CN107104287A - Wideband single layer polarization beam splitting research of planar reflectarray antennas based on overlapping reflector element - Google Patents
Wideband single layer polarization beam splitting research of planar reflectarray antennas based on overlapping reflector element Download PDFInfo
- Publication number
- CN107104287A CN107104287A CN201710252863.1A CN201710252863A CN107104287A CN 107104287 A CN107104287 A CN 107104287A CN 201710252863 A CN201710252863 A CN 201710252863A CN 107104287 A CN107104287 A CN 107104287A
- Authority
- CN
- China
- Prior art keywords
- planar
- reflection
- linearly polarized
- polarization beam
- beam splitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/145—Reflecting surfaces; Equivalent structures comprising a plurality of reflecting particles, e.g. radar chaff
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/104—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种基于重叠反射单元的宽带单层极化分束平面反射阵列天线,包括馈源喇叭和平面反射阵列。平面反射阵列的反射单元由两组平行单极子正交叠放组成,分别用于补偿X方向线极化与Y方向线极化波的反射相位,该设计既表现宽带工作特性,又实现了对两种极化反射波束的独立调控,起到波束极化分离的效果。
The invention discloses a broadband single-layer polarized beam-splitting plane reflection array antenna based on overlapping reflection units, which includes a feed source horn and a plane reflection array. The reflective unit of the planar reflective array is composed of two groups of parallel monopoles stacked orthogonally, which are respectively used to compensate the reflection phases of linearly polarized waves in the X direction and linearly polarized waves in the Y direction. The independent control of the two polarized reflection beams achieves the effect of beam polarization separation.
Description
技术领域:Technical field:
本发明涉及一种基于重叠反射单元的宽带单层极化分束平面反射阵列天线,其属于电子通信领域。The invention relates to a broadband single-layer polarization beam splitting planar reflection array antenna based on overlapping reflection units, which belongs to the field of electronic communication.
背景技术:Background technique:
平面反射阵列(Flat Reflectarray)是一种将反射抛物面和阵列天线相结合的一种天线形式。通过设计阵列上每个单元的结构参数来修正反射相位,使其在远场某一方向获得等相位面,得到该方向上的辐射波束。相比传统的抛物面反射天线,该结构剖面低、占用空间小、质量轻、加工简单且成本低;能实现折叠与展开,便于空间应用。相比于阵列天线,平面反射阵列则省去了复杂的馈电、功分网络,使得能量传输效率更高,并降低了设计的难度。最重要的是,反射单元一旦确定,就可以应用到多种用途的平面阵列中,通过调控表面反射单元的结构尺寸,就可以得到适应不同频段、不同波束要求天线。A flat reflectarray is an antenna form that combines a reflective parabola and an array antenna. The reflection phase is corrected by designing the structural parameters of each unit on the array, so that it can obtain an equiphase plane in a certain direction of the far field, and obtain a radiation beam in this direction. Compared with the traditional parabolic reflector antenna, the structure has a low cross-section, small footprint, light weight, simple processing and low cost; it can be folded and unfolded, and is convenient for space applications. Compared with the array antenna, the planar reflectarray saves the complicated feeding and power dividing network, which makes the energy transmission efficiency higher and reduces the difficulty of design. The most important thing is that once the reflection unit is determined, it can be applied to a multi-purpose planar array. By adjusting the structural size of the surface reflection unit, an antenna that can meet the requirements of different frequency bands and different beams can be obtained.
而平面反射阵列有着固有缺点:馈源到阵面各个反射单元的路程差是关于频率的函数,随着频率的变化,各个反射单元需要补偿的空间相位差也随之变化。而反射单元的尺寸是固定的,频率的偏差超出设计,必将造成增益下降、波束偏差等问题,使得传统的平面反射阵列存在固有的窄带工作特性,难以实现宽频、多频工作。多谐振单元结构是指反射单元中包含尺寸相近、形状相似的贴片,能够在不增加阵列剖面的前提下,有效拓展工作带宽。本发明使用的平行单极子结构获得了15.7%的工作带宽,反射单元的相位调控曲线在11.3-13.4GHz的范围内呈线性并覆盖了超过360°的变化范围。另外,本发明实现了在同一平面上对不同极化方式反射波的分离,并使得每种波束指向各自设计好的空间方向。分极化的波束复用拓展了信道容量,提高了天线的使用效率。The planar reflectarray has inherent disadvantages: the path difference from the feed source to each reflective unit on the front is a function of frequency, and as the frequency changes, the spatial phase difference that each reflective unit needs to compensate also changes. However, the size of the reflective unit is fixed, and the frequency deviation exceeds the design, which will inevitably cause problems such as gain drop and beam deviation, which makes the traditional planar reflective array have inherent narrow-band operating characteristics, and it is difficult to achieve broadband and multi-frequency operation. The multi-resonant unit structure means that the reflection unit contains patches of similar size and shape, which can effectively expand the working bandwidth without increasing the array section. The parallel monopole structure used in the present invention obtains a working bandwidth of 15.7%, and the phase regulation curve of the reflection unit is linear in the range of 11.3-13.4GHz and covers a variation range of more than 360°. In addition, the present invention realizes the separation of reflected waves of different polarization modes on the same plane, and makes each beam point to its own designed space direction. The polarized beam multiplexing expands the channel capacity and improves the efficiency of the antenna.
发明内容:Invention content:
本发明提供一种基于重叠反射单元的宽带单层极化分束平面反射阵列天线,本发明结构很好的改善了平面反射阵列的工作带宽。同时,该发明实现了同一平面对不同极化方式反射波束的分离,并且每种极化方式的波束空间指向可以进行独立的设计。The invention provides a broadband single-layer polarized beam-splitting plane reflection array antenna based on overlapping reflection units, and the structure of the invention can well improve the working bandwidth of the plane reflection array. At the same time, the invention realizes the separation of reflected beams of different polarization modes on the same plane, and the beam spatial direction of each polarization mode can be independently designed.
本发明所采用的技术方案有:一种基于重叠反射单元的宽带单层极化分束平面反射阵列天线,由馈源喇叭以及平面反射阵列组成,所述平面反射阵列包括介质基板、接地金属背板以及将介质基板与接地金属背板隔开的空气层,介质基板表面排布有反射单元,每一个反射单元由两组正交叠放的平行单极子组成。The technical solutions adopted in the present invention include: a broadband single-layer polarization splitting planar reflective array antenna based on overlapping reflective units, which is composed of a feed horn and a planar reflective array. The planar reflective array includes a dielectric substrate, a grounded metal back plate and an air layer that separates the dielectric substrate from the grounded metal backplane. Reflection units are arranged on the surface of the dielectric substrate, and each reflection unit is composed of two groups of parallel monopoles stacked orthogonally.
进一步地,反射单元中两组平行单极子在表面正交叠放,分别对X方向线极化、Y方向线极化波进行独立的相位调控,实现同一个平面反射阵列对两种正交的线极化波的复用。Furthermore, two sets of parallel monopoles in the reflection unit are stacked orthogonally on the surface, and the phases of the linearly polarized waves in the X direction and the linearly polarized waves in the Y direction are independently phase-regulated, so that the same planar reflective array can control two kinds of orthogonal Multiplexing of linearly polarized waves.
进一步地,所述反射单元为单层金属贴片,所述介质基板使用ARLON 25N材料,厚度为0.508mm,所述空气层的厚度为3mm。Further, the reflection unit is a single-layer metal patch, the dielectric substrate is made of ARLON 25N material with a thickness of 0.508 mm, and the thickness of the air layer is 3 mm.
本发明具有如下有益效果:首先,本发明使用单层金属贴片就实现了双线极化的复用,两组平行单极子正交叠放于同一平面,降低剖面从而大大降低了加工难度。另外,正交平行单极子具有良好的极化隔离特性,每组平行单极子对应一种极化方式,可实现两种极化反射波束的独立调控,从而大大提升了平面反射阵列设计的灵活性。最后,具有多谐振特性的平行单极子配合空气层结构,保证了该平面反射阵列能实现稳定的宽带工作。The present invention has the following beneficial effects: First, the present invention uses a single-layer metal patch to realize the multiplexing of dual-polarization, and two sets of parallel monopoles are stacked orthogonally on the same plane, reducing the profile and greatly reducing the processing difficulty . In addition, orthogonal parallel monopoles have good polarization isolation characteristics. Each group of parallel monopoles corresponds to a polarization mode, which can realize independent control of two polarized reflection beams, thus greatly improving the reliability of planar reflective array design. flexibility. Finally, the parallel monopoles with multi-resonance characteristics cooperate with the air layer structure to ensure that the planar reflectarray can achieve stable broadband operation.
附图说明:Description of drawings:
图1是本发明的系统结构示意图。Fig. 1 is a schematic diagram of the system structure of the present invention.
图2为反射单元结构图,(a)为俯视图,(b)为侧视图。Fig. 2 is a structural diagram of the reflection unit, (a) is a top view, and (b) is a side view.
图3为平行单极子结构图,(a)为俯视图,(b)为侧视图。Fig. 3 is a structure diagram of a parallel monopole, (a) is a top view, (b) is a side view.
图4为平行单极子在X方向线极化入射波下的相位补偿曲线,(a)为平行单极子沿y轴放置,(b)为沿x轴放置。Figure 4 is the phase compensation curve of the parallel monopole under the linearly polarized incident wave in the X direction, (a) is the parallel monopole placed along the y-axis, and (b) is placed along the x-axis.
图5为正交平行单极子叠放组成反射单元的示意图。Fig. 5 is a schematic diagram of a reflection unit formed by stacking orthogonal parallel monopoles.
图6为反射单元在X方向线极化与Y方向线极化的入射波下的相位补偿曲线,(a)X方向线极化,(b)为Y方向线极化。Fig. 6 is a phase compensation curve of the reflection unit under the incident wave of linear polarization in the X direction and linear polarization in the Y direction, (a) linear polarization in the X direction, and (b) linear polarization in the Y direction.
图7为平面反射阵列结构图。FIG. 7 is a structural diagram of a planar reflective array.
图8为平面反射阵列辐射方向图,(a)为结构摆放示意图,(b)为X方向线极化辐射方向图,(c)为Y方向线极化辐射方向图。Fig. 8 is the radiation pattern of the planar reflectarray, (a) is a schematic diagram of structure arrangement, (b) is the radiation pattern of linear polarization in X direction, and (c) is the radiation pattern of linear polarization in Y direction.
其中:in:
1-馈源喇叭,2-平面反射阵列,3-反射单元,4-平行单极子,5-介质基板,6-空气层,7-接地金属背板。1-feed horn, 2-plane reflection array, 3-reflection unit, 4-parallel monopole, 5-dielectric substrate, 6-air layer, 7-grounded metal backplane.
具体实施方式:detailed description:
下面结合附图对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
如图1所示,该发明基于重叠反射单元的宽带单层极化分束平面反射阵列天线的整体结构由馈源喇叭1以及平面反射阵列2组成。馈源喇叭提供激励;平面反射阵列表面的反射单元3由两组平行单极子4正交叠放组成,每组平行单极子分别沿x轴与y轴方向排列。每组平行单极子可对其排列方向上的线极化波进行反射相位调节,而对正交方向上的线极化波起不到相位调节作用。将两组平行单极子正交叠放,从而得到完整的反射单元,可以实现对X方向线极化与Y方向线极化反射波相位的独立调控。平面反射阵列上的反射单元通过变化尺寸来进行相位调节,补偿馈源喇叭照射平面反射阵列的空间相位差,使得整个平面反射阵列在某一个远场方向获得等相位面,实现同相相加,由此得到所该方向上的辐射波束。在双线极化或圆极化入射时,平面反射阵列中y轴向与x轴向的平行单极子排布经过独立设计,实现在同一平面反射阵列表面上将X方向线极化与Y方向线极化反射波束分离,波束各自指向设计好的方向。反射单元中每组平行单极子都采用了多谐振结构的设计,加之反射单元3的介质基板5与接地金属背板7之间用空气层6隔开,形成了跨越360°的平滑相位补偿曲线,使得在宽频带内反射波束保持稳定的方向性和增益。As shown in FIG. 1 , the overall structure of the wideband single-layer polarization beam splitting planar reflectarray antenna based on overlapping reflecting units is composed of a feed horn 1 and a planar reflectarray 2 . The feed horn provides excitation; the reflection unit 3 on the surface of the planar reflection array is composed of two groups of parallel monopoles 4 stacked orthogonally, and each group of parallel monopoles is arranged along the x-axis and y-axis respectively. Each group of parallel monopoles can adjust the reflection phase of the linearly polarized waves in the arrangement direction, but cannot adjust the phase of the linearly polarized waves in the orthogonal direction. Two sets of parallel monopoles are stacked orthogonally to obtain a complete reflection unit, which can realize independent control of the phases of the X-direction linear polarization and the Y-direction linear polarization reflection wave. The reflection unit on the planar reflector array adjusts the phase by changing the size, and compensates the spatial phase difference of the feed horn irradiating the planar reflector array, so that the whole planar reflector array obtains an equiphase plane in a certain far-field direction, and realizes in-phase addition. This results in a radiation beam in that direction. When dual linear polarization or circular polarization is incident, the parallel monopole arrangements of the y-axis and x-axis in the planar reflectarray are independently designed to achieve linear polarization in the X direction and Y-axis on the same plane reflectarray surface. Directional linear polarization reflection beams are separated, and the beams point to the designed direction. Each group of parallel monopoles in the reflection unit adopts a multi-resonance structure design, and the dielectric substrate 5 of the reflection unit 3 and the grounded metal backplane 7 are separated by an air layer 6, forming a smooth phase compensation spanning 360° The curve makes the reflected beam maintain stable directivity and gain in a wide frequency band.
图2所示为反射单元结构图。介质基板5使用ARLON 25N材料,厚度为0.508mm。介质基板5与接地金属背板7之间用3mm的空气层6隔开。空气层6保证相位调节曲线跨越360°。介质基板5表面的金属贴片结构为两组正交叠放平行单极子4。Figure 2 shows the structural diagram of the reflection unit. The dielectric substrate 5 is made of ARLON 25N material with a thickness of 0.508mm. The dielectric substrate 5 and the grounded metal backplane 7 are separated by an air layer 6 of 3 mm. The air layer 6 ensures that the phase adjustment curve spans 360°. The metal patch structure on the surface of the dielectric substrate 5 is two groups of parallel monopoles 4 stacked orthogonally.
图3所示为反射单元中的一组沿y轴放置的平行单极子。反射单元的尺寸为边长ax=ay=16.5mm的正方形区域。三根平行单极子等距排列,间距为5.5mm,平行单极子宽度w=1mm。中央的平行单极子长度为l1,两边的平行单极子长度为l2,并保持l2=0.7l1。入射波为X方向线极化时,该平行单极子的相位补偿曲线如图4(a)所示。由图中可见,在11.3GHz至13.4GHz之间,随着中央的平行单极子l1长度在6-10mm间变化,各个频点上的相位补偿曲线大致呈线性变化,且变化范围大于360°。Figure 3 shows a set of parallel monopoles placed along the y-axis in a reflector unit. The size of the reflection unit is a square area with side length a x =a y =16.5 mm. The three parallel monopoles are arranged equidistantly with a spacing of 5.5mm, and the width of the parallel monopoles is w=1mm. The length of the central parallel monopole is l 1 , the length of the parallel monopoles on both sides is l 2 , and keep l 2 =0.7l 1 . When the incident wave is linearly polarized in the X direction, the phase compensation curve of the parallel monopole is shown in Fig. 4(a). It can be seen from the figure that between 11.3GHz and 13.4GHz, as the length of the central parallel monopole l1 changes between 6-10mm, the phase compensation curves at each frequency point change roughly linearly, and the change range is greater than 360 °.
而同样在X方向线极化入射波下,沿x轴放置的平行单极子的相位补偿曲线如图4(b)所示。各个频点的反射相位不随中央的平行单极子长度l1的变化而变化。将两组正交的平行单极子叠放形成反射单元,如图5所示。完整的反射单元的相位调节曲线如图6所示,图6(a)为X方向线极化的情况,图6(b)为Y方向线极化的情况。两种情况下,中央的平行单极子长度均在5-10mm间变化,11.3GHz-13.4GHz之间各个频点都得到了平滑的近线性相位补偿曲线,且相位变化范围均超过360°。Also under the linearly polarized incident wave in the X direction, the phase compensation curve of the parallel monopole placed along the x-axis is shown in Fig. 4(b). The reflection phase of each frequency point does not change with the change of the length l 1 of the central parallel monopole. Two sets of orthogonal parallel monopoles are stacked to form a reflection unit, as shown in Figure 5. The phase adjustment curve of the complete reflection unit is shown in Fig. 6, Fig. 6(a) is the case of X-direction linear polarization, and Fig. 6(b) is the case of Y-direction linear polarization. In both cases, the length of the central parallel monopole varies between 5-10mm, and smooth near-linear phase compensation curves are obtained at each frequency point between 11.3GHz and 13.4GHz, and the phase variation range exceeds 360°.
利用该结构良好的极化隔离性,可以设计构成平面反射阵列实现对X方向与Y方向线极化反射波束的度独立调控,用同一平面反射阵列生成两束不同极化方式、不同空间指向的反射波束。如图8(a)所示,平面反射阵列放置于x-y平面内,坐标原点位于平面反射阵列中心,馈源喇叭置于z轴。本专利中,设置的反射波束均位于y-z平面内,X方向线极化反射波束的方位角为(θ1=15°,φ1=0°),Y方向线极化反射波束的方位角为(θ2=-15°,φ2=0°),由此设计的平面反射阵列如图7所示。Taking advantage of the good polarization isolation of this structure, a planar reflective array can be designed to realize the degree-independent control of the X-direction and Y-direction linearly polarized reflected beams, and the same planar reflective array can be used to generate two beams with different polarization modes and different spatial orientations. reflected beam. As shown in Figure 8(a), the planar reflectarray is placed in the xy plane, the coordinate origin is located at the center of the planar reflectarray, and the feed horn is placed on the z-axis. In this patent, the reflected beams set are all located in the yz plane, the azimuth angle of the linearly polarized reflected beam in the X direction is (θ 1 =15°, φ 1 =0°), and the azimuth angle of the linearly polarized reflected beam in the Y direction is (θ 2 =-15°, φ 2 =0°), the planar reflective array thus designed is shown in FIG. 7 .
图8(b)所示为X方向线极化反射波束的方向图,在图8(a)所示的y-z平面内,11.3GHz-13.1GHz的反射波束方向图最大增益均位于设计的(θ1=15°,φ1=0°)方向,12.2GHz时波束增益达到最大的28.12dB,13.1GHz时出现了增益大于10dB的副瓣。图8(c)所示为y-z平面内的Y方向线极化反射波束方向图,同样在11.3GHz-13.1GHz内,最大增益方向均在(θ2=-15°,φ2=0°),12.2GHz时最大增益为27.98dB。Figure 8(b) shows the pattern of the linearly polarized reflected beam in the X direction. In the yz plane shown in Figure 8(a), the maximum gain of the reflected beam pattern of 11.3GHz-13.1GHz is located at the designed (θ 1 =15°, φ 1 =0°) direction, the beam gain reaches a maximum of 28.12dB at 12.2GHz, and a sidelobe with a gain greater than 10dB appears at 13.1GHz. Figure 8(c) shows the Y-direction linearly polarized reflected beam pattern in the yz plane, also within 11.3GHz-13.1GHz, the maximum gain direction is (θ 2 =-15°, φ 2 =0°) , the maximum gain is 27.98dB at 12.2GHz.
本发明所描述的反射单元具有很强的设计灵活性,两种极化方式的反射波束空间指向可以自由设计。本专利只描述了一个具体的设计,其他的各种波束设计均在本专利所要求的保护权利内。The reflective unit described in the present invention has strong design flexibility, and the spatial orientation of the reflected beams of the two polarization modes can be freely designed. This patent only describes a specific design, and other various beam designs are within the protection rights required by this patent.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710252863.1A CN107104287A (en) | 2017-04-18 | 2017-04-18 | Wideband single layer polarization beam splitting research of planar reflectarray antennas based on overlapping reflector element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710252863.1A CN107104287A (en) | 2017-04-18 | 2017-04-18 | Wideband single layer polarization beam splitting research of planar reflectarray antennas based on overlapping reflector element |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107104287A true CN107104287A (en) | 2017-08-29 |
Family
ID=59657987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710252863.1A Pending CN107104287A (en) | 2017-04-18 | 2017-04-18 | Wideband single layer polarization beam splitting research of planar reflectarray antennas based on overlapping reflector element |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107104287A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107799905A (en) * | 2017-08-31 | 2018-03-13 | 电子科技大学 | Terahertz polarization separator based on reflected beam skew |
CN107978869A (en) * | 2017-12-14 | 2018-05-01 | 南京航空航天大学 | A kind of broadband multipolarization reconstruct slot antenna and its polarization method |
CN111987469A (en) * | 2020-07-24 | 2020-11-24 | 东南大学 | Reflection super surface and antenna of two linear polarization independent control |
CN112688088A (en) * | 2020-12-17 | 2021-04-20 | 北京邮电大学 | Dual-polarized dual-mode vortex reflective array antenna |
CN112952398A (en) * | 2021-02-21 | 2021-06-11 | 中国电子科技集团公司第二十二研究所 | Double-channel Ku waveband receiving antenna |
EP3863117A1 (en) * | 2020-02-06 | 2021-08-11 | Metawave Corporation | Reflectarray antenna for enhanced wireless communication coverage area |
CN113506984A (en) * | 2021-05-24 | 2021-10-15 | 中国电子科技集团公司第二十九研究所 | Metamaterial decoupling structure applied to improving far-field isolation between horn antenna arrays |
CN115810892A (en) * | 2022-11-28 | 2023-03-17 | 北京星英联微波科技有限责任公司 | Millimeter wave all-metal high-gain folding reflective array antenna |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2337152A1 (en) * | 2009-12-10 | 2011-06-22 | Agence Spatiale Européenne | Dual-polarisation reflectarray antenna with improved cros-polarization properties |
US20130099990A1 (en) * | 2010-03-19 | 2013-04-25 | Thales | Reflector array antenna with crossed polarization compensation and method for producing such an antenna |
CN103560336A (en) * | 2013-10-16 | 2014-02-05 | 北京航天福道高技术股份有限公司 | Ku-band dual-band dual-polarized microstrip planar reflectarray antenna |
US20150229032A1 (en) * | 2012-11-09 | 2015-08-13 | Kuang-Chi Innovative Technology Ltd. | Reflective array surface and reflective array antenna |
CN104901023A (en) * | 2015-05-27 | 2015-09-09 | 电子科技大学 | Broadband foldable reflective array antenna |
CN105356066A (en) * | 2015-11-18 | 2016-02-24 | 中国科学院国家空间科学中心 | X/Ku-frequency-band double-frequency dual-polarization microstrip-flat-reflective-array antenna |
CN105609967A (en) * | 2015-12-30 | 2016-05-25 | 成都亿豪智科技有限公司 | Dual-polarization plane reflective array antenna |
CN206727228U (en) * | 2017-04-18 | 2017-12-08 | 南京航空航天大学 | Wideband single layer polarization beam splitting research of planar reflectarray antennas based on overlapping reflector element |
-
2017
- 2017-04-18 CN CN201710252863.1A patent/CN107104287A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2337152A1 (en) * | 2009-12-10 | 2011-06-22 | Agence Spatiale Européenne | Dual-polarisation reflectarray antenna with improved cros-polarization properties |
US20130099990A1 (en) * | 2010-03-19 | 2013-04-25 | Thales | Reflector array antenna with crossed polarization compensation and method for producing such an antenna |
US20150229032A1 (en) * | 2012-11-09 | 2015-08-13 | Kuang-Chi Innovative Technology Ltd. | Reflective array surface and reflective array antenna |
CN103560336A (en) * | 2013-10-16 | 2014-02-05 | 北京航天福道高技术股份有限公司 | Ku-band dual-band dual-polarized microstrip planar reflectarray antenna |
CN104901023A (en) * | 2015-05-27 | 2015-09-09 | 电子科技大学 | Broadband foldable reflective array antenna |
CN105356066A (en) * | 2015-11-18 | 2016-02-24 | 中国科学院国家空间科学中心 | X/Ku-frequency-band double-frequency dual-polarization microstrip-flat-reflective-array antenna |
CN105609967A (en) * | 2015-12-30 | 2016-05-25 | 成都亿豪智科技有限公司 | Dual-polarization plane reflective array antenna |
CN206727228U (en) * | 2017-04-18 | 2017-12-08 | 南京航空航天大学 | Wideband single layer polarization beam splitting research of planar reflectarray antennas based on overlapping reflector element |
Non-Patent Citations (1)
Title |
---|
HUNG-CHI HUANG ET AL: "Design of dual-polarized high-gain antenna radome by using Jerusalem cross metamaterial structure", 《2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107799905A (en) * | 2017-08-31 | 2018-03-13 | 电子科技大学 | Terahertz polarization separator based on reflected beam skew |
CN107799905B (en) * | 2017-08-31 | 2020-07-31 | 电子科技大学 | Terahertz polarization separator based on reflected beam offset |
CN107978869A (en) * | 2017-12-14 | 2018-05-01 | 南京航空航天大学 | A kind of broadband multipolarization reconstruct slot antenna and its polarization method |
CN107978869B (en) * | 2017-12-14 | 2023-07-25 | 南京航空航天大学 | A Broadband Multi-polarization Reconfiguration Slot Antenna and Its Polarization Method |
CN115336104A (en) * | 2020-02-06 | 2022-11-11 | 美波公司 | Reflectarray Antennas for Enhanced Wireless Communication Coverage Areas |
EP3863117A1 (en) * | 2020-02-06 | 2021-08-11 | Metawave Corporation | Reflectarray antenna for enhanced wireless communication coverage area |
WO2021156099A1 (en) * | 2020-02-06 | 2021-08-12 | Metawave Corporation | Reflectarray antenna for enhanced wireless communication coverage area |
CN111987469A (en) * | 2020-07-24 | 2020-11-24 | 东南大学 | Reflection super surface and antenna of two linear polarization independent control |
CN112688088B (en) * | 2020-12-17 | 2021-10-12 | 北京邮电大学 | Dual-polarized dual-mode vortex reflectarray antenna |
CN112688088A (en) * | 2020-12-17 | 2021-04-20 | 北京邮电大学 | Dual-polarized dual-mode vortex reflective array antenna |
CN112952398B (en) * | 2021-02-21 | 2022-08-02 | 中国电子科技集团公司第二十二研究所 | A dual-channel Ku-band receiving antenna |
CN112952398A (en) * | 2021-02-21 | 2021-06-11 | 中国电子科技集团公司第二十二研究所 | Double-channel Ku waveband receiving antenna |
CN113506984A (en) * | 2021-05-24 | 2021-10-15 | 中国电子科技集团公司第二十九研究所 | Metamaterial decoupling structure applied to improving far-field isolation between horn antenna arrays |
CN113506984B (en) * | 2021-05-24 | 2023-05-02 | 中国电子科技集团公司第二十九研究所 | Metamaterial decoupling structure applied to far field isolation between horn antenna arrays |
CN115810892A (en) * | 2022-11-28 | 2023-03-17 | 北京星英联微波科技有限责任公司 | Millimeter wave all-metal high-gain folding reflective array antenna |
CN115810892B (en) * | 2022-11-28 | 2023-08-25 | 北京星英联微波科技有限责任公司 | Millimeter wave all-metal high-gain folding reflective array antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107104287A (en) | Wideband single layer polarization beam splitting research of planar reflectarray antennas based on overlapping reflector element | |
CN106911001B (en) | A Dynamic Multi-Frequency and Multi-beam Spatial Arbitrary Scanning Reflectarray | |
CA2570658C (en) | Dual polarization antenna array with inter-element coupling and associated methods | |
US20160248166A1 (en) | Multi-band, multi-polarized wireless communication antenna | |
JP4431567B2 (en) | Single-polarization slot antenna array with intra-element coupling and manufacturing method thereof | |
US10326212B2 (en) | Phase lag cell and antenna including same | |
CN105261842A (en) | Microstrip reflective array unit loaded with cross slot on ground, and reflective array antenna | |
WO2011160649A2 (en) | A low wind load lightweight foldable / deployable base station antenna for mobile tv, wimax, cdma and gsm | |
CN206727228U (en) | Wideband single layer polarization beam splitting research of planar reflectarray antennas based on overlapping reflector element | |
EP1798817A1 (en) | Single polarization slot antenna array with inter-element capacitive coupling plate and associated methods | |
EP1798816A1 (en) | Dual polarization antenna array with inter-element capacitive coupling plate and associated methods | |
Chiu et al. | High-gain circularly polarized resonant cavity antenna using FSS superstrate | |
CN106921049A (en) | Sub-wavelength cavity antenna based on double-layer magnetic single-negative material | |
CN112151943A (en) | Dual-beam base station antenna with sparse array with triangular sub-arrays | |
Zhang et al. | A broadband single-layer reflectarray antenna based on tightly coupled dipole | |
Kiyani et al. | A low-profile phase correcting solution to improve directivity of horn antenna | |
Gao et al. | Bandwidth enhancement element for linearly polarized reflectarray design in Ku-band | |
Aziz et al. | Polarization switching in fan-beam reflector-backed array antenna | |
Zhu et al. | Design of a low-profile 3: 1 bandwidth wide-scan tightly coupled phased array antenna | |
Zeb et al. | A simple EBG resonator antenna for dual-polarized, dual-band wireless links | |
Arand et al. | Gain enhancement of a multiband square-loop patch antenna using an AMC-PEC substrate and a radome | |
Zhu et al. | High Efficiency Transmitarray Antenna with Optimum Feed | |
Li et al. | A Broadband Planar Reflectarray Antenna Employing Tightly Coupled Slot Elements | |
Hussain et al. | Terahertz planar widegain-bandwidth metasurface antenna | |
Zhou et al. | A Planar Metallic Folded Reflectarray |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170829 |