CN106990547A - The super surface of dolphin shape cellular circular array - Google Patents
The super surface of dolphin shape cellular circular array Download PDFInfo
- Publication number
- CN106990547A CN106990547A CN201710360734.4A CN201710360734A CN106990547A CN 106990547 A CN106990547 A CN 106990547A CN 201710360734 A CN201710360734 A CN 201710360734A CN 106990547 A CN106990547 A CN 106990547A
- Authority
- CN
- China
- Prior art keywords
- dolphin
- circular array
- shaped
- cellular
- field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/286—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Abstract
一种产生局域复合偏振光场的新型的海豚形元胞圆阵列超表面。该超表面为圆阵列形微纳金属结构,由N(N≥3且N为正整数)个海豚形金属元胞结构等角度旋转排列构成圆形阵列。海豚形金属元胞将入射光能量束缚到结构表面,并最终在每个海豚形元胞尖端产生局域聚焦强场,改变结构因子m(m>1)可调控聚焦场的增强因子;由于海豚形金属元胞自身结构以及等角度排列而成的圆阵列结构,同时可以将入射的线偏振光转化为螺旋相位光束;透射光场z方向分量Ez的强度占总光场E强度的比例随传播距离增加而减小,但随传播距离增加Ez相位螺旋效果越好。本发明可用作光学镊子、光学角动量调控器,对宽带光通信、光学成像、纳米操控等领域有重要的应用价值。
A novel dolphin-shaped cell circular array metasurface for generating local composite polarized light fields. The metasurface is a circular array-shaped micro-nano metal structure, which is composed of N (N≥3 and N is a positive integer) dolphin-shaped metal cell structures arranged in equiangular rotation to form a circular array. The dolphin-shaped metal cell binds the incident light energy to the surface of the structure, and finally generates a local focused strong field at the tip of each dolphin-shaped cell. Changing the structure factor m (m>1) can adjust the enhancement factor of the focus field; due to the dolphin At the same time, the incident linearly polarized light can be converted into a helical phase beam; the intensity of the z-direction component E z of the transmitted light field accounts for the ratio of the total light field E intensity with the It decreases with the increase of propagation distance, but the effect of E z phase spiral becomes better with the increase of propagation distance. The invention can be used as an optical tweezers and an optical angular momentum controller, and has important application value in the fields of broadband optical communication, optical imaging, nanometer manipulation and the like.
Description
技术领域technical field
本发明属于光学和光电技术领域,涉及光场偏振调制、纳米操纵、表面等离子体激发,特别是一种产生局域复合偏振光场的新型的海豚形元胞圆阵列超表面。The invention belongs to the field of optics and optoelectronics technology, and relates to light field polarization modulation, nanometer manipulation, and surface plasmon excitation, in particular to a novel dolphin-shaped cellular circular array metasurface for generating local compound polarized light fields.
背景技术Background technique
当光通过具有亚波长特征的结构材料时,其传播常数可以取决于其偏振状态,即使其所有成分都是光学各向同性的。目前已有许多种类的亚波长尺度光学器件被设计出来,其可以调控光场的偏振态,即自旋角动量。同时,与光场空间自由度相关的轨道角动量也可以被调控。轨道角动量由于其无限尺寸而被确定为提高光子的信息承载能力的有用自由度,并且由于相位和强度的奇点,已经发现光学操纵和度量具有广泛的应用。When light passes through a structured material with subwavelength features, its propagation constant can depend on its polarization state, even if all its components are optically isotropic. At present, many kinds of subwavelength optical devices have been designed, which can control the polarization state of the light field, that is, the spin angular momentum. At the same time, the orbital angular momentum related to the space degree of freedom of the light field can also be adjusted. Orbital angular momentum has been identified as a useful degree of freedom to enhance the information-carrying capacity of photons due to its infinite size, and due to singularities of phase and intensity, optical manipulation and metrology have found wide-ranging applications.
近几年利用超表面调控轨道角动量已成为涡旋光束领域的研究热点之一。超表面是一维或二维亚波长周期的人工等离子体阵列,近年来被关注度持续上升。由于超表面的厚度与操作波长相比极小,超表面可以被视为一个使入射光振幅和相位发生突然变化的不连续界面,因此超表面通常被用于光场调控,诸如强度调控、相位调控、偏振调控等。如今被使用最多的方法是利用纳米尺度长方体金属纳米棒通过排列成不同阵列形式形成超表面,基于Pancharatnam-Berry相位变化原理,将入射的左旋/右旋圆偏振光调控为透射的矢量涡旋光束,已经提出的单等离子体超表面、硅纳米棒超表面等,都是基于上述原理将圆偏振光调控为涡旋光束,且此类调控的物理模型也已被建立。但是现有研究成果中,对于如何将线偏振光调控为涡旋光束的研究尚且不足。In recent years, the use of metasurfaces to control orbital angular momentum has become one of the research hotspots in the field of vortex beams. Metasurfaces are artificial plasmonic arrays with one-dimensional or two-dimensional subwavelength periods, and have received increasing attention in recent years. Since the thickness of the metasurface is extremely small compared with the operating wavelength, the metasurface can be regarded as a discontinuous interface that changes the amplitude and phase of the incident light suddenly, so the metasurface is usually used for light field modulation, such as intensity modulation, phase regulation, polarization regulation, etc. The most widely used method today is to use nanoscale rectangular parallelepiped metal nanorods to form metasurfaces by arranging them in different arrays. Based on the Pancharatnam-Berry phase change principle, the incident left-handed/right-handed circularly polarized light is adjusted to a transmitted vector vortex beam. , the proposed single plasmon metasurface, silicon nanorod metasurface, etc. are all based on the above principles to control circularly polarized light into vortex beams, and the physical model of such control has also been established. However, in the existing research results, there is still insufficient research on how to control linearly polarized light into a vortex beam.
综上,本发明创新性地从元胞结构以及阵列形式的设计出发,提出了一种产生局域复合偏振光场的新型的海豚形元胞圆阵列超表面。该超表面为圆阵列形微纳金属结构,由多个海豚形金属元胞结构等角度旋转排列构成圆形阵列。圆阵列上排列的海豚形元胞数量为N,海豚形元胞几何中心与圆阵列几何中心的连线将圆分成N等份,海豚形元胞结构的中轴线永远指向圆阵列圆心。海豚形金属元胞将入射光能量束缚到结构表面,并最终在每个海豚形元胞尖端产生局域强场,提出了结构因子m(m>1),通过改变结构因子m值得大小,可实现调控聚焦场的增强因子的功能。在此创新的基础上,由于海豚形金属元胞自身结构以及等角度排列而成的圆阵列结构,本发明创新性地将入射的线偏振光转化为螺旋相位光束。透射光场z方向分量Ez的强度占总光场E强度的比例随传播距离增加而减小,但随传播距离增加Ez相位螺旋效果越好。To sum up, the present invention innovatively starts from the design of the cell structure and array form, and proposes a novel dolphin-shaped cell circular array metasurface that generates a local compound polarized light field. The metasurface is a circular array-shaped micro-nano metal structure, and a circular array is formed by a plurality of dolphin-shaped metal cell structures arranged in equiangular rotation. The number of dolphin-shaped cells arranged on the circular array is N, and the connection line between the geometric center of the dolphin-shaped cell and the geometric center of the circular array divides the circle into N equal parts, and the central axis of the dolphin-shaped cellular structure always points to the center of the circular array. The dolphin-shaped metal cell binds the incident light energy to the surface of the structure, and finally generates a local strong field at the tip of each dolphin-shaped cell. A structure factor m (m>1) is proposed. By changing the value of the structure factor m, the Realize the function of regulating the enhancement factor of the focus field. On the basis of this innovation, due to the structure of the dolphin-shaped metal cells themselves and the circular array structure arranged at equal angles, the invention innovatively converts the incident linearly polarized light into a helical phase beam. The ratio of the intensity of the z-direction component E z of the transmitted light field to the total light field E intensity decreases with the increase of the propagation distance, but the better the phase spiral effect of E z is with the increase of the propagation distance.
发明内容Contents of the invention
本发明提供了一种产生局域复合偏振光场的新型的海豚形元胞圆阵列超表面。该超表面为圆阵列形微纳米金属结构,由多个海豚形金属元胞结构等角度旋转排列构成圆形阵列。海豚形元胞结构的中轴线永远指向圆阵列圆心。海豚形金属元胞几何结构由两个半新月形结构以尖端相反的状态截面相接构成,其中半新月形结构由两个半圆柱体截取而得。圆阵列上排列的海豚形元胞数量为N(N≥3且N为正整数),海豚形元胞几何中心与圆阵列几何中心的连线将圆分成N等份,海豚形元胞结构的中轴线永远指向圆阵列圆心,圆阵列半径(即圆阵列中心到海豚形结构几何中心的距离)为R,相邻两个海豚形元胞结构的几何中心的夹角α=360°/N,其中截取海豚形元胞结构的半圆柱体1和半圆柱体2的半径分别为R1和R2且满足关系式R2=mR1(其中m>1),m定义为结构因子,两圆柱体截面圆为内切关系,截面圆心距d=(m-1)R1,海豚形元胞结构两尖端的间距d′=2(R1+R2)。The invention provides a novel dolphin-shaped cell circle array metasurface for generating a local compound polarized light field. The metasurface is a circular array-shaped micro-nano metal structure, and a circular array is formed by a plurality of dolphin-shaped metal cell structures arranged in equiangular rotation. The central axis of the dolphin-shaped cell structure always points to the center of the circle array. The geometric structure of the dolphin-shaped metal cell is composed of two semi-crescent structures connected by cross-sections with opposite tips, and the semi-crescent structure is obtained by intercepting two semi-cylindrical bodies. The number of dolphin-shaped cells arranged on the circular array is N (N ≥ 3 and N is a positive integer), the line connecting the geometric center of the dolphin-shaped cell and the geometric center of the circular array divides the circle into N equal parts, and the structure of the dolphin-shaped cell The central axis always points to the center of the circle array, the radius of the circle array (i.e. the distance from the center of the circle array to the geometric center of the dolphin-shaped structure) is R, and the included angle α=360°/N between the geometric centers of two adjacent dolphin-shaped cell structures, Wherein the radii of half cylinder 1 and half cylinder 2 intercepting the dolphin-shaped cellular structure are respectively R 1 and R 2 and satisfy the relational formula R 2 =mR 1 (wherein m>1), m is defined as the structure factor, two cylinders The body cross-section circle is inscribed, the distance between the center of the cross-section d=(m-1)R 1 , and the distance between the two tips of the dolphin-shaped cell structure d'=2(R 1 +R 2 ).
所述的海豚形元胞圆阵列超表面,海豚形金属元胞将入射光能量束缚到结构表面,并最终在每个海豚形元胞尖端产生局域强场,改变结构因子m可调控聚焦场的增强因子;由于海豚形金属元胞自身结构以及等角度排列而成的圆阵列结构,同时可以将入射的线偏振光转化为螺旋相位光束,透射光场z方向分量Ez的强度占总光场E强度的比例随传播距离增加而减小,但随传播距离增加Ez相位螺旋效果越好。In the dolphin-shaped cell circular array metasurface, the dolphin-shaped metal cells bind the incident light energy to the surface of the structure, and finally generate a local strong field at the tip of each dolphin-shaped cell, changing the structure factor m can adjust the focusing field enhancement factor; due to the structure of the dolphin-shaped metal cells and the circular array structure arranged at an equal angle, the incident linearly polarized light can be converted into a helical phase beam, and the intensity of the z-direction component E z of the transmitted light field accounts for the total light The ratio of field E intensity decreases with the increase of propagation distance, but the effect of E z phase spiral becomes better with the increase of propagation distance.
本发明的优点和积极效果:Advantage and positive effect of the present invention:
所述的海豚形元胞圆阵列超表面,海豚形金属元胞将入射光能量束缚到结构表面,并最终在每个海豚形元胞尖端产生局域强场,改变结构因子m(m>1)可调控聚焦场的增强因子;由于海豚形金属元胞自身结构以及等角度排列而成的圆阵列结构,同时可以将入射的线偏振光转化为螺旋相位光束,透射光场z方向分量Ez的强度占总光场E强度的比例随传播距离增加而减小,但随传播距离增加Ez相位螺旋效果越好。同时,超结构表面具有制造简单、方便集成集总组件在结构表面的优点。本发明可用作光学镊子、光学角动量调控器,对宽带光通信、光学成像、纳米操控等领域有重要的应用价值。In the dolphin-shaped cell circle array metasurface, the dolphin-shaped metal cell binds the incident light energy to the surface of the structure, and finally generates a local strong field at the tip of each dolphin-shaped cell, changing the structure factor m (m>1 ) can adjust the enhancement factor of the focusing field; due to the structure of the dolphin-shaped metal cells and the circular array structure arranged at an equal angle, the incident linearly polarized light can be converted into a helical phase beam, and the z-direction component of the transmitted light field E z The ratio of the intensity of to the total light field E intensity decreases with the increase of propagation distance, but the effect of E z phase spiral becomes better with the increase of propagation distance. At the same time, the superstructured surface has the advantages of simple fabrication and convenient integration of lumped components on the structured surface. The invention can be used as an optical tweezers and an optical angular momentum controller, and has important application value in the fields of broadband optical communication, optical imaging, nanometer manipulation and the like.
附图说明Description of drawings
图1是海豚形金属元胞结构排列构成的能在每个海豚形元胞尖端产生局域强场的、能产生透射光场偏振改变的海豚形元胞圆阵列超表面。其中:(a)是海豚形金属元胞结构截面图形几何示意图;(b)是海豚形元胞圆阵列超表面结构截面图形几何示意图(以N=8为例)。Figure 1 is a dolphin-shaped cell circular array metasurface composed of dolphin-shaped metal cell structures that can generate local strong fields at the tip of each dolphin-shaped cell and can produce polarization changes in the transmitted light field. Among them: (a) is a schematic diagram of the cross-sectional geometry of the dolphin-shaped metal cellular structure; (b) is a geometric diagram of the cross-sectional geometry of the metasurface structure of the dolphin-shaped circular array of cells (taking N=8 as an example).
图2是沿z方向传播、偏振方向为x方向的线偏振光入射大圆柱半径R2=300nm固定、结构因子m不同的海豚形金属元胞结构时,海豚形金属元胞结构尖端产生的聚焦光场的强度分布示意图。其中:(a)是光入射到结构因子m=1.5的海豚形金属元胞结构时聚焦光场强度分布示意图(其中右侧图例为增强因子以自然底数求得的对数值);(b)是光入射到结构因子m=2的海豚形金属元胞结构时聚焦光场强度分布示意图(其中右侧图例为增强因子以自然底数求得的对数值);(c)是光入射到结构因子m=3的海豚形金属元胞结构时聚焦光场强度分布示意图(其中右侧图例为增强因子以自然底数求得的对数值)。Fig. 2 shows the focus produced by the tip of the dolphin-shaped metal cell structure when linearly polarized light propagating along the z direction and polarized in the x direction is incident on a dolphin-shaped metal cell structure with a fixed large cylinder radius R 2 =300nm and different structure factors m Schematic diagram of the intensity distribution of the light field. Among them: (a) is a schematic diagram of the intensity distribution of the focused light field when light is incident on a dolphin-shaped metal cell structure with a structure factor of m=1.5 (where the legend on the right is the logarithmic value obtained by the natural base of the enhancement factor); (b) is Schematic diagram of the intensity distribution of the focused light field when light is incident on a dolphin-shaped metal cell structure with a structure factor m=2 (where the legend on the right is the logarithmic value of the enhancement factor obtained from the natural base); (c) is the light incident on the structure factor m Schematic diagram of the intensity distribution of the focused light field when the dolphin-shaped metal cell structure is =3 (wherein the legend on the right is the logarithmic value obtained from the natural base of the enhancement factor).
图3是沿z方向传播、偏振方向为x方向的线偏振光入射海豚形元胞圆阵列超表面时,超表面后方不同距离处的透射场的强度和相位分布示意图(以N=8为例)。其中:(a)是海豚形元胞圆阵列超表面后方D=1000nm处的透射场的强度分布示意图;(b)是海豚形元胞圆阵列超表面后方D=1000nm处的透射场的Ez分量相位分布示意图;(c)是海豚形元胞圆阵列超表面后方D=2000nm处的透射场的强度分布示意图;(d)是海豚形元胞圆阵列超表面后方D=2000nm处的透射场的Ez分量相位分布示意图;(e)是海豚形元胞圆阵列超表面后方D=3000nm处的透射场的强度分布示意图;(f)是海豚形元胞圆阵列超表面后方D=3000nm处的透射场的Ez分量相位分布示意图。Figure 3 is a schematic diagram of the intensity and phase distribution of the transmitted field at different distances behind the metasurface when linearly polarized light propagating along the z direction and polarized in the x direction is incident on the dolphin-shaped cellular circular array metasurface (taking N=8 as an example ). Where: (a) is a schematic diagram of the intensity distribution of the transmitted field at D=1000nm behind the dolphin-shaped circular cell array metasurface; (b) is the Ez of the transmitted field at D=1000nm behind the dolphin-shaped circular cell array metasurface Schematic diagram of component phase distribution; (c) is a schematic diagram of the intensity distribution of the transmitted field at D=2000nm behind the dolphin-shaped cellular array metasurface; (d) is the transmitted field at D=2000nm behind the dolphin-shaped cellular array metasurface The schematic diagram of the phase distribution of the E z component; (e) is a schematic diagram of the intensity distribution of the transmitted field at D=3000nm behind the dolphin-shaped circular cell array metasurface; (f) is the D=3000nm place behind the dolphin-shaped circular cellular array metasurface Schematic diagram of the phase distribution of the Ez component of the transmitted field.
图4是沿z方向传播、偏振方向为x方向的线偏振光入射海豚形元胞圆阵列超表面时,超表面后方不同距离处光场z分量Ez的光场强度|Ez|2占总光场强度|E|2的比例及透射场Ez分量的相位分布(以N=8为例)。其中:(a)是海豚形元胞圆阵列超表面后方D=400nm处的透射场z分量Ez的光场强度|Ez|2占总光场强度|E|2的比例;(b)是海豚形元胞圆阵列超表面后方D=400nm处的透射场的Ez分量相位分布示意图;(c)是海豚形元胞圆阵列超表面后方D=800nm处的透射场z分量Ez的光场强度|Ez|2占总光场强度|E|2的比例;(d)是海豚形元胞圆阵列超表面后方D=800nm处的透射场的Ez分量相位分布示意图;(e)是海豚形元胞圆阵列超表面后方D=2000nm处的透射场z分量Ez的光场强度|Ez|2占总光场强度|E|2的比例;(f)是海豚形元胞圆阵列超表面后方D=2000nm处的透射场的Ez分量相位分布示意图。Fig. 4 shows the light field intensity |E z | The ratio of the total light field intensity |E| 2 and the phase distribution of the E z component of the transmitted field (take N=8 as an example). Among them: (a) is the ratio of the optical field intensity |E z | 2 of the transmitted field z component E z at D = 400nm behind the dolphin-shaped cellular circular array metasurface to the total optical field intensity |E| 2 ; (b) It is a schematic diagram of the E z component phase distribution of the transmission field at D=400nm behind the dolphin-shaped cell circle metasurface; (c) is the transmission field z component E z at D=800nm behind the dolphin-shaped cell circle metasurface The ratio of the light field intensity |E z | 2 to the total light field intensity |E| 2 ; (d) is a schematic diagram of the phase distribution of the E z component of the transmitted field at D=800nm behind the dolphin-shaped cell circular array metasurface; (e ) is the ratio of the optical field intensity |E z | 2 of the transmitted field z component E z at D = 2000nm behind the metasurface of the dolphin-shaped cell circle array to the total optical field intensity |E| 2 ; (f) is the dolphin-shaped cell Schematic diagram of the phase distribution of the E z component of the transmitted field at D=2000nm behind the metasurface of the cell circle array.
具体实施方式detailed description
实施例1Example 1
如图1所示,本发明提供的海豚形元胞圆阵列超表面,该超表面为圆阵列形微纳米金属结构,由多个海豚形金属元胞结构等角度旋转排列构成圆形阵列,海豚形元胞结构的中轴线永远指向圆阵列圆心,海豚形金属元胞几何结构由两个半新月形结构以尖端相反的状态截面相接构成,其中半新月形结构由两个半圆柱体截取而得。圆阵列上排列的海豚形元胞数量为N(N≥3且N为正整数),海豚形元胞几何中心与圆阵列几何中心的连线将圆分成N等份,海豚形元胞结构的中轴线永远指向圆阵列圆心,圆阵列半径(即圆阵列中心到海豚形结构几何中心的距离)为R,相邻两个海豚形元胞结构的几何中心的夹角α=360°/N,其中截取海豚形元胞结构的半圆柱体1和半圆柱体2的半径分别为R1和R2且满足关系式R2=mR1(其中m>1),m定义为结构因子,两圆柱体截面圆为内切关系,截面圆心距d=(m-1)R1,海豚形元胞结构两尖端的间距d′=2(R1+R2)。As shown in Figure 1, the dolphin-shaped cellular circular array metasurface provided by the present invention is a circular array-shaped micro-nano metal structure, and a circular array is formed by a plurality of dolphin-shaped metal cellular structures equiangularly rotated. The central axis of the metal cell structure always points to the center of the circle array. The geometric structure of the dolphin-shaped metal cell is composed of two semi-crescent structures connected in cross-sections with opposite tips, and the semi-crescent structure is composed of two semi-cylinders intercepted. The number of dolphin-shaped cells arranged on the circular array is N (N ≥ 3 and N is a positive integer), the line connecting the geometric center of the dolphin-shaped cell and the geometric center of the circular array divides the circle into N equal parts, and the structure of the dolphin-shaped cell The central axis always points to the center of the circle array, the radius of the circle array (i.e. the distance from the center of the circle array to the geometric center of the dolphin-shaped structure) is R, and the included angle α=360°/N between the geometric centers of two adjacent dolphin-shaped cell structures, Wherein the radii of half cylinder 1 and half cylinder 2 intercepting the dolphin-shaped cellular structure are respectively R 1 and R 2 and satisfy the relational formula R 2 =mR 1 (wherein m>1), m is defined as the structure factor, two cylinders The body cross-section circle is inscribed, the distance between the center of the cross-section d=(m-1)R 1 , and the distance between the two tips of the dolphin-shaped cell structure d'=2(R 1 +R 2 ).
本发明中海豚形元胞圆阵列超表面的制作可采用对向靶直流磁控溅射和聚焦离子束刻蚀技术来实现。其具体步骤如下:The fabrication of the metasurface of the dolphin-shaped circular array of cells in the present invention can be realized by direct-current magnetron sputtering against the target and focused ion beam etching techniques. The specific steps are as follows:
(1)利用对向靶直流磁控溅射方法在石英等玻璃衬底上或硅等半导体衬底上溅射金、银、铝、铜等纳金属膜;(1) Sputtering gold, silver, aluminum, copper and other nanometal films on glass substrates such as quartz or semiconductor substrates such as silicon by using the direct current magnetron sputtering method of the opposite target;
(2)利用聚焦离子束刻蚀技术或电子束直写技术在纳金属膜上刻蚀金属海豚形元胞圆阵列结构。(2) Using focused ion beam etching technology or electron beam direct writing technology to etch the metal dolphin-shaped circular array structure on the nanometal film.
具体应用实例1Specific application example 1
海豚形元胞圆阵列超表面的具体参数如下为例:The specific parameters of the dolphin-shaped cell circle array metasurface are as follows:
海豚形金属元胞材料为银,入射波长λ=660nm,此时银材料折射率nAg=0.049889+4.4869i。该超表面为圆阵列形微纳米金属结构,由多个海豚形金属元胞结构等角度旋转排列构成,海豚形金属元胞几何结构由两个半新月形结构以尖端相反的状态截面相接构成,其中半新月形结构由两个半圆柱体截取而得。圆阵列上排列的海豚形元胞数量为N=8,海豚形元胞几何中心与圆阵列几何中心的连线将圆分成N=8等份,海豚形元胞结构的中轴线永远指向圆阵列圆心,圆阵列半径(即圆阵列中心到海豚形结构几何中心的距离)为R=1μm,相邻两个海豚形元胞结构的几何中心的夹角α=360°/N=45°,截取海豚形元胞结构的半圆柱体2的半径R2=300nm,结构因子m=2,则半圆柱体1的半径R1=150nm。两圆柱体截面圆为内切关系,根据上述参数可得截面圆心距d=150nm,海豚形元胞结构两尖端的间距d′=900nm。The material of the dolphin-shaped metal cell is silver, and the incident wavelength λ=660nm. At this time, the refractive index of the silver material is n Ag =0.049889+4.4869i. The metasurface is a circular array micro-nano metal structure, which is composed of multiple dolphin-shaped metal cell structures rotated at an equal angle. The geometric structure of the dolphin-shaped metal cell is connected by two semi-crescent-shaped structures with opposite tips. Composition, in which the half-crescent structure is intercepted by two half-cylinders. The number of dolphin-shaped cells arranged on the circular array is N=8, the line connecting the geometric center of the dolphin-shaped cell and the geometric center of the circular array divides the circle into N=8 equal parts, and the central axis of the dolphin-shaped cell structure always points to the circular array The center of the circle, the radius of the circle array (i.e. the distance from the center of the circle array to the geometric center of the dolphin-shaped structure) is R=1 μm, and the included angle α=360°/N=45° between the geometric centers of two adjacent dolphin-shaped cellular structures, intercept The radius R 2 of the half cylinder 2 of the dolphin-shaped cellular structure is 300nm, and the structure factor m=2, so the radius R 1 of the half cylinder 1 is 150nm. The cross-sectional circles of the two cylinders are inscribed. According to the above parameters, the distance between the centers of the cross-sections is d=150nm, and the distance between the two tips of the dolphin-shaped cellular structure is d′=900nm.
图2是沿z方向传播、偏振方向为x方向的线偏振光入射大圆柱半径R2=300nm固定、结构因子m不同的海豚形金属元胞结构时,海豚形金属元胞结构尖端产生的聚焦光场的强度分布示意图。其中:(a)是光入射到结构因子m=1.5的海豚形金属元胞结构时聚焦光场强度分布示意图(其中右侧图例为增强因子以自然底数求得的对数值);(b)是光入射到结构因子m=2的海豚形金属元胞结构时聚焦光场强度分布示意图(其中右侧图例为增强因子以自然底数求得的对数值);(c)是光入射到结构因子m=3的海豚形金属元胞结构时聚焦光场强度分布示意图(其中右侧图例为增强因子以自然底数求得的对数值)。从结果中可以看到,当结构因子m=1.5时,增强因子约为e7≈1.0966×103;当结构因子m=2时,增强因子约为e6≈4.0343×102;当结构因子m=3时,增强因子约为e4≈5.4598×101。由此分析,当结构因子m改变时,由于m减小会导致海豚形元胞结构曲线曲率增大,从而形成更为理想的结构尖端,进而增强因子会随m的减小而增大。因此,改变结构因子m(m>1)可调控聚焦场的增强因子。Fig. 2 shows the focus produced by the tip of the dolphin-shaped metal cell structure when linearly polarized light propagating along the z direction and polarized in the x direction is incident on a dolphin-shaped metal cell structure with a fixed large cylinder radius R 2 =300nm and different structure factors m Schematic diagram of the intensity distribution of the light field. Among them: (a) is a schematic diagram of the intensity distribution of the focused light field when light is incident on a dolphin-shaped metal cell structure with a structure factor of m=1.5 (where the legend on the right is the logarithmic value obtained by the natural base of the enhancement factor); (b) is Schematic diagram of the intensity distribution of the focused light field when light is incident on a dolphin-shaped metal cell structure with a structure factor m=2 (where the legend on the right is the logarithmic value of the enhancement factor obtained from the natural base); (c) is the light incident on the structure factor m Schematic diagram of the intensity distribution of the focused light field when the dolphin-shaped metal cell structure is =3 (wherein the legend on the right is the logarithmic value obtained from the natural base of the enhancement factor). It can be seen from the results that when the structure factor m=1.5, the enhancement factor is about e 7 ≈1.0966×10 3 ; when the structure factor m=2, the enhancement factor is about e 6 ≈4.0343×10 2 ; when the structure factor When m=3, the enhancement factor is about e 4 ≈5.4598×10 1 . From this analysis, when the structure factor m is changed, the curvature of the dolphin-shaped cell structure curve will increase due to the decrease of m, thus forming a more ideal structural tip, and the enhancement factor will increase with the decrease of m. Therefore, changing the structure factor m (m>1) can adjust the enhancement factor of the focusing field.
图3是沿z方向传播、偏振方向为x方向的线偏振光入射海豚形元胞圆阵列超表面时,超表面后方不同距离处的透射场的强度和相位分布示意图(以N=8为例)。其中:(a)是海豚形元胞圆阵列超表面后方D=1000nm处的透射场的强度分布示意图;(b)是海豚形元胞圆阵列超表面后方D=1000nm处的透射场的Ez分量相位分布示意图;(c)是海豚形元胞圆阵列超表面后方D=2000nm处的透射场的强度分布示意图;(d)是海豚形元胞圆阵列超表面后方D=2000nm处的透射场的Ez分量相位分布示意图;(e)是海豚形元胞圆阵列超表面后方D=3000nm处的透射场的强度分布示意图;(f)是海豚形元胞圆阵列超表面后方D=3000nm处的透射场的Ez分量相位分布示意图。从计算结果里不难看出,入射光照射到海豚形元胞圆阵列超表面时,内圈的聚焦场使得在圆阵列中心处产生螺旋相位光场,随传播距离的增大,螺旋相位光场逐渐发散,中心处相位涡旋愈发明显,随着距离继续增大,涡旋特性已不是非常明显,即线偏振光入射海豚形元胞圆阵列超表面时,可在超表面后方产生局域螺旋相位光场。Figure 3 is a schematic diagram of the intensity and phase distribution of the transmitted field at different distances behind the metasurface when linearly polarized light propagating along the z direction and polarized in the x direction is incident on the dolphin-shaped cellular circular array metasurface (taking N=8 as an example ). Where: (a) is a schematic diagram of the intensity distribution of the transmitted field at D=1000nm behind the dolphin-shaped circular cell array metasurface; (b) is the Ez of the transmitted field at D=1000nm behind the dolphin-shaped circular cell array metasurface Schematic diagram of component phase distribution; (c) is a schematic diagram of the intensity distribution of the transmitted field at D=2000nm behind the dolphin-shaped cellular array metasurface; (d) is the transmitted field at D=2000nm behind the dolphin-shaped cellular array metasurface The schematic diagram of the phase distribution of the E z component; (e) is a schematic diagram of the intensity distribution of the transmitted field at D=3000nm behind the dolphin-shaped circular cell array metasurface; (f) is the D=3000nm place behind the dolphin-shaped circular cellular array metasurface Schematic diagram of the phase distribution of the Ez component of the transmitted field. It is not difficult to see from the calculation results that when the incident light hits the metasurface of the dolphin-shaped cellular circular array, the focusing field of the inner ring makes a spiral phase light field at the center of the circular array. With the increase of the propagation distance, the spiral phase light field Gradually diverge, the phase vortex at the center becomes more and more obvious, as the distance continues to increase, the vortex characteristics are not very obvious, that is, when the linearly polarized light is incident on the metasurface of the dolphin-shaped cell circle array, a local area can be generated behind the metasurface Spiral phase light field.
图4是沿z方向传播、偏振方向为x方向的线偏振光入射海豚形元胞圆阵列超表面时,超表面后方不同距离处光场z分量Ez的光场强度|Ez|2占总光场强度|E|2的比例及透射场Ez分量的相位分布(以N=8为例)。其中:(a)是海豚形元胞圆阵列超表面后方D=400nm处的透射场z分量Ez的光场强度|Ez|2占总光场强度|E|2的比例;(b)是海豚形元胞圆阵列超表面后方D=400nm处的透射场的Ez分量相位分布示意图;(c)是海豚形元胞圆阵列超表面后方D=800nm处的透射场z分量Ez的光场强度|Ez|2占总光场强度|E|2的比例;(d)是海豚形元胞圆阵列超表面后方D=800nm处的透射场的Ez分量相位分布示意图;(e)是海豚形元胞圆阵列超表面后方D=2000nm处的透射场z分量Ez的光场强度|Ez|2占总光场强度|E|2的比例;(f)是海豚形元胞圆阵列超表面后方D=2000nm处的透射场的Ez分量相位分布示意图。从结果中可以看出,当D=400nm时,Ez分量的光场强度|Ez|2占总光场强度|E|2的比例最高可达到80%;当D=800nm时,Ez分量的光场强度|Ez|2占总光场强度|E|2的比例最高已降至45%;当D=2000nm时,Ez分量的光场强度|Ez|2占总光场强度|E|2的比例最高只有20%。但随着距离D的增大,透射场Ez分量中心处相位螺旋效果明显提高。综上分析,透射光场z方向分量Ez的强度占总光场E强度的比例随传播距离增加而减小,但随传播距离增加Ez相位螺旋效果越好。Fig. 4 shows the light field intensity |E z | The ratio of the total light field intensity |E| 2 and the phase distribution of the E z component of the transmitted field (take N=8 as an example). Among them: (a) is the ratio of the optical field intensity |E z | 2 of the transmitted field z component E z at D = 400nm behind the dolphin-shaped cellular circular array metasurface to the total optical field intensity |E| 2 ; (b) It is a schematic diagram of the E z component phase distribution of the transmission field at D=400nm behind the dolphin-shaped cell circle metasurface; (c) is the transmission field z component E z at D=800nm behind the dolphin-shaped cell circle metasurface The ratio of optical field intensity |E z | 2 to the total optical field intensity |E| 2 ; (d) is a schematic diagram of the phase distribution of the E z component of the transmitted field at D=800nm behind the dolphin-shaped cell circular array metasurface; (e ) is the ratio of the optical field intensity |E z | 2 of the transmitted field z component E z at D = 2000nm behind the metasurface of the dolphin-shaped cell circle array to the total optical field intensity |E| 2 ; (f) is the dolphin-shaped cell Schematic diagram of the phase distribution of the E z component of the transmitted field at D=2000nm behind the metasurface of the cell circle array. It can be seen from the results that when D = 400nm, the optical field intensity |Ez| 2 of the Ez component accounts for the highest proportion of 80% of the total optical field intensity |E|2 ; when D = 800nm, Ez The light field intensity | Ez | 2 of the component |E|2 has dropped to 45% of the total light field intensity |E| 2 ; when D=2000nm, the light field intensity | Ez | 2 of the Ez component accounts for the total light field The proportion of intensity |E| 2 is only up to 20%. But as the distance D increases, the phase spiral effect at the center of the z component of the transmitted field E increases significantly. In summary, the ratio of the intensity of the z-direction component E z of the transmitted light field to the total light field E intensity decreases with the increase of the propagation distance, but the better the phase spiral effect of E z is with the increase of the propagation distance.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710360734.4A CN106990547B (en) | 2017-05-16 | 2017-05-16 | dolphin-shaped cell array metasurface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710360734.4A CN106990547B (en) | 2017-05-16 | 2017-05-16 | dolphin-shaped cell array metasurface |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106990547A true CN106990547A (en) | 2017-07-28 |
CN106990547B CN106990547B (en) | 2021-08-13 |
Family
ID=59420633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710360734.4A Expired - Fee Related CN106990547B (en) | 2017-05-16 | 2017-05-16 | dolphin-shaped cell array metasurface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106990547B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108363129A (en) * | 2018-04-20 | 2018-08-03 | 南开大学 | More structure combinatorial artificial resistance electromagnetic surfaces |
CN109187363A (en) * | 2018-06-22 | 2019-01-11 | 西安科锐盛创新科技有限公司 | A kind of chirality optical device |
CN109888474A (en) * | 2019-02-22 | 2019-06-14 | 南开大学 | Nano Double Butterfly Antenna Array Structure |
CN110221366A (en) * | 2019-06-14 | 2019-09-10 | 南开大学 | Optics cellular and resolving power test target |
CN110581348A (en) * | 2018-06-08 | 2019-12-17 | 南开大学 | Nano Yagi Antenna Array Structure |
CN111323929A (en) * | 2020-04-09 | 2020-06-23 | 南开大学 | Chiral optical element, chiral optical encryption component and chiral element design method |
CN112305786A (en) * | 2020-10-26 | 2021-02-02 | 江西师范大学 | Vector near-field light regulation and control device and method based on circular-ring-shaped particle array |
CN112881302A (en) * | 2021-01-25 | 2021-06-01 | 中国科学院上海光学精密机械研究所 | Chiral symmetric structure super-surface circularly polarized light detection element and preparation method thereof |
CN115359944A (en) * | 2022-10-20 | 2022-11-18 | 泉州师范学院 | Method for realizing optical chain focal field pointed at any space |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080137161A1 (en) * | 2006-10-24 | 2008-06-12 | New York University | Three-dimensional holographic ring traps |
CN101814328A (en) * | 2010-03-25 | 2010-08-25 | 西北工业大学 | Composite optical eddy generation method and device thereof |
WO2013092764A1 (en) * | 2011-12-20 | 2013-06-27 | Universiteit Antwerpen | Generation of charged particle vortex waves |
CN103969840A (en) * | 2013-01-25 | 2014-08-06 | 中国科学技术大学 | Micro polaroid array on basis of metal nanometer optical gratings and preparation method thereof |
US20140277436A1 (en) * | 2013-03-15 | 2014-09-18 | Johnson & Johnson Vision Care, Inc | Methods for ophthalmic devices incorporating metasurface elements |
WO2015087257A2 (en) * | 2013-12-10 | 2015-06-18 | Koninklijke Philips N.V. | Optical storage medium, oam-light generating device comprising an optical storage medium, hyperpolarization device comprising an oam-light generating device and magnetic resonance system comprising a hyperpolarization device |
US20150260650A1 (en) * | 2014-03-12 | 2015-09-17 | Solyman Ashrafi | System and method for making concentration measurements within a sample material using orbital angular momentum |
CN104923919A (en) * | 2015-06-09 | 2015-09-23 | 江苏大学 | Method for preparing annular structure or miniature convex lens on liquid film-transparent material interface |
US20150304152A1 (en) * | 2012-03-11 | 2015-10-22 | Broadcom Corporation | Communication System Using Orbital Angular Momentum |
CN105259666A (en) * | 2015-11-30 | 2016-01-20 | 南开大学 | Device for manufacturing microstructure through focal field trajectory based on dynamic control |
CN105278309A (en) * | 2015-11-30 | 2016-01-27 | 中国科学院重庆绿色智能技术研究院 | Geometric hypersurface-based dynamic holography method |
US20160041523A1 (en) * | 2014-08-08 | 2016-02-11 | Nxgen Partners Ip, Llc | System and method for applying orthogonal limitations to light beams using microelectromechanical systems |
CN105353463A (en) * | 2015-12-04 | 2016-02-24 | 东南大学 | Apparatus and method for detecting and receiving vortex light field |
CN105511117A (en) * | 2016-01-13 | 2016-04-20 | 中国科学院上海技术物理研究所 | Metasurface polarization regulator |
CN105607266A (en) * | 2016-01-06 | 2016-05-25 | 北京理工大学 | Three-dimensional vector beam and generation method and apparatus thereof |
US9389349B2 (en) * | 2013-03-15 | 2016-07-12 | Kla-Tencor Corporation | System and method to determine depth for optical wafer inspection |
CN105785601A (en) * | 2016-04-07 | 2016-07-20 | 复旦大学 | Efficient microwave vortex light excitation device on basis of transmission geometric Bell phases of super-surface |
CN105807096A (en) * | 2016-03-10 | 2016-07-27 | 南开大学 | Non-linear nanocrystalline metal spiral cone probe |
US9413448B2 (en) * | 2014-08-08 | 2016-08-09 | Nxgen Partners Ip, Llc | Systems and methods for focusing beams with mode division multiplexing |
CN105866981A (en) * | 2016-04-20 | 2016-08-17 | 中国科学院光电技术研究所 | Broadband electromagnetic wave phase control method and super-surface sub-wavelength structure |
CN105974600A (en) * | 2016-07-21 | 2016-09-28 | 哈尔滨工业大学 | Method for realizing beam tight focusing through vortex beams |
CN106025566A (en) * | 2016-05-30 | 2016-10-12 | 哈尔滨工业大学 | Lens and method for generating vortex beam based on reflecting super-surface |
CN106199800A (en) * | 2016-09-20 | 2016-12-07 | 北京理工大学 | A kind of integrated approach of the three-dimensional vortex array of spatial distribution |
CN106353898A (en) * | 2016-10-25 | 2017-01-25 | 深圳大学 | System for generating optical vortex |
CN106352992A (en) * | 2016-09-06 | 2017-01-25 | 北京理工大学 | Self-adaptive correction method and system of wavefront-free and probe-free distortion vortex light beam |
US20170075038A1 (en) * | 2015-08-19 | 2017-03-16 | United States Of America, As Represented By The Secretary Of The Navy | Light Guide Film Control for Optically Tunable Metamaterials |
CN106597578A (en) * | 2016-12-27 | 2017-04-26 | 南开大学 | Crescent windmill superstructure surface |
-
2017
- 2017-05-16 CN CN201710360734.4A patent/CN106990547B/en not_active Expired - Fee Related
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080137161A1 (en) * | 2006-10-24 | 2008-06-12 | New York University | Three-dimensional holographic ring traps |
CN101814328A (en) * | 2010-03-25 | 2010-08-25 | 西北工业大学 | Composite optical eddy generation method and device thereof |
WO2013092764A1 (en) * | 2011-12-20 | 2013-06-27 | Universiteit Antwerpen | Generation of charged particle vortex waves |
US20150304152A1 (en) * | 2012-03-11 | 2015-10-22 | Broadcom Corporation | Communication System Using Orbital Angular Momentum |
CN103969840A (en) * | 2013-01-25 | 2014-08-06 | 中国科学技术大学 | Micro polaroid array on basis of metal nanometer optical gratings and preparation method thereof |
US9389349B2 (en) * | 2013-03-15 | 2016-07-12 | Kla-Tencor Corporation | System and method to determine depth for optical wafer inspection |
US20140277436A1 (en) * | 2013-03-15 | 2014-09-18 | Johnson & Johnson Vision Care, Inc | Methods for ophthalmic devices incorporating metasurface elements |
WO2015087257A2 (en) * | 2013-12-10 | 2015-06-18 | Koninklijke Philips N.V. | Optical storage medium, oam-light generating device comprising an optical storage medium, hyperpolarization device comprising an oam-light generating device and magnetic resonance system comprising a hyperpolarization device |
US20150260650A1 (en) * | 2014-03-12 | 2015-09-17 | Solyman Ashrafi | System and method for making concentration measurements within a sample material using orbital angular momentum |
US9413448B2 (en) * | 2014-08-08 | 2016-08-09 | Nxgen Partners Ip, Llc | Systems and methods for focusing beams with mode division multiplexing |
US20160041523A1 (en) * | 2014-08-08 | 2016-02-11 | Nxgen Partners Ip, Llc | System and method for applying orthogonal limitations to light beams using microelectromechanical systems |
CN104923919A (en) * | 2015-06-09 | 2015-09-23 | 江苏大学 | Method for preparing annular structure or miniature convex lens on liquid film-transparent material interface |
US20170075038A1 (en) * | 2015-08-19 | 2017-03-16 | United States Of America, As Represented By The Secretary Of The Navy | Light Guide Film Control for Optically Tunable Metamaterials |
CN105278309A (en) * | 2015-11-30 | 2016-01-27 | 中国科学院重庆绿色智能技术研究院 | Geometric hypersurface-based dynamic holography method |
CN105259666A (en) * | 2015-11-30 | 2016-01-20 | 南开大学 | Device for manufacturing microstructure through focal field trajectory based on dynamic control |
CN105353463A (en) * | 2015-12-04 | 2016-02-24 | 东南大学 | Apparatus and method for detecting and receiving vortex light field |
CN105607266A (en) * | 2016-01-06 | 2016-05-25 | 北京理工大学 | Three-dimensional vector beam and generation method and apparatus thereof |
CN105511117A (en) * | 2016-01-13 | 2016-04-20 | 中国科学院上海技术物理研究所 | Metasurface polarization regulator |
CN105807096A (en) * | 2016-03-10 | 2016-07-27 | 南开大学 | Non-linear nanocrystalline metal spiral cone probe |
CN105785601A (en) * | 2016-04-07 | 2016-07-20 | 复旦大学 | Efficient microwave vortex light excitation device on basis of transmission geometric Bell phases of super-surface |
CN105866981A (en) * | 2016-04-20 | 2016-08-17 | 中国科学院光电技术研究所 | Broadband electromagnetic wave phase control method and super-surface sub-wavelength structure |
CN106025566A (en) * | 2016-05-30 | 2016-10-12 | 哈尔滨工业大学 | Lens and method for generating vortex beam based on reflecting super-surface |
CN105974600A (en) * | 2016-07-21 | 2016-09-28 | 哈尔滨工业大学 | Method for realizing beam tight focusing through vortex beams |
CN106352992A (en) * | 2016-09-06 | 2017-01-25 | 北京理工大学 | Self-adaptive correction method and system of wavefront-free and probe-free distortion vortex light beam |
CN106199800A (en) * | 2016-09-20 | 2016-12-07 | 北京理工大学 | A kind of integrated approach of the three-dimensional vortex array of spatial distribution |
CN106353898A (en) * | 2016-10-25 | 2017-01-25 | 深圳大学 | System for generating optical vortex |
CN106597578A (en) * | 2016-12-27 | 2017-04-26 | 南开大学 | Crescent windmill superstructure surface |
Non-Patent Citations (9)
Title |
---|
DENGFENG KUANG等: "Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable", 《APPLIED OPTICS》 * |
HAILIN CAO 等: "Compact e-shape metasurface with dual-band circular polarization conversion", 《OPTICS COMMUNICATIONS》 * |
JINJIN JIN等: "GENERATION AND DETECTION OF ORBITAL ANGULAR MOMENTUM VIA METASURFACE: SCIENTIFIC REPORT", 《SCIENTIFIC REPORTS》 * |
MENGLIN CHEN等: "Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies", 《IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》 * |
匡登峰 等: "A metamaterial terahertz modulator based on complementary planar double-split-ring resonator", 《OPTOELECTRONICS LETTERS》 * |
李强 等: "基于多模态 OAM 涡旋电磁波的 L 波段宽频阵列天线设计", 《电子学报》 * |
王波;张岩: "太赫兹超材料和超表面器件的研发与应用", 《太赫兹科学与电子信息学报》 * |
郑国兴 等: "基于超表面材料的光波相位精密操控新技术", 《应用光学》 * |
高春清 等: "螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量", 《物理学报》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108363129A (en) * | 2018-04-20 | 2018-08-03 | 南开大学 | More structure combinatorial artificial resistance electromagnetic surfaces |
CN110581348A (en) * | 2018-06-08 | 2019-12-17 | 南开大学 | Nano Yagi Antenna Array Structure |
CN109187363A (en) * | 2018-06-22 | 2019-01-11 | 西安科锐盛创新科技有限公司 | A kind of chirality optical device |
CN109888474A (en) * | 2019-02-22 | 2019-06-14 | 南开大学 | Nano Double Butterfly Antenna Array Structure |
CN110221366A (en) * | 2019-06-14 | 2019-09-10 | 南开大学 | Optics cellular and resolving power test target |
CN111323929A (en) * | 2020-04-09 | 2020-06-23 | 南开大学 | Chiral optical element, chiral optical encryption component and chiral element design method |
CN111323929B (en) * | 2020-04-09 | 2021-05-04 | 南开大学 | Chiral optical element, chiral optical encryption component and chiral element design method |
CN112305786A (en) * | 2020-10-26 | 2021-02-02 | 江西师范大学 | Vector near-field light regulation and control device and method based on circular-ring-shaped particle array |
CN112305786B (en) * | 2020-10-26 | 2023-10-20 | 江西师范大学 | Vector near-field light regulation and control device and method based on annular particle array |
CN112881302A (en) * | 2021-01-25 | 2021-06-01 | 中国科学院上海光学精密机械研究所 | Chiral symmetric structure super-surface circularly polarized light detection element and preparation method thereof |
CN115359944A (en) * | 2022-10-20 | 2022-11-18 | 泉州师范学院 | Method for realizing optical chain focal field pointed at any space |
CN115359944B (en) * | 2022-10-20 | 2023-02-28 | 泉州师范学院 | A Method for Realizing the Focal Field of Arbitrary Space Pointing Light Chain |
Also Published As
Publication number | Publication date |
---|---|
CN106990547B (en) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106990547A (en) | The super surface of dolphin shape cellular circular array | |
CN109073910B (en) | Device for forming at least one focused beam in the near zone from an incident electromagnetic wave | |
JP7199223B2 (en) | A device that forms a field intensity pattern in the near field from an incident electromagnetic wave | |
CN106597578B (en) | The windmill-shaped superstructure surface of crescent | |
CN106199997B (en) | Large-view-field super-resolution imaging device | |
CN107315206A (en) | Efficient infrared optics lens based on the super surface texture of all dielectric and preparation method thereof | |
CN110187419A (en) | A Broadband Perfect Absorber for Visible Light Based on Semiconductor Metasurface | |
CN104090332B (en) | Focal length, tightly focused surface phasmon lens under a kind of radial polarisation light | |
CN112601990A (en) | Diffraction grating comprising a two-material structure | |
CN107831607A (en) | Phase-change material-based adjustable broadband polarization conversion and dynamic geometric phase modulation device | |
CN114089539B (en) | Double-perfect vortex beam super-surface design method based on composite phase regulation | |
CN114815014B (en) | Super lens focusing vortex light beam and super lens array | |
CN102338894B (en) | Plasma slab lens and near-field focusing method thereof | |
CN108873124A (en) | A kind of chirality circularly polarized light sub-wavelength condenser lens | |
CN106772727B (en) | A kind of column vector beam dielectric grating Diode laser condenser lens | |
CN109324361B (en) | Ultra-wide waveband near-perfect absorber and manufacturing method thereof | |
CN202141822U (en) | A super-resolution focusing plano-convex lens based on metamaterials | |
CN113687459B (en) | Near-field multichannel plasma vortex generator based on super surface of metal nano-sieve | |
CN108363129A (en) | More structure combinatorial artificial resistance electromagnetic surfaces | |
CN115453670B (en) | A reflective orthogonal circularly polarized double-focus metalens and its preparation method | |
CN101840054B (en) | Super-resolution focusing device based on hyperbolic lens | |
CN209590317U (en) | A long focus blazed negative refraction grating lens | |
CN207067428U (en) | A kind of metal Ag films radial polarisation light long-focus planar lens | |
CN114706151B (en) | Polarization-maintaining wide-spectrum focusing middle infrared super-structured lens based on bionic moth-eye structure | |
CN113064228A (en) | A vortex light generating device and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210813 |
|
CF01 | Termination of patent right due to non-payment of annual fee |