CN107046163A - Mesa-shaped active area solid plasma diode fabricating method for preparing holographic antenna - Google Patents
Mesa-shaped active area solid plasma diode fabricating method for preparing holographic antenna Download PDFInfo
- Publication number
- CN107046163A CN107046163A CN201611184779.2A CN201611184779A CN107046163A CN 107046163 A CN107046163 A CN 107046163A CN 201611184779 A CN201611184779 A CN 201611184779A CN 107046163 A CN107046163 A CN 107046163A
- Authority
- CN
- China
- Prior art keywords
- solid
- state plasma
- mesa
- region
- shaped active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 102
- 239000007787 solid Substances 0.000 title claims abstract description 19
- 230000008569 process Effects 0.000 claims abstract description 79
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 claims abstract description 26
- 238000011065 in-situ storage Methods 0.000 claims abstract description 22
- 238000005530 etching Methods 0.000 claims abstract description 20
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 15
- 238000001259 photo etching Methods 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 41
- 239000011241 protective layer Substances 0.000 claims description 40
- 238000000151 deposition Methods 0.000 claims description 34
- 238000000206 photolithography Methods 0.000 claims description 16
- 238000001039 wet etching Methods 0.000 claims description 14
- 238000001312 dry etching Methods 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 5
- 229910021332 silicide Inorganic materials 0.000 claims description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 210000002381 plasma Anatomy 0.000 description 74
- 229910004298 SiO 2 Inorganic materials 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2283—Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/50—PIN diodes
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Element Separation (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体器件制造技术领域,特别涉及一种用于制备全息天线的台状有源区固态等离子二极管制造方法。The invention relates to the technical field of semiconductor device manufacturing, in particular to a method for manufacturing a solid-state plasma diode in a table-shaped active region for preparing a holographic antenna.
背景技术Background technique
传统金属天线由于其重量和体积都相对较大,设计制作不灵活,自重构性和适应性较差,严重制约了雷达与通信系统的发展和性能的进一步提高。因此,近年来,研究天线宽频带、小型化、以及重构与复用的理论日趋活跃。Due to its relatively large weight and volume, the traditional metal antenna is inflexible in design and manufacture, and its self-reconfiguration and adaptability are poor, which seriously restricts the development and performance improvement of radar and communication systems. Therefore, in recent years, the theory of antenna broadband, miniaturization, and reconfiguration and multiplexing has become increasingly active.
在这种背景下,研究人员提出了一种新型天线概念-等离子体天线,该天线是一种将等离子体作为电磁辐射导向媒质的射频天线。等离子体天线的可利用改变等离子体密度来改变天线的瞬时带宽、且具有大的动态范围;还可以通过改变等离子体谐振、阻抗以及密度等,调整天线的频率、波束宽度、功率、增益和方向性动态参数;另外,等离子体天线在没有激发的状态下,雷达散射截面可以忽略不计,而天线仅在通信发送或接收的短时间内激发,提高了天线的隐蔽性,这些性质可广泛的应用于各种侦察、预警和对抗雷达,星载、机载和导弹天线,微波成像天线,高信噪比的微波通信天线等领域,极大地引起了国内外研究人员的关注,成为了天线研究领域的热点。Against this background, the researchers proposed a new antenna concept-plasma antenna, which is a radio-frequency antenna that uses plasma as a guiding medium for electromagnetic radiation. The plasma antenna can change the instantaneous bandwidth of the antenna by changing the plasma density, and has a large dynamic range; it can also adjust the frequency, beam width, power, gain and direction of the antenna by changing the plasma resonance, impedance and density, etc. In addition, when the plasma antenna is not excited, the radar cross section is negligible, while the antenna is only excited during the short time of communication transmission or reception, which improves the concealment of the antenna. These properties can be widely used Used in various reconnaissance, early warning and countermeasure radars, spaceborne, airborne and missile antennas, microwave imaging antennas, microwave communication antennas with high signal-to-noise ratio, etc., it has greatly attracted the attention of researchers at home and abroad, and has become a field of antenna research. hotspots.
但是当前绝大多数的研究只限于气态等离子体天线,对固态等离子体天线的研究几乎还是空白。而固态等离子体一般存在于半导体器件中,无需像气态等离子那样用介质管包裹,具有更好的安全性和稳定性。经理论研究发现,固态等离子二极管在加直流偏压时,直流电流会在其表面形成自由载流子(电子和空穴)组成的固态等离子体,该等离子体具有类金属特性,即对电磁波具有反射作用,其反射特性与表面等离子体的微波传输特性、浓度及分布密切相关。However, most of the current research is limited to gaseous plasma antennas, and the research on solid-state plasma antennas is almost blank. Solid-state plasma generally exists in semiconductor devices, and it does not need to be wrapped in a dielectric tube like gaseous plasma, which has better safety and stability. Theoretical studies have found that when a solid-state plasma diode is biased with DC, the DC current will form a solid-state plasma composed of free carriers (electrons and holes) on its surface. The plasma has metal-like properties, that is, it has Reflection, its reflection characteristics are closely related to the microwave transmission characteristics, concentration and distribution of surface plasmons.
因此,如何制作一种固态等离子二极管来应用于全息天线就变得尤为重要。Therefore, how to make a solid-state plasmonic diode to apply to the holographic antenna becomes particularly important.
发明内容Contents of the invention
因此,为解决现有技术存在的技术缺陷和不足,本发明提出一种用于制备全息天线的台状有源区固态等离子二极管制造方法。Therefore, in order to solve the technical defects and deficiencies existing in the prior art, the present invention proposes a method for manufacturing a solid-state plasma diode in a mesa-shaped active region for preparing a holographic antenna.
具体地,本发明实施例提出的一种基用于制备全息天线的台状有源区固态等离子二极管制造方法,所述固态等离子二极管用于制作全息天线,所述制造方法包括步骤:Specifically, an embodiment of the present invention proposes a method for manufacturing a solid-state plasma diode in a table-shaped active region for preparing a holographic antenna. The solid-state plasma diode is used for manufacturing a holographic antenna. The manufacturing method includes steps:
(a)选取SOI衬底;(a) select SOI substrate;
(b)利用CVD工艺,在所述SOI衬底表面形成第一保护层;(b) using a CVD process to form a first protective layer on the surface of the SOI substrate;
(c)采用第一掩膜版,利用光刻工艺在所述第一保护层上形成有源区图形;(c) using a first mask plate to form an active region pattern on the first protective layer by using a photolithography process;
(d)利用干法刻蚀工艺,对所述有源区图形的指定位置四周刻蚀所述第一保护层及所述SOI衬底的顶层Si层从而形成有所述台状有源区;(d) using a dry etching process to etch the first protective layer and the top Si layer of the SOI substrate around the designated position of the active region pattern to form the mesa-shaped active region;
(e)对所述台状有源区四周利用原位掺杂工艺分别淀积P型Si材料和N型Si材料形成P区和N区;(e) Depositing a P-type Si material and an N-type Si material around the mesa-shaped active region by an in-situ doping process to form a P region and an N region;
(f)在所述台状有源区四周淀积多晶Si材料;(f) depositing polycrystalline Si material around the terrace-shaped active region;
(g)在所述多晶Si材料表面制作引线并光刻PAD以形成所述固态等离子二极管。(g) making leads on the surface of the polycrystalline Si material and photoetching the PAD to form the solid-state plasma diode.
在本发明的一个实施例中,步骤(d)之后,还包括:In one embodiment of the present invention, after step (d), also include:
(x1)利用氧化工艺,对所述台状有源区的侧壁进行氧化以在所述台状有源区侧壁形成氧化层;(x1) using an oxidation process to oxidize the sidewalls of the mesa-shaped active region to form an oxide layer on the sidewalls of the mesa-shaped active region;
(x2)利用湿法刻蚀工艺刻蚀所述氧化层以完成对所述台状有源区侧壁的平整化处理。(x2) Etching the oxide layer by using a wet etching process to planarize the sidewall of the mesa-shaped active region.
在本发明的一个实施例中,步骤(e)包括:In one embodiment of the invention, step (e) includes:
(e1)在整个衬底表面淀积第二保护层;(e1) depositing a second protective layer on the entire substrate surface;
(e2)采用第二掩膜板,利用光刻工艺在所述第二保护层表面形成P区图形;(e2) using a second mask plate to form a P-region pattern on the surface of the second protective layer by photolithography;
(e3)利用湿法刻蚀工艺去除P区图形上的所述第二保护层;(e3) using a wet etching process to remove the second protective layer on the pattern in the P region;
(e4)利用原位掺杂工艺,在所述台状有源区侧壁淀积P型Si材料形成所述P区;(e4) Depositing a P-type Si material on the sidewall of the mesa-shaped active region by using an in-situ doping process to form the P region;
(e5)在整个衬底表面淀积第三保护层;(e5) depositing a third protective layer on the entire substrate surface;
(e6)采用第三掩膜板,利用光刻工艺在所述第三保护层表面形成N区图形;(e6) using a third mask to form an N-region pattern on the surface of the third protective layer by photolithography;
(e7)利用湿法刻蚀工艺去除N区图形上的所述第三保护层;(e7) using a wet etching process to remove the third protective layer on the N-region pattern;
(e8)利用原位掺杂工艺,在所述台状有源区侧壁淀积N型Si材料形成所述N区。(e8) Depositing N-type Si material on the sidewall of the mesa-shaped active region by using an in-situ doping process to form the N region.
在本发明的一个实施例中,步骤(e4)包括:In one embodiment of the invention, step (e4) includes:
(e41)利用原位掺杂工艺,在所述台状有源区侧壁淀积P型Si材料;(e41) Depositing a P-type Si material on the sidewall of the mesa-shaped active region by using an in-situ doping process;
(e42)采用第四掩膜版,利用干法刻蚀工艺刻蚀所述P型Si材料以在所述台状有源区的侧壁形成所述P区;(e42) Etching the P-type Si material by using a fourth mask using a dry etching process to form the P region on the sidewall of the mesa-shaped active region;
(e43)利用选择性刻蚀工艺去除整个衬底表面的所述第二保护层。(e43) Using a selective etching process to remove the second protective layer on the entire surface of the substrate.
在本发明的一个实施例中,步骤(e8)包括:In one embodiment of the invention, step (e8) includes:
(e81)利用原位掺杂工艺,在所述台状有源区侧壁淀积N型Si材料;(e81) Depositing N-type Si material on the sidewall of the mesa-shaped active region by using an in-situ doping process;
(e82)采用第五掩膜版,利用干法刻蚀工艺刻蚀所述N型Si材料以在所述台状有源区的另一侧壁形成所述N区;(e82) Etching the N-type Si material by using a fifth mask using a dry etching process to form the N region on the other sidewall of the mesa-shaped active region;
(e83)利用选择性刻蚀工艺去除整个衬底表面的所述第三保护层。(e83) Using a selective etching process to remove the third protection layer on the entire surface of the substrate.
在本发明的一个实施例中,步骤(f)包括:In one embodiment of the invention, step (f) includes:
(f1)利用CVD工艺,在所述台状有源区四周淀积所述多晶Si材料;(f1) depositing the polycrystalline Si material around the mesa-shaped active region by using a CVD process;
(f2)利用CVD工艺,在整个衬底表面淀积第四保护层;(f2) Depositing a fourth protective layer on the entire substrate surface by using a CVD process;
(f3)利用退火工艺激活所述P区和所述N区中的杂质。(f3) activating impurities in the P region and the N region by an annealing process.
在本发明的一个实施例中,步骤(g)包括:In one embodiment of the invention, step (g) comprises:
(g1)采用第六掩膜版,利用光刻工艺在所述第四保护层表面形成引线孔图形;(g1) using a sixth mask plate to form a lead hole pattern on the surface of the fourth protective layer by using a photolithography process;
(g2)利用各向异性刻蚀工艺刻蚀所述第四保护层漏出部分所述多晶Si材料以形成所述引线孔;(g2) using an anisotropic etching process to etch the polycrystalline Si material in the leaked part of the fourth protective layer to form the lead hole;
(g3)对所述引线孔溅射金属材料以形成金属硅化物;(g3) sputtering a metal material on the lead hole to form a metal silicide;
(g4)钝化处理并光刻PAD以形成所述固态等离子二极管。(g4) Passivate and photolithographically PAD to form the solid state plasma diode.
在本发明的一个实施例中,所述天线模块(13)包括第一固态等离子二极管天线臂(1301)、第二固态等离子二极管天线臂(1302)、同轴馈线(1303)、第一直流偏置线(1304)、第二直流偏置线(1305)、第三直流偏置线(1306)、第四直流偏置线(1307)、第五直流偏置线(1308)、第六直流偏置线(1309)、第七直流偏置线(1310)、第八直流偏置线(1311)。In one embodiment of the present invention, the antenna module (13) includes a first solid-state plasma diode antenna arm (1301), a second solid-state plasma diode antenna arm (1302), a coaxial feeder (1303), a first DC Bias line (1304), second DC bias line (1305), third DC bias line (1306), fourth DC bias line (1307), fifth DC bias line (1308), sixth DC bias line Bias line (1309), seventh DC bias line (1310), eighth DC bias line (1311).
在本发明的一个实施例中,所述第一固态等离子二极管天线臂(1301)包括依次串接的第一固态等离子二极管串(w1)、第二固态等离子二极管串(w2)及所述第三固态等离子二极管串(w3),所述第二固态等离子二极管天线臂(1302)包括依次串接的第四固态等离子二极管串(w4)、第五固态等离子二极管串(w5)及所述第六固态等离子二极管串(w6)且所述第一固态等离子二极管串(w1)与所述第六固态等离子二极管串(w6)、所述第二固态等离子二极管串(w2)与所述第五固态等离子二极管串(w5)、所述第三固态等离子二极管串(w3)与所述第四固态等离子二极管串(w4)分别包括同等数量的固态等离子二极管。In one embodiment of the present invention, the first solid-state plasma diode antenna arm (1301) includes the first solid-state plasma diode string (w1), the second solid-state plasma diode string (w2) and the third solid-state plasma diode string A solid-state plasma diode string (w3), the second solid-state plasma diode antenna arm (1302) includes a fourth solid-state plasma diode string (w4), a fifth solid-state plasma diode string (w5) and the sixth solid-state plasma diode string (w5) sequentially connected in series The plasma diode string (w6) and the first solid state plasma diode string (w1) and the sixth solid state plasma diode string (w6), the second solid state plasma diode string (w2) and the fifth solid state plasma diode string The string (w5), said third solid state plasma diode string (w3) and said fourth solid state plasma diode string (w4) each comprise an equal number of solid state plasma diodes.
由上可知,本发明实施例通过采用原位掺杂能够避免离子注入等方式带来的不利影响,且能够通过控制气体流量来控制材料的掺杂浓度,更有利于获得陡峭的掺杂界面,从而获得更好的器件性能。该固态等离子二极管等离子可重构天线可以是由SOI基固态等离子二极管按阵列排列组合而成,利用外部控制阵列中的固态等离子二极管选择性导通,使该阵列形成动态固态等离子体条纹、具备天线的功能,对特定电磁波具有发射和接收功能,并且该天线可通过阵列中固态等离子二极管的选择性导通,改变固态等离子体条纹形状及分布,从而实现天线的重构,在国防通讯与雷达技术方面具有重要的应用前景。It can be seen from the above that the embodiment of the present invention can avoid the adverse effects caused by ion implantation by using in-situ doping, and can control the doping concentration of the material by controlling the gas flow rate, which is more conducive to obtaining a steep doping interface. So as to obtain better device performance. The solid-state plasma diode plasma reconfigurable antenna can be composed of SOI-based solid-state plasma diodes arranged in an array, and the solid-state plasma diodes in the array are selectively turned on by external control, so that the array forms dynamic solid-state plasma stripes and has an antenna It has the function of transmitting and receiving specific electromagnetic waves, and the antenna can change the shape and distribution of solid-state plasma stripes through the selective conduction of solid-state plasma diodes in the array, so as to realize the reconstruction of the antenna. It is used in national defense communication and radar technology has important application prospects.
通过以下参考附图的详细说明,本发明的其它方面和特征变得明显。但是应当知道,该附图仅仅为解释的目的设计,而不是作为本发明的范围的限定,这是因为其应当参考附加的权利要求。还应当知道,除非另外指出,不必要依比例绘制附图,它们仅仅力图概念地说明此处描述的结构和流程。Other aspects and features of the present invention will become apparent from the following detailed description with reference to the accompanying drawings. It should be understood, however, that the drawings are designed for purposes of illustration only and not as a limitation of the scope of the invention since reference should be made to the appended claims. It should also be understood that, unless otherwise indicated, the drawings are not necessarily drawn to scale and are merely intended to conceptually illustrate the structures and processes described herein.
附图说明Description of drawings
下面将结合附图,对本发明的具体实施方式进行详细的说明。The specific implementation manners of the present invention will be described in detail below in conjunction with the accompanying drawings.
图1为本发明实施例的一种全息天线的结构示意图;FIG. 1 is a schematic structural diagram of a holographic antenna according to an embodiment of the present invention;
图2为本发明实施例的一种全息天线模块的结构示意图;FIG. 2 is a schematic structural diagram of a holographic antenna module according to an embodiment of the present invention;
图3为本发明实施例的一种制备全息天线的台状有源区固态等离子二极管的制作方法流程图;3 is a flow chart of a method for manufacturing a solid-state plasma diode in a table-shaped active region of a holographic antenna according to an embodiment of the present invention;
图4a-图4s为本发明实施例的另一种用于制备全息天线的台状有源区固态等离子二极管制造方法示意图;4a-4s are schematic diagrams of another method for manufacturing a solid-state plasma diode in a table-shaped active region for preparing a holographic antenna according to an embodiment of the present invention;
图5为本发明实施例的另一种制备全息天线的台状有源区固态等离子二极管的器件结构示意图。FIG. 5 is a schematic diagram of another device structure of a solid-state plasma diode in a mesa-shaped active region for preparing a holographic antenna according to an embodiment of the present invention.
具体实施方式detailed description
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
本发明提出了一种适用于形成全息天线的制台状有源区固态等离子二极管及其制造方法。该固态等离子二极管可以是基于绝缘衬底上的硅(Silicon-On-Insulator,简称SOI)形成横向pin二极管,其在加直流偏压时,直流电流会在其表面形成自由载流子(电子和空穴)组成的固态等离子体,该等离子体具有类金属特性,即对电磁波具有反射作用,其反射特性与表面等离子体的微波传输特性、浓度及分布密切相关。The invention proposes a platform-shaped active region solid-state plasma diode suitable for forming a holographic antenna and a manufacturing method thereof. The solid-state plasma diode can be a lateral pin diode based on Silicon-On-Insulator (SOI) on an insulating substrate. When a DC bias is applied, the DC current will form free carriers (electrons and The solid-state plasma composed of holes) has metal-like characteristics, that is, it has a reflection effect on electromagnetic waves, and its reflection characteristics are closely related to the microwave transmission characteristics, concentration and distribution of surface plasmons.
以下,将对本发明制造的制备全息天线的台状有源区固态等离子二极管的工艺流程作进一步详细描述。在图中,为了方便说明,放大或缩小了层和区域的厚度,所示大小并不代表实际尺寸。Hereinafter, the process flow for preparing the solid-state plasma diode in the mesa-shaped active region of the holographic antenna manufactured by the present invention will be further described in detail. In the drawings, the thicknesses of layers and regions are enlarged or reduced for convenience of description, and the shown sizes do not represent actual sizes.
实施例一Embodiment one
请参见图3,图3为本发明实施例的一种制备全息天线的台状有源区固态等离子二极管的制作方法流程图,该方法适用于制备全息天线,且该固态等离子二极管主要用于制作固态等离子天线。该方法包括如下步骤:Please refer to Fig. 3. Fig. 3 is a flowchart of a method for manufacturing a solid-state plasma diode in a table-shaped active region of a holographic antenna according to an embodiment of the present invention. This method is suitable for preparing a holographic antenna, and the solid-state plasma diode is mainly used for making Solid state plasma antenna. The method comprises the steps of:
(a)选取SOI衬底;(a) select SOI substrate;
其中,对于步骤(a),采用SOI衬底的原因在于,对于固态等离子天线由于其需要良好的微波特性,而固态等离子二极管为了满足这个需求,需要具备良好的载流子即固态等离子体的限定能力,而二氧化硅(SiO2)能够将载流子即固态等离子体限定在顶层硅中,所以优选采用SOI作为固态等离子二极管的衬底。Among them, for step (a), the reason for using SOI substrate is that solid-state plasma antennas require good microwave characteristics, and solid-state plasma diodes need to have good carriers, that is, solid-state plasmas, in order to meet this requirement. ability, and silicon dioxide (SiO 2 ) can confine carriers, that is, solid-state plasma, in the top layer of silicon, so SOI is preferably used as the substrate of solid-state plasma diodes.
(b)利用CVD工艺,在所述SOI衬底表面形成第一保护层;(b) using a CVD process to form a first protective layer on the surface of the SOI substrate;
(c)采用第一掩膜版,利用光刻工艺在所述第一保护层上形成有源区图形;(c) using a first mask plate to form an active region pattern on the first protective layer by using a photolithography process;
(d)利用干法刻蚀工艺,对所述有源区图形的指定位置四周刻蚀所述第一保护层及所述SOI衬底的顶层Si层从而形成有所述台状有源区;(d) using a dry etching process to etch the first protective layer and the top Si layer of the SOI substrate around the designated position of the active region pattern to form the mesa-shaped active region;
(e)对所述台状有源区四周利用原位掺杂工艺分别淀积P型Si材料和N型Si材料形成P区和N区;(e) Depositing a P-type Si material and an N-type Si material around the mesa-shaped active region by an in-situ doping process to form a P region and an N region;
(f)在所述台状有源区四周淀积多晶Si材料;(f) depositing polycrystalline Si material around the terrace-shaped active region;
(g)在所述多晶Si材料表面制作引线并光刻PAD以形成所述固态等离子二极管。(g) making leads on the surface of the polycrystalline Si material and photoetching the PAD to form the solid-state plasma diode.
其中,步骤(d)之后,还包括:Wherein, after step (d), also include:
(x1)利用氧化工艺,对所述台状有源区的侧壁进行氧化以在所述台状有源区侧壁形成氧化层;(x1) using an oxidation process to oxidize the sidewalls of the mesa-shaped active region to form an oxide layer on the sidewalls of the mesa-shaped active region;
(x2)利用湿法刻蚀工艺刻蚀所述氧化层以完成对所述台状有源区侧壁的平整化处理。(x2) Etching the oxide layer by using a wet etching process to planarize the sidewall of the mesa-shaped active region.
这样做的好处在于:可以防止沟槽侧壁的突起形成电场集中区域,造成Pi和Ni结击穿。The advantage of doing this is that it can prevent the protrusion of the trench side wall from forming an electric field concentration area, causing breakdown of the Pi and Ni junctions.
再者,步骤(e)包括:Furthermore, step (e) includes:
(e1)在整个衬底表面淀积第二保护层;(e1) depositing a second protective layer on the entire substrate surface;
(e2)采用第二掩膜板,利用光刻工艺在所述第二保护层表面形成P区图形;(e2) using a second mask plate to form a P-region pattern on the surface of the second protective layer by photolithography;
(e3)利用湿法刻蚀工艺去除P区图形上的所述第二保护层;(e3) using a wet etching process to remove the second protective layer on the pattern in the P region;
(e4)利用原位掺杂工艺,在所述台状有源区侧壁淀积P型Si材料形成所述P区;(e4) Depositing a P-type Si material on the sidewall of the mesa-shaped active region by using an in-situ doping process to form the P region;
(e5)在整个衬底表面淀积第三保护层;(e5) depositing a third protective layer on the entire substrate surface;
(e6)采用第三掩膜板,利用光刻工艺在所述第三保护层表面形成N区图形;(e6) using a third mask to form an N-region pattern on the surface of the third protective layer by photolithography;
(e7)利用湿法刻蚀工艺去除N区图形上的所述第三保护层;(e7) using a wet etching process to remove the third protective layer on the N-region pattern;
(e8)利用原位掺杂工艺,在所述台状有源区侧壁淀积N型Si材料形成所述N区。(e8) Depositing N-type Si material on the sidewall of the mesa-shaped active region by using an in-situ doping process to form the N region.
需要说明的是:常规制作固态等离子二极管的P区与N区的制备工艺中,均采用注入工艺形成,此方法要求注入剂量和能量较大,对设备要求高,且与现有工艺不兼容;而采用扩散工艺,虽结深较深,但同时P区与N区的面积较大,集成度低,掺杂浓度不均匀,影响固态等离子二极管的电学性能,导致固态等离子体浓度和分布的可控性差。It should be noted that in the conventional manufacturing process of the P-region and N-region of solid-state plasma diodes, the implantation process is used to form. This method requires a large implantation dose and energy, requires high equipment, and is incompatible with the existing process; However, although the diffusion process is used, although the junction depth is deeper, the area of the P region and the N region is relatively large, the degree of integration is low, and the doping concentration is uneven, which affects the electrical performance of the solid-state plasma diode, resulting in the uncertainty of the concentration and distribution of the solid-state plasma. Poor control.
采用原位掺杂能够避免离子注入等方式带来的不利影响,且能够通过控制气体流量来控制材料的掺杂浓度,更有利于获得陡峭的掺杂界面,从而获得更好的器件性能。The use of in-situ doping can avoid the adverse effects of ion implantation and other methods, and can control the doping concentration of the material by controlling the gas flow rate, which is more conducive to obtaining a steep doping interface, thereby obtaining better device performance.
其中,步骤(e4)包括:Wherein, step (e4) comprises:
(e41)利用原位掺杂工艺,在所述台状有源区侧壁淀积P型Si材料;(e41) Depositing a P-type Si material on the sidewall of the mesa-shaped active region by using an in-situ doping process;
(e42)采用第四掩膜版,利用干法刻蚀工艺刻蚀所述P型Si材料以在所述台状有源区的侧壁形成所述P区;(e42) Etching the P-type Si material by using a fourth mask using a dry etching process to form the P region on the sidewall of the mesa-shaped active region;
(e43)利用选择性刻蚀工艺去除整个衬底表面的所述第二保护层。(e43) Using a selective etching process to remove the second protective layer on the entire surface of the substrate.
在本发明的一个实施例中,步骤(e8)包括:In one embodiment of the invention, step (e8) includes:
(e81)利用原位掺杂工艺,在所述台状有源区侧壁淀积N型Si材料;(e81) Depositing N-type Si material on the sidewall of the mesa-shaped active region by using an in-situ doping process;
(e82)采用第五掩膜版,利用干法刻蚀工艺刻蚀所述N型Si材料以在所述台状有源区的另一侧壁形成所述N区;(e82) Etching the N-type Si material by using a fifth mask using a dry etching process to form the N region on the other sidewall of the mesa-shaped active region;
(e83)利用选择性刻蚀工艺去除整个衬底表面的所述第三保护层。(e83) Using a selective etching process to remove the third protection layer on the entire surface of the substrate.
再者,步骤(f)包括:Furthermore, step (f) includes:
(f1)利用CVD工艺,在所述台状有源区四周淀积所述多晶Si材料;(f1) depositing the polycrystalline Si material around the mesa-shaped active region by using a CVD process;
(f2)利用CVD工艺,在整个衬底表面淀积第四保护层;(f2) Depositing a fourth protective layer on the entire substrate surface by using a CVD process;
(f3)利用退火工艺激活所述P区和所述N区中的杂质。(f3) activating impurities in the P region and the N region by an annealing process.
再者,步骤(g)包括:Furthermore, step (g) includes:
(g1)采用第六掩膜版,利用光刻工艺在所述第四保护层表面形成引线孔图形;(g1) using a sixth mask plate to form a lead hole pattern on the surface of the fourth protective layer by using a photolithography process;
(g2)利用各向异性刻蚀工艺刻蚀所述第四保护层漏出部分所述多晶Si材料以形成所述引线孔;(g2) using an anisotropic etching process to etch the polycrystalline Si material in the leaked part of the fourth protective layer to form the lead hole;
(g3)对所述引线孔溅射金属材料以形成金属硅化物;(g3) sputtering a metal material on the lead hole to form a metal silicide;
(g4)钝化处理并光刻PAD以形成所述固态等离子二极管。(g4) Passivate and photolithographically PAD to form the solid state plasma diode.
本发明实施例利用原位掺杂工艺能够制备并提供适用于形成全息天线的高性能台状有源区的固态等离子二极管。The embodiment of the present invention can prepare and provide a solid-state plasma diode suitable for forming a high-performance mesa-shaped active region of a holographic antenna by using an in-situ doping process.
实施例二Embodiment two
请参见图4a-图4s,图4a-图4s为本发明实施例的另一种用于制备全息天线的台状有源区固态等离子二极管制造方法示意图,在上述实施例一的基础上,以制备固态等离子区域长度为100微米的台状有源区固态等离子二极管为例进行详细说明,具体步骤如下:Please refer to Fig. 4a-Fig. 4s. Fig. 4a-Fig. 4s are schematic diagrams of another method for manufacturing a solid-state plasma diode in a table-shaped active region for preparing a holographic antenna according to an embodiment of the present invention. On the basis of the first embodiment above, the The preparation of a mesa-shaped active region solid-state plasma diode with a solid-state plasma region length of 100 μm is described in detail as an example, and the specific steps are as follows:
S10、选取SOI衬底。S10, selecting an SOI substrate.
请参见图4a,该SOI衬底101的晶向为(100),另外,该SOI衬底101的掺杂类型为p型,掺杂浓度为1014cm-3的,顶层Si的厚度例如为20μm。Referring to FIG. 4a, the crystal orientation of the SOI substrate 101 is (100). In addition, the doping type of the SOI substrate 101 is p-type, and the doping concentration is 10 14 cm −3 . The thickness of the top layer Si is, for example, 20 μm.
S20、在所述SOI衬底表面淀积一层氮化硅。S20, depositing a layer of silicon nitride on the surface of the SOI substrate.
请参见图4b,采用化学气相沉积(Chemical vapor deposition,简称CVD)的方法,在SOI衬底101上淀积氮化硅层201。Referring to FIG. 4 b , a silicon nitride layer 201 is deposited on an SOI substrate 101 by a chemical vapor deposition (Chemical vapor deposition, CVD for short) method.
S30、刻蚀SOI衬底形成有源区沟槽。S30, etching the SOI substrate to form trenches in the active region.
请参见图4c-1,利用光刻工艺在所述氮化硅层上形成台面有源区图形,利用干法刻蚀工艺在所述有源区图形的指定位置处刻蚀所述保护层及顶层硅从而形成台面有源区301,俯视图请参见图4c-2。Please refer to FIG. 4c-1, a mesa active region pattern is formed on the silicon nitride layer by photolithography, and the protective layer and The top layer of silicon forms a mesa active region 301 , please refer to FIG. 4c-2 for a top view.
S40、台面的有源区四周平坦化处理。S40 , planarizing the periphery of the active area of the mesa.
请参见图4d-1,氧化所述台面有源区的四周侧壁以使所述台面有源区的四周侧壁形成氧化层401,俯视图请参见图4d-2;Referring to FIG. 4d-1, the sidewalls around the active region of the mesa are oxidized to form an oxide layer 401 on the sidewalls around the active region of the mesa. See FIG. 4d-2 for a top view;
请参见图4e-1,利用湿法刻蚀工艺刻蚀所述台面有源区的四周侧壁氧化层以完成所述台面有源区的四周侧壁平坦化,俯视图请参见4e-2。Referring to FIG. 4e-1, the sidewall oxide layer around the mesa active region is etched by a wet etching process to complete the planarization of the sidewall around the mesa active region. See 4e-2 for the top view.
S50、在所述衬底表面淀积一层SiO2。S50. Deposit a layer of SiO 2 on the surface of the substrate.
请参见图4f,利用CVD方法在所述衬底上淀积一层二氧化硅601。Referring to FIG. 4f, a layer of silicon dioxide 601 is deposited on the substrate by CVD.
S60、光刻所述SiO2层。S60, photoetching the SiO 2 layer.
请参见图4g,利用光刻工艺在所述SiO2层上形成P区图形,利用湿法刻蚀工艺去除P区图形上的SiO2层。Referring to FIG. 4g, a P region pattern is formed on the SiO 2 layer by a photolithography process, and the SiO 2 layer on the P region pattern is removed by a wet etching process.
S70、形成P区。S70, forming a P region.
请参见图4h,具体做法可以是:利用原位掺杂的方法,在所述SOI衬底表面的P区图形上淀积p型硅形成P区801,通过控制气体流量来控制P区的掺杂浓度。Please refer to Fig. 4h, the specific method may be: use the in-situ doping method to deposit p-type silicon on the P-region pattern on the surface of the SOI substrate to form the P-region 801, and control the doping of the P-region by controlling the gas flow rate. impurity concentration.
S80、平整化衬底表面。S80, planarizing the surface of the substrate.
请参见图4i,具体做法可以是:先利用干法刻蚀工艺使P区表面平整化,再利用湿法刻蚀工艺去除衬底表面的SiO2层。Please refer to FIG. 4i , the specific method may be: first use a dry etching process to flatten the surface of the P region, and then use a wet etching process to remove the SiO 2 layer on the substrate surface.
S90、在所述衬底表面淀积一层SiO2。S90, depositing a layer of SiO 2 on the surface of the substrate.
请参见图4j,具体做法可以是:利用CVD方法在所述衬底表面淀积二氧化硅层1001。Referring to FIG. 4j , the specific method may be: deposit a silicon dioxide layer 1001 on the surface of the substrate by CVD.
S100、光刻所述SiO2层。S100, photoetching the SiO 2 layer.
请参见图4k,利用光刻工艺在所述SiO2层上形成N区图形;利用湿法刻蚀工艺去除N区上的SiO2层。Referring to FIG. 4k, a photolithography process is used to form an N region pattern on the SiO 2 layer; a wet etching process is used to remove the SiO 2 layer on the N region.
S110、形成N区。S110, forming an N region.
请参见图4l,利用原位掺杂的方法,在所述SOI衬底表面的N区图形上淀积n型硅形成N区1201,通过控制气体流量来控制N区的掺杂浓度。Referring to Fig. 4l, using in-situ doping method, n-type silicon is deposited on the N-region pattern on the surface of the SOI substrate to form an N-region 1201, and the doping concentration of the N-region is controlled by controlling the gas flow.
S120、平整化衬底表面。S120, planarizing the surface of the substrate.
请参见图4m,先利用干法刻蚀工艺使N区表面平整化,再利用湿法刻蚀工艺去除衬底表面的SiO2层。Please refer to Fig. 4m, the surface of N region is flattened by dry etching process, and then the SiO 2 layer on the substrate surface is removed by wet etching process.
S130、淀积多晶硅层。S130, depositing a polysilicon layer.
请参见图4n,可以利用CVD的方法,在沟槽里溅射金属层1401。Referring to FIG. 4n, the metal layer 1401 can be sputtered in the trench by CVD.
S140、在表面形成二氧化硅(SiO2)层。S140, forming a silicon dioxide (SiO 2 ) layer on the surface.
请参照图4o,可以利用CVD的方法,在表面淀积二氧化硅(SiO2)层1501,厚度为500nm。Referring to FIG. 4o, a silicon dioxide (SiO 2 ) layer 1501 can be deposited on the surface by CVD with a thickness of 500nm.
S150、平整表面。S150, flat surface.
请参照图4p,可以采用CMP方法去除表面二氧化硅与氮化硅(SiN)层,使表面平整。Referring to FIG. 4p, the surface silicon dioxide and silicon nitride (SiN) layers can be removed by CMP to make the surface smooth.
S160、杂质激活。S160, impurity activation.
在950-1150℃,退火0.5~2分钟,使离子注入的杂质激活、并且推进有源区中杂质。Anneal at 950-1150° C. for 0.5-2 minutes to activate the ion-implanted impurities and advance the impurities in the active region.
S170、光刻引线孔。S170, photoetching lead holes.
请参照图4q,在二氧化硅(SiO2)层上光刻引线孔1701。Referring to FIG. 4q, a wiring hole 1701 is photolithographically etched on the silicon dioxide (SiO 2 ) layer.
S180、形成引线。S180, forming leads.
请参照图4r,可以在衬底表面溅射金属,合金化形成金属硅化物,并刻蚀掉表面的金属;再在衬底表面溅射金属1801,光刻引线。Referring to FIG. 4r , metal can be sputtered on the surface of the substrate, alloyed to form a metal silicide, and the metal on the surface can be etched away; then metal 1801 can be sputtered on the surface of the substrate to lithographically lead wires.
S190、钝化处理,光刻PAD。S190, passivation treatment, photolithography PAD.
请参照图4s,可以通过淀积氮化硅(SiN)形成钝化层1901,光刻PAD。最终形成固态等离子二极管,作为制备固态等离子天线材料。Referring to FIG. 4s, the passivation layer 1901 can be formed by depositing silicon nitride (SiN), and the PAD is photoetched. Finally, a solid-state plasma diode is formed as a material for preparing a solid-state plasma antenna.
实施例三Embodiment three
请参照图5,图5为本发明实施例的另一种制备全息天线的台状有源区固态等离子二极管的器件结构示意图。该固态等离子二极管采用上述如图3所示的制造方法制成。具体地,该固态等离子二极管在SOI衬底301上制备形成,且pin二极管的P区303、N区304以及横向位于该P区303和该N区304之间的I区均位于该SOI衬底的顶层硅302内。Please refer to FIG. 5 . FIG. 5 is a schematic diagram of another device structure of a solid-state plasma diode in a mesa-shaped active region for preparing a holographic antenna according to an embodiment of the present invention. The solid-state plasma diode is manufactured by the above-mentioned manufacturing method as shown in FIG. 3 . Specifically, the solid-state plasma diode is formed on an SOI substrate 301, and the P region 303, the N region 304 of the pin diode, and the I region laterally located between the P region 303 and the N region 304 are all located on the SOI substrate within the top layer of silicon 302 .
综上所述,本文中应用了具体个例对本发明固态等离子二极管及其制造方法的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制,本发明的保护范围应以所附的权利要求为准。In summary, the principle and implementation of the solid-state plasma diode and its manufacturing method of the present invention have been described by using specific examples in this paper. The description of the above embodiments is only used to help understand the method of the present invention and its core idea; at the same time For those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as limiting the present invention. The scope of protection should be determined by the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611184779.2A CN107046163A (en) | 2016-12-20 | 2016-12-20 | Mesa-shaped active area solid plasma diode fabricating method for preparing holographic antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611184779.2A CN107046163A (en) | 2016-12-20 | 2016-12-20 | Mesa-shaped active area solid plasma diode fabricating method for preparing holographic antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107046163A true CN107046163A (en) | 2017-08-15 |
Family
ID=59543166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611184779.2A Pending CN107046163A (en) | 2016-12-20 | 2016-12-20 | Mesa-shaped active area solid plasma diode fabricating method for preparing holographic antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107046163A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112993052A (en) * | 2021-02-07 | 2021-06-18 | 中国人民武装警察部队工程大学 | Heterogeneous GeSn-based solid-state plasma PiN diode with mesa structure and preparation method |
CN112993050A (en) * | 2021-02-07 | 2021-06-18 | 中国人民武装警察部队工程大学 | Mesa Pin diode, preparation method and silicon-based reconfigurable stealth antenna |
CN113299765A (en) * | 2021-02-07 | 2021-08-24 | 中国人民武装警察部队工程大学 | Preparation method of heterogeneous GeSn-based solid-state plasma PiN diode array with mesa structure and device thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101714591A (en) * | 2009-11-10 | 2010-05-26 | 大连理工大学 | Method for manufacturing silicon photoelectric diode |
CN102290350A (en) * | 2010-06-18 | 2011-12-21 | 飞兆半导体公司 | Trench MOS barrier Schottky rectifier with planar surface using CMP technique |
CN102842595A (en) * | 2011-06-20 | 2012-12-26 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
CN105655284A (en) * | 2014-11-13 | 2016-06-08 | 中芯国际集成电路制造(上海)有限公司 | Formation method of trench isolation structure |
-
2016
- 2016-12-20 CN CN201611184779.2A patent/CN107046163A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101714591A (en) * | 2009-11-10 | 2010-05-26 | 大连理工大学 | Method for manufacturing silicon photoelectric diode |
CN102290350A (en) * | 2010-06-18 | 2011-12-21 | 飞兆半导体公司 | Trench MOS barrier Schottky rectifier with planar surface using CMP technique |
CN102842595A (en) * | 2011-06-20 | 2012-12-26 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
CN105655284A (en) * | 2014-11-13 | 2016-06-08 | 中芯国际集成电路制造(上海)有限公司 | Formation method of trench isolation structure |
Non-Patent Citations (2)
Title |
---|
ALY E.FATHY等: "Silicon-Based Reconfigurable Antennas—Concepts, Analysis, Implementation, and Feasibility", 《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》 * |
莫瑞明: "全息天线的理论和实验研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112993052A (en) * | 2021-02-07 | 2021-06-18 | 中国人民武装警察部队工程大学 | Heterogeneous GeSn-based solid-state plasma PiN diode with mesa structure and preparation method |
CN112993050A (en) * | 2021-02-07 | 2021-06-18 | 中国人民武装警察部队工程大学 | Mesa Pin diode, preparation method and silicon-based reconfigurable stealth antenna |
CN113299765A (en) * | 2021-02-07 | 2021-08-24 | 中国人民武装警察部队工程大学 | Preparation method of heterogeneous GeSn-based solid-state plasma PiN diode array with mesa structure and device thereof |
CN112993052B (en) * | 2021-02-07 | 2023-12-01 | 中国人民武装警察部队工程大学 | Heterogeneous GeSn-based solid-state plasma Pin diode with mesa structure and preparation method thereof |
CN113299765B (en) * | 2021-02-07 | 2023-12-01 | 中国人民武装警察部队工程大学 | Preparation method of heterogeneous GeSn-based solid-state plasma Pin diode array with mesa structure and device thereof |
CN112993050B (en) * | 2021-02-07 | 2023-12-05 | 中国人民武装警察部队工程大学 | A mesa PiN diode, preparation method and reconfigurable stealth antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106449771B (en) | With SiO2Solid state plasma PiN diode of protective effect and preparation method thereof | |
CN107046163A (en) | Mesa-shaped active area solid plasma diode fabricating method for preparing holographic antenna | |
CN106785335A (en) | The preparation technology of the Ge base plasma pin diodes of frequency reconfigurable dipole antenna | |
CN106783600B (en) | Solid-state plasma PiN diode and preparation method thereof | |
CN106876269B (en) | Preparation method of SPiN diode with SiO2 protective layer in dipole antenna | |
CN107068560B (en) | Preparation method based on mesa-shaped active area PIN diode string in restructural loop aerial | |
CN112993050B (en) | A mesa PiN diode, preparation method and reconfigurable stealth antenna | |
CN106653867B (en) | Solid-state plasma PiN diode based on mesa-shaped active region and preparation method thereof | |
CN106602215A (en) | Method for preparing SiGe-based plasma pin diode for reconstructing holographic antennas | |
CN106847901A (en) | The manufacture method of AlAs Ge AlAs structures base plasma pin diodes in multilayer holographic antenna | |
CN106953155A (en) | A kind of preparation method of solid-state plasmonic reconfigurable dipole antenna | |
CN106601616B (en) | Fabrication method of heterogeneous Ge-based pin diode strings in reconfigurable multilayer holographic antenna | |
CN112993052B (en) | Heterogeneous GeSn-based solid-state plasma Pin diode with mesa structure and preparation method thereof | |
CN112993047B (en) | Heterogeneous GeSn-based deep groove protection Pin diode and preparation method thereof | |
CN106654520A (en) | Manufacturing method of solid-state plasma diode for preparing holographic antenna | |
CN106847902B (en) | Preparation method of pin diode string with mesa-shaped active region for sleeve antenna | |
CN112993051B (en) | Preparation method of heterogeneous deep-groove Pin array, device and silicon-based reconfigurable stealth antenna | |
CN112993046B (en) | Deep groove protection Pin diode of SiGe-GeSn-SiGe structure and preparation method thereof | |
CN112993044B (en) | Preparation method of CdTe-GeSn-CdTe heterogeneous transverse PiN diode and device thereof | |
CN106816682A (en) | The preparation method of the solid plasma pin diodes in restructural holographic antenna | |
CN107026310A (en) | There is SiO for sleeve antenna2The preparation method of the solid plasma pin diode strings of protective layer | |
WO2018113454A1 (en) | Preparation method for heterogeneous sige-based plasma pin diode string used for sleeve antenna | |
US10665689B2 (en) | Preparation method for platform-shaped active region based P-I-N diode string in reconfigurable loop antenna | |
CN106785334A (en) | With SiO2Pin diodes of protective effect and preparation method thereof | |
CN106935496B (en) | PiN diode based on transverse multi-channel structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170815 |