[go: up one dir, main page]

CN106936531A - A kind of multi-disc is based on the synchronous method of JESD204B agreements ADC - Google Patents

A kind of multi-disc is based on the synchronous method of JESD204B agreements ADC Download PDF

Info

Publication number
CN106936531A
CN106936531A CN201710305625.2A CN201710305625A CN106936531A CN 106936531 A CN106936531 A CN 106936531A CN 201710305625 A CN201710305625 A CN 201710305625A CN 106936531 A CN106936531 A CN 106936531A
Authority
CN
China
Prior art keywords
adc
time
fpga
lmfc
sysref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710305625.2A
Other languages
Chinese (zh)
Other versions
CN106936531B (en
Inventor
杨扩军
孔祥伟
叶芃
曾浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710305625.2A priority Critical patent/CN106936531B/en
Publication of CN106936531A publication Critical patent/CN106936531A/en
Application granted granted Critical
Publication of CN106936531B publication Critical patent/CN106936531B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明公开了一种多片基于JESD204B协议ADC的同步方法,通过对SYSREF(系统参考)信号的调整,其首先保证SYSREF信号与ADC的采样时钟DCLK_ADC满足最佳的建立时间和保持时间,然后调节接收端的本地多帧周期延迟即SYSREF信号到LMFC(本地多帧时钟)上升沿的时间间隔TRXLMFC,做到最坏的链路都能够实现确定性延迟,保证了多片基于JESD204B协议ADC的同步,进而保证了在重复上电或者重新建立链路的时候多片ADC都同步。

The invention discloses a multi-chip synchronization method based on the JESD204B protocol ADC. By adjusting the SYSREF (system reference) signal, it first ensures that the SYSREF signal and the sampling clock DCLK_ADC of the ADC meet the best setup time and hold time, and then Adjust the local multi-frame cycle delay at the receiving end, that is, the time interval T RXLMFC from the SYSREF signal to the rising edge of the LMFC (local multi-frame clock), so that the worst link can achieve deterministic delay, ensuring that multiple ADCs based on the JESD204B protocol Synchronization, thereby ensuring that multiple ADCs are synchronized when the power is repeated or the link is re-established.

Description

一种多片基于JESD204B协议ADC的同步方法A method for synchronizing multiple ADCs based on JESD204B protocol

技术领域technical field

本发明属于信号采样技术领域,更为具体地讲,涉及一种多片基于JESD204B协议ADC的同步方法。The invention belongs to the technical field of signal sampling, and more specifically relates to a method for synchronizing multi-chip ADCs based on the JESD204B protocol.

背景技术Background technique

JESD204B串行传输协议(简称JESD204B协议)是在ADC传输中重要的接口标准,它相比传统的并行LVDS接口标准,具有速度快、占用IO引脚少等优点,正逐渐被各大ADC厂所青睐。The JESD204B serial transmission protocol (referred to as the JESD204B protocol) is an important interface standard in ADC transmission. Compared with the traditional parallel LVDS interface standard, it has the advantages of fast speed and less IO pins, and is gradually being adopted by major ADC manufacturers. favor.

JESD204B协议的发送端即ADC和接收端分为传输层、数据链路层和物理层。最高的链路速率为12.5Gb/s。从整体上看,采样数据(如12bit、8bit等)在发送端经过8B/10B编码之后被打包成串行数据,串行传输到接收端后经接收端解串、解码然后还原出原始的采样数据。The sending end of the JESD204B protocol, that is, the ADC and the receiving end are divided into a transport layer, a data link layer and a physical layer. The highest link rate is 12.5Gb/s. On the whole, the sampling data (such as 12bit, 8bit, etc.) is packaged into serial data after 8B/10B encoding at the sending end, serially transmitted to the receiving end, deserialized, decoded and then restored to the original sampling at the receiving end data.

JESD204B协议虽然具有速度快、占用IO引脚少等巨大优势,但是链路中存在的不确定性延迟极大的阻碍了多片基于JESD204B协议ADC的同步,对构成JESD204B协议的时间交替采样系统(TIADC系统)等应用场合带来了障碍。而不确定性延迟体现在链路重新建立或者重新上电的过程中,JESD204B协议下接收端不能在确定的时刻点或者确定的本地多帧时钟周期的边沿接收到数据,使链路的延迟具有不可重复性。Although the JESD204B protocol has great advantages such as fast speed and less occupied IO pins, the uncertain delay in the link has greatly hindered the synchronization of multiple ADCs based on the JESD204B protocol, and the time-alternating sampling system ( TIADC systems) and other applications present obstacles. The uncertain delay is reflected in the process of link re-establishment or power-on again. Under the JESD204B protocol, the receiving end cannot receive data at a certain point in time or at the edge of a certain local multi-frame clock cycle, which makes the delay of the link significant. non-repeatability.

发明内容Contents of the invention

本发明的目的在于克服现有技术的不足,提出一种多片基于JESD204B协议ADC的同步方法,以实现确定性延迟。The purpose of the present invention is to overcome the deficiencies of the prior art, and propose a multi-chip synchronization method based on the JESD204B protocol ADC to achieve deterministic delay.

为实现上述发明目的,本发明多片基于JESD204B协议ADC的同步方法,其特征在于,包括以下步骤:In order to realize the above-mentioned purpose of the invention, the synchronous method of multichip of the present invention based on JESD204B agreement ADC is characterized in that, comprises the following steps:

(1)、在多片基于JESD204B协议的ADC、作为采样数据接收端的FPGA以及具有能够产生SYSREF(系统参考)信号的时钟管理模块构建的数据采集系统中,调节时钟管理模块产生满足要求的ADC采样时钟DCLK_ADC分别输入到各片ADC中,产生满足要求的FPGA参考时钟DCLK_FPGA输入到各片FPGA中,同时,时钟管理模块将其产生的SYSREF信号输入到各片ADC以及各片FPGA中;(1) In a data acquisition system built with multiple ADCs based on the JESD204B protocol, an FPGA as a sampling data receiver, and a clock management module capable of generating SYSREF (system reference) signals, the clock management module is adjusted to produce ADC samples that meet the requirements The clock DCLK_ADC is input to each ADC respectively, and the FPGA reference clock DCLK_FPGA that meets the requirements is generated and input to each FPGA . At the same time, the clock management module inputs the SYSREF signal generated by it to each ADC and each FPGA;

(2)、配置好各片ADC的寄存器,并使接收到SYSREF信号相对于采样时钟DCLK_ADC的建立时间窗口大于时间阈值T1,保持时间窗口大于时间阈值T2,时间阈值T1、时间阈值T2根据具体的ADC芯片确定;(2), Configure the registers of each ADC , and make the establishment time window of the received SYSREF signal relative to the sampling clock DCLK_ADC greater than the time threshold T1, and keep the time window greater than the time threshold T2. The time threshold T1 and the time threshold T2 are based on the specific The ADC chip is determined;

(3)、通过串行SPI协议调节时钟管理模块的内部寄存器,设置SYSREF信号的初始模拟延迟值为0,产生单次的SYSREF信号;(3), adjust the internal register of the clock management module through the serial SPI protocol, set the initial analog delay value of the SYSREF signal to 0, and generate a single SYSREF signal;

(4)、读取各ADC的建立时间错误标志寄存器和保持时间错误标志寄存器的值;(4), read the value of the set-up time error flag register and the hold time error flag register of each ADC;

(5)、对于任意一片ADC,如果建立时间错误标志寄存器和保持时间错误标志寄存器中至少一个不是“0”(即“1”),则通过ADC相应的清零方法对建立时间错误标志寄存器和保持时间错误标志寄存器清零,然后增加SYSREF信号模拟延迟值,并通过串行SPI协议调节时钟管理模块的内部寄存器,重新设置SYSREF信号的模拟延迟值,重新产生单次的SYSREF信号,返回步骤(4);(5) For any ADC, if at least one of the setup time error flag register and the hold time error flag register is not "0" (that is, "1"), the setup time error flag register and the setup time error flag register and Keep the time error flag register cleared, then increase the SYSREF signal analog delay value, and adjust the internal register of the clock management module through the serial SPI protocol, reset the analog delay value of the SYSREF signal, regenerate a single SYSREF signal, and return to the step ( 4);

如果建立时间错误标志寄存器和保持时间错误标志寄存器的值都是“0”,此时表明SYSREF信号与ADC采样时钟DCLK_ADC的建立时间和保持时间都已满足,则跳转到步骤(6);If the values of the setup time error flag register and the hold time error flag register are both "0", it indicates that the setup time and hold time of the SYSREF signal and the ADC sampling clock DCLK_ADC are satisfied, then jump to step (6);

(6)、求出接收端即FPGA中,SYSREF信号到LMFC(本地多帧时钟)上升沿的时间间隔TRXLMFC,使得存在一个N值,同时满足以下公式:(6) Calculate the time interval T RXLMFC from the SYSREF signal to the rising edge of the LMFC (local multi-frame clock) in the receiving end, that is, the FPGA, so that there is an N value and satisfy the following formula at the same time:

(TTXOUT+TWIRE(max)+TRXIN(max))<((N+1)×TLMFC-TTXLMFC+TRXLMFC)(T TXOUT +T WIRE(max) +T RXIN ( max ))<((N+1)×T LMFC -T TXLMFC +T RXLMFC )

(TTXOUT+TWIRE(min)+TRXIN(min))>(N×TLMFC-TTXLMFC+TRXLMFC)(T TXOUT +T WIRE(min) +T RXIN(min) )>(N×T LMFC -T TXLMFC +T RXLMFC )

其中,TTXOUT为发送端即ADC中LMFC上升沿到串行数据输出的时间间隔,TWIRE(max)、TWIRE(min)分别为发送端即ADC到接收端即FPGA的线路延迟最大值和最小值,TRXIN(max)、TRXIN(min)分别为接收端即FPGA接收到串行数据到LMFC上升沿的时间间隔最大和最小值,TLMFC为本地多帧时钟的周期,TTXLMFC为发送端即ADC中SYSREF信号到LMFC上升沿之间的时间间隔;Among them, T TXOUT is the time interval from the rising edge of the LMFC in the ADC at the transmitting end to the serial data output, and T WIRE(max) and T WIRE(min) are the maximum and maximum line delays from the ADC to the FPGA at the receiving end, respectively. The minimum value, T RXIN(max) and T RXIN(min) are the maximum and minimum values of the time interval from the receiving end, that is, the serial data received by the FPGA to the rising edge of LMFC, respectively, T LMFC is the period of the local multi-frame clock, and T TXLMFC is The sending end is the time interval between the SYSREF signal in the ADC and the rising edge of the LMFC;

(7)、将步骤(6)得到的时间间隔TRXLMFC发送到接收端FPGA中LMFC延迟寄存器,这样就保证了链路的确定性延迟,进而实现了多片基于JESD204B协议ADC的同步。(7), the time interval T RXLMFC that step (6) obtains is sent to the LMFC delay register in the receiving end FPGA, has thus just guaranteed the deterministic delay of link, and then realized the synchronism of many slices based on JESD204B agreement ADC.

本发明的目的是这样实现的。The purpose of the present invention is achieved like this.

本发明多片基于JESD204B协议ADC的同步方法,通过对SYSREF(系统参考)信号的调整,其首先保证SYSREF信号与ADC的采样时钟DCLK_ADC满足最佳的建立时间和保持时间,然后调节接收端的本地多帧周期延迟即SYSREF信号到LMFC(本地多帧时钟)上升沿的时间间隔TRXLMFC,做到最坏的链路都能够实现确定性延迟,保证了多片基于JESD204B协议ADC的同步,进而保证了在重复上电或者重新建立链路的时候多片ADC都同步。The multi-chip synchronization method of the ADC based on the JESD204B protocol of the present invention, through the adjustment of the SYSREF (system reference) signal, it first ensures that the sampling clock DCLK_ADC of the SYSREF signal and the ADC meets the best setup time and hold time, and then adjusts the local The multi-frame cycle delay is the time interval T RXLMFC from the SYSREF signal to the rising edge of the LMFC (local multi-frame clock), so that the worst link can achieve deterministic delay, ensuring the synchronization of multiple ADCs based on the JESD204B protocol, thereby ensuring In order to synchronize multiple ADCs when power is repeated or the link is re-established.

附图说明Description of drawings

图1是本发明中多片基于JESD204B协议ADC构建的数据采集系统原理框图;Fig. 1 is the functional block diagram of the data acquisition system built based on the JESD204B protocol ADC in multiple slices in the present invention;

图2是接收端不确定性延迟的图示;Figure 2 is a diagram of the uncertainty delay at the receiving end;

图3是ADC同步有效性验证的采样数据拼合波形图,其中,(a)为采样数据拼合错误的波形图,(b)为采样数据拼合正确的波形图。Fig. 3 is a waveform diagram of sampling data mosaicing for ADC synchronous validity verification, wherein (a) is a waveform diagram of sampling data mosaic error, and (b) is a waveform diagram of sampling data mosaicing correctly.

具体实施方式detailed description

下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。Specific embodiments of the present invention will be described below in conjunction with the accompanying drawings, so that those skilled in the art can better understand the present invention. It should be noted that in the following description, when detailed descriptions of known functions and designs may dilute the main content of the present invention, these descriptions will be omitted here.

图1是本发明中多片基于JESD204B协议ADC构建的数据采集系统原理框图。Fig. 1 is a functional block diagram of a multi-chip data acquisition system constructed based on the JESD204B protocol ADC in the present invention.

在本实施例中,如图1所示,本发明中多片基于JESD204B协议ADC构建的数据采集系统由多片基于JESD204B协议ADC、作为采样数据接收端的FPGA以及具有能够产生SYSREF(系统参考)信号的时钟管理模块构建。In the present embodiment, as shown in Figure 1, the data acquisition system built based on the JESD204B protocol ADC in the present invention is composed of multiple chips based on the JESD204B protocol ADC, an FPGA as a sampling data receiving end, and a SYSREF (system reference) signal capable of producing The clock management module construction.

在本实施例中,如图1所示,由两片型号为AD9625的ADC、两片型号为kintex-7的FPGA以及一片型号为LMK04828的锁相环芯片构建一个数据采集系统,其中,ADC作为数据采集系统的发送端,FPGA作为数据采集系统的接收端,锁相环芯片作为时钟管理模块,一片FPGA对应一片ADC。In this embodiment, as shown in Figure 1, a data acquisition system is constructed by two ADCs whose model is AD9625, two FPGAs whose model is kintex-7, and a phase-locked loop chip whose model is LMK04828. The sending end of the data acquisition system, the FPGA as the receiving end of the data acquisition system, the phase-locked loop chip as the clock management module, and one FPGA corresponds to one ADC.

在本实施例中,本发明多片基于JESD204B协议ADC的同步方法包括以下步骤:In the present embodiment, the multi-chip synchronization method of the present invention based on the JESD204B protocol ADC includes the following steps:

步骤S1:调节时钟管理模块产生满足要求的ADC采样时钟DCLK_ADC分别输入到各片ADC中,产生满足要求的FPGA参考时钟DCLK_FPGA输入到各片FPGA中,同时,时钟管理模块将其产生的SYSREF信号输入到各片ADC以及各片FPGA中;Step S1: Adjust the clock management module to generate the ADC sampling clock DCLK_ ADC that meets the requirements and input them to each ADC, and generate the FPGA reference clock DCLK_ FPGA that meets the requirements and input it to each FPGA. At the same time, the clock management module generates the SYSREF The signal is input to each piece of ADC and each piece of FPGA;

步骤S2、配置好各片ADC的寄存器,并使接收到SYSREF信号相对于采样时钟DCLK_ADC的建立时间窗口大于时间阈值T1,保持时间窗口大于时间阈值T2,在本实施例中,时间阈值T1为150ps、时间阈值T2为100ps;Step S2, configure the registers of each slice ADC, and make the receiving SYSREF signal greater than the time threshold T1 with respect to the setup time window of the sampling clock DCLK_ADC , keep the time window greater than the time threshold T2, in the present embodiment, the time threshold T1 is 150ps, time threshold T2 is 100ps;

在本实施例中,首先通过SPI协议配置好AD9625,建立时间窗口寄存器和保持时间窗口寄存器分别是0x13C[7:5]和0x13B[7:5]寄存器。他们的步进是35ps,则发送5到0x13C[7:5]寄存器,发送3到0x13B[7:5]寄存器。In this embodiment, the AD9625 is first configured through the SPI protocol, and the setup time window register and the hold time window register are 0x13C[7:5] and 0x13B[7:5] registers respectively. Their step is 35ps, then send 5 to the 0x13C[7:5] register, and send 3 to the 0x13B[7:5] register.

步骤S3:通过串行SPI协议调节锁相环芯片的内部寄存器,设置SYSREF信号的初始模拟延迟值为0,产生单次的SYSREF信号;Step S3: adjust the internal register of the PLL chip through the serial SPI protocol, set the initial analog delay value of the SYSREF signal to 0, and generate a single SYSREF signal;

在本实施例中,调节ADC1和ADC2的SYSREF信号的初始模拟延迟为均为0,然后调节锁相环芯片的寄存器,使其产生单次的SYSREF信号。In this embodiment, the initial analog delays of the SYSREF signals of ADC1 and ADC2 are adjusted to be 0, and then the registers of the PLL chip are adjusted to generate a single SYSREF signal.

S4、读回ADC的建立时间错误标志寄存器和保持时间错误标志寄存器的值,看是否为“0”。S4. Read back the values of the setup time error flag register and the hold time error flag register of the ADC to see if they are "0".

在本实施例中,建立时间错误标志寄存器和保持时间错误标志寄存器分别为0x100[3]和0x100[2],它表征是否SYSREF信号与ADC的采样时钟DCLK_ADC的建立时间窗口和保持时间窗口大于步骤S2中设定的值,第一次读取时,分别是读回存器0x100[3]和0x100[2]的值,发现为“1”。In this embodiment, the setup time error flag register and the hold time error flag register are 0x100[3] and 0x100[2] respectively, which represent whether the setup time window and the hold time window of the SYSREF signal and the sampling clock DCLK_ADC of the ADC are greater than When the values set in step S2 are read for the first time, the values of the registers 0x100[3] and 0x100[2] are respectively read back and found to be "1".

步骤S5:对于任意一片ADC,如果建立时间错误标志寄存器和保持时间错误标志寄存器中至少一个不是“0”(即“1”),通过ADC相应的清零方法对建立时间错误标志寄存器和保持时间错误标志寄存器清零,然后增加SYSREF信号模拟延迟值,并通过串行SPI协议调节时钟管理模块的内部寄存器,重新设置SYSREF信号的模拟延迟值,重新产生单次的SYSREF信号,返回步骤S4;Step S5: For any ADC, if at least one of the setup time error flag register and the hold time error flag register is not "0" (i.e. "1"), set the setup time error flag register and the hold time through the corresponding clearing method of the ADC Clear the error flag register, then increase the analog delay value of the SYSREF signal, and adjust the internal register of the clock management module through the serial SPI protocol, reset the analog delay value of the SYSREF signal, regenerate a single SYSREF signal, and return to step S4;

如果建立时间错误标志寄存器和保持时间错误标志寄存器的值都是“0”,此时表明SYSREF信号与ADC采样时钟DCLK_ADC的建立时间和保持时间都已满足,则跳转到步骤S6。If the values of the setup time error flag register and the hold time error flag register are both "0", it indicates that the setup time and hold time of the SYSREF signal and the ADC sampling clock DCLK_ADC are satisfied, then jump to step S6.

在本实施例中,对寄存器0x03A[6]置“0”置“1”再置为“0”来清零0x100[3]和0x100[2]。In this embodiment, set register 0x03A[6] to "0", set to "1" and then set to "0" to clear 0x100[3] and 0x100[2].

在本实施例中,调节SYSREF信号的延迟值为180ps,重新产生单次的SYSREF信号。发现0x100[3]和0x100[2]的值都稳定为“0”,表明SYSREF信号与ADC采样时钟DCLK_ADC的建立时间和保持时间都已满足。In this embodiment, the delay value of the SYSREF signal is adjusted to 180 ps, and a single SYSREF signal is regenerated. It is found that the values of 0x100[3] and 0x100[2] are both stable as "0", indicating that the setup time and hold time of the SYSREF signal and the ADC sampling clock DCLK_ADC have been satisfied.

步骤S6:求出接收端即FPGA中,SYSREF信号到LMFC(本地多帧时钟)上升沿的时间间隔TRXLMFC,使得存在一个N值,同时满足以下公式:Step S6: Calculate the time interval T RXLMFC from the SYSREF signal to the rising edge of the LMFC (local multi-frame clock) in the receiving end, that is, the FPGA, so that there is an N value and satisfy the following formula simultaneously:

(TTXOUT+TWIRE(max)+TRXIN(max))<((N+1)×TLMFC-TTXLMFC+TRXLMFC)(T TXOUT +T WIRE(max) +T RXIN(max) )<((N+1)×T LMFC -T TXLMFC +T RXLMFC )

(TTXOUT+TWIRE(min)+TRXIN(min))>(N×TLMFC-TTXLMFC+TRXLMFC)(T TXOUT +T WIRE(min) +T RXIN(min) )>(N×T LMFC -T TXLMFC +T RXLMFC )

其中,TTXOUT为发送端即ADC中LMFC上升沿到串行数据输出的时间间隔,TWIRE(max)、TWIRE(min)分别为发送端即ADC到接收端即FPGA的线路延迟最大值和最小值,TRXIN(max)、TRXIN(min)分别为接收端即FPGA接收到串行数据到LMFC上升沿的时间间隔最大和最小值,TLMFC为本地多帧时钟的周期,TTXLMFC为发送端即ADC中SYSREF信号到LMFC上升沿之间的时间间隔。Among them, T TXOUT is the time interval from the rising edge of the LMFC in the ADC at the transmitting end to the serial data output, and T WIRE(max) and T WIRE(min) are the maximum and maximum line delays from the ADC to the FPGA at the receiving end, respectively. The minimum value, T RXIN(max) and T RXIN(min) are the maximum and minimum values of the time interval from the receiving end, that is, the serial data received by the FPGA to the rising edge of LMFC, respectively, T LMFC is the period of the local multi-frame clock, and T TXLMFC is The sending end is the time interval between the SYSREF signal in the ADC and the rising edge of the LMFC.

在本实施例中,TTXOUT为6个帧周期,TWIRE(min)为0个帧周期,TWIRE(max)为0个帧周期,TRXIN(max)、TRXIN(min)分别为92个帧周期和84个帧周期,TLMFC为32个帧周期,TTXLMFC为0个帧周期,TRXLMFC增量值首先选择为0,那么TRXLMFC就为28个帧周期(本实施例中TRXLMFC的增加值是TRXLMFC增量值的4倍,且TRXLMFC是在28的基础上增加的),此时得不到一个同时满足的N值。In this embodiment, T TXOUT is 6 frame periods, T WIRE(min) is 0 frame periods, T WIRE(max) is 0 frame periods, T RXIN(max) and T RXIN(min) are 92 frame periods and 84 frame periods, T LMFC is 32 frame periods, T TXLMFC is 0 frame periods, T RXLMFC incremental value is selected as 0 at first, then T RXLMFC is just 28 frame periods (in this embodiment, T The increase value of RXLMFC is 4 times of the increase value of T RXLMFC , and T RXLMFC is increased on the basis of 28), at this time, a satisfying N value cannot be obtained at the same time.

将TRXLMFC对应的增量值增加到5,则TRXLMFC变为28+5*4=48个帧周期,再次将数值带入可以求得N值为1,满足要求。Increase the incremental value corresponding to T RXLMFC to 5, then T RXLMFC becomes 28+5*4=48 frame periods, and bring the value into it again to obtain the N value of 1, which meets the requirements.

步骤S7:将步骤S6得到的时间间隔TRXLMFC对应的增量值发送到接收端FPGA中LMFC延迟寄存器,这样就保证了链路的确定性延迟,进而实现了多片基于JESD204B协议ADC的同步。Step S7: Send the incremental value corresponding to the time interval T RXLMFC obtained in step S6 to the LMFC delay register in the FPGA of the receiving end, so as to ensure the deterministic delay of the link, and then realize the synchronization of multiple ADCs based on the JESD204B protocol.

在本实施例中,TRXLMFC的增量值为5(对应的TRXLMFC的值为48个帧周期),发送5到两片FPGA中LMFC延迟寄存器0x010[11:8],这样就保证了链路的确定性延迟,进而实现了两片基于JESD204B协议ADC的同步。In this embodiment, the incremental value of T RXLMFC is 5 (the corresponding value of T RXLMFC is 48 frame periods), and 5 is sent to the LMFC delay register 0x010[11:8] in two FPGAs, thus ensuring the chain The deterministic delay of the road realizes the synchronization of two ADCs based on the JESD204B protocol.

仿真simulation

1、验证接收端确定性延迟1. Verify the deterministic delay of the receiving end

通过接收端接收到采样数据的时刻值来证明本发明实现了确定性延迟。在没有使用本方法之前,接收端即FPGA接收采样数据开始的时刻可能为图2中两种情况之一,即接收采样数据开始的时刻是随着上电的不同是不确定的,有时候早有时候晚,链路的延迟不确定。It is proved that the present invention realizes the deterministic delay by the moment value of the sampling data received by the receiving end. Before using this method, the receiving end, that is, the moment when the FPGA starts to receive the sampled data may be one of the two situations in Figure 2, that is, the moment when the received sampled data starts is uncertain with the power-on, and sometimes it is as early as Sometimes later, the delay of the link is uncertain.

在使用本发明后,经过不断的重复上电,不断的重复测试,得到的结果一直为图2中的一种情况,这证明了本发明实现了确定性延迟。After using the present invention, after repeated power-on and repeated tests, the obtained result is always a situation in Fig. 2, which proves that the present invention realizes deterministic delay.

2、验证ADC同步的有效性。2. Verify the effectiveness of ADC synchronization.

调节锁相环芯片,使得ADC2前端的采样时钟滞后ADC1前端的采样时钟200ps,如果两片ADC做到稳定同步,则两片ADC可以构成采样率为5GSPS的时间交替采样系统。通过对两片ADC的数据能否稳定拼合来证明ADC同步的有效性。Adjust the phase-locked loop chip so that the sampling clock at the front end of ADC2 lags behind the sampling clock at the front end of ADC1 by 200ps. If the two ADCs are stable and synchronized, the two ADCs can form a time-alternating sampling system with a sampling rate of 5GSPS. The effectiveness of ADC synchronization is proved by whether the data of the two ADCs can be stably merged.

当SYSREF信号没有采用本发明时,拼合两片ADC的采样数据会得到图3(a)或者图3(b)的情况,并且随着上电的不同这两种情况的产生是随机的。其根本原因在于SYSREF信号处于ADC采样时钟的亚稳态区域,造成SYSREF信号有的时刻指向前一个ADC采样周期有的时刻指向后一个采样周期,具有不确定性。When the SYSREF signal does not adopt the present invention, combining the sampling data of two ADCs will result in the situation in Figure 3(a) or Figure 3(b), and the generation of these two situations is random as the power is turned on. The fundamental reason is that the SYSREF signal is in the metastable region of the ADC sampling clock, causing the SYSREF signal to point to the previous ADC sampling cycle at some point and point to the next sampling cycle at some point, which is uncertain.

当使用本发明后,确保了SYSREF的建立时间和保持时间都有一个时间窗口,不出现亚稳态,进过不断的重复上电和测试,两片ADC的数据可以稳定拼合成图3(b)形式。图3(b)形式也是前端两片ADC采样时钟有一定相位差的原因,得到的稳定的时间交替采样系统证明了两片ADC同步的有效性。After using the present invention, it is ensured that the setup time and the hold time of SYSREF have a time window, no metastable state occurs, and through continuous repeated power-on and testing, the data of the two ADCs can be stably assembled into Fig. 3 (b )form. The form in Figure 3(b) is also the reason why the sampling clocks of the two ADCs at the front end have a certain phase difference. The obtained stable time-alternating sampling system proves the effectiveness of the synchronization of the two ADCs.

尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。Although the illustrative specific embodiments of the present invention have been described above, so that those skilled in the art can understand the present invention, it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, As long as various changes are within the spirit and scope of the present invention defined and determined by the appended claims, these changes are obvious, and all inventions and creations using the concept of the present invention are included in the protection list.

Claims (2)

1.一种多片基于JESD204B协议ADC的同步方法,其特征在于,包括以下步骤:1. a multi-chip synchronous method based on JESD204B protocol ADC, is characterized in that, comprises the following steps: (1)、在多片基于JESD204B协议的ADC、作为采样数据接收端的FPGA以及具有能够产生SYSREF(系统参考)信号的时钟管理模块构建的数据采集系统中,调节时钟管理模块产生满足要求的ADC采样时钟DCLK_ADC分别输入到各片ADC中,产生满足要求的FPGA参考时钟DCLK_FPGA输入到各片FPGA中,同时,时钟管理模块将其产生的SYSREF信号输入到各片ADC以及各片FPGA中;(1) In a data acquisition system built with multiple ADCs based on the JESD204B protocol, an FPGA as a sampling data receiver, and a clock management module capable of generating SYSREF (system reference) signals, the clock management module is adjusted to produce ADC samples that meet the requirements The clock DCLK_ADC is input to each ADC respectively, and the FPGA reference clock DCLK_FPGA that meets the requirements is generated and input to each FPGA . At the same time, the clock management module inputs the SYSREF signal generated by it to each ADC and each FPGA; (2)、配置好各片ADC的寄存器,并使接收到SYSREF信号相对于采样时钟DCLK_ADC的建立时间窗口大于时间阈值T1,保持时间窗口大于时间阈值T2,时间阈值T1、时间阈值T2根据具体的ADC芯片确定;(2), Configure the registers of each ADC , and make the establishment time window of the received SYSREF signal relative to the sampling clock DCLK_ADC greater than the time threshold T1, and keep the time window greater than the time threshold T2. The time threshold T1 and the time threshold T2 are based on the specific The ADC chip is determined; (3)、通过串行SPI协议调节时钟管理模块的内部寄存器,设置SYSREF信号的初始模拟延迟值为0,产生单次的SYSREF信号;(3), adjust the internal register of the clock management module through the serial SPI protocol, set the initial analog delay value of the SYSREF signal to 0, and generate a single SYSREF signal; (4)、读取各ADC的建立时间错误标志寄存器和保持时间错误标志寄存器的值;(4), read the value of the set-up time error flag register and the hold time error flag register of each ADC; (5)、对于任意一片ADC,如果建立时间错误标志寄存器和保持时间错误标志寄存器中至少一个不是“0”(即“1”),则通过ADC相应的清零方法对建立时间错误标志寄存器和保持时间错误标志寄存器清零,然后增加SYSREF信号模拟延迟值,并通过串行SPI协议调节时钟管理模块的内部寄存器,重新设置SYSREF信号的模拟延迟值,重新产生单次的SYSREF信号,返回步骤(4);(5) For any ADC, if at least one of the setup time error flag register and the hold time error flag register is not "0" (that is, "1"), the setup time error flag register and the setup time error flag register and Keep the time error flag register cleared, then increase the SYSREF signal analog delay value, and adjust the internal register of the clock management module through the serial SPI protocol, reset the analog delay value of the SYSREF signal, regenerate a single SYSREF signal, and return to the step ( 4); 如果建立时间错误标志寄存器和保持时间错误标志寄存器的值都是“0”,此时表明SYSREF信号与ADC采样时钟DCLK_ADC的建立时间和保持时间都已满足,则跳转到步骤(6);If the values of the setup time error flag register and the hold time error flag register are both "0", it indicates that the setup time and hold time of the SYSREF signal and the ADC sampling clock DCLK_ADC are satisfied, then jump to step (6); (6)、求出接收端即FPGA中,SYSREF信号到LMFC(本地多帧时钟)上升沿的时间间隔TRXLMFC,使得存在一个N值,同时满足以下公式:(6) Calculate the time interval T RXLMFC from the SYSREF signal to the rising edge of the LMFC (local multi-frame clock) in the receiving end, that is, the FPGA, so that there is an N value and satisfy the following formula at the same time: (TTXOUT+TWIRE(max)+TRXIN(max))<((N+1)×TLMFC-TTXLMFC+TRXLMFC)(T TXOUT +T WIRE(max) +T RXIN ( max ))<((N+1)×T LMFC -T TXLMFC +T RXLMFC ) (TTXOUT+TWIRE(min)+TRXIN(min))>(N×TLMFC-TTXLMFC+TRXLMFC)(T TXOUT +T WIRE(min) +T RXIN(min) )>(N×T LMFC -T TXLMFC +T RXLMFC ) 其中,TTXOUT为发送端即ADC中LMFC上升沿到串行数据输出的时间间隔,TWIRE(max)、TWIRE(min)分别为发送端即ADC到接收端即FPGA的线路延迟最大值和最小值,TRXIN(max)、TRXIN(min)分别为接收端即FPGA接收到串行数据到LMFC上升沿的时间间隔最大和最小值,TLMFC为本地多帧时钟的周期,TTXLMFC为发送端即ADC中SYSREF信号到LMFC上升沿之间的时间间隔;Among them, T TXOUT is the time interval from the rising edge of the LMFC in the ADC at the transmitting end to the serial data output, and T WIRE(max) and T WIRE(min) are the maximum and maximum line delays from the ADC to the FPGA at the receiving end, respectively. The minimum value, T RXIN(max) and T RXIN(min) are the maximum and minimum values of the time interval from the receiving end, that is, the serial data received by the FPGA to the rising edge of LMFC, respectively, T LMFC is the period of the local multi-frame clock, and T TXLMFC is The sending end is the time interval between the SYSREF signal in the ADC and the rising edge of the LMFC; (7)、将步骤(6)得到的时间间隔TRXLMFC对应的增量值发送到接收端FPGA中LMFC延迟寄存器,这样就保证了链路的确定性延迟,进而实现了多片基于JESD204B协议ADC的同步。(7), the incremental value corresponding to the time interval T RXLMFC obtained in step (6) is sent to the LMFC delay register in the receiving end FPGA, so that the deterministic delay of the link is guaranteed, and then multiple chips based on the JESD204B protocol ADC are realized synchronization. 2.根据权利要求1所述的同步方法,其特征在于,步骤(2)中的时间阈值T1=150ps、时间阈值T2=100ps。2. The synchronization method according to claim 1, characterized in that the time threshold T1=150 ps and the time threshold T2=100 ps in step (2).
CN201710305625.2A 2017-05-03 2017-05-03 A kind of synchronous method of multi-disc based on JESD204B agreements ADC Active CN106936531B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710305625.2A CN106936531B (en) 2017-05-03 2017-05-03 A kind of synchronous method of multi-disc based on JESD204B agreements ADC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710305625.2A CN106936531B (en) 2017-05-03 2017-05-03 A kind of synchronous method of multi-disc based on JESD204B agreements ADC

Publications (2)

Publication Number Publication Date
CN106936531A true CN106936531A (en) 2017-07-07
CN106936531B CN106936531B (en) 2018-07-10

Family

ID=59430609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710305625.2A Active CN106936531B (en) 2017-05-03 2017-05-03 A kind of synchronous method of multi-disc based on JESD204B agreements ADC

Country Status (1)

Country Link
CN (1) CN106936531B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495090A (en) * 2018-09-30 2019-03-19 中国人民解放军海军工程大学 Digital precise delay match circuit
CN109542162A (en) * 2018-11-15 2019-03-29 南京长峰航天电子科技有限公司 A kind of clock system of 3Gsps signal processing platform
CN112436915A (en) * 2020-11-05 2021-03-02 苏州云芯微电子科技有限公司 SYSREF establishment time and retention time detection system
CN113535620A (en) * 2021-06-29 2021-10-22 电子科技大学 A multi-channel synchronous high-speed data acquisition device
CN114090497A (en) * 2021-11-17 2022-02-25 南京理工大学 A Synchronization Scheme of High-speed Data Acquisition Clock
CN115604809A (en) * 2022-09-14 2023-01-13 哈尔滨工业大学(Cn) Data synchronization method and device among multiple wireless synchronous data acquisition modules and data acquisition device
WO2023155257A1 (en) * 2022-02-18 2023-08-24 长鑫存储技术有限公司 Delay parameter determination method and apparatus, storage medium and electronic device
US12333230B2 (en) 2022-02-18 2025-06-17 Changxin Memory Technologies, Inc. Method and apparatus for determining delay parameter, storage medium, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497210A (en) * 2011-11-30 2012-06-13 电子科技大学 Data synchronous identification device of multiple analog-to-digital converter (ADC) high-speed data acquisition system
CN103036667A (en) * 2012-11-30 2013-04-10 北京控制工程研究所 Self-adaption timing sequence calibrating method of high-speed serial communication interface
WO2016058344A1 (en) * 2014-10-14 2016-04-21 深圳市中兴微电子技术有限公司 Method, apparatus, communication equipment and storage media for determining link delay
CN105573949A (en) * 2015-12-09 2016-05-11 熊猫电子集团有限公司 Acquiring and processing circuit with JESD204B interface of VPX architecture
CN106209103A (en) * 2016-07-29 2016-12-07 电子科技大学 TIADC gain based on spectrum analysis and the bearing calibration of time error

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497210A (en) * 2011-11-30 2012-06-13 电子科技大学 Data synchronous identification device of multiple analog-to-digital converter (ADC) high-speed data acquisition system
CN103036667A (en) * 2012-11-30 2013-04-10 北京控制工程研究所 Self-adaption timing sequence calibrating method of high-speed serial communication interface
WO2016058344A1 (en) * 2014-10-14 2016-04-21 深圳市中兴微电子技术有限公司 Method, apparatus, communication equipment and storage media for determining link delay
CN105573949A (en) * 2015-12-09 2016-05-11 熊猫电子集团有限公司 Acquiring and processing circuit with JESD204B interface of VPX architecture
CN106209103A (en) * 2016-07-29 2016-12-07 电子科技大学 TIADC gain based on spectrum analysis and the bearing calibration of time error

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈洋等: "基于JESD204B协议的相控阵雷达下行同步采集技术应用", 《雷达与对抗》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495090A (en) * 2018-09-30 2019-03-19 中国人民解放军海军工程大学 Digital precise delay match circuit
CN109495090B (en) * 2018-09-30 2022-04-12 中国人民解放军海军工程大学 Digital Precision Time Delay Matching Circuit
CN109542162A (en) * 2018-11-15 2019-03-29 南京长峰航天电子科技有限公司 A kind of clock system of 3Gsps signal processing platform
CN112436915A (en) * 2020-11-05 2021-03-02 苏州云芯微电子科技有限公司 SYSREF establishment time and retention time detection system
CN112436915B (en) * 2020-11-05 2022-04-22 苏州云芯微电子科技有限公司 A Detection System of SYSREF Setup Time and Hold Time
CN113535620A (en) * 2021-06-29 2021-10-22 电子科技大学 A multi-channel synchronous high-speed data acquisition device
CN113535620B (en) * 2021-06-29 2023-03-07 电子科技大学 Multichannel synchronous high-speed data acquisition device
CN114090497A (en) * 2021-11-17 2022-02-25 南京理工大学 A Synchronization Scheme of High-speed Data Acquisition Clock
WO2023155257A1 (en) * 2022-02-18 2023-08-24 长鑫存储技术有限公司 Delay parameter determination method and apparatus, storage medium and electronic device
US12333230B2 (en) 2022-02-18 2025-06-17 Changxin Memory Technologies, Inc. Method and apparatus for determining delay parameter, storage medium, and electronic device
CN115604809A (en) * 2022-09-14 2023-01-13 哈尔滨工业大学(Cn) Data synchronization method and device among multiple wireless synchronous data acquisition modules and data acquisition device
CN115604809B (en) * 2022-09-14 2023-11-14 哈尔滨工业大学 Data synchronization method and data acquisition device between multiple wireless synchronous data acquisition modules

Also Published As

Publication number Publication date
CN106936531B (en) 2018-07-10

Similar Documents

Publication Publication Date Title
CN106936531B (en) A kind of synchronous method of multi-disc based on JESD204B agreements ADC
US8686773B1 (en) In-system margin measurement circuit
CN109032498B (en) Waveform quantization synchronization method of multi-FPGA multi-channel acquisition system
TWI690161B (en) Method for synchronizing data converters with a signal transmitted from converter to converter
JPH08509580A (en) Delay line separator for data bus
US11509410B2 (en) Method for a slave device for calibrating its output timing, method for a master device for enabling a slave device to calibrate its output timing, master device and slave device
CN1747376A (en) Synchronous devices and semiconductor devices
CN101951313A (en) FPGA-based SFI4.1 device
JP5592001B2 (en) Data transmission including multiplexing and demultiplexing of embedded clock signals
CN116707521A (en) 8.1Gbps eDP high-speed display interface receiving end clock data recovery key circuit system
CN104348465B (en) A kind of control method and control circuit
US8737552B1 (en) Synchronous data transfer
US8995596B1 (en) Techniques for calibrating a clock signal
CN113965287B (en) FPGA-based LinkPort communication system and method
US8675798B1 (en) Systems, circuits, and methods for phase inversion
US20120166856A1 (en) Signal synchronizing systems and methods
US8718215B2 (en) Method and apparatus for deskewing data transmissions
JP5610540B2 (en) Serial communication interface circuit and parallel serial conversion circuit
CN105242903A (en) Random number generation device and method
CN116888931A (en) Serialization/deserialization circuit, serial data receiving method and chip
CN112886952A (en) A dynamic delay compensation circuit for high-speed clock circuit
US9602272B2 (en) Clock and data recovery circuit and system using the same
CN102064826B (en) All-digital clock generation circuit and all-digital clock generation method
CN114614823B (en) Chip clock synchronization method, data acquisition card and data acquisition system
JP4753800B2 (en) CDR circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant