CN104073702A - Rear-earth magnesium alloy and preparation method thereof - Google Patents
Rear-earth magnesium alloy and preparation method thereof Download PDFInfo
- Publication number
- CN104073702A CN104073702A CN201410314895.6A CN201410314895A CN104073702A CN 104073702 A CN104073702 A CN 104073702A CN 201410314895 A CN201410314895 A CN 201410314895A CN 104073702 A CN104073702 A CN 104073702A
- Authority
- CN
- China
- Prior art keywords
- magnesium
- alloy
- rare earth
- mass percentage
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 98
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 98
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 94
- 239000011777 magnesium Substances 0.000 claims abstract description 68
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 57
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims description 131
- 229910045601 alloy Inorganic materials 0.000 claims description 130
- 229910052782 aluminium Inorganic materials 0.000 claims description 41
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 40
- KBMLJKBBKGNETC-UHFFFAOYSA-N magnesium manganese Chemical compound [Mg].[Mn] KBMLJKBBKGNETC-UHFFFAOYSA-N 0.000 claims description 26
- DJPURDPSZFLWGC-UHFFFAOYSA-N alumanylidyneborane Chemical compound [Al]#B DJPURDPSZFLWGC-UHFFFAOYSA-N 0.000 claims description 22
- RIAXXCZORHQTQD-UHFFFAOYSA-N lanthanum magnesium Chemical compound [Mg].[La] RIAXXCZORHQTQD-UHFFFAOYSA-N 0.000 claims description 22
- SYJBLFMEUQWNFD-UHFFFAOYSA-N magnesium strontium Chemical compound [Mg].[Sr] SYJBLFMEUQWNFD-UHFFFAOYSA-N 0.000 claims description 22
- 229910052746 lanthanum Inorganic materials 0.000 claims description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- 229910052712 strontium Inorganic materials 0.000 claims description 18
- 229910052796 boron Inorganic materials 0.000 claims description 17
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 16
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 16
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 16
- 239000011572 manganese Substances 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 12
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 239000007769 metal material Substances 0.000 abstract description 6
- 229910000691 Re alloy Inorganic materials 0.000 abstract description 2
- 238000004512 die casting Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 10
- 238000010998 test method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 229910052684 Cerium Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 229910052779 Neodymium Inorganic materials 0.000 description 5
- 229910052777 Praseodymium Inorganic materials 0.000 description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001803 electron scattering Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
稀土镁合金及其制备方法,属于金属材料技术领域。解决了现有技术中AE44制备成本高的技术问题,进一步提高了Mg-Al-RE系合金的室温力学性能、高温力学性能和高温蠕变性能。本发明的稀土镁合金的组成及质量百分比为:Al:3.4-4.4%;La:2.5-4.0%;Sr:0.1-1.2%;Mn:0.2-0.4%;B:0.01-0.2%;余量为镁。本发明还提供上述稀土镁合金的制备方法。该稀土镁合金具有优异的高温力学性能和高温蠕变性能,在200℃的条件下抗拉强度为110-120MPa,屈服强度为90-100MPa,延伸率为17-22%,在200℃/85MPa条件下,150h的蠕变变形为0.83%。
A rare earth magnesium alloy and a preparation method thereof belong to the technical field of metal materials. The technical problem of high preparation cost of AE44 in the prior art is solved, and the room-temperature mechanical properties, high-temperature mechanical properties and high-temperature creep properties of the Mg-Al-RE alloy are further improved. The composition and mass percentage of the rare earth magnesium alloy of the present invention are: Al: 3.4-4.4%; La: 2.5-4.0%; Sr: 0.1-1.2%; Mn: 0.2-0.4%; B: 0.01-0.2%; for magnesium. The present invention also provides a preparation method of the above-mentioned rare earth magnesium alloy. The rare earth magnesium alloy has excellent high-temperature mechanical properties and high-temperature creep properties. At 200°C, the tensile strength is 110-120MPa, the yield strength is 90-100MPa, and the elongation is 17-22%. Under these conditions, the creep deformation of 150h is 0.83%.
Description
技术领域technical field
本发明涉及一种稀土镁合金及其制备方法,属于金属材料技术领域。The invention relates to a rare earth magnesium alloy and a preparation method thereof, belonging to the technical field of metal materials.
背景技术Background technique
镁和镁合金是目前在工程应用中密度最低的金属结构材料,同时其还具有易回收、高比强度、高比刚度、高阻尼性能、良好的电磁屏蔽性能以及优异的铸造、机械加工性能等优点,在汽车、3C、航空航天及军工国防等领域具有重要的应用价值和广阔的应用前景。在工业生产上,应用最多的镁合金是铸造镁合金,尤其是压力铸造镁合金,包括AZ(Mg-Al-Zn)系、AM(Mg-Al-Mn)系、AS(Mg-Al-Si)系和AE(Mg-Al-RE)系等。其中,AZ系和AM系压铸镁合金因其优良的压铸性能和较高的室温力学性能在汽车工业领域得到一定程度的应用,但是其高温性能和蠕变性能较差,因此其应用一般限制在温度低于120℃的环境。但是,汽车传动件的工作温度一般都在150-200℃,因此开发耐热镁合金成为镁合金发展的必然趋势。Magnesium and magnesium alloys are currently the metal structural materials with the lowest density in engineering applications, and they also have easy recycling, high specific strength, high specific stiffness, high damping performance, good electromagnetic shielding performance, and excellent casting and machining performance, etc. Advantages, it has important application value and broad application prospects in the fields of automobile, 3C, aerospace, military industry and national defense. In industrial production, the most widely used magnesium alloys are cast magnesium alloys, especially die cast magnesium alloys, including AZ (Mg-Al-Zn) series, AM (Mg-Al-Mn) series, AS (Mg-Al-Si ) series and AE (Mg-Al-RE) series etc. Among them, the AZ series and AM series die-casting magnesium alloys have been applied to a certain extent in the automotive industry due to their excellent die-casting properties and high room temperature mechanical properties, but their high temperature properties and creep properties are poor, so their applications are generally limited to An environment with a temperature below 120°C. However, the working temperature of automobile transmission parts is generally 150-200°C, so the development of heat-resistant magnesium alloys has become an inevitable trend in the development of magnesium alloys.
DowMagnesium通过向Mg-Al系合金中加入富铈稀土(RE)形成热力学稳定的Al11RE3和Al2RE相,从而抑制了Mg17Al12的析出,开发出了具有很好高温性能和蠕变性能的AE42压铸镁合金。但是,当温度高于150℃时,AE42合金中过饱和的铝会与镁反应生成Mg17Al12相,从而导致其高温力学性能和抗蠕变性能急剧下降。2005年,挪威Hydro镁业公司通过增加稀土含量开发出了耐热压铸镁合金AE44,其成分为Mg-4Al%-4RE%-0.3Mn%(式中,RE代表富铈稀土,富铈稀土中,Ce的质量百分比为55%,La的质量百分为25%,Nd的质量百分为15%,Pr的质量百分为5%),与AE42合金相比,AE44多了2%的稀土含量,利用增多的稀土含量形成更多的Al-RE第二相来增加合金的蠕变性能。但是,由于近些年Nd、Pr等稀土大量应用于钕铁硼永磁材料中,Nd和Pr的价格大幅度上涨,是La和Ce价格的十几倍,已经从富铈稀土中分离出来,这便导致了AE44合金成本过高;且即便AE44的室温力学性能、高温力学性能和高温蠕变性能都有所提高,但是仍未达到最理想效果。DowMagnesium forms thermodynamically stable Al 11 RE 3 and Al 2 RE phases by adding cerium-rich rare earth (RE) to Mg-Al alloys, thereby inhibiting the precipitation of Mg 17 Al 12 and developing a new alloy with good high temperature performance and creep resistance. Variable performance AE42 die-cast magnesium alloy. However, when the temperature is higher than 150 °C, the supersaturated aluminum in the AE42 alloy will react with magnesium to form Mg 17 Al 12 phase, which will lead to a sharp decline in its high-temperature mechanical properties and creep resistance. In 2005, the Norwegian Hydro Magnesium Company developed the heat-resistant die-casting magnesium alloy AE44 by increasing the content of rare earths. , the mass percentage of Ce is 55%, the mass percentage of La is 25%, the mass percentage of Nd is 15%, and the mass percentage of Pr is 5%), compared with AE42 alloy, AE44 has 2% more rare earth content, using the increased rare earth content to form more Al-RE second phases to increase the creep performance of the alloy. However, since Nd, Pr and other rare earths have been widely used in NdFeB permanent magnet materials in recent years, the prices of Nd and Pr have risen sharply, more than ten times the price of La and Ce, and have been separated from cerium-rich rare earths. This leads to the high cost of the AE44 alloy; and even though the room temperature mechanical properties, high temperature mechanical properties and high temperature creep properties of AE44 have been improved, the optimal effect has not yet been achieved.
发明内容Contents of the invention
为了解决现有技术中AE44制备成本高的技术问题,进一步提高Mg-Al-RE系合金的室温力学性、高温力学性能和高温蠕变性能,本发明提供一种稀土镁合金及其制备方法。In order to solve the technical problem of high preparation cost of AE44 in the prior art and further improve the room-temperature mechanical properties, high-temperature mechanical properties and high-temperature creep properties of Mg-Al-RE alloys, the invention provides a rare earth magnesium alloy and a preparation method thereof.
本发明的稀土镁合金的组成及质量百分比为:Composition and mass percent of the rare earth magnesium alloy of the present invention are:
Al:3.4%-4.4%;Al: 3.4%-4.4%;
La:2.5%-4.0%;La: 2.5%-4.0%;
Sr:0.1%-1.2%;Sr: 0.1%-1.2%;
Mn:0.2%-0.4%;Mn: 0.2%-0.4%;
B:0.01%-0.2%;B: 0.01%-0.2%;
余量为镁。The balance is magnesium.
优选的是,所述组成及质量百分比为:Preferably, the composition and mass percentage are:
Al:3.7%-4.0%;Al: 3.7%-4.0%;
La:3.0%-4.0%;La: 3.0%-4.0%;
Sr:0.4%-0.8%;Sr: 0.4%-0.8%;
Mn:0.3%-0.4%;Mn: 0.3%-0.4%;
B:0.04%-0.07%;B: 0.04%-0.07%;
余量为镁。The balance is magnesium.
上述稀土镁合金的制备方法,包括以下步骤:The preparation method of the above-mentioned rare earth magnesium alloy comprises the following steps:
(1)在保护气作用下,将镁、铝和镁锰中间合金熔融,得到第一熔体;(1) under the action of protective gas, magnesium, aluminum and magnesium-manganese master alloy are melted to obtain the first melt;
(2)在保护气作用下,将第一熔体升温后,向第一熔体中加入镁镧中间合金、镁锶中间合金和铝硼中间合金,搅拌后,通入氩气,得到第二熔体;(2) Under the action of protective gas, after the first melt is heated up, magnesium-lanthanum master alloy, magnesium-strontium master alloy and aluminum-boron master alloy are added to the first melt, and after stirring, argon gas is introduced to obtain the second melt. melt;
(3)将步骤(2)得到的第二熔体静置降温后,压铸,得到稀土镁合金。(3) Put the second melt obtained in step (2) to stand to cool down, and then die-cast to obtain a rare earth magnesium alloy.
优选的是,所述步骤(1)中,熔融的温度为660-680℃。Preferably, in the step (1), the melting temperature is 660-680°C.
优选的是,所述步骤(2)中,升温的温度为730-740℃。Preferably, in the step (2), the heating temperature is 730-740°C.
优选的是,所述步骤(2)中,搅拌的速度为100-300转/min,搅拌的时间为5-10min。Preferably, in the step (2), the stirring speed is 100-300 rpm, and the stirring time is 5-10 min.
优选的是,所述步骤(2)中,搅拌5-10min后,在730℃-740℃恒温静置15-20min,再通入氩气。Preferably, in the step (2), after stirring for 5-10 minutes, it is left to stand at a constant temperature of 730° C.-740° C. for 15-20 minutes, and then argon gas is introduced.
优选的是,所述步骤(2)中,通入氮气的流速为2-5L/min,时间为5-8min。Preferably, in the step (2), the flow rate of feeding nitrogen is 2-5 L/min, and the time is 5-8 min.
优选的是,所述步骤(3)中,降温的温度为700-720℃。Preferably, in the step (3), the cooling temperature is 700-720°C.
优选的是,所述镁镧中间合金中,镁的质量百分比为75-85%,镧的质量百分比为15-25%;镁锶中间合金中,镁的质量百分比为75-85%,锶的质量百分比为15-25%;镁锰中间合金中,镁的质量百分比为92-97%,锰的质量百分比为3-8%;铝硼中间合金中,铝的质量百分比为92-97%,硼的质量百分比为3-8%。Preferably, in the magnesium-lanthanum master alloy, the mass percentage of magnesium is 75-85%, and that of lanthanum is 15-25%; in the magnesium-strontium master alloy, the mass percentage of magnesium is 75-85%, and that of strontium is The mass percentage is 15-25%; in the magnesium-manganese master alloy, the mass percentage of magnesium is 92-97%, the mass percentage of manganese is 3-8%; in the aluminum-boron master alloy, the mass percentage of aluminum is 92-97%, The mass percentage of boron is 3-8%.
与现有技术相比,本发明的有益效果:Compared with prior art, the beneficial effect of the present invention:
(1)本发明的稀土镁合金通过镧和锶与合金中的铝结合生成Al11La3相和Al4Sr相,抑制了Mg17Al12相的生成,同时利用了Al11La3相和Al4Sr相的高温热稳定性,提高了合金的高温力学性能和蠕变性能,实验结果表明,本发明的稀土镁合金在室温下抗拉强度为240-250MPa,屈服强度为155-165MPa,延伸率为6-9%,在150℃的条件下抗拉强度为140-150MPa,屈服强度为105-115MPa,延伸率为18-25%,在200℃的条件下抗拉强度为110-120MPa,屈服强度为90-100MPa,延伸率为17-22%;在150℃/85MPa条件下,250h的蠕变变形为0.30%,在200℃/85MPa条件下,150h的蠕变变形为0.83%;(1) The rare earth magnesium alloy of the present invention forms Al 11 La 3 phase and Al 4 Sr phase through the combination of lanthanum and strontium with aluminum in the alloy, which suppresses the generation of Mg 17 Al 12 phase, and utilizes Al 11 La 3 phase and Al 12 phase at the same time The high-temperature thermal stability of the Al 4 Sr phase improves the high-temperature mechanical properties and creep properties of the alloy. Experimental results show that the tensile strength of the rare earth magnesium alloy of the present invention is 240-250MPa at room temperature, and the yield strength is 155-165MPa. The elongation is 6-9%, the tensile strength is 140-150MPa at 150°C, the yield strength is 105-115MPa, the elongation is 18-25%, and the tensile strength is 110-120MPa at 200°C , the yield strength is 90-100MPa, the elongation is 17-22%; under the condition of 150℃/85MPa, the creep deformation of 250h is 0.30%, and under the condition of 200℃/85MPa, the creep deformation of 150h is 0.83%;
(2)本发明的稀土镁合金通过锶和硼,改变了晶粒的形貌和形态、减小了晶粒尺寸,起到了细化晶粒的作用,使合金的微观组织中第二相变的比较细小,同时具备几种不同形貌,减少了合金在变形过程中在晶界处的应力集中,从而有利于提高合金的强度和塑性变形能力,进一步提高了合金的室温力学性能,实验结果表明,本发明的稀土镁合金平均晶粒尺寸为20-60μm;(2) The rare earth magnesium alloy of the present invention uses strontium and boron to change the morphology and shape of the crystal grains, reduce the grain size, play a role in refining the grains, and make the second phase transformation in the microstructure of the alloy It is relatively small and has several different shapes at the same time, which reduces the stress concentration of the alloy at the grain boundary during the deformation process, which is conducive to improving the strength and plastic deformation capacity of the alloy, and further improves the mechanical properties of the alloy at room temperature. The experimental results It shows that the average grain size of the rare earth magnesium alloy of the present invention is 20-60 μm;
(3)本发明的稀土镁合金通过锰、硼元素可以与熔体中的铁或其他杂质元素反应形成化合物并沉入炉底,以炉渣的形式去除,从而降低合金中有害杂质含量,提高合金的抗腐蚀性能;(3) The rare earth magnesium alloy of the present invention can react with iron or other impurity elements in the melt to form compounds through manganese and boron elements and sink into the bottom of the furnace to be removed in the form of slag, thereby reducing the harmful impurity content in the alloy and improving the alloy. anti-corrosion properties;
(4)本发明的稀土镁合金中的铝使得该合金具有均衡的强度、塑性和铸造工艺性能,使本发明的稀土镁合金适合工业批量生产;(4) The aluminum in the rare earth magnesium alloy of the present invention makes the alloy have balanced strength, plasticity and casting process performance, making the rare earth magnesium alloy of the present invention suitable for industrial mass production;
(5)本发明的稀土镁合金的制备方法的过程中,适量的稀土元素能够除气精炼并净化合金熔体,也保证了合金在熔炼过程中的抗氧化及阻燃效果,保证了合金熔炼的质量;(5) In the process of the preparation method of the rare earth magnesium alloy of the present invention, an appropriate amount of rare earth elements can be degassed and refined and purify the alloy melt, and also ensure the anti-oxidation and flame-retardant effects of the alloy in the smelting process, and ensure the alloy smelting the quality of;
(6)本发明的稀土镁合金的制备方法的过程中,通过高压铸造成型,使稀土镁合金材料更加致密,晶粒和第二相数量更多、尺寸更小,从而进一步提高了合金的高温力学性能和蠕变性能。(6) In the process of the preparation method of the rare earth magnesium alloy of the present invention, the rare earth magnesium alloy material is made denser by high-pressure casting, and the number of grains and the second phase is larger and the size is smaller, thereby further improving the alloy's High temperature mechanical properties and creep properties.
附图说明Description of drawings
图1为本发明实施例3制备的稀土镁合金的金相(OM)显微照片;Fig. 1 is the metallographic (OM) micrograph of the rare earth magnesium alloy prepared by the embodiment of the present invention 3;
图2为本发明实施例3制备的稀土镁合金的扫描电镜(SEM)背电子散射显微照片。Fig. 2 is a scanning electron microscope (SEM) back electron scattering micrograph of the rare earth magnesium alloy prepared in Example 3 of the present invention.
具体实施方式Detailed ways
为了进一步了解本发明,下面结合具体实施方式对本发明的优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特征和优点而不是对本发明权利要求的限制。In order to further understand the present invention, the preferred embodiments of the present invention are described below in conjunction with specific embodiments, but it should be understood that these descriptions are only for further illustrating the features and advantages of the present invention rather than limiting the claims of the present invention.
本发明的稀土镁合金的组成及质量百分比为:3.4%-4.4%的Al,2.5%-4.0%的La,0.1%-1.2%的Sr,0.2%-0.4%的Mn,0.01%-0.2%的B,总量小于0.02%杂质元素Fe、Cu、Si和Ni(一般情况下,熔炼过程中不可避免的掺杂杂质Fe、Cu、Si和Ni),余量为Mg。The composition and mass percentage of the rare earth magnesium alloy of the present invention are: 3.4%-4.4% Al, 2.5%-4.0% La, 0.1%-1.2% Sr, 0.2%-0.4% Mn, 0.01%-0.2% For B, the total amount is less than 0.02% impurity elements Fe, Cu, Si and Ni (generally, unavoidable doping impurities Fe, Cu, Si and Ni during the smelting process), and the balance is Mg.
本发明的稀土镁合金在室温下抗拉强度为240-250MPa,屈服强度为155-165MPa,延伸率为6-9%;在150℃的条件下抗拉强度为140-150MPa,屈服强度为105-115MPa,延伸率为18-25%;在200℃的条件下抗拉强度为110-120MPa,屈服强度为90-100MPa,延伸率为17-22%;并且在150℃/85MPa条件下,250h的蠕变变形为0.30%;在200℃/85MPa条件下,150h的蠕变变形为0.83%。本发明的稀土镁合金的平均晶粒尺寸为20-60μm。The rare earth magnesium alloy of the present invention has a tensile strength of 240-250MPa at room temperature, a yield strength of 155-165MPa, and an elongation of 6-9%; and a tensile strength of 140-150MPa at 150°C, and a yield strength of 105 -115MPa, the elongation is 18-25%; the tensile strength is 110-120MPa at 200°C, the yield strength is 90-100MPa, and the elongation is 17-22%; and at 150°C/85MPa, 250h The creep deformation is 0.30%; under the condition of 200℃/85MPa, the creep deformation of 150h is 0.83%. The average grain size of the rare earth magnesium alloy of the present invention is 20-60 μm.
本发明的室温为本领域技术人员公知温度,一般可以为20-25℃。The room temperature in the present invention is a temperature well known to those skilled in the art, and generally may be 20-25°C.
本发明对稀土镁合金中Al的来源没有特殊限制,以本领域技术人员公知的Al来源即可,Al的纯度以本领域技术人员制备稀土镁合金公知采用的纯度就可以,一般采用纯铝,纯度99.5%以上。本发明稀土镁合金中的Al使得合金具有均衡的强度、塑性和铸造工艺性能,适合工业批量生产。The present invention has no special restrictions on the source of Al in the rare earth magnesium alloy, and the source of Al known to those skilled in the art can be used. The purity of Al can be the purity known to be used by those skilled in the art to prepare the rare earth magnesium alloy. Generally, pure aluminum is used. The purity is above 99.5%. The Al in the rare earth magnesium alloy of the invention makes the alloy have balanced strength, plasticity and casting process performance, and is suitable for industrial batch production.
本发明对稀土镁合金中Mg的来源没有特殊限制,以本领域技术人员公知的Mg来源即可,Mg的纯度以本领域技术人员制备稀土镁合金公知采用的纯度就可以,一般采用纯镁,纯度99.5%以上。The present invention has no special limitation on the source of Mg in the rare earth magnesium alloy. The source of Mg known to those skilled in the art can be used. The purity of Mg can be the purity known to be used by those skilled in the art to prepare the rare earth magnesium alloy. Generally, pure magnesium is used. The purity is above 99.5%.
本发明对稀土镁合金中La的来源没有特殊限制,以本领域技术人员公知的稀土元素来源或市售稀土元素即可,La的纯度以本领域技术人员制备稀土镁合金公知采用的稀土元素纯度即可。The present invention has no special limitation on the source of La in the rare earth magnesium alloy. The sources of rare earth elements known to those skilled in the art or commercially available rare earth elements can be used. The purity of La is the purity of rare earth elements known to those skilled in the art to prepare rare earth magnesium alloys. That's it.
本发明对稀土镁合金中Sr、Mn和B的来源均没有特殊限制,以本领域技术人员公知的来源即可,纯度也以本领域技术人员制备稀土镁合金公知采用的纯度就可以。The present invention has no special restrictions on the sources of Sr, Mn and B in the rare earth magnesium alloy, and the sources known to those skilled in the art can be used, and the purity can also be the purity known to be used by those skilled in the art to prepare rare earth magnesium alloys.
本发明中,镧和锶能够与合金中的铝结合生成Al11La3相和Al4Sr相,从而抑制了Mg17Al12相的生成,同时Al11La3相和Al4Sr相都是高温热稳定相,使制备的合金具有优异的高温耐热性能和高温蠕变性能。与现有技术相比,铝与镧形成的第二相无论是熔点和稳定性都比铈、钕、镨要高,且在镁合金中固溶度0.4wt%La<0.74wt%Ce<1.7wt%Pr<3.6wt%Nd,元素在合金中的固溶度越大、溶解的越多,那么形成第二相部分的稀土含量就越少,也就是说Nd和Pr比同等含量的La形成的耐热第二相要少,蠕变性能也就相对不好,所以本发明采用稀土镧替代富铈稀土能够达到合金蠕变性能最大化。In the present invention, lanthanum and strontium can combine with aluminum in the alloy to form Al 11 La 3 phase and Al 4 Sr phase, thereby inhibiting the formation of Mg 17 Al 12 phase, while Al 11 La 3 phase and Al 4 Sr phase are both The high-temperature thermally stable phase makes the prepared alloy have excellent high-temperature heat resistance and high-temperature creep properties. Compared with the prior art, the melting point and stability of the second phase formed by aluminum and lanthanum are higher than those of cerium, neodymium and praseodymium, and the solid solubility in magnesium alloy is 0.4wt%La<0.74wt%Ce<1.7 wt%Pr<3.6wt%Nd, the greater the solid solubility of elements in the alloy and the more dissolved, the less the rare earth content that forms the second phase, that is to say, Nd and Pr form The heat-resistant second phase of the alloy is less, and the creep performance is relatively poor, so the present invention uses rare earth lanthanum to replace the cerium-rich rare earth to maximize the creep performance of the alloy.
本发明中,锶和硼的加入,改变了晶粒的形貌和形态、减小了晶粒尺寸,起到了细化晶粒的作用,增强了合金的强度与塑性,并且使合金的微观组织中第二相变的比较细小,同时具有几种不同的形貌,减少合金变形过程中在晶界处的应力集中,从而提高了合金强度和塑性变形能力,进一步提高了合金的室温力学性能。In the present invention, the addition of strontium and boron changes the morphology and shape of the grains, reduces the grain size, plays a role in refining the grains, enhances the strength and plasticity of the alloy, and makes the microstructure of the alloy The second phase transition in the medium is relatively small, and has several different shapes at the same time, which reduces the stress concentration at the grain boundary during the deformation of the alloy, thereby improving the strength and plastic deformation capacity of the alloy, and further improving the mechanical properties of the alloy at room temperature.
本发明中,锰与硼可以与熔体中的铁或其他元素反应形成化合物并沉入炉底,以炉渣的形式去除,从而降低合金中有害杂质含量,提高合金的抗腐蚀性能。In the present invention, manganese and boron can react with iron or other elements in the melt to form compounds and sink to the bottom of the furnace to be removed in the form of slag, thereby reducing the content of harmful impurities in the alloy and improving the corrosion resistance of the alloy.
本发明的稀土镁合金的制备方法,包括以下步骤:The preparation method of the rare earth magnesium alloy of the present invention comprises the following steps:
(1)在保护气作用下,将镁、铝和镁锰中间合金加入熔融装置中在660-680℃熔融,得到第一熔体;(1) Under the action of protective gas, magnesium, aluminum and magnesium-manganese master alloys are added to a melting device and melted at 660-680° C. to obtain a first melt;
(2)在保护气作用下,将第一熔体升温至730-740℃后,向第一熔体中加入镁镧中间合金、镁锶中间合金和铝硼中间合金,保持温度在730-740℃,以100-300转/min搅拌5-10min后,730-740℃恒温静置15-20min,然后以流速为2-5L/min的氩气精炼5-8min,得到第二熔体;(2) Under the action of protective gas, after raising the temperature of the first melt to 730-740°C, add magnesium-lanthanum master alloy, magnesium-strontium master alloy and aluminum-boron master alloy to the first melt, and keep the temperature at 730-740°C ℃, after stirring at 100-300 rpm for 5-10min, then standing at a constant temperature of 730-740℃ for 15-20min, and then refining with argon gas at a flow rate of 2-5L/min for 5-8min to obtain the second melt;
其中,搅拌能够促使各个合金元素均匀分布,如果搅拌时间低于5-10min,容易出现偏析,如果搅拌时间高于5-10min,熔体与空气接触可能会带来氧化夹杂,如氧化镁等,所以本发明的搅拌时间优选5-10min;Among them, stirring can promote the uniform distribution of each alloy element. If the stirring time is less than 5-10 minutes, segregation is prone to occur. If the stirring time is higher than 5-10 minutes, the contact between the melt and air may cause oxidation inclusions, such as magnesium oxide, etc. So the stirring time of the present invention is preferably 5-10min;
(3)将步骤(2)得到的第二熔体静置降温至700-720℃,降温过程一般需要35-40min,然后进行压铸,得到稀土镁合金;(3) cooling the second melt obtained in step (2) to 700-720° C., the cooling process generally takes 35-40 minutes, and then die-casting to obtain a rare earth magnesium alloy;
其中,压铸为本领域技术人员公知高压铸造(highpressurediecasting),简称压铸,采用压铸能够使本发明的稀土镁合金更致密,气孔少,强度、刚度等各种性能更高,本发明的制备方法中,压铸可以采用在180-580吨锁模力的冷室压铸机上进行压铸。Among them, die-casting is known to those skilled in the art as high pressure diecasting (high pressure diecasting), referred to as die-casting, the use of die-casting can make the rare earth magnesium alloy of the present invention denser, have fewer pores, and have higher strength, stiffness and other properties. In the preparation method of the present invention , Die-casting can be performed on a cold chamber die-casting machine with a clamping force of 180-580 tons.
本发明的制备方法中,镁、铝、镁镧中间合金、镁锶中间合金、镁锰中间合金和铝硼中间合金的用量依据所需制备的稀土镁合金的组成及质量百分比配比,配比过程没有特殊限制,依据本领域人员公知方式即可,一般不考虑损耗。其中,稀土镁合金中的镁一部分来源于直接加入的镁,另一部分来源于镁镧中间合金、镁锶中间合金和镁锰中间合金,稀土镁合金中的铝一部分来源于直接加入的铝,另一部分来源于铝硼中间合金。In the preparation method of the present invention, the amount of magnesium, aluminum, magnesium-lanthanum master alloy, magnesium-strontium master alloy, magnesium-manganese master alloy and aluminum-boron master alloy is based on the composition and mass percentage ratio of the rare earth magnesium alloy to be prepared. The process is not particularly limited, and it can be done according to methods known to those skilled in the art, and loss is generally not considered. Among them, part of the magnesium in the rare earth magnesium alloy comes from the directly added magnesium, and the other part comes from the magnesium lanthanum master alloy, magnesium strontium master alloy and magnesium manganese master alloy, part of the aluminum in the rare earth magnesium alloy comes from the directly added aluminum, and the other Part of it comes from the aluminum-boron master alloy.
本发明的镁镧中间合金中,镁的质量百分比优选为75-85%,镧的质量百分比优选为15-25%;镁锰中间合金,镁的质量百分比优选为92-97%,锰的质量百分比优选为3-8%;镁锶中间合金,镁的质量百分比优选为75-85%,锶的质量百分比优选为15-25%;;铝硼中间合金中,铝的质量百分比优选为92-97%,硼的质量百分比优选为3-8%。镁镧中间合金、镁锶中间合金、镁锰中间合金和铝硼中间合金均为本领域技术人员公知原料,商购即可。In the magnesium-lanthanum master alloy of the present invention, the mass percentage of magnesium is preferably 75-85%, the mass percentage of lanthanum is preferably 15-25%; the magnesium-manganese master alloy, the mass percentage of magnesium is preferably 92-97%, and the mass percentage of manganese Percentage is preferably 3-8%; Magnesium-strontium master alloy, the mass percent of magnesium is preferably 75-85%, the mass percent of strontium is preferably 15-25%; In aluminum-boron master alloy, the mass percent of aluminum is preferably 92- 97%, the mass percentage of boron is preferably 3-8%. Magnesium-lanthanum master alloys, magnesium-strontium master alloys, magnesium-manganese master alloys and aluminum-boron master alloys are all raw materials known to those skilled in the art and can be purchased commercially.
本发明在将镁、铝、镁镧中间合金、镁锶中间合金、镁锰中间合金和铝硼中间合金加入熔融装置熔融之前,优选预热到200-300℃。本发明的熔融装置没有特殊限制,一般采用公知镁合金熔炼坩埚即可,优选,熔融装置预热至300℃。In the present invention, the magnesium, aluminum, magnesium-lanthanum master alloy, magnesium-strontium master alloy, magnesium-manganese master alloy and aluminum-boron master alloy are preferably preheated to 200-300° C. before melting in a melting device. The melting device of the present invention is not particularly limited, generally a known magnesium alloy melting crucible can be used. Preferably, the melting device is preheated to 300°C.
本发明的制备方法中,步骤(1)和步骤(2)中的的保护气为体积比为1:100的SF6:CO2。In the preparation method of the present invention, the protective gas in step (1) and step (2) is SF 6 :CO 2 with a volume ratio of 1:100.
以下结合实施例及附图进一步说明本发明。The present invention is further described below in conjunction with embodiment and accompanying drawing.
实施例1Example 1
稀土镁合金的组分及质量百分比为:3.4%的铝,2.5%的镧,0.1%的锶,0.2%的锰,0.01%的硼,余量为镁。The composition and mass percentage of the rare earth magnesium alloy are: 3.4% aluminum, 2.5% lanthanum, 0.1% strontium, 0.2% manganese, 0.01% boron, and the balance is magnesium.
上述稀土镁合金的制备:The preparation of above-mentioned rare earth magnesium alloy:
(1)按照上述稀土镁合金的组分及质量百分比配比如下:镁(纯度99.8%)的质量百分比为79.59%、铝(纯度99.5%)的质量百分比为3.21%、镁镧中间合金(镁占80%,镧占20%)的质量百分比为12.5%,镁锶中间合金(镁占80%,锶占20%)的质量百分比为0.5%、镁锰中间合金(镁占95%,锰占5%)的质量百分比为4%,铝硼中间合金(铝占95%,硼占5%)的质量百分比为0.2%;(1) According to the composition and mass percentage ratio of the above-mentioned rare earth magnesium alloy, the mass percentage of magnesium (purity 99.8%) is 79.59%, the mass percentage of aluminum (purity 99.5%) is 3.21%, magnesium-lanthanum master alloy (magnesium 80%, lanthanum 20%) with a mass percentage of 12.5%, magnesium-strontium master alloy (magnesium 80%, strontium 20%) with a mass percentage of 0.5%, magnesium-manganese master alloy (magnesium 95%, manganese The mass percentage of 5%) is 4%, and the mass percentage of aluminum-boron master alloy (aluminum accounts for 95%, boron accounts for 5%) is 0.2%;
(2)将镁、铝、镁镧中间合金、镁锶中间合金、镁锰中间合金和铝硼中间合金预热到200-300℃;(2) Preheating magnesium, aluminum, magnesium-lanthanum master alloy, magnesium-strontium master alloy, magnesium-manganese master alloy and aluminum-boron master alloy to 200-300°C;
(3)将预热好的镁、铝和镁锰中间合金放入预热到300℃的坩锅中,在体积比为1:100的SF6:CO2的保护下,加热至660-680℃,使镁、铝和镁锰中间合金完全熔化后,得到第一熔体;(3) Put the preheated magnesium, aluminum and magnesium-manganese master alloy into a crucible preheated to 300°C, and heat it to 660-680°C under the protection of SF 6 :CO 2 with a volume ratio of 1:100 ℃, after the magnesium, aluminum and magnesium-manganese intermediate alloys are completely melted, the first melt is obtained;
(4)在体积比为1:100的SF6:CO2的保护下,将第一熔体温度升高到730-740℃,加入预热好的镁镧中间合金、镁锶中间合金和铝硼中间合金,保持730-740℃,以100-300转/min的速度搅拌5-10min之后,730-740℃保温静置15-20min,然后通氩气精炼5-8min,得到第二熔体;(4) Under the protection of SF6:CO2 with a volume ratio of 1:100, raise the temperature of the first melt to 730-740°C, and add the preheated magnesium-lanthanum master alloy, magnesium-strontium master alloy and aluminum-boron master alloy The alloy is kept at 730-740°C, stirred at a speed of 100-300 rpm for 5-10 minutes, kept at 730-740°C for 15-20 minutes, and then refined with argon for 5-8 minutes to obtain the second melt;
(5)将第二熔体静置降温到700-720℃,在580吨锁模力的冷室压铸机上进行压铸,得到稀土镁合金。(5) cooling the second melt to 700-720° C., and performing die-casting on a cold-chamber die-casting machine with a clamping force of 580 tons to obtain a rare earth magnesium alloy.
在室温和高温下,依据GB/T228.1-2010金属材料拉伸试验第1部分:室温试验方法和GB/T2039-1997金属拉伸蠕变及持久试验方法分别对稀土镁合金进行拉伸测试和蠕变测试,测试结果见表2-表7。At room temperature and high temperature, according to GB/T228.1-2010 Tensile test of metal materials Part 1: Room temperature test method and GB/T2039-1997 Metal tensile creep and durability test method, the rare earth magnesium alloy is tensile tested And creep test, the test results are shown in Table 2-Table 7.
实施例2Example 2
稀土镁合金的组分及质量百分比为:3.7%的铝,3.0%的镧,0.4%的锶,0.3%的锰,0.04%的硼,余量为镁。The composition and mass percentage of the rare earth magnesium alloy are: 3.7% aluminum, 3.0% lanthanum, 0.4% strontium, 0.3% manganese, 0.04% boron, and the balance is magnesium.
上述稀土镁合金的制备:The preparation of above-mentioned rare earth magnesium alloy:
(1)按照上述稀土镁合金的组分及质量百分比配比如下:镁(纯度99.8%)的质量百分比为73.26%、铝(纯度99.5%)的质量百分比为2.94%、镁镧中间合金(镁占80%,镧占20%)的质量百分比为15%,镁锶中间合金(镁占80%,锶占20%)的质量百分比为2%、镁锰中间合金(镁占95%,锰占5%)的质量百分比为6%,铝硼中间合金(铝占95%,硼占5%)的质量百分比为0.8%;(1) According to the composition and mass percentage ratio of the above-mentioned rare earth magnesium alloy, the mass percentage of magnesium (purity 99.8%) is 73.26%, the mass percentage of aluminum (purity 99.5%) is 2.94%, magnesium-lanthanum master alloy (magnesium 80%, lanthanum 20%) is 15% by mass, magnesium-strontium master alloy (magnesium 80%, strontium 20%) is 2%, magnesium-manganese master alloy (magnesium 95%, manganese 5%) is 6% by mass, and the mass percentage of aluminum-boron master alloy (aluminum accounts for 95%, boron accounts for 5%) is 0.8%;
(2)将镁、铝、镁镧中间合金、镁锶中间合金、镁锰中间合金和铝硼中间合金预热到200-300℃;(2) Preheating magnesium, aluminum, magnesium-lanthanum master alloy, magnesium-strontium master alloy, magnesium-manganese master alloy and aluminum-boron master alloy to 200-300°C;
(3)将预热好的镁、铝和镁锰中间合金放入预热到300℃的坩锅中,在体积比为1:100的SF6:CO2的保护下,加热至660-680℃,使镁、铝和镁锰中间合金完全熔化后,得到第一熔体;(3) Put the preheated magnesium, aluminum and magnesium-manganese master alloy into a crucible preheated to 300°C, and heat it to 660-680°C under the protection of SF 6 :CO 2 with a volume ratio of 1:100 ℃, after the magnesium, aluminum and magnesium-manganese intermediate alloys are completely melted, the first melt is obtained;
(4)在体积比为1:100的SF6:CO2的保护下,将第一熔体温度升高到730-740℃,加入预热好的镁镧中间合金、镁锶中间合金和铝硼中间合金,保持730-740℃,以100-300转/min的速度搅拌5-10min之后,730-740℃保温静置15-20min,然后通氩气精炼5-8min,得到第二熔体;(4) Under the protection of SF6:CO2 with a volume ratio of 1:100, raise the temperature of the first melt to 730-740°C, and add the preheated magnesium-lanthanum master alloy, magnesium-strontium master alloy and aluminum-boron master alloy The alloy is kept at 730-740°C, stirred at a speed of 100-300 rpm for 5-10 minutes, kept at 730-740°C for 15-20 minutes, and then refined with argon for 5-8 minutes to obtain the second melt;
(5)将第二熔体静置降温到700-720℃,在580吨锁模力的冷室压铸机上进行压铸,得到稀土镁合金。(5) cooling the second melt to 700-720° C., and performing die-casting on a cold-chamber die-casting machine with a clamping force of 580 tons to obtain a rare earth magnesium alloy.
在室温和高温下,依据GB/T228.1-2010金属材料拉伸试验第1部分:室温试验方法和GB/T2039-1997金属拉伸蠕变及持久试验方法分别对稀土镁合金进行拉伸测试和蠕变测试,测试结果见表2-表7。At room temperature and high temperature, according to GB/T228.1-2010 Tensile test of metal materials Part 1: Room temperature test method and GB/T2039-1997 Metal tensile creep and durability test method, the rare earth magnesium alloy is tensile tested And creep test, the test results are shown in Table 2-Table 7.
实施例3Example 3
稀土镁合金的组分及质量百分比为:4.0%的铝,4.0%的镧,0.8%的锶,0.3%的锰,0.07%的硼,余量为镁。The composition and mass percentage of the rare earth magnesium alloy are: 4.0% aluminum, 4.0% lanthanum, 0.8% strontium, 0.3% manganese, 0.07% boron, and the balance is magnesium.
上述稀土镁合金的制备:The preparation of above-mentioned rare earth magnesium alloy:
(1)按照上述稀土镁合金的组分及质量百分比配比如下:镁(纯度99.8%)的质量百分比为65.93%、铝(纯度99.5%)的质量百分比为2.67%、镁镧中间合金(镁占80%,镧占20%)的质量百分比为20%,镁锶中间合金(镁占80%,锶占20%)的质量百分比为4%、镁锰中间合金(镁占95%,锰占5%)的质量百分比为6%,铝硼中间合金(铝占95%,硼占5%)的质量百分比为1.4%;(1) According to the composition and mass percentage proportioning of the above-mentioned rare earth magnesium alloy, the mass percentage of magnesium (purity 99.8%) is 65.93%, the mass percentage of aluminum (purity 99.5%) is 2.67%, magnesium-lanthanum master alloy (magnesium 80%, lanthanum 20%) is 20% by mass, magnesium-strontium master alloy (magnesium 80%, strontium 20%) is 4%, magnesium-manganese master alloy (magnesium 95%, manganese 5%) is 6% by mass, and the mass percentage of aluminum-boron master alloy (aluminum accounts for 95%, boron accounts for 5%) is 1.4%;
(2)将镁、铝、镁镧中间合金、镁锶中间合金、镁锰中间合金和铝硼中间合金预热到200-300℃;(2) Preheating magnesium, aluminum, magnesium-lanthanum master alloy, magnesium-strontium master alloy, magnesium-manganese master alloy and aluminum-boron master alloy to 200-300°C;
(3)将预热好的镁、铝和镁锰中间合金放入预热到300℃的坩锅中,在体积比为1:100的SF6:CO2的保护下,加热至660-680℃,使镁、铝和镁锰中间合金完全熔化后,得到第一熔体;(3) Put the preheated magnesium, aluminum and magnesium-manganese master alloy into a crucible preheated to 300°C, and heat it to 660-680°C under the protection of SF 6 :CO 2 with a volume ratio of 1:100 ℃, after the magnesium, aluminum and magnesium-manganese intermediate alloys are completely melted, the first melt is obtained;
(4)在体积比为1:100的SF6:CO2的保护下,将第一熔体温度升高到730-740℃,加入预热好的镁镧中间合金、镁锶中间合金和铝硼中间合金,保持730-740℃,以100-300转/min的速度搅拌5-10min之后,730-740℃保温静置15-20min,然后通氩气精炼5-8min,得到第二熔体;(4) Under the protection of SF 6 :CO 2 with a volume ratio of 1:100, raise the temperature of the first melt to 730-740°C, and add the preheated magnesium-lanthanum master alloy, magnesium-strontium master alloy and aluminum Boron intermediate alloy, keep at 730-740°C, stir at 100-300 rpm for 5-10min, keep it at 730-740°C for 15-20min, and then refine with argon for 5-8min to obtain the second melt ;
(5)将第二熔体静置降温到700-720℃,在580吨锁模力的冷室压铸机上进行压铸,得到稀土镁合金。(5) cooling the second melt to 700-720° C., and performing die-casting on a cold-chamber die-casting machine with a clamping force of 580 tons to obtain a rare earth magnesium alloy.
图1是本发明实施例3制备的稀土镁合金的金相显微照片,从图1可以看出,本发明的稀土镁合金晶粒尺寸为20-60μm;图2是本发明实施例3制备的稀土镁合金的扫描电镜背电子散射显微照片,从图2可以看出,本发明的稀土镁合金存在Al11La3高温热稳定相(晶界上白色针状相)、Al4Sr高温热稳定相(少量分布在晶界和晶内白色块状相),这两种相熔点非常高,分别为1240℃和1040℃,均高于合金中晶界上存在的网状Mg17Al12相的熔点455℃,从而提高了合金的高温力学性能和蠕变性能。Fig. 1 is the metallographic micrograph of the rare earth magnesium alloy prepared by the embodiment of the present invention 3, as can be seen from Fig. 1, the rare earth magnesium alloy grain size of the present invention is 20-60 μ m; Fig. 2 is the rare earth prepared by the embodiment of the present invention 3 The scanning electron microscope back electron scattering micrograph of magnesium alloy, as can be seen from Fig. 2, the rare earth magnesium alloy of the present invention exists Al 11 La 3 high-temperature thermally stable phase (white acicular phase on the grain boundary), Al 4 Sr high-temperature thermally stable phase phase (a small amount distributed in the grain boundary and intragranular white massive phase), these two phases have very high melting points, 1240°C and 1040°C respectively, both of which are higher than the network Mg 17 Al 12 phase existing on the grain boundary in the alloy The melting point is 455°C, which improves the high-temperature mechanical properties and creep properties of the alloy.
依据GB/T20125-2006低合金钢多元素的测定电感耦合等离子体发射光谱法测定的实施例3的稀土镁合金的化学成分如表1所示:According to the determination of GB/T20125-2006 low alloy steel multielement, the chemical composition of the rare earth magnesium alloy of embodiment 3 measured by inductively coupled plasma emission spectrometry is as shown in table 1:
表1 为实施例3制备的稀土镁合金的组成Table 1 is the composition of the rare earth magnesium alloy prepared in embodiment 3
从表1可以看出,实施例3确实制备了组分及质量百分比为:4.0%的铝,4.0%的镧,0.8%的锶,0.3%的锰,0.07%的硼,余量为镁的稀土镁合金。As can be seen from Table 1, embodiment 3 has indeed prepared components and mass percent is: 4.0% aluminum, 4.0% lanthanum, 0.8% strontium, 0.3% manganese, 0.07% boron, and the balance is magnesium. Rare earth magnesium alloys.
在室温和高温下,依据GB/T228.1-2010金属材料拉伸试验第1部分:室温试验方法和GB/T2039-1997金属拉伸蠕变及持久试验方法分别对稀土镁合金进行拉伸测试和蠕变测试,测试结果见表2-表7。At room temperature and high temperature, according to GB/T228.1-2010 Tensile test of metal materials Part 1: Room temperature test method and GB/T2039-1997 Metal tensile creep and durability test method, the rare earth magnesium alloy is tensile tested And creep test, the test results are shown in Table 2-Table 7.
实施例4Example 4
稀土镁合金的组分及质量百分比为:4.4%的铝,3.5%的镧,1.2%的锶,0.4%的锰,0.2%的硼,余量为镁。The composition and mass percentage of the rare earth magnesium alloy are: 4.4% aluminum, 3.5% lanthanum, 1.2% strontium, 0.4% manganese, 0.2% boron, and the balance is magnesium.
上述稀土镁合金的制备:The preparation of above-mentioned rare earth magnesium alloy:
(1)按照上述稀土镁合金的组分及质量百分比配比如下:镁(纯度99.8%)的质量百分比为63.90%、铝(纯度99.5%)的质量百分比为0.6%、镁镧中间合金(镁占80%,镧占20%)的质量百分比为17.5%,镁锶中间合金(镁占80%,锶占20%)的质量百分比为6%、镁锰中间合金(镁占95%,锰占5%)的质量百分比为8%,铝硼中间合金(铝占95%,硼占5%)的质量百分比为4%;(1) According to the composition and mass percentage ratio of the above-mentioned rare earth magnesium alloy, the mass percentage of magnesium (purity 99.8%) is 63.90%, the mass percentage of aluminum (purity 99.5%) is 0.6%, the magnesium-lanthanum master alloy (magnesium 80%, lanthanum 20%) is 17.5% by mass, magnesium-strontium master alloy (magnesium 80%, strontium 20%) is 6%, magnesium-manganese master alloy (magnesium 95%, manganese 5%) is 8% by mass, and the mass percentage of aluminum-boron master alloy (aluminum accounts for 95%, boron accounts for 5%) is 4%;
(2)将镁、铝、镁镧中间合金、镁锶中间合金、镁锰中间合金和铝硼中间合金预热到200-300℃;(2) Preheating magnesium, aluminum, magnesium-lanthanum master alloy, magnesium-strontium master alloy, magnesium-manganese master alloy and aluminum-boron master alloy to 200-300°C;
(3)将预热好的镁、铝和镁锰中间合金放入预热到300℃的坩锅中,在体积比为1:100的SF6:CO2的保护下,加热至660-680℃,使镁、铝和镁锰中间合金完全熔化后,得到第一熔体;(3) Put the preheated magnesium, aluminum and magnesium-manganese master alloy into a crucible preheated to 300°C, and heat it to 660-680°C under the protection of SF 6 :CO 2 with a volume ratio of 1:100 ℃, after the magnesium, aluminum and magnesium-manganese intermediate alloys are completely melted, the first melt is obtained;
(4)在体积比为1:100的SF6:CO2的保护下,将第一熔体温度升高到730-740℃,加入预热好的镁镧中间合金、镁锶中间合金和铝硼中间合金,保持730-740℃,以100-300转/min的速度搅拌5-10min之后,730-740℃保温静置15-20min,然后通氩气精炼5-8min,得到第二熔体;(4) Under the protection of SF 6 :CO 2 with a volume ratio of 1:100, raise the temperature of the first melt to 730-740°C, and add the preheated magnesium-lanthanum master alloy, magnesium-strontium master alloy and aluminum Boron intermediate alloy, keep at 730-740°C, stir at 100-300 rpm for 5-10min, keep it at 730-740°C for 15-20min, and then refine with argon for 5-8min to obtain the second melt ;
(5)将第二熔体静置降温到700-720℃,在580吨锁模力的冷室压铸机上进行压铸,得到稀土镁合金。(5) cooling the second melt to 700-720° C., and performing die-casting on a cold-chamber die-casting machine with a clamping force of 580 tons to obtain a rare earth magnesium alloy.
在室温和高温下,依据GB/T228.1-2010金属材料拉伸试验第1部分:室温试验方法和GB/T2039-1997金属拉伸蠕变及持久试验方法分别对稀土镁合金进行拉伸测试和蠕变测试,测试结果见表2-表7。At room temperature and high temperature, according to GB/T228.1-2010 Tensile test of metal materials Part 1: Room temperature test method and GB/T2039-1997 Metal tensile creep and durability test method, the rare earth magnesium alloy is tensile tested And creep test, the test results are shown in Table 2-Table 7.
表2 为实施例1-4的稀土镁合金在室温(20℃)下的力学性能Table 2 is the mechanical properties of the rare earth magnesium alloys of Examples 1-4 at room temperature (20°C)
表3 为实施例1-4的稀土镁合金在高温(150℃)下的力学性能Table 3 is the mechanical properties of the rare earth magnesium alloys of Examples 1-4 at high temperature (150°C)
表4 为实施例1-4的稀土镁合金在高温(200℃)下的力学性能Table 4 is the mechanical properties of the rare earth magnesium alloys of Examples 1-4 at high temperature (200°C)
表5 为实施例1-4的稀土镁合金在高温(250℃)下的力学性能Table 5 is the mechanical properties of the rare earth magnesium alloys of Examples 1-4 at high temperature (250°C)
表6 为实施例1-4的稀土镁合金的高温(150℃)蠕变性能Table 6 is the high temperature (150°C) creep properties of the rare earth magnesium alloys of Examples 1-4
表7 为实施例1-4的稀土镁合金的高温(200℃)蠕变性能Table 7 shows the high temperature (200°C) creep properties of the rare earth magnesium alloys of Examples 1-4
从表2-表7可以看出,本发明的稀土镁合金具有优异的室温力学性能、高温力学性能和高温蠕变性能。It can be seen from Table 2 to Table 7 that the rare earth magnesium alloy of the present invention has excellent room temperature mechanical properties, high temperature mechanical properties and high temperature creep properties.
显然,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于所述技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。Apparently, the descriptions of the above embodiments are only used to help understand the method and core idea of the present invention. It should be pointed out that for those of ordinary skill in the technical field, without departing from the principles of the present invention, some improvements and modifications can also be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention .
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410314895.6A CN104073702A (en) | 2014-07-02 | 2014-07-02 | Rear-earth magnesium alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410314895.6A CN104073702A (en) | 2014-07-02 | 2014-07-02 | Rear-earth magnesium alloy and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104073702A true CN104073702A (en) | 2014-10-01 |
Family
ID=51595299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410314895.6A Pending CN104073702A (en) | 2014-07-02 | 2014-07-02 | Rear-earth magnesium alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104073702A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104388715A (en) * | 2014-12-15 | 2015-03-04 | 春兴精工(常熟)有限公司 | Preparation method of high-yield-strength magnesium alloy |
CN104480362A (en) * | 2014-12-15 | 2015-04-01 | 苏州昊卓新材料有限公司 | Method for preparing high-tenacity magnesium alloy |
CN104550865A (en) * | 2015-01-16 | 2015-04-29 | 中国科学院青海盐湖研究所 | Magnesium aluminum strontium alloy preparation method |
CN107604228A (en) * | 2017-08-30 | 2018-01-19 | 上海交通大学 | Corrosion-resistant diecast magnesium alloy of high heat conduction and preparation method thereof |
CN110129644A (en) * | 2019-05-23 | 2019-08-16 | 山东省科学院新材料研究所 | A heat-resistant soluble magnesium alloy and its preparation method and application |
CN110195180A (en) * | 2018-02-26 | 2019-09-03 | 中国宝武钢铁集团有限公司 | A kind of high thermal conductivity diecast magnesium alloy and its manufacturing method |
CN114783647A (en) * | 2022-05-20 | 2022-07-22 | 广东欣意电缆有限公司 | Carbon fiber rare earth magnesium alloy cable and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101158002A (en) * | 2007-11-06 | 2008-04-09 | 中国科学院长春应用化学研究所 | AE series heat-resistant die-casting magnesium alloy containing cerium and lanthanum |
CN103484743A (en) * | 2013-10-17 | 2014-01-01 | 中国科学院长春应用化学研究所 | Rare earth magnesium alloy and preparation method thereof |
CN103725906A (en) * | 2013-12-24 | 2014-04-16 | 上海交通大学 | Compound treatment purifying method of magnesium alloy melt |
-
2014
- 2014-07-02 CN CN201410314895.6A patent/CN104073702A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101158002A (en) * | 2007-11-06 | 2008-04-09 | 中国科学院长春应用化学研究所 | AE series heat-resistant die-casting magnesium alloy containing cerium and lanthanum |
CN103484743A (en) * | 2013-10-17 | 2014-01-01 | 中国科学院长春应用化学研究所 | Rare earth magnesium alloy and preparation method thereof |
CN103725906A (en) * | 2013-12-24 | 2014-04-16 | 上海交通大学 | Compound treatment purifying method of magnesium alloy melt |
Non-Patent Citations (2)
Title |
---|
PER BAKKE ET AL.: "Elevated temperature alloys- paths for further performance gains in AE44", 《GIESSEREIFORSCHUNG》, vol. 58, no. 4, 31 December 2006 (2006-12-31), pages 10 - 17 * |
QIANG YANG ET AL.: "Microstructures and tensile properties of Mg–4Al–4La–0.4Mn–xB (x = 0, 0.01, 0.02, 0.03) alloy", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 572, 2 April 2013 (2013-04-02), pages 129 - 136 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104388715A (en) * | 2014-12-15 | 2015-03-04 | 春兴精工(常熟)有限公司 | Preparation method of high-yield-strength magnesium alloy |
CN104480362A (en) * | 2014-12-15 | 2015-04-01 | 苏州昊卓新材料有限公司 | Method for preparing high-tenacity magnesium alloy |
CN104550865A (en) * | 2015-01-16 | 2015-04-29 | 中国科学院青海盐湖研究所 | Magnesium aluminum strontium alloy preparation method |
CN107604228A (en) * | 2017-08-30 | 2018-01-19 | 上海交通大学 | Corrosion-resistant diecast magnesium alloy of high heat conduction and preparation method thereof |
CN107604228B (en) * | 2017-08-30 | 2019-09-27 | 上海交通大学 | High thermal conductivity and corrosion-resistant die-casting magnesium alloy and preparation method thereof |
CN110195180A (en) * | 2018-02-26 | 2019-09-03 | 中国宝武钢铁集团有限公司 | A kind of high thermal conductivity diecast magnesium alloy and its manufacturing method |
CN110195180B (en) * | 2018-02-26 | 2021-10-19 | 中国宝武钢铁集团有限公司 | A kind of high thermal conductivity die-casting magnesium alloy and its manufacturing method |
CN110129644A (en) * | 2019-05-23 | 2019-08-16 | 山东省科学院新材料研究所 | A heat-resistant soluble magnesium alloy and its preparation method and application |
US11795533B2 (en) | 2019-05-23 | 2023-10-24 | Qilu University Of Technology | Heat-resistant and soluble magnesium alloy, preparation method and use thereof |
CN114783647A (en) * | 2022-05-20 | 2022-07-22 | 广东欣意电缆有限公司 | Carbon fiber rare earth magnesium alloy cable and preparation method thereof |
CN114783647B (en) * | 2022-05-20 | 2024-05-31 | 深圳中盛万家投资有限责任公司 | Carbon fiber rare earth magnesium alloy cable and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102732763B (en) | High-strength Mg-Gd-Y-Zn-Mn alloy | |
CN104073702A (en) | Rear-earth magnesium alloy and preparation method thereof | |
CN100424210C (en) | Die-cast heat-resistant magnesium alloy | |
CN102242298A (en) | Al and Zn strengthened Mg-Sn-RE-based high-toughness heat-resistant magnesium alloy | |
CN101381833A (en) | Heat-resistant cast magnesium alloy and preparation method thereof | |
CN101255518A (en) | A high-strength and corrosion-resistant Mg-Al-Mn die-casting magnesium alloy containing yttrium-rich rare earth | |
CN104046871A (en) | Heat-resistant magnesium alloy and preparation method thereof | |
CN105568105B (en) | A kind of high-strength and high-plasticity Mg-Gd-Y-Ni-Mn alloy and preparation method thereof | |
CN101353747A (en) | Die-cast heat-resistant magnesium alloy and preparation method thereof | |
CN102296219A (en) | Mg-Sn-Sr-based magnesium alloy with high strength and toughness and heat resistance | |
CN101285144A (en) | A kind of magnesium alloy for semi-solid forming and its semi-solid blank preparation method | |
CN101255519B (en) | A kind of preparation method of high-strength and high-toughness Mg-Al-Mn die-casting magnesium alloy containing lanthanum-cerium mixed rare earth | |
CN105349863A (en) | High-strength rare earth magnesium alloy capable of preparing large-size ingot and method | |
CN106756363A (en) | A kind of corrosion-resistant, high temperature creep-resisting diecast magnesium alloy and preparation method thereof | |
CN103469039B (en) | The magnesium-aluminum-zinc wrought magnesium alloys of a kind of calcic and rare earth samarium | |
CN111286658A (en) | High-thermal-conductivity flame-retardant magnesium alloy capable of being die-cast and preparation method thereof | |
CN102644013A (en) | High-strength and high-elongation cast magnesium alloy and production method thereof | |
CN106676355B (en) | High-plastic heat-resisting AZ systems magnesium alloy extrusion of one kind and preparation method thereof | |
CN101818293B (en) | Heat resistant magnesium alloy | |
CN108034874B (en) | A kind of rare earth magnesium alloy containing molybdenum rhenium and preparation method thereof | |
CN103225031B (en) | A kind of Magnesium-zinc-mangaalloytin-neodymium alloytin-neodymium and preparation method thereof | |
CN102277521A (en) | High-temperature high-tenacity single-phase solid-solution magnesium rare earth base alloy and preparation method thereof | |
CN110195181B (en) | A kind of die-casting magnesium alloy with high temperature and heat resistance and its manufacturing method | |
CN115896574B (en) | Die-casting magnesium alloy and preparation method thereof | |
CN101418403B (en) | A hot-extruded high-strength Mg-Zn-Y-Zr alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141001 |
|
RJ01 | Rejection of invention patent application after publication |