CN111312815A - GaN-based power transistor structure and preparation method thereof - Google Patents
GaN-based power transistor structure and preparation method thereof Download PDFInfo
- Publication number
- CN111312815A CN111312815A CN202010127104.4A CN202010127104A CN111312815A CN 111312815 A CN111312815 A CN 111312815A CN 202010127104 A CN202010127104 A CN 202010127104A CN 111312815 A CN111312815 A CN 111312815A
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- drain
- source
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 230000004888 barrier function Effects 0.000 claims abstract description 90
- 238000002161 passivation Methods 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910002704 AlGaN Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 226
- 230000005533 two-dimensional electron gas Effects 0.000 description 30
- 230000010354 integration Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000004047 hole gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种GaN基功率晶体管结构及其制备方法,该GaN基功率晶体管结构包括:源极结构、叠层结构、漏极结构和栅极结构,源极结构设置在叠层结构的第一端,漏极结构相对源极结构设置在叠层结构的第二端;栅极结构设置在叠层结构上,栅极结构设置在第一端和第二端之间;其中,叠层结构包括:自下而上依次叠层的下势垒层、沟道层、上势垒层和钝化层。该GaN基功率晶体管结构将器件的反向导通压降稳定于约0V,使得器件在正向导通特性不受影响的情况下具有续流能力,推动了GaN基功率晶体管在高频功率电子系统中的应用。
The invention discloses a GaN-based power transistor structure and a preparation method thereof. The GaN-based power transistor structure includes: a source structure, a stacked structure, a drain structure and a gate structure, and the source structure is arranged on the first part of the stacked structure. At one end, the drain structure is arranged at the second end of the stack structure relative to the source structure; the gate structure is arranged on the stack structure, and the gate structure is arranged between the first end and the second end; wherein, the stack structure It includes: a lower barrier layer, a channel layer, an upper barrier layer and a passivation layer sequentially stacked from bottom to top. The GaN-based power transistor structure stabilizes the reverse conduction voltage drop of the device at about 0V, which enables the device to have freewheeling capability without affecting the forward conduction characteristics, which promotes the application of GaN-based power transistors in high-frequency power electronic systems. Applications.
Description
技术领域technical field
本发明涉及半导体器件技术领域,具体涉及一种GaN基功率晶体管结构及其制备方法。The invention relates to the technical field of semiconductor devices, in particular to a GaN-based power transistor structure and a preparation method thereof.
背景技术Background technique
高电子迁移率晶体管(High Electron Mobility Transistor,简称HEMT)是一种具有异质结结构的场效应晶体管。其中,GaN基HEMT具备高开关速度、低寄生、高输出功率等优异性能,在高频功率电子系统中具有很大的应用潜力。然而由于缺乏体二极管,GaN基HEMT不具备续流能力,在器件处于关态时具有较大的反向导通压降,且该压降受到栅源电压的调控,影响了功率变换器的同步整流,并产生额外的功率损耗,降低了系统效率。A High Electron Mobility Transistor (HEMT for short) is a field effect transistor with a heterojunction structure. Among them, GaN-based HEMTs have excellent performances such as high switching speed, low parasitics, and high output power, and have great application potential in high-frequency power electronic systems. However, due to the lack of a body diode, GaN-based HEMTs do not have freewheeling capability, and have a large reverse conduction voltage drop when the device is in the off state, and this voltage drop is regulated by the gate-source voltage, which affects the synchronous rectification of the power converter. , and generate additional power loss, reducing system efficiency.
发明内容SUMMARY OF THE INVENTION
(一)要解决的技术问题(1) Technical problems to be solved
为解决现有技术中GaN基HEMT不具备续流能力,在器件处于关态时具有较大的反向导通压降使得其影响器件系统效率的技术问题,本发明公开了一种GaN基功率晶体管结构及其制备方法。In order to solve the technical problem that the GaN-based HEMT in the prior art does not have the freewheeling capability and has a large reverse conduction voltage drop when the device is in an off state, which affects the efficiency of the device system, the present invention discloses a GaN-based power transistor. Structure and method of making the same.
(二)技术方案(2) Technical solutions
本发明的一个方面公开了一种GaN基功率晶体管结构,包括:源极结构、叠层结构、漏极结构和栅极结构,源极结构设置在叠层结构的第一端,漏极结构相对源极结构设置在叠层结构的第二端;栅极结构设置在叠层结构上,且位于所述第一端和第二端之间;其中,叠层结构包括:自下而上依次叠层的下势垒层、沟道层、上势垒层和钝化层。One aspect of the present invention discloses a GaN-based power transistor structure, comprising: a source structure, a stack structure, a drain structure and a gate structure, wherein the source structure is disposed at the first end of the stack structure, and the drain structure is opposite to The source structure is arranged on the second end of the stacked structure; the gate structure is arranged on the stacked structure, and is located between the first end and the second end; wherein, the stacked structure includes: stacking sequentially from bottom to top layer of lower barrier layer, channel layer, upper barrier layer and passivation layer.
根据本发明的实施例,GaN基功率晶体管结构还包括:基底结构,设置于叠层结构下方;基底结构包括:缓冲层和衬底层,缓冲层设置于下势垒层下方;衬底层设置于缓冲层下方。According to an embodiment of the present invention, the GaN-based power transistor structure further includes: a base structure disposed under the stacked layer structure; the base structure includes: a buffer layer and a substrate layer, the buffer layer is disposed under the lower barrier layer; the substrate layer is disposed under the buffer layer below the layer.
根据本发明的实施例,GaN基功率晶体管结构还包括:2DEG层和2DHG层,2DEG层形成于沟道层内,且形成于沟道层与上势垒层的交界面下方;以及2DHG层形成于沟道层内,且形成于下势垒层与沟道层的交界面上方。According to an embodiment of the present invention, the GaN-based power transistor structure further includes: a 2DEG layer and a 2DHG layer, the 2DEG layer is formed in the channel layer and below the interface between the channel layer and the upper barrier layer; and the 2DHG layer is formed in the channel layer and formed above the interface between the lower barrier layer and the channel layer.
根据本发明的实施例,源极结构包括:源极孔、下源极和上源极,源极孔开设于叠层结构的第一端,且自上而下依次穿透钝化层、上势垒层、沟道层,并部分穿设于下势垒层;下源极设置于源极孔的下端,且对应下势垒层的上部分和沟道层的下部分设置;以及上源极设置于源极孔的上端,且对应沟道层的上部分、上势垒层和钝化层设置。According to an embodiment of the present invention, the source structure includes: a source hole, a lower source and an upper source. The source hole is opened at the first end of the stacked structure and penetrates the passivation layer, the upper source and the upper source in sequence from top to bottom. The barrier layer and the channel layer are partially penetrated through the lower barrier layer; the lower source is arranged at the lower end of the source hole, and is arranged corresponding to the upper part of the lower barrier layer and the lower part of the channel layer; and the upper source The electrode is arranged on the upper end of the source hole, and is arranged corresponding to the upper part of the channel layer, the upper barrier layer and the passivation layer.
根据本发明的实施例,上源极与2DEG层之间形成欧姆接触;以及下源极与2DHG层之间形成肖特基接触。According to an embodiment of the present invention, an ohmic contact is formed between the upper source electrode and the 2DEG layer; and a Schottky contact is formed between the lower source electrode and the 2DHG layer.
根据本发明的实施例,漏极结构包括:漏极孔、下漏极和上漏极,漏极孔开设于叠层结构的第二端,且自上而下依次穿透钝化层、上势垒层、沟道层,并部分穿设于下势垒层;下漏极设置于漏极孔的下端,且对应下势垒层的上部分和沟道层的下部分设置;以及上漏极设置于漏极孔的上端,且对应沟道层的上部分、上势垒层和钝化层设置。According to an embodiment of the present invention, the drain structure includes: a drain hole, a lower drain, and an upper drain, the drain hole is opened at the second end of the stacked structure, and penetrates the passivation layer, the upper drain and the upper drain in sequence from top to bottom. The barrier layer and the channel layer are partially penetrated through the lower barrier layer; the lower drain is arranged at the lower end of the drain hole, and is arranged corresponding to the upper part of the lower barrier layer and the lower part of the channel layer; and the upper drain The electrode is arranged on the upper end of the drain hole, and is arranged corresponding to the upper part of the channel layer, the upper barrier layer and the passivation layer.
根据本发明的实施例,上漏极与2DEG层之间形成欧姆接触或肖特基接触;以及下漏极与2DHG层之间形成欧姆接触。According to an embodiment of the present invention, an ohmic contact or Schottky contact is formed between the upper drain electrode and the 2DEG layer; and an ohmic contact is formed between the lower drain electrode and the 2DHG layer.
根据本发明的实施例,栅极结构包括:栅极孔和栅极,栅极孔开设于叠层结构的钝化层上,且靠近源极结构设置,以及栅极孔穿透钝化层,并部分穿设于上势垒层;以及栅极设置于栅极孔,且对应钝化层和上势垒层的上部分设置。According to an embodiment of the present invention, the gate structure includes: a gate hole and a gate, the gate hole is opened on the passivation layer of the stacked structure, and is disposed close to the source structure, and the gate hole penetrates the passivation layer, and partially penetrated through the upper barrier layer; and the gate is arranged in the gate hole, and is arranged corresponding to the passivation layer and the upper part of the upper barrier layer.
根据本发明的实施例,源极结构、漏极结构或栅极结构的材料包括:Ti,Al,Ni,W,Pt,Pd,Au或Ag中的一种或多种的组合。According to an embodiment of the present invention, the material of the source structure, the drain structure or the gate structure includes: one or a combination of Ti, Al, Ni, W, Pt, Pd, Au or Ag.
根据本发明的实施例,缓冲层的材料包括GaN;下势垒层或上势垒层的材料包括:AlN、AlGaN、AlInN、InGaN或AlInGaN中的一种或多种的组合;沟道层的材料包括:InGaN,其中,Ga组分介于0~100%之间;钝化层的材料包括:氮化硅、二氧化硅、氮化铝或GaN的一种或多种的组合。According to an embodiment of the present invention, the material of the buffer layer includes GaN; the material of the lower barrier layer or the upper barrier layer includes: one or a combination of AlN, AlGaN, AlInN, InGaN or AlInGaN; The material includes: InGaN, wherein the Ga composition is between 0 and 100%; the material of the passivation layer includes: one or more combinations of silicon nitride, silicon dioxide, aluminum nitride or GaN.
根据本发明的实施例,上势垒层或下势垒层的厚度包括:1nm-50nm,以及沟道层的厚度为10-500nm。According to an embodiment of the present invention, the thickness of the upper barrier layer or the lower barrier layer includes: 1 nm-50 nm, and the thickness of the channel layer is 10-500 nm.
本发明的另一个方面公开了一种用于上述的GaN基功率晶体管结构的制备方法,包括:形成叠层结构;在叠层结构上形成源极结构和漏极结构;以及在叠层结构上的源极结构与漏极结构之间形成栅极结构。Another aspect of the present invention discloses a preparation method for the above-mentioned GaN-based power transistor structure, including: forming a stack structure; forming a source structure and a drain structure on the stack structure; and forming a stack structure on the stack structure A gate structure is formed between the source structure and the drain structure.
根据本发明的实施例,在叠层结构上形成源极结构和漏极结构,包括:在叠层结构的第一端形成源极结构,在叠层结构的第二端形成漏极结构;或者在叠层结构的第二端形成漏极结构,在叠层结构的第一端形成源极结构。According to an embodiment of the present invention, forming a source structure and a drain structure on the stacked structure includes: forming a source structure at a first end of the stacked structure, and forming a drain structure at a second end of the stacked structure; or A drain structure is formed at the second end of the stacked structure, and a source structure is formed at the first end of the stacked structure.
(三)有益效果(3) Beneficial effects
本发明公开了一种GaN基功率晶体管结构及其制备方法,该GaN基功率晶体管结构包括:源极结构、叠层结构、漏极结构和栅极结构,源极结构设置在叠层结构的第一端,漏极结构相对源极结构设置在叠层结构的第二端;栅极结构设置在叠层结构上,栅极结构设置在第一端和第二端之间;其中,叠层结构包括:自下而上依次叠层的下势垒层、沟道层、上势垒层和钝化层。通过上势垒层和下势垒层与其之间的沟道层形成具有双异质结结构,形成2DEG层和2DHG层的双沟道GaN基HEMT器件结构,使得2DEG层作为该器件中场效应晶体管(Metal-Oxide-Semiconductor Field Effect Transistor,简称MOSFET)结构的正向导通通道,以及2DHG层作为该器件中肖特基二极管(Schottky Barrier Diode,简称SBD)结构的源极到漏极的反向导通通道,将器件的反向导通压降稳定于约0V,使得器件在正向导通特性不受影响的情况下具有续流能力,推动了GaN基功率晶体管在高频功率电子系统中的应用。The invention discloses a GaN-based power transistor structure and a preparation method thereof. The GaN-based power transistor structure includes: a source structure, a stack structure, a drain structure and a gate structure, and the source structure is arranged on the first part of the stack structure. At one end, the drain structure is arranged at the second end of the stack structure relative to the source structure; the gate structure is arranged on the stack structure, and the gate structure is arranged between the first end and the second end; wherein, the stack structure It includes: a lower barrier layer, a channel layer, an upper barrier layer and a passivation layer sequentially stacked from bottom to top. A double-heterojunction structure is formed by the upper barrier layer and the lower barrier layer and the channel layer between them, forming a double-channel GaN-based HEMT device structure with a 2DEG layer and a 2DHG layer, so that the 2DEG layer is used as the field effect of the device. The forward conduction channel of the transistor (Metal-Oxide-Semiconductor Field Effect Transistor, referred to as MOSFET) structure, and the 2DHG layer as the source-to-drain reverse conduction of the Schottky Barrier Diode (SBD) structure in the device Through the channel, the reverse conduction voltage drop of the device is stabilized at about 0V, so that the device has freewheeling capability without affecting the forward conduction characteristics, which promotes the application of GaN-based power transistors in high-frequency power electronic systems.
附图说明Description of drawings
图1是根据本发明实施例的GaN基功率晶体管结构的组成示意图;FIG. 1 is a schematic composition diagram of a GaN-based power transistor structure according to an embodiment of the present invention;
图2是根据本发明实施例的GaN基功率晶体管结构的等效电路图电路示意图;2 is a schematic circuit diagram of an equivalent circuit diagram of a GaN-based power transistor structure according to an embodiment of the present invention;
图3是根据本发明实施例的GaN基功率晶体管结构的对应能带原理示意图;3 is a schematic diagram of a corresponding energy band principle of a GaN-based power transistor structure according to an embodiment of the present invention;
图4是根据本发明实施例的GaN基功率晶体管结构的制备方法的流程示意图。4 is a schematic flowchart of a method for fabricating a GaN-based power transistor structure according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to specific embodiments and accompanying drawings.
为解决现有技术中GaN基HEMT不具备续流能力,在器件处于关态时具有较大的反向导通压降使得其影响器件系统效率的技术问题,本发明公开了一种GaN基功率晶体管结构及其制备方法。In order to solve the technical problem that the GaN-based HEMT in the prior art does not have the freewheeling capability and has a large reverse conduction voltage drop when the device is in an off state, which affects the efficiency of the device system, the present invention discloses a GaN-based power transistor. Structure and method of making the same.
本发明的一个方面公开了一种GaN基功率晶体管结构,如图1所示,包括:源极结构310、叠层结构100、漏极结构320和栅极结构330,One aspect of the present invention discloses a GaN-based power transistor structure, as shown in FIG. 1 , comprising: a
源极结构310设置在叠层结构100的第一端,用于为GaN基功率晶体管结构提供源极,同时可以提供引出源极的位置,因此,其上端可以部分凸出于叠层结构100之外。The
漏极结构320相对源极结构310设置在叠层结构100的第二端;用于为GaN基功率晶体管结构提供漏极,同时可以提供引出漏极的位置,因此,其上端可以部分凸出于叠层结构100之外。The
栅极结构330设置在叠层结构100上,且设置在第一端和第二端之间;用于为GaN基功率晶体管结构提供栅极,同时可以提供引出栅极的位置,因此,其上端可以部分凸出于叠层结构100之外。The
在本发明的实施例中,如图1所示,关于GaN基功率晶体管结构的第一端和第二端,其实是以该GaN基功率晶体管结构作为一个独立结构的角度进行描述的,以便于本领域技术人员能够对其结构进行准确的理解。实际情况下,是一份晶圆基底上同时可以形成若干个该GaN基功率晶体管结构,组成该GaN基功率晶体管结构的阵列,对于相邻GaN基功率晶体管结构之间,可以设置隔离层,避免相邻GaN基功率晶体管结构各自的源极或漏极的接触,造成结构短路或其他影响。对于独立结构的GaN基功率晶体管结构,可以设定源极结构310所在位置为该GaN基功率晶体管结构的第一端,设定漏极结构320所在位置为GaN基功率晶体管结构的第二端,也可以反向设置。In the embodiment of the present invention, as shown in FIG. 1 , the first end and the second end of the GaN-based power transistor structure are actually described from the perspective of the GaN-based power transistor structure as an independent structure, so as to facilitate the Those skilled in the art can accurately understand its structure. In practice, several GaN-based power transistor structures can be formed simultaneously on a wafer substrate to form an array of the GaN-based power transistor structures. For adjacent GaN-based power transistor structures, an isolation layer can be set to avoid Contact between the respective sources or drains of adjacent GaN-based power transistor structures, resulting in short-circuiting of the structures or other effects. For a GaN-based power transistor structure with an independent structure, the position of the
其中,叠层结构100包括:自下而上依次叠层的下势垒层110、沟道层120、上势垒层130和钝化层140。叠层结构100用于作为GaN基功率晶体管结构的功能层,以实现本发明的GaN基HEMT器件。其中,沟道层120、上势垒层130和钝化层140用于配合位于第一端的源极结构310、第二端的漏极结构320形成一正向导通的MOSFET结构,下势垒层110用于配合位于第一端的源极结构310、第二端的漏极结构320形成一反向导通的SBD结构,从而将MOSFET结构与SBD结构集成在GaN基功率晶体管结构。钝化层140用于间隔外界和叠层结构100,保持各电极之间的绝缘特性,防止电极之间短路,同时为叠层结构100提供保护作用。The stacked
根据本发明的实施例,如图1所示,GaN基功率晶体管结构还包括:基底结构200,设置于叠层结构100下方;基底结构200包括:缓冲层220和衬底层210,用于为叠层结构100提供衬底作用,以助于GaN基功率晶体管结构形成在基底结构200上。缓冲层220设置于下势垒层110下方,缓冲层220的材料可以是GaN材料,其既可以与衬底层210具有很好的晶格匹配,也可以与下势垒层110具有很好的晶格匹配,以在下势垒层110和衬底层210之间建立更稳定的结合效果,增强器件结构的稳定性。衬底层210设置于缓冲层220下方,主要用于提供衬底作用。According to an embodiment of the present invention, as shown in FIG. 1 , the GaN-based power transistor structure further includes: a
根据本发明的实施例,如图1所示,GaN基功率晶体管结构还包括:2DEG层和2DHG层,即本发明的GaN基功率晶体管结构通过下势垒层110和沟道层120与上势垒层130和沟道层120实现的双异质结结构,形成了2DEG层(二维电子气层)和2DHG层(二维空穴气层)。According to an embodiment of the present invention, as shown in FIG. 1 , the GaN-based power transistor structure further includes: a 2DEG layer and a 2DHG layer, that is, the GaN-based power transistor structure of the present invention communicates with the upper potential through the
2DEG层形成于沟道层120内,以及2DEG层形成于沟道层120与上势垒层130的交界面下方,使得2DEG层可以作为正向导通通道与源极结构310和漏极结构320、栅极结构330形成上述的MOSFET结构。The 2DEG layer is formed in the
2DHG层形成于沟道层120内,以及2DHG层形成于下势垒层110与沟道层120的交界面上方,使得2DEG层可以作为反向导通通道与源极结构310和漏极结构320形成上述的SBD结构。The 2DHG layer is formed in the
因此,本发明的GaN基功率晶体管结构实现了MOSFET结构和SBD结构的高度集成,同时通过形成于沟道层120内的2DEG层和形成于沟道层120内的2DHG层构成了GaN基功率晶体管结构的双沟道结构,使得GaN基功率晶体管结构在关态时,将器件的反向导通压降稳定于约0V,使得器件在正向导通特性不受影响的情况下具有稳定的续流能力,同时还保持了原器件的原有的阈值电压、正向导通电阻和饱和电流等正向导通性能,以及开关速度等动态性能,另外对MOSFET结构和SBD结构的高度集成不占用额外的晶圆面积,有效缩小集成电路尺寸,推动了GaN基功率晶体管在高频功率电子系统中的应用。Therefore, the GaN-based power transistor structure of the present invention realizes high integration of the MOSFET structure and the SBD structure, and at the same time, the GaN-based power transistor is formed by the 2DEG layer formed in the
根据本发明的实施例,如图1所示,源极结构310包括:源极孔、下源极311和上源极312,源极孔开设于叠层结构100的第一端,源极孔自上而下依次穿透钝化层140、上势垒层130、沟道层120,并部分穿设于下势垒层110;源极孔主要用于为下源极311和上源极312提供容置空间。According to an embodiment of the present invention, as shown in FIG. 1 , the
下源极311设置于源极孔的下端,下源极311对应下势垒层110的上部分和沟道层120的下部分设置;下源极311的下端的端面与源极孔的底表面接触,下源极311至少一侧面与下势垒层110的上部分对应第一端的端面和沟道层120的下部分对应第一端的端面相接触,以与漏极结构320的下漏极321相配合,在下势垒层110与沟道层120的交界面上方的沟道层120内形成2DHG层。The lower source electrode 311 is arranged at the lower end of the source hole, and the lower source electrode 311 is arranged corresponding to the upper part of the
上源极312设置于源极孔的上端,上源极312对应沟道层120的上部分、上势垒层130和钝化层140设置;上源极312的下端的端面与下源极311上端的端面接触,上源极312至少一侧面与沟道层120的上部分对对应第一端的端面、与上势垒层130对应第一端的端面以及钝化层140对应第一端的端面相接触,以与漏极结构320的上漏极322相配合,在沟道层120与上势垒层130的交界面下方的沟道层120内形成2DEG层。The
根据本发明的实施例,如图1所示,漏极结构320包括:漏极孔、下漏极321和上漏极322,漏极孔开设于叠层结构100的第二端,漏极孔自上而下依次穿透钝化层140、上势垒层130、沟道层120,并部分穿设于下势垒层110;漏极孔主要用于为下漏极321和上漏极322提供容置空间。According to an embodiment of the present invention, as shown in FIG. 1 , the
下漏极321设置于漏极孔的下端,下漏极321对应下势垒层110的上部分和沟道层120的下部分设置;下漏极321的下端的端面与漏极孔的底表面接触,下漏极321至少一侧面与下势垒层110的上部分对应第一端的端面和沟道层120的下部分对应第一端的端面相接触,以与源极结构310的下源极311相配合,在下势垒层110与沟道层120的交界面上方的沟道层120内形成2DHG层。The
上漏极322设置于漏极孔的上端,上漏极322对应沟道层120的上部分、上势垒层130和钝化层140设置;上漏极322的下端的端面与下漏极321上端的端面接触,上漏极322至少一侧面与沟道层120的上部分对对应第一端的端面、与上势垒层130对应第一端的端面以及钝化层140对应第一端的端面相接触,以与源极结构310的上源极312相配合,在沟道层120与上势垒层130的交界面下方的沟道层120内形成2DEG层。The
基于上述GaN基功率晶体管结构,如图1所示,其中,沟道层120、上势垒层130用于与位于第一端的上源极312、第二端的上漏极322以及栅极结构330形成一正向导通的MOSFET结构,下势垒层110用于与位于第一端的下源极311、第二端的下漏极321以及沟道层120形成一反向导通的SBD结构,从而将MOSFET结构与SBD结构集成在GaN基功率晶体管结构。如图2所示,本发明的GaN基功率晶体管结构可以为一HEMT器件结构,则HEMT结构的漏极D与SBD结构的阴极(下漏极321)相连,HEMT结构的源极S与SBD的阳极(下源极311)相连。当HEMT结构的栅源电压大于阈值电压时,若漏源电压大于0V,则HEMT结构处于导通状态,SBD结构则处于反向偏置而截止;若漏源电压小于0V,且该漏源电压略高于SBD结构的阈值电压,则HEMT结构反向无法导通,而SBD结构会处于导通状态,从而使等效电路具有续流能力。Based on the above-mentioned GaN-based power transistor structure, as shown in FIG. 1 , wherein the
根据本发明的实施例,如图1所示,下源极311与2DHG层之间形成肖特基接触,下漏极321与2DHG层之间形成欧姆接触,因此,本发明的GaN基功率晶体管结构通过下源极311、下漏极321、沟道层120、下势垒层110可以形成一具有2DHG层的SBD结构,2DHG层可以作为本发明GaN基功率晶体管结构的反向导通通道,在器件关态时为等效电路提供续流能力。如图3所示,设置在缓冲层220上的下势垒层110用于与沟道层120配合拉高器件结构的能带,在下势垒层110与沟道层120之间的交接面上的沟道层120内产生空穴气,形成2DHG层。According to an embodiment of the present invention, as shown in FIG. 1 , a Schottky contact is formed between the lower source electrode 311 and the 2DHG layer, and an ohmic contact is formed between the
根据本发明的实施例,如图1所示,上源极312与2DEG层之间形成欧姆接触,上漏极322与2DEG层之间形成欧姆接触或肖特基接触;本发明的GaN基功率晶体管结构通过上源极312、上漏极322、沟道层120、上势垒层130可以形成一具有2DEG层的MOSFET结构,2DEG层可以作为本发明GaN基功率晶体管结构的正向导通通道。如图3所示,设置在沟道层120上的上势垒层130用于与沟道层120配合拉低器件结构的能带,在上势垒层130与沟道层120之间的交接面下的沟道层120内产生电子气,形成2DEG层。因此,采用本发明下势垒层110/沟道层120/上势垒层130的双异质结构,利用极化特性使能带在上下异质界面分别产生2DEG层和2DHG层。According to an embodiment of the present invention, as shown in FIG. 1 , an ohmic contact is formed between the
根据本发明的实施例,如图1所示,栅极结构330包括:栅极孔和栅极,栅极结构330用于提供本发明GaN基功率晶体管结构的栅极G,如图2所示。栅极孔开设于叠层结构110的钝化层140上,栅极孔靠近源极结构310设置,以及栅极孔穿透钝化层140,并部分穿设于上势垒层130,以为栅极的容置提供空间;以及栅极设置于栅极孔,以及栅极孔对应钝化层140和上势垒层130的上部分设置。其中,栅极的下端的端面和侧面与上势垒层130相接触,栅极的部分周侧面与钝化层140相接触,栅极的上端可以凸出于钝化层140上之外一定距离。以便于引出器件的栅极G。同样地,上源极312和上漏极322的上端也可以凸出于钝化层140上之外一定距离,以便于器件引出源极S和漏极D,如图1所示。另外,栅极孔其靠近源极结构310设置,以使得通过栅极施加的栅源电压Vgs可以实现对MOSFET结构的开启,使得器件的阈值电压更加稳定。According to an embodiment of the present invention, as shown in FIG. 1 , the
除此之外,栅极可以对所对应的沟道层120上2DEG(二维电子气)实现耗尽作用,使得该对应位置的2DEG层消失,以形成常关型器件结构。在施加一定的栅源电压Vgs时,MOSFET结构实现正向导通。因此,本发明的GaN基功率晶体管结构可以同时适用于增强型/耗尽型GaN基MIS/MES-HEMT器件,并与反向并联肖特基二极管的集成。In addition, the gate can deplete the 2DEG (two-dimensional electron gas) on the corresponding
根据本发明的实施例,源极结构310、漏极结构320或栅极结构330的材料包括:Ti,Al,Ni,W,Pt,Pd,Au或Ag中的一种或多种的组合。由于源极结构310包括:下源极311和上源极312,漏极结构320包括:下漏极321和上漏极322,栅极结构330包括:栅极,因此,下源极311、上源极312、下漏极321、上漏极322以及栅极的材料选择包括:Ti,Al,Ni,W,Pt,Pd,Au或Ag中的一种或多种的组合。另外,为了使得上源极312与2DEG层之间形成欧姆接触,上漏极322与2DEG层之间形成欧姆接触或肖特基接触,以形成具有2DEG层的MOSFET结构;以及下源极311与2DHG层之间形成肖特基接触,下漏极321与2DHG层之间形成欧姆接触,以形成具有2DHG层的SBD结构,下源极311、上源极312、下漏极321、上漏极322以及栅极的材料选择可以各不相同,例如下源极311的材料可以是Ti,上源极312的材料可以是Al,下漏极321的材料可以是Ni、上漏极322的材料可以是Pt,具体以形成具有2DHG层的SBD结构和具有2DEG层的MOSFET结构的集成为目的。According to an embodiment of the present invention, the material of the
根据本发明的实施例,如图1所示,缓冲层220的材料包括GaN;下势垒层110或上势垒层130的材料包括:AlN、AlGaN、AlInN、InGaN或AlInGaN中的一种或多种的组合;沟道层120的材料包括:InGaN,其中,沟道层120的InGaN材料中,Ga组分介于0~100%之间;钝化层140的材料包括:氮化硅、二氧化硅、氮化铝或GaN的一种或多种的组合。GaN基材料具有较好的直接带隙,电子饱和迁移率优良,因此使得本发明的GaN基功率晶体管结构具有高频、高温及大功率的性能,另一方面,GaN基材料达到较佳的禁带宽度,化学稳定性强,使得器件结构能够具有很好的工作稳定性,而且该GaN基材料击穿电压更高,能够使得器件在更高的电压下工作,极化性能也非好,使得GaN基材料的异质结结构的导带不连续,有更强的电流能力。本领域技术人员应当理解,在本发明所提及的GaN、AlN、AlGaN、AlInN、InGaN或AlInGaN等仅仅是对该相应材料的一个符号表达,并非是对该材料对应的组分比例的限制。According to an embodiment of the present invention, as shown in FIG. 1 , the material of the
根据本发明的实施例,如图1所示,上势垒层130或下势垒层110的厚度包括:1nm-50nm,具体他,上势垒层130的厚度可以是1nm-10nm,以将器件作为增强型器件,实现对2DEG层更好的耗尽功能。而在其他厚度,可以将器件作为耗尽型器件。因此,该GaN基功率晶体管结构既可以是耗尽型HEMT结构,也可以是增强型HEMT结构,并同时实现与上述反向并联SBD结构的集成。沟道层的厚度为10-500nm,。According to an embodiment of the present invention, as shown in FIG. 1 , the thickness of the
本发明的另一个方面公开了一种用于上述的GaN基功率晶体管结构的制备方法,如图4所示,包括:Another aspect of the present invention discloses a preparation method for the above-mentioned GaN-based power transistor structure, as shown in FIG. 4 , comprising:
S410、形成叠层结构;S410, forming a laminated structure;
S420、在叠层结构上形成源极结构和漏极结构;S420, forming a source structure and a drain structure on the stacked structure;
S430、在叠层结构上的源极结构与漏极结构之间形成栅极结构。S430 , forming a gate structure between the source structure and the drain structure on the stacked structure.
其中,该GaN基功率晶体管结构已在前述作细致分析,进行了叠层结构中的钝化层可以利用金属有机化合物化学气相沉积法、低压力化学气相沉积法、等离子体增强化学气相沉积法或原子层沉积法形成。本发明公开的GaN基功率晶体管结构的制备方法,其加工工艺与传统GaN基HEMT器件结构的工艺相互兼容,且同时适用于增强型/耗尽型GaN基MIS/MES-HEMT器件与反向并联肖特基二极管的集成。Among them, the GaN-based power transistor structure has been analyzed in detail in the above, and the passivation layer in the stacked structure can use metal organic compound chemical vapor deposition method, low pressure chemical vapor deposition method, plasma enhanced chemical vapor deposition method or formed by atomic layer deposition. The preparation method of the GaN-based power transistor structure disclosed in the present invention is compatible with the process of the traditional GaN-based HEMT device structure, and is suitable for the enhancement mode/depletion mode GaN-based MIS/MES-HEMT device and the anti-parallel connection at the same time. Integration of Schottky diodes.
根据本发明的实施例,在叠层结构上形成源极结构和漏极结构,包括:在叠层结构的第一端形成源极结构,在叠层结构的第二端形成漏极结构;或者在叠层结构的第二端形成漏极结构,在叠层结构的第一端形成源极结构。具体地,源极结构的源极孔和漏极结构的漏极孔可以同时形成,但是对于源极结构的上源极、下源极以及漏极结构的上漏极、下漏极的形成顺序,对于源极结构,可以先形成下源极,再形成上源极,同理,漏极结构先形成下漏极,再形成上漏极,至于源极结构和漏极结构的制备,可以依据不同区域的材料选择,对其定义制备的优先顺序。According to an embodiment of the present invention, forming a source structure and a drain structure on the stacked structure includes: forming a source structure at a first end of the stacked structure, and forming a drain structure at a second end of the stacked structure; or A drain structure is formed at the second end of the stacked structure, and a source structure is formed at the first end of the stacked structure. Specifically, the source hole of the source structure and the drain hole of the drain structure can be formed at the same time, but the upper source and lower source of the source structure and the upper drain and lower drain of the drain structure are formed in sequence , for the source structure, the lower source can be formed first, and then the upper source can be formed. Similarly, the drain structure can be formed first with the lower drain, and then the upper drain. As for the preparation of the source structure and the drain structure, it can be based on Material selection for different areas, which define the order of priority for preparation.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in further detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010127104.4A CN111312815B (en) | 2020-02-28 | 2020-02-28 | GaN-based power transistor structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010127104.4A CN111312815B (en) | 2020-02-28 | 2020-02-28 | GaN-based power transistor structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111312815A true CN111312815A (en) | 2020-06-19 |
CN111312815B CN111312815B (en) | 2023-03-31 |
Family
ID=71147813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010127104.4A Active CN111312815B (en) | 2020-02-28 | 2020-02-28 | GaN-based power transistor structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111312815B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113611742A (en) * | 2021-08-09 | 2021-11-05 | 电子科技大学 | A GaN power device with integrated Schottky tube |
WO2022127165A1 (en) * | 2020-12-14 | 2022-06-23 | 南方科技大学 | P-type gate hemt device |
CN115411106A (en) * | 2022-08-30 | 2022-11-29 | 杭州云镓半导体科技有限公司 | A GaN device with avalanche tolerance and its manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6329677B1 (en) * | 1998-11-09 | 2001-12-11 | Fujitsu Quantum Devices Limited | Field effect transistor |
CN103098221A (en) * | 2010-07-28 | 2013-05-08 | 谢菲尔德大学 | Semiconductor devices with 2DEG and 2DHG |
CN104395993A (en) * | 2012-06-20 | 2015-03-04 | 独立行政法人产业技术综合研究所 | Semiconductor device |
CN105355657A (en) * | 2015-11-27 | 2016-02-24 | 西安电子科技大学 | Insulated gate AlGaN/GaN high electron mobility transistor with multi-channel fin structure |
CN110047910A (en) * | 2019-03-27 | 2019-07-23 | 东南大学 | A kind of heterojunction semiconductor device of high voltage ability |
CN110379854A (en) * | 2019-07-26 | 2019-10-25 | 同辉电子科技股份有限公司 | A kind of epitaxy of gallium nitride technology suitable for power device |
-
2020
- 2020-02-28 CN CN202010127104.4A patent/CN111312815B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6329677B1 (en) * | 1998-11-09 | 2001-12-11 | Fujitsu Quantum Devices Limited | Field effect transistor |
CN103098221A (en) * | 2010-07-28 | 2013-05-08 | 谢菲尔德大学 | Semiconductor devices with 2DEG and 2DHG |
CN104395993A (en) * | 2012-06-20 | 2015-03-04 | 独立行政法人产业技术综合研究所 | Semiconductor device |
CN105355657A (en) * | 2015-11-27 | 2016-02-24 | 西安电子科技大学 | Insulated gate AlGaN/GaN high electron mobility transistor with multi-channel fin structure |
CN110047910A (en) * | 2019-03-27 | 2019-07-23 | 东南大学 | A kind of heterojunction semiconductor device of high voltage ability |
CN110379854A (en) * | 2019-07-26 | 2019-10-25 | 同辉电子科技股份有限公司 | A kind of epitaxy of gallium nitride technology suitable for power device |
Non-Patent Citations (1)
Title |
---|
AKIRA NAKAJIMA 等: "GaN-Based Super Heterojunction Field Effect Transistors Using the Polarization Junction Concept", 《IEEE ELECTRON DEVICE LETTERS》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022127165A1 (en) * | 2020-12-14 | 2022-06-23 | 南方科技大学 | P-type gate hemt device |
CN113611742A (en) * | 2021-08-09 | 2021-11-05 | 电子科技大学 | A GaN power device with integrated Schottky tube |
CN113611742B (en) * | 2021-08-09 | 2023-04-25 | 电子科技大学 | GaN power device integrated with Schottky tube |
CN115411106A (en) * | 2022-08-30 | 2022-11-29 | 杭州云镓半导体科技有限公司 | A GaN device with avalanche tolerance and its manufacturing method |
CN115411106B (en) * | 2022-08-30 | 2023-06-16 | 杭州云镓半导体科技有限公司 | GaN device with avalanche resistance and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN111312815B (en) | 2023-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5632416B2 (en) | Stacked composite device comprising a III-V transistor and a IV group vertical transistor | |
JP5793120B2 (en) | Composite semiconductor device having SOI substrate with integrated diode | |
JP5746245B2 (en) | III-V and IV composite switches | |
US9502398B2 (en) | Composite device with integrated diode | |
CN104051519B (en) | Device, high electron mobility transistor, and method for controlling the transistor to work | |
JP5526179B2 (en) | Stacked composite device comprising a III-V transistor and a IV group lateral transistor | |
JP5828435B1 (en) | Semiconductor element, electric device, bidirectional field effect transistor, and mounting structure | |
CN103367356B (en) | There is the semiconductor element of nitride layer | |
US20130193485A1 (en) | Compound semiconductor device and method of manufacturing the same | |
WO2015159450A1 (en) | Semiconductor element, electric apparatus, bidirectional field effect transistor, and mounting structural body | |
WO2009116223A1 (en) | Semiconductor device | |
CN107680999B (en) | High-power semiconductor component | |
CN103824845A (en) | Semiconductor device with a plurality of semiconductor chips | |
WO2014174550A1 (en) | Nitride semiconductor device | |
CN111312815B (en) | GaN-based power transistor structure and preparation method thereof | |
JP5643783B2 (en) | Stacked composite device comprising a III-V transistor and a group IV diode | |
US20130175542A1 (en) | Group III-V and Group IV Composite Diode | |
CN117457494A (en) | Method for improving short circuit capability of enhanced GaN HEMT and device structure thereof | |
JP2013197590A (en) | Group iii-v and group iv composite diode | |
US20220384424A1 (en) | Nitride-based semiconductor bidirectional switching device and method for manufacturing the same | |
CN113690311B (en) | GaN HEMT device integrated with flywheel diode | |
JP5721782B2 (en) | Semiconductor device | |
CN114843337A (en) | Gallium nitride high electron mobility transistor with double-gate structure and manufacturing method thereof | |
CN119789512A (en) | Co-source co-grid enhanced diamond and gallium nitride heterogeneous integrated power device | |
CN119364844A (en) | An enhancement-mode GaN vertical field-effect transistor with reverse freewheeling capability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |