[go: up one dir, main page]

CN106935643A - HEMT and memory chip - Google Patents

HEMT and memory chip Download PDF

Info

Publication number
CN106935643A
CN106935643A CN201511031136.XA CN201511031136A CN106935643A CN 106935643 A CN106935643 A CN 106935643A CN 201511031136 A CN201511031136 A CN 201511031136A CN 106935643 A CN106935643 A CN 106935643A
Authority
CN
China
Prior art keywords
layer
electron mobility
high electron
electrode
mobility transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511031136.XA
Other languages
Chinese (zh)
Inventor
刘美华
陈建国
林信南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Original Assignee
Peking University
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, Peking University Founder Group Co Ltd, Shenzhen Founder Microelectronics Co Ltd filed Critical Peking University
Priority to CN201511031136.XA priority Critical patent/CN106935643A/en
Publication of CN106935643A publication Critical patent/CN106935643A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供了一种高电子迁移率晶体管和存储器芯片,其中高电子迁移率晶体管包括:基底;氮化镓层和氮化镓铝层,氮化镓层的一侧复合于基底的表层,氮化镓层的另一侧复合于氮化镓铝层的底部;氧化层,复合于氮化镓铝层的顶层,氧化层设置有至少三个贯通的接触孔;电极,电极包括漏极电极、栅极电极和源极电极,漏极电极、栅极电极和源极电极分别设置于对应的至少三个贯通的接触孔中对应的接触孔中。通过本发明的技术方案,降低了栅极电极和漏极电极之间的界面缺陷,提高了高电子迁移率晶体管的可靠性。

The invention provides a high electron mobility transistor and a memory chip, wherein the high electron mobility transistor comprises: a substrate; a gallium nitride layer and a gallium aluminum nitride layer, one side of the gallium nitride layer is compounded on the surface layer of the substrate, nitrogen The other side of the gallium nitride layer is compounded on the bottom of the aluminum gallium nitride layer; the oxide layer is compounded on the top layer of the aluminum gallium nitride layer, and the oxide layer is provided with at least three through contact holes; the electrode includes a drain electrode, The gate electrode and the source electrode, and the drain electrode, the gate electrode and the source electrode are respectively arranged in corresponding contact holes among the corresponding at least three through contact holes. Through the technical scheme of the invention, the interface defect between the gate electrode and the drain electrode is reduced, and the reliability of the high electron mobility transistor is improved.

Description

高电子迁移率晶体管和存储器芯片High Electron Mobility Transistors and Memory Chips

技术领域technical field

本发明涉及半导体技术领域,具体而言,涉及一种高电子迁移率晶体管和一种存储器芯片。The invention relates to the technical field of semiconductors, in particular to a high electron mobility transistor and a memory chip.

背景技术Background technique

在相关技术中,随着半导体制造技术的发展,具有低功耗和高速高通特性的功率器件成为主流研究方向。In related technologies, with the development of semiconductor manufacturing technology, power devices with low power consumption and high-speed high-pass characteristics have become the mainstream research direction.

GaN(氮化镓)是第三代宽禁带半导体材料,具有大禁带宽度(3.4eV)、高电子饱和速率(2e7cm/s)、高击穿电场(1e10--3e10V/cm)、较高的热导率、耐腐蚀和抗辐射性能,并且在高压、高频、高温、大功率和抗辐照环境条件下具有较强的优势,因而被认为是研究短波光电子器件和高压高频率大功率器件的最佳材料。GaN (Gallium Nitride) is the third generation wide bandgap semiconductor material with large bandgap (3.4eV), high electron saturation rate (2e7cm/s), high breakdown electric field (1e10--3e10V/cm), relatively It has high thermal conductivity, corrosion resistance and radiation resistance, and has strong advantages in high pressure, high frequency, high temperature, high power and radiation resistance environmental conditions, so it is considered to be a research tool for short-wave optoelectronic devices and high-voltage, high-frequency and large Optimal material for power devices.

具体地,AlGaN(氮化镓铝)/GaN异质结处形成高浓度、高迁移率的二维电子气(2DEG,Two-dimensional electron gas),同时异质结对2DEG具有良好的调节作用,GaN基AlGaN/GaN高迁移率晶体管是功率器件中的研究热点。Specifically, a high-concentration, high-mobility two-dimensional electron gas (2DEG, Two-dimensional electron gas) is formed at the AlGaN (aluminum gallium nitride)/GaN heterojunction, and the heterojunction has a good regulating effect on 2DEG. GaN AlGaN/GaN-based high-mobility transistors are a research hotspot in power devices.

但是,GaN材料和非掺杂本征材料的使用,使得具有低导通电阻的HEMT(Hight Electron Mobility Transistor,高电子迁移率晶体管)器件较难获得,而对于大功率高频器件,界面缺陷严重影响高电子迁移率晶体管的可靠性。However, the use of GaN materials and non-doped intrinsic materials makes it difficult to obtain HEMT (High Electron Mobility Transistor, High Electron Mobility Transistor) devices with low on-resistance, and for high-power high-frequency devices, interface defects are serious Affects the reliability of high electron mobility transistors.

因此,如何设计一种新的高电子迁移率晶体管以提高器件可靠性成为目前亟待解决的技术问题。Therefore, how to design a new high electron mobility transistor to improve device reliability has become an urgent technical problem to be solved.

发明内容Contents of the invention

本发明正是基于上述问题,提出了一种新的高电子迁移率晶体管的技术方案,通过在氮化镓铝和电极结构(栅极电极、源极电极和漏极电极之间)设置氧化层,降低了氮化镓铝的界面缺陷,降低了表面漏电流,提高了高电子迁移率晶体管的可靠性。Based on the above problems, the present invention proposes a new technical solution for high electron mobility transistors, by setting an oxide layer between aluminum gallium nitride and the electrode structure (between the gate electrode, the source electrode and the drain electrode) , reduces the interface defects of aluminum gallium nitride, reduces the surface leakage current, and improves the reliability of high electron mobility transistors.

有鉴于此,本发明提出了一种高电子迁移率晶体管,包括:基底;氮化镓层和氮化镓铝层,所述氮化镓层的一侧复合于所述基底的表层,所述氮化镓层的另一侧复合于所述氮化镓铝层的底部;氧化层,复合于所述氮化镓铝层的顶层,所述氧化层设置有至少三个贯通的接触孔;电极,所述电极包括漏极电极、栅极电极和源极电极,所述漏极电极、所述栅极电极和所述源极电极分别设置于对应的所述至少三个贯通的接触孔中对应的接触孔中。In view of this, the present invention proposes a high electron mobility transistor, comprising: a substrate; a gallium nitride layer and an aluminum gallium nitride layer, one side of the gallium nitride layer is compounded on the surface layer of the substrate, and the The other side of the gallium nitride layer is compounded on the bottom of the gallium aluminum nitride layer; the oxide layer is compounded on the top layer of the gallium aluminum nitride layer, and the oxide layer is provided with at least three through contact holes; the electrode , the electrodes include a drain electrode, a gate electrode, and a source electrode, and the drain electrode, the gate electrode, and the source electrode are respectively arranged in the corresponding at least three through contact holes corresponding to in the contact hole.

在该技术方案中,通过在氮化镓铝和电极结构(栅极电极、源极电极和漏极电极之间)设置氧化层,降低了氮化镓铝的界面缺陷,降低了表面漏电流,提高了高电子迁移率晶体管的可靠性。In this technical scheme, by setting an oxide layer between the aluminum gallium nitride and the electrode structure (between the gate electrode, the source electrode and the drain electrode), the interface defects of the aluminum gallium nitride are reduced, and the surface leakage current is reduced. Improved reliability of high electron mobility transistors.

在上述技术方案中,优选的,所述源极电极包括第一钛-铝-钛-氮化钛复合层。In the above technical solution, preferably, the source electrode includes a first titanium-aluminum-titanium-titanium nitride composite layer.

在上述技术方案中,优选的,所述漏极电极包括第二钛-铝-钛-氮化钛复合层,所述源极电极和所述漏极电极是分离的。In the above technical solution, preferably, the drain electrode includes a second titanium-aluminum-titanium-titanium nitride composite layer, and the source electrode is separated from the drain electrode.

在上述技术方案中,优选的,所述栅极电极包括:镍-金复合层,所述栅极电极和所述源极电极是分离的,所述栅极电极和所述漏极电极是分离的。In the above technical solution, preferably, the gate electrode includes: a nickel-gold composite layer, the gate electrode is separated from the source electrode, and the gate electrode is separated from the drain electrode of.

在上述技术方案中,优选的,所述氧化层包括:第一氧化硅层,所述第一氧化硅层包括正硅酸乙酯层。In the above technical solution, preferably, the oxide layer includes: a first silicon oxide layer, and the first silicon oxide layer includes a tetraethyl orthosilicate layer.

在该技术方案中,通过设置第一氧化硅层包括正硅酸乙酯层,由于正硅酸乙酯层的致密性和可靠性,进一步地保证了高电子迁移率晶体管的耐压特性。In this technical solution, by arranging the first silicon oxide layer to include the tetraethyl orthosilicate layer, due to the compactness and reliability of the tetraethyl orthosilicate layer, the withstand voltage characteristics of the high electron mobility transistor are further ensured.

在上述技术方案中,优选的,所述氧化层还包括:氧化铝层,所述氧化铝层复合于所述第一氮化硅层的顶层。In the above technical solution, preferably, the oxide layer further includes: an aluminum oxide layer, and the aluminum oxide layer is compounded on the top layer of the first silicon nitride layer.

在该技术方案中,通过在氧化层中设置氧化铝层,降低了氮化铝层和氮化硅层之间的应力,更进一步地提升了高电子迁移率晶体管的可靠性。In this technical solution, by disposing the aluminum oxide layer in the oxide layer, the stress between the aluminum nitride layer and the silicon nitride layer is reduced, and the reliability of the high electron mobility transistor is further improved.

在上述技术方案中,优选的,所述氮化镓铝层包括本征氮化镓铝结构层。In the above technical solution, preferably, the aluminum gallium nitride layer includes an intrinsic aluminum gallium nitride structure layer.

在上述技术方案中,优选的,还包括:隔离层,复合于所述氧化层和所述电极的顶层。In the above technical solution, preferably, further comprising: an isolation layer, compounded on the oxide layer and the top layer of the electrode.

在该技术方案中,通过在氧化层和电极的顶层设置隔离层,在提升器件可靠性的前提下,降低了空间电磁信号对高电子迁移率晶体管的干扰。In this technical solution, by setting the isolation layer on the top layer of the oxide layer and the electrode, the interference of the space electromagnetic signal to the high electron mobility transistor is reduced under the premise of improving the reliability of the device.

在上述技术方案中,优选的,所述隔离层包括第二氧化硅层和/或第二氮化硅层。In the above technical solution, preferably, the isolation layer includes a second silicon oxide layer and/or a second silicon nitride layer.

根据本发明的第二方面,提出了一种存储器芯片,包括:如上述任一项技术方案所述的高电子迁移率晶体管。According to a second aspect of the present invention, a memory chip is provided, including: the high electron mobility transistor described in any one of the above technical solutions.

通过以上技术方案,通过将栅极电极和源极电极接触,消除了栅极和源极之间的间距,有效地减小了高电子迁移率晶体管的导通电阻和功耗,提高了高电子迁移率晶体管的可靠性。Through the above technical scheme, by contacting the gate electrode and the source electrode, the distance between the gate and the source is eliminated, the on-resistance and power consumption of the high electron mobility transistor are effectively reduced, and the high electron mobility is improved. Reliability of mobility transistors.

附图说明Description of drawings

图1示出了根据本发明的实施例的高电子迁移率晶体管的剖面示意图;FIG. 1 shows a schematic cross-sectional view of a high electron mobility transistor according to an embodiment of the present invention;

图2示出了根据本发明的实施例的存储器芯片的示意框图。Fig. 2 shows a schematic block diagram of a memory chip according to an embodiment of the present invention.

具体实施方式detailed description

为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。In order to understand the above-mentioned purpose, features and advantages of the present invention more clearly, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be noted that, in the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other.

在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。In the following description, many specific details are set forth in order to fully understand the present invention. However, the present invention can also be implemented in other ways different from those described here. Therefore, the protection scope of the present invention is not limited by the specific details disclosed below. EXAMPLE LIMITATIONS.

图1示出了根据本发明的一个实施例的高电子迁移率晶体管的结构示意图。FIG. 1 shows a schematic structural diagram of a high electron mobility transistor according to an embodiment of the present invention.

如图1所示,根据本发明的实施例的高电子迁移率晶体管100,包括:基底1;氮化镓层2和氮化镓铝层3,所述氮化镓层2的一侧复合于所述基底1的表层,所述氮化镓层2的另一侧复合于所述氮化镓铝层3的底部;氧化层4,复合于所述氮化镓铝层3的顶层,所述氧化层4设置有至少三个贯通的接触孔;电极,所述电极包括漏极51电极、栅极52电极和源极53电极,所述漏极51电极、所述栅极52电极和所述源极53电极分别设置于对应的所述至少三个贯通的接触孔中对应的接触孔中。As shown in FIG. 1, a high electron mobility transistor 100 according to an embodiment of the present invention includes: a substrate 1; a gallium nitride layer 2 and an aluminum gallium nitride layer 3, one side of the gallium nitride layer 2 is compounded on The surface layer of the substrate 1, the other side of the gallium nitride layer 2 is compounded on the bottom of the gallium aluminum nitride layer 3; the oxide layer 4 is compounded on the top layer of the gallium aluminum nitride layer 3, the The oxide layer 4 is provided with at least three through contact holes; electrodes, the electrodes include a drain 51 electrode, a gate 52 electrode and a source 53 electrode, and the drain 51 electrode, the gate 52 electrode and the The source electrodes 53 are respectively disposed in corresponding contact holes among the at least three through contact holes.

在该技术方案中,通过在氮化镓铝3和电极结构(栅极52电极、源极53电极和漏极51电极之间)设置氧化层4,降低了氮化镓铝3的界面缺陷,降低了表面漏电流,提高了高电子迁移率晶体管的可靠性。In this technical scheme, the interface defects of the aluminum gallium nitride 3 are reduced by setting the oxide layer 4 between the aluminum gallium nitride 3 and the electrode structure (between the gate 52 electrode, the source electrode 53 electrode and the drain electrode 51 electrode), The surface leakage current is reduced and the reliability of the high electron mobility transistor is improved.

其中,高电子迁移率晶体管100在施加电载荷后,氮化镓层2和氮化镓铝层3之间极化诱生二维电子气7,其具有高浓度和高迁移率特性,在提高器件可靠性的同时,保证了高电子迁移率晶体管100的制作工艺兼容于CMOS(Complementary Metal-Oxide-Semiconductor Transistor,补偿金属氧化半导体晶体管)工艺,从而降低了是制造成本。Among them, after the high electron mobility transistor 100 is applied with an electric load, the two-dimensional electron gas 7 is polarized between the gallium nitride layer 2 and the aluminum gallium nitride layer 3, which has high concentration and high mobility characteristics, and improves While device reliability is ensured, the fabrication process of the high electron mobility transistor 100 is compatible with the CMOS (Complementary Metal-Oxide-Semiconductor Transistor, Compensation Metal-Oxide-Semiconductor Transistor) process, thereby reducing the manufacturing cost.

在上述技术方案中,优选的,所述源极电极53包括第一钛-铝-钛-氮化钛复合层。In the above technical solution, preferably, the source electrode 53 includes a first titanium-aluminum-titanium-titanium nitride composite layer.

在上述技术方案中,优选的,所述漏极电极51包括第二钛-铝-钛-氮化钛复合层,所述源极电极53和所述漏极电极51是分离的。In the above technical solution, preferably, the drain electrode 51 includes a second titanium-aluminum-titanium-titanium nitride composite layer, and the source electrode 53 and the drain electrode 51 are separated.

在上述技术方案中,优选的,所述栅极电极52包括:镍-金复合层,所述栅极电极52和所述源极电极53是分离的,所述栅极电极52和所述漏极电极51是分离的。In the above technical solution, preferably, the gate electrode 52 includes: a nickel-gold composite layer, the gate electrode 52 and the source electrode 53 are separated, and the gate electrode 52 and the drain The pole electrode 51 is separated.

在上述技术方案中,优选的,所述氧化层4包括:第一氧化硅层,所述第一氧化硅层包括正硅酸乙酯层。In the above technical solution, preferably, the oxide layer 4 includes: a first silicon oxide layer, and the first silicon oxide layer includes a tetraethyl orthosilicate layer.

在该技术方案中,通过设置第一氧化硅层包括正硅酸乙酯层,由于正硅酸乙酯层的致密性和可靠性,进一步地保证了高电子迁移率晶体管100的耐压特性。In this technical solution, by arranging the first silicon oxide layer to include the tetraethyl orthosilicate layer, due to the compactness and reliability of the tetraethyl orthosilicate layer, the withstand voltage characteristic of the high electron mobility transistor 100 is further ensured.

在上述技术方案中,优选的,所述氧化层4还包括:氧化铝层,所述氧化铝层复合于所述第一氮化硅层的顶层。In the above technical solution, preferably, the oxide layer 4 further includes: an aluminum oxide layer, and the aluminum oxide layer is compounded on the top layer of the first silicon nitride layer.

在该技术方案中,通过在氧化层中设置氧化铝层,降低了氮化铝层和氮化硅层之间的应力,更进一步地提升了高电子迁移率晶体管100的可靠性。In this technical solution, by disposing the aluminum oxide layer in the oxide layer, the stress between the aluminum nitride layer and the silicon nitride layer is reduced, and the reliability of the high electron mobility transistor 100 is further improved.

在上述技术方案中,优选的,所述氮化镓铝层3包括本征氮化镓铝结构层。In the above technical solution, preferably, the aluminum gallium nitride layer 3 includes an intrinsic aluminum gallium nitride structure layer.

在上述技术方案中,优选的,还包括:隔离层6,复合于所述氧化层4和所述电极的顶层。In the above technical solution, preferably, an isolation layer 6 is further included, compounded on the oxide layer 4 and the top layer of the electrodes.

在该技术方案中,通过在氧化层4和电极的顶层设置隔离层6,在提升器件可靠性的前提下,降低了空间电磁信号对高电子迁移率晶体管100的干扰。In this technical solution, by disposing the isolation layer 6 on the top layer of the oxide layer 4 and the electrodes, the interference of space electromagnetic signals to the high electron mobility transistor 100 is reduced under the premise of improving device reliability.

在上述技术方案中,优选的,所述隔离层包括第二氧化硅层和/或第二氮化硅层。In the above technical solution, preferably, the isolation layer includes a second silicon oxide layer and/or a second silicon nitride layer.

图2示出了根据本发明的实施例的存储器芯片的示意框图。Fig. 2 shows a schematic block diagram of a memory chip according to an embodiment of the present invention.

如图2所示,根据本发明的实施例的存储器芯片200,包括:如上述任一项技术方案所述的高电子迁移率晶体管100。As shown in FIG. 2 , a memory chip 200 according to an embodiment of the present invention includes: the high electron mobility transistor 100 described in any one of the above technical solutions.

以上结合附图详细说明了本发明的技术方案,考虑到相关技术中提出的如何设计一种新的高电子迁移率晶体管以降低导通电阻的技术问题,本发明提出了一种新的高电子迁移率晶体管的技术方案,通过在氮化镓铝和电极结构(栅极电极、源极电极和漏极电极之间)设置氧化层,降低了氮化镓铝的界面缺陷,降低了表面漏电流,提高了高电子迁移率晶体管的可靠性。The technical scheme of the present invention has been described in detail above in conjunction with the accompanying drawings. Considering the technical problem of how to design a new high electron mobility transistor to reduce the on-resistance proposed in the related art, the present invention proposes a new high electron mobility transistor. The technical solution of the mobility transistor reduces the interface defects of aluminum gallium nitride and the surface leakage current by setting an oxide layer between the aluminum gallium nitride and the electrode structure (between the gate electrode, the source electrode and the drain electrode). , improving the reliability of high electron mobility transistors.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1.一种高电子迁移率晶体管,其特征在于,包括:1. A high electron mobility transistor, characterized in that, comprising: 基底;base; 氮化镓层和氮化镓铝层,所述氮化镓层的一侧复合于所述基底的表层,所述氮化镓层的另一侧复合于所述氮化镓铝层的底部;a gallium nitride layer and a gallium aluminum nitride layer, one side of the gallium nitride layer is compounded on the surface layer of the substrate, and the other side of the gallium nitride layer is compounded on the bottom of the gallium aluminum nitride layer; 氧化层,复合于所述氮化镓铝层的顶层,所述氧化层设置有至少三个贯通的接触孔;an oxide layer compounded on the top layer of the aluminum gallium nitride layer, and the oxide layer is provided with at least three through contact holes; 电极,所述电极包括漏极电极、栅极电极和源极电极,所述漏极电极、所述栅极电极和所述源极电极分别设置于对应的所述至少三个贯通的接触孔中对应的接触孔中。An electrode, the electrode includes a drain electrode, a gate electrode, and a source electrode, and the drain electrode, the gate electrode, and the source electrode are respectively arranged in the corresponding at least three through contact holes corresponding contact holes. 2.根据权利要求1所述的高电子迁移率晶体管,其特征在于,2. The high electron mobility transistor according to claim 1, wherein 所述源极电极包括第一钛-铝-钛-氮化钛复合层。The source electrode includes a first titanium-aluminum-titanium-titanium nitride composite layer. 3.根据权利要求2所述的高电子迁移率晶体管,其特征在于,3. The high electron mobility transistor according to claim 2, wherein 所述漏极电极包括第二钛-铝-钛-氮化钛复合层,所述源极电极和所述漏极电极是分离的。The drain electrode includes a second titanium-aluminum-titanium-titanium nitride composite layer, and the source electrode and the drain electrode are separated. 4.根据权利要求3所述的高电子迁移率晶体管,其特征在于,所述栅极电极包括:4. The high electron mobility transistor according to claim 3, wherein the gate electrode comprises: 镍-金复合层,所述栅极电极和所述源极电极是分离的,所述栅极电极和所述漏极电极是分离的。In the nickel-gold composite layer, the gate electrode is separated from the source electrode, and the gate electrode is separated from the drain electrode. 5.根据权利要求4所述的高电子迁移率晶体管,其特征在于,所述氧化层包括:第一氧化硅层,所述第一氧化硅层包括正硅酸乙酯层。5 . The high electron mobility transistor according to claim 4 , wherein the oxide layer comprises: a first silicon oxide layer, and the first silicon oxide layer comprises a tetraethyl orthosilicate layer. 6.根据权利要求3所述的高电子迁移率晶体管,其特征在于,所述氧化层还包括:6. The high electron mobility transistor according to claim 3, wherein the oxide layer further comprises: 氧化铝层,所述氧化铝层复合于所述第一氮化硅层的顶层。An aluminum oxide layer, the aluminum oxide layer is compounded on the top layer of the first silicon nitride layer. 7.根据权利要求1至6中任一项所述的高电子迁移率晶体管,其特征在于,所述氮化镓铝层包括本征氮化镓铝结构层。7. The high electron mobility transistor according to any one of claims 1 to 6, wherein the aluminum gallium nitride layer comprises an intrinsic aluminum gallium nitride structure layer. 8.根据权利要求1至6中任一项所述的高电子迁移率晶体管,其特征在于,还包括:8. The high electron mobility transistor according to any one of claims 1 to 6, further comprising: 隔离层,复合于所述氧化层和所述电极的顶层。The isolation layer is compounded on the oxide layer and the top layer of the electrode. 9.根据权利要求1至6中任一项所述的高电子迁移率晶体管,其特征在于,所述隔离层包括第二氧化硅层和/或第二氮化硅层。9. The high electron mobility transistor according to any one of claims 1 to 6, wherein the isolation layer comprises a second silicon oxide layer and/or a second silicon nitride layer. 10.一种存储器芯片,其特征在于,包括:10. A memory chip, characterized in that, comprising: 如权利要求1至9中任一项所述的高电子迁移率晶体管。A high electron mobility transistor as claimed in any one of claims 1 to 9.
CN201511031136.XA 2015-12-31 2015-12-31 HEMT and memory chip Pending CN106935643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511031136.XA CN106935643A (en) 2015-12-31 2015-12-31 HEMT and memory chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511031136.XA CN106935643A (en) 2015-12-31 2015-12-31 HEMT and memory chip

Publications (1)

Publication Number Publication Date
CN106935643A true CN106935643A (en) 2017-07-07

Family

ID=59444649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511031136.XA Pending CN106935643A (en) 2015-12-31 2015-12-31 HEMT and memory chip

Country Status (1)

Country Link
CN (1) CN106935643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323275A (en) * 2018-03-28 2019-10-11 台湾积体电路制造股份有限公司 semiconductor structure
CN112133739A (en) * 2019-06-25 2020-12-25 联华电子股份有限公司 High electron mobility transistor and method for adjusting electron density of two-dimensional electron gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891171A (en) * 2011-07-21 2013-01-23 联华电子股份有限公司 Nitride semiconductor device and manufacturing method thereof
CN103456781A (en) * 2012-06-04 2013-12-18 英飞凌科技奥地利有限公司 Compound semiconductor transistor with self aligned gate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891171A (en) * 2011-07-21 2013-01-23 联华电子股份有限公司 Nitride semiconductor device and manufacturing method thereof
CN103456781A (en) * 2012-06-04 2013-12-18 英飞凌科技奥地利有限公司 Compound semiconductor transistor with self aligned gate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323275A (en) * 2018-03-28 2019-10-11 台湾积体电路制造股份有限公司 semiconductor structure
CN112133739A (en) * 2019-06-25 2020-12-25 联华电子股份有限公司 High electron mobility transistor and method for adjusting electron density of two-dimensional electron gas
CN112133739B (en) * 2019-06-25 2024-05-07 联华电子股份有限公司 High electron mobility transistor and method for adjusting electron density of two-dimensional electron gas

Similar Documents

Publication Publication Date Title
CN109585545B (en) Enhanced semiconductor device and method of making the same
JP6476114B2 (en) III-nitride enhancement mode transistors with adjustable and high gate-source voltage ratings
JP6240898B2 (en) Semiconductor device
US11056584B2 (en) Semiconductor device
CN104299999B (en) A kind of gallium nitride radical heterojunction field effect transistor with composite gate dielectric layer
CN110061053A (en) A kind of enhanced semiconductor transistor and preparation method thereof
CN104051523A (en) Semiconductor device with low ohmic contact resistance and manufacturing method thereof
CN103000682A (en) Nitride semiconductor device
US20150069615A1 (en) Semiconductor device
CN104347701B (en) A kind of field-effect transistor with composite passivated Rotating fields
JP2008187173A (en) III-nitride power semiconductor devices
CN104269433B (en) Gallium-nitride-based enhancement type heterojunction field effect transistor with composite channel layer
CN103227199B (en) Semi-conductor electronic device
CN103745989B (en) Hemt
CN104241351B (en) Gallium nitride radical heterojunction field effect pipe with internal composite field plate structure
CN111312815A (en) GaN-based power transistor structure and preparation method thereof
CN106935643A (en) HEMT and memory chip
CN106601792A (en) Gallium nitride transistor of high electron mobility and preparation method of transistor
CN104157679B (en) A kind of gallium nitride base enhancement mode HFET
CN106601806A (en) Semiconductor device and manufacture method thereof
CN205564759U (en) Novel enhancement mode III -V heterojunction field effect transistor
CN103474460B (en) A kind of HEMT
CN106783993B (en) Gallium nitride heterojunction field-effect tube with compound medium layer structure in substrate
CN103035707B (en) Super-junction vertical gallium nitride based nitride heterojunction field effect transistor
CN104201200B (en) A kind of gallium nitride radical heterojunction field effect transistor with eelctric dipole Rotating fields

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170707