind of high conductivity heat-resisting aluminium alloy monofilament material and preparation method thereof | |
CN104630586B (en) | Flame-retardant and heat-resistant magnesium alloy and preparation method | |
CN105018812B (en) | A kind of heat resistance magnesium alloy and preparation method thereof | |
CN104946936A (en) | High-conductivity rare earth duralumin monofilament material for overhead conductors | |
CN105039817B (en) | The preparation method and multicomponent heat-resistant magnesium alloy of a kind of multicomponent heat-resistant magnesium alloy | |
CN101186987A (en) | A scandium-containing cast heat-resistant aluminum alloy and its preparation method | |
CN110484768B (en) | A kind of high-strength, high-conductivity and heat-resistant copper-chromium alloy material and preparation process thereof | |
CN103305738B (en) | Siliceous heat resisting magnesium-rare earth alloy and preparation method thereof | |
CN102994835A (en) | Heatproof magnesium alloy | |
CN110229984B (en) | A kind of high-strength Mg-Gd-Er-Y magnesium alloy and preparation method thereof | |
CN111826558A (en) | A kind of aluminum-magnesium-silicon alloy monofilament and preparation method thereof | |
CN104073702A (en) | Rear-earth magnesium alloy and preparation method thereof | |
CN102994847A (en) | Heatproof magnesium alloy | |
CN108715964B (en) | A kind of rare earth magnesium alloy and preparation method thereof | |
CN114875282A (en) | A kind of high-strength aluminum alloy monofilament material, preparation method and application thereof | |
CN108034874B (en) | A kind of rare earth magnesium alloy containing molybdenum rhenium and preparation method thereof | |
CN107099714B (en) | A kind of magnesium-rare earth and preparation method thereof | |
CN103074531B (en) | Heat resistant alloy of rare earth and magnesium and preparation method thereof | |
CN107130159B (en) | A kind of Ignition-proof Magnesium Alloy and preparation method thereof | |
CN108220731B (en) | A kind of multi-component heat-resistant magnesium alloy and preparation method thereof | |
CN109280831B (en) | A kind of flame retardant strong and tough magnesium alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |