CN106920790A - A kind of full-color micro-display device and preparation method thereof - Google Patents
A kind of full-color micro-display device and preparation method thereof Download PDFInfo
- Publication number
- CN106920790A CN106920790A CN201710214037.8A CN201710214037A CN106920790A CN 106920790 A CN106920790 A CN 106920790A CN 201710214037 A CN201710214037 A CN 201710214037A CN 106920790 A CN106920790 A CN 106920790A
- Authority
- CN
- China
- Prior art keywords
- gan
- light
- layer
- full
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims abstract description 60
- 239000002096 quantum dot Substances 0.000 claims abstract description 45
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 45
- 239000010980 sapphire Substances 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims abstract description 18
- 230000001681 protective effect Effects 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 70
- 238000002955 isolation Methods 0.000 claims description 18
- 235000012431 wafers Nutrition 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 8
- 238000003466 welding Methods 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 238000011049 filling Methods 0.000 claims description 5
- 229910002704 AlGaN Inorganic materials 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000011241 protective layer Substances 0.000 claims description 3
- 239000003086 colorant Substances 0.000 abstract description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000000295 emission spectrum Methods 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 6
- 229910052906 cristobalite Inorganic materials 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 229910052682 stishovite Inorganic materials 0.000 description 6
- 229910052905 tridymite Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 238000001548 drop coating Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical class [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
- H10H20/8512—Wavelength conversion materials
- H10H20/8513—Wavelength conversion materials having two or more wavelength conversion materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0655—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Led Devices (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
本发明提供的一种全彩微显示器件,通过倒装LED芯片阵列和量子点色转换技术实现,由倒装LED芯片激发量子点,分别产生红绿蓝三原色,发出红绿蓝光色的三个GaN基发光结构组成一个像素,所述倒装LED芯片是基于蓝宝石衬底的LED芯片并且倒装焊接到带有驱动电路的基板上,用于光色转换的量子点填充于蓝宝石衬底出光面的沟槽,填充量子点后覆盖上保护材料。采用本发明提供的制备全彩微显示器件的方法所制备的全彩微显示器件具有体积小、分辨率高、色彩控制简单等优势。
A full-color micro-display device provided by the present invention is realized by flip-chip LED chip array and quantum dot color conversion technology. The quantum dots are excited by the flip-chip LED chip to generate the three primary colors of red, green and blue respectively, and emit three colors of red, green and blue light. A GaN-based light-emitting structure forms a pixel. The flip-chip LED chip is an LED chip based on a sapphire substrate and is flip-chip welded to a substrate with a driving circuit. Quantum dots for light color conversion are filled on the light-emitting surface of the sapphire substrate. The trenches are filled with quantum dots and covered with a protective material. The full-color micro-display device prepared by the method for preparing the full-color micro-display device provided by the present invention has the advantages of small volume, high resolution, simple color control and the like.
Description
技术领域technical field
本发明属于LED倒装芯片的制备工艺领域和量子点技术应用领域,具体涉及一种全彩微显示器件及其制备方法。The invention belongs to the field of LED flip-chip preparation technology and the application field of quantum dot technology, and specifically relates to a full-color micro-display device and a preparation method thereof.
背景技术Background technique
随着微型投影机和可穿戴设备上逐渐进入到现实的生产与生活中,微显示器件的应用越来越广泛,对微显示器件的需求与要求也逐渐提高,更高的分辨率、更轻小的系统、全彩的显示等等。由于LED芯片的尺寸可以达到微米级,基于LED芯片的微显示器件相比于其他的微显示技术如DLP、LCoS等,具有分辨率更高、系统更轻小简单和减低能耗成本的优点。As micro-projectors and wearable devices gradually enter into real production and life, the application of micro-display devices is becoming more and more extensive, and the demand and requirements for micro-display devices are gradually increasing. Higher resolution, lighter weight Small systems, full-color displays, and more. Since the size of LED chips can reach the micron level, compared with other micro-display technologies such as DLP and LCoS, micro-display devices based on LED chips have the advantages of higher resolution, lighter, smaller and simpler systems, and lower energy consumption costs.
目前LED芯片微阵列主要实现的是单色的微显示器件。在LED单色微显示器的研究上,mLED公司的JamesR.Bonar等人在2016年已经成功制备了像素点尺寸为6μm的高亮度和高对比度的640×360阵列微显示器。基于LED的微显示器件要实现全彩显示,目前有两种可能的方案:一是在LED单色微显示芯片的基础上,涂覆荧光粉膜,激发白光,再涂覆红绿蓝三色基色的滤光膜阵列;二是在同一衬底上制备出红绿蓝三基色的LED阵列。第一种方案工艺相对简单,但滤光膜的存在降低了有效的光强,造成能量的损耗较大,而且容易造成像素间的串扰问题;第二种方案工艺较为复杂,因为无法在同一衬底上一次生长出发出红绿蓝三种颜色的量子阱结构,而且由于红绿蓝LED的阈值电压不同,驱动电路变得复杂,这种方案实现的微显示芯片像素分辨率难以提高。因此,如何利用单色的LED芯片微阵列实现全彩的微显示以及提高微显示芯片的分辨率是LED微显示领域面临的巨大挑战。At present, the LED chip microarray mainly realizes a monochrome microdisplay device. In the research of LED monochrome microdisplays, JamesR.Bonar et al. of mLED Company have successfully prepared a 640×360 array microdisplay with a pixel size of 6μm and high contrast ratio in 2016. To achieve full-color display of LED-based microdisplay devices, there are currently two possible solutions: one is to coat phosphor film on the basis of LED monochrome microdisplay chips to excite white light, and then coat red, green and blue three-color The primary color filter film array; the second is to prepare an LED array of red, green and blue primary colors on the same substrate. The process of the first scheme is relatively simple, but the existence of the filter film reduces the effective light intensity, resulting in a large energy loss, and it is easy to cause crosstalk between pixels; the process of the second scheme is more complicated because it cannot be used on the same substrate. A quantum well structure that emits three colors of red, green and blue is grown on the bottom at one time, and because the threshold voltage of red, green and blue LEDs is different, the driving circuit becomes complicated, and it is difficult to improve the pixel resolution of the micro-display chip realized by this scheme. Therefore, how to realize a full-color micro-display and improve the resolution of the micro-display chip by using a single-color LED chip microarray is a huge challenge in the field of LED micro-display.
量子点(quantum dot)是准零维(quasi-zero-dimensional)的纳米材料,由少量的原子所构成,三个维度的尺寸都在100纳米(nm)以下。量子点的一些光学特性非常适合用于实现光色的转换,首先,量子点的发射光谱可以通过改变量子点的尺寸大小来控制,通过改变量子点的尺寸和它的化学组成可以使其发射光谱覆盖整个可见光区;其次,量子点具有激发光谱宽且连续分布,而发射光谱窄而对称,光化学稳定性高,荧光寿命长等优越的荧光特性。Quantum dots are quasi-zero-dimensional nanomaterials, which are composed of a small number of atoms, and the sizes of the three dimensions are all below 100 nanometers (nm). Some optical properties of quantum dots are very suitable for the conversion of light color. First, the emission spectrum of quantum dots can be controlled by changing the size of quantum dots. By changing the size of quantum dots and its chemical composition, the emission spectrum can be made Covering the entire visible light region; secondly, quantum dots have excellent fluorescence characteristics such as wide and continuous distribution of excitation spectrum, narrow and symmetrical emission spectrum, high photochemical stability, and long fluorescence lifetime.
发明内容Contents of the invention
本发明的目的在于通过一种倒装LED芯片的制备技术以及量子点技术,在芯片层面上实现光色的转换以使微显示LED芯片的尺寸更小,用以实现一种尺寸小且高分辨率的全彩微显示器件。The purpose of the present invention is to realize the conversion of light color on the chip level through a flip-chip LED chip preparation technology and quantum dot technology to make the size of the micro-display LED chip smaller, so as to realize a small size and high resolution LED chip. High-rate full-color microdisplay device.
为了实现上述目的,本发明采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
一种全彩微显示器件,包括带有驱动电路的基板、倒装焊接于带有驱动电路的基板上的阵列式LED芯片、以及蓝宝石衬底,所述阵列式LED芯片设置于同一蓝宝石衬底上且发射同一光谱,其特征在于:所述阵列式LED芯片之间设置有隔离沟道,所述隔离沟道的内部和两侧壁设置有绝缘层和挡光层,绝缘层的材质为SiO2或AlN,厚度为500~2000nm;挡光层的材质为Cr/Al或者Cr/Ag,厚度为100~500nm;每个LED芯片包括三个GaN基发光结构和焊接电极,所述焊接电极用于连接GaN基发光结构和带有驱动电路的基板,所述蓝宝石衬底的出光面设置有沟槽,所述沟槽和所述GaN基发光结构的位置和大小一一对应,每个LED芯片的三个GaN基发光结构对应的沟槽分别填充用于激发红、绿、蓝三种光的量子点,量子点填充后覆盖上一层保护材料层。本发明利用单色的LED芯片微阵列实现全彩的微显示,所制备的全彩微显示器件具有体积小、分辨率高、色彩控制简单等优势。A full-color micro-display device, comprising a substrate with a driving circuit, an arrayed LED chip flip-chip welded on the substrate with a driving circuit, and a sapphire substrate, the arrayed LED chips are arranged on the same sapphire substrate and emit the same spectrum, it is characterized in that: an isolation trench is arranged between the arrayed LED chips, an insulating layer and a light-shielding layer are arranged on the inside and two side walls of the isolation trench, and the material of the insulating layer is SiO 2 or AlN, with a thickness of 500-2000nm; the material of the light-blocking layer is Cr/Al or Cr/Ag, with a thickness of 100-500nm; each LED chip includes three GaN-based light-emitting structures and welding electrodes, and the welding electrodes are used For connecting the GaN-based light-emitting structure and the substrate with the driving circuit, the light-emitting surface of the sapphire substrate is provided with grooves, and the positions and sizes of the grooves and the GaN-based light-emitting structure correspond one-to-one. Each LED chip The trenches corresponding to the three GaN-based light-emitting structures are filled with quantum dots used to excite red, green, and blue light, and the quantum dots are filled and covered with a layer of protective material. The invention utilizes a single-color LED chip microarray to realize full-color micro-display, and the prepared full-color micro-display device has the advantages of small volume, high resolution, simple color control, and the like.
优选的,所述沟槽位于GaN基发光结构正上方,沟槽尺寸为5~40μm,沟槽深度为5~20μm。Preferably, the groove is located directly above the GaN-based light-emitting structure, the size of the groove is 5-40 μm, and the depth of the groove is 5-20 μm.
本发明还提供了一种全彩微显示器件的制备方法,包括以下步骤:The present invention also provides a method for preparing a full-color micro-display device, comprising the following steps:
(1)在蓝宝石衬底上外延生长GaN或AlGaN的LED外延片,所述GaN外延片依次包括缓冲层,N-GaN层、有源层和P-GaN层;(1) LED epitaxial wafers of GaN or AlGaN epitaxially grown on a sapphire substrate, the GaN epitaxial wafers sequentially comprising a buffer layer, an N-GaN layer, an active layer and a P-GaN layer;
(2)在P-GaN层上继续沉积透明导电膜层作为接触层;(2) Continue to deposit a transparent conductive film layer as a contact layer on the P-GaN layer;
(3)在LED外延片上蚀刻到N-GaN层,形成每个像素所需的三个GaN基发光结构;(3) Etch the N-GaN layer on the LED epitaxial wafer to form three GaN-based light-emitting structures required for each pixel;
(4)在LED外延片上用ICP蚀刻出像素间的隔离沟道,即一直蚀刻到蓝宝石衬底,形成全彩微显示像素的陈列;(4) Use ICP to etch the isolation trench between pixels on the LED epitaxial wafer, that is, etch all the way to the sapphire substrate to form a display of full-color micro-display pixels;
(5)在像素间的隔离沟道内和两侧壁上沉积绝缘层和挡光层;(5) Depositing an insulating layer and a light-shielding layer in the isolation trench between pixels and on both side walls;
(6)沉积N电极,N电极采用Ti/Al/Ni/Au沉积,厚度为1~2um;(6) Deposit the N electrode, the N electrode is deposited by Ti/Al/Ni/Au, with a thickness of 1-2um;
(7)沉积P电极,P电极先沉积Al或Ag作为反射层结构,再沉积Ti/Au或Ni/Au,沉积厚度为1~2μm;(7) Deposit the P electrode. The P electrode first deposits Al or Ag as the reflective layer structure, and then deposits Ti/Au or Ni/Au, with a deposition thickness of 1-2 μm;
(8)将蓝宝石衬底进行减薄,减薄后的厚度为80μm~150μm;(8) thinning the sapphire substrate to a thickness of 80 μm to 150 μm;
(9)在蓝宝石衬底的出光面蚀刻出用于填充量子点的沟槽;(9) etching grooves for filling quantum dots on the light-emitting surface of the sapphire substrate;
(10)用滴涂或3D打印的方法在每个像素的三个沟槽内分别填充能够发射红绿蓝三种颜色的光的量子点;(10) Fill the three grooves of each pixel with quantum dots capable of emitting red, green and blue lights by means of drop coating or 3D printing;
(11)填充完量子点后在蓝宝石衬底的表面覆盖一保护材料层;(11) Cover a protective material layer on the surface of the sapphire substrate after filling the quantum dots;
(12)把LED芯片倒装焊接到带有驱动电路的基板上,基板上的驱动电路可以独立控制每个像素中的三个GaN基发光结构。(12) The LED chip is flip-chip welded to a substrate with a driving circuit, and the driving circuit on the substrate can independently control the three GaN-based light-emitting structures in each pixel.
优选的,所述三个GaN基发光结构的形状为矩形,三个GaN基发光结构的发光面积占像素总面积的比例为1:1:1。Preferably, the shape of the three GaN-based light-emitting structures is a rectangle, and the ratio of the light-emitting area of the three GaN-based light-emitting structures to the total area of the pixel is 1:1:1.
优选的,所述像素形状为矩形,像素尺寸为40μm×40μm。Preferably, the shape of the pixel is rectangular, and the pixel size is 40 μm×40 μm.
优选的,所述绝缘层采用SiO2或AlN,厚度为500~2000nm,挡光层采用Cr/Al或者Cr/Ag金属,厚度优选为100nm~500nm。Preferably, the insulating layer is made of SiO2 or AlN, with a thickness of 500-2000nm, and the light-shielding layer is made of Cr/Al or Cr/Ag metal, with a thickness of 100nm-500nm.
优选的,所述沟槽直接蚀刻蓝宝石形成,或者先在蓝宝石上沉积SiO2后用BOE蚀刻形成,所述沟槽位于每个像素中三个GaN基发光结构的正上方,形状大小与三个GaN基发光结构对应,所述沟槽的深度为10~20μm。Preferably, the trench is formed by directly etching sapphire, or first depositing SiO2 on the sapphire and then etching it with BOE. The trench is located directly above the three GaN-based light-emitting structures in each pixel, and its shape and size are the same as those of the three GaN-based light-emitting structures. Corresponding to the base light emitting structure, the depth of the groove is 10-20 μm.
优选的,所述保护材料层选用SiO2或树脂,保护材料层为SiO2时,厚度为100nm~500nm。Preferably, the protective material layer is made of SiO 2 or resin, and when the protective material layer is SiO 2 , the thickness is 100 nm to 500 nm.
本发明采用在LED芯片出光面的蓝宝石衬底上直接形成沟槽用于填充量子点的方法,实现方便准确的控制好红绿蓝三原色量子点的搭配,让其固定在相应位置,容易控制发光面形状,在像素间的隔离沟道中沉积挡光金属层,也一定程度上降低了像素间的串扰,这种工艺易于实现,同时充分利用了量子点小的特点,在芯片层面上即可实现全彩,使微显示芯片的尺寸可以进一步小型化,且可以保证甚至提高全彩微显示的分辨率。The present invention adopts the method of directly forming grooves on the sapphire substrate on the light-emitting surface of the LED chip for filling the quantum dots, so as to realize convenient and accurate control of the matching of the quantum dots in the three primary colors of red, green and blue, and let them be fixed in the corresponding positions, so that it is easy to control the light emission Depositing a light-blocking metal layer in the isolation channel between pixels also reduces the crosstalk between pixels to a certain extent. This process is easy to implement, and at the same time makes full use of the small characteristics of quantum dots, which can be realized at the chip level. Full-color, the size of the micro-display chip can be further miniaturized, and the resolution of the full-color micro-display can be guaranteed or even improved.
附图说明Description of drawings
图1是本发明全彩微显示像素阵列俯视结构示意图,4×4像素,每个像素由红(R)绿(G)蓝(B)三个LED单元组成,三个LED单元上分别填充用于激发红、绿、蓝光色的量子点;Fig. 1 is a schematic diagram of the top view structure of the full-color micro-display pixel array of the present invention, 4 × 4 pixels, each pixel is composed of three LED units of red (R), green (G) and blue (B), and the three LED units are respectively filled with Quantum dots for exciting red, green and blue light colors;
图2是本发明用于激发量子点的LED芯片阵列示意图,电极面朝上时的俯视结构图,每个像素的红绿蓝三原色分别由三个对应的GaN基发光结构激发,同一个像素的三个GaN基发光结构共N极,不同像素间有绝缘且挡光的隔离沟道;Fig. 2 is a schematic diagram of an LED chip array used to excite quantum dots according to the present invention. It is a top view structural diagram when the electrodes face up. The three primary colors of red, green and blue of each pixel are respectively excited by three corresponding GaN-based light-emitting structures. The three GaN-based light-emitting structures have a common N pole, and there are insulating and light-blocking isolation channels between different pixels;
图3是本发明全彩微显示器件的剖面图结构示意图,剖面位置位于图2的虚线位置,因此每个像素只看得到G和B两个LED单元。Fig. 3 is a schematic cross-sectional view of the full-color micro-display device of the present invention, the cross-sectional position is located at the dotted line in Fig. 2, so each pixel can only see two LED units G and B.
具体实施方式detailed description
下面结合附图对本发明的具体实施方式作进一步说明:The specific embodiment of the present invention will be further described below in conjunction with accompanying drawing:
如图1所示,每个像素由红(R)绿(G)蓝(B)三个LED单元组成,LED单元包括GaN基发光结构和其对应的沟槽,每个像素的三个沟槽内分别填充用于激发红、绿、蓝三种光的量子点。As shown in Figure 1, each pixel consists of three LED units, red (R), green (G) and blue (B). The LED unit includes a GaN-based light-emitting structure and its corresponding grooves. The three grooves of each pixel It is filled with quantum dots used to excite red, green and blue light respectively.
图2是用于激发红、绿、蓝光色的量子点的GaN基发光结构阵列示意图,每个像素的红绿蓝三色分别由三个对应的GaN基发光结构激发。用于激发量子点的GaN基发光结构阵列是在同一蓝宝石衬底上制备,且发射同一光谱,同一蓝宝石衬底上每个像素的三个GaN基发光结构分别激发不同发射光谱的量子点发出红绿蓝三原色。其中三个LED单元的发光面积占用整个像素发光面积的比例可适当调整,以适应量子点不同发射光谱具有的不同激发效率。同一个像素的GaN基发光结构共N极202,驱动电路控制三个GaN基发光结构的P电极201、203和204,不同像素间有用于绝缘且挡光的隔离沟道205。Fig. 2 is a schematic diagram of a GaN-based light-emitting structure array for exciting red, green, and blue quantum dots, and the red, green, and blue colors of each pixel are respectively excited by three corresponding GaN-based light-emitting structures. The array of GaN-based light-emitting structures used to excite quantum dots is prepared on the same sapphire substrate and emits the same spectrum. The three GaN-based light-emitting structures for each pixel on the same sapphire substrate respectively excite quantum dots with different emission spectra to emit red light. The three primary colors of green and blue. The ratio of the light-emitting area of the three LED units to the entire pixel light-emitting area can be adjusted appropriately to adapt to the different excitation efficiencies of the different emission spectra of the quantum dots. The GaN-based light-emitting structures of the same pixel share the N pole 202, the drive circuit controls the P-electrodes 201, 203 and 204 of the three GaN-based light-emitting structures, and there are isolation channels 205 for insulation and light blocking between different pixels.
图3是本发明全彩微显示器件的剖面图结构示意图,剖面位置位于图2的虚线位置,因此每个像素只看得到G和B两个LED单元,本发明的全彩微显示器件包括带有驱动电路的基板,焊接电极308、309和310,GaN基或AlGaN基发光结构307,蓝宝石衬底303,位于蓝宝石衬底出光面一侧填充满量子点的沟槽301和302,覆盖蓝宝石衬底的出光面保护量子点的保护材料层304。本发明通过在芯片层面上实现光色的转换以使微显示LED芯片的尺寸更小,用以实现一种尺寸小且高分辨率的全彩微显示器件。Fig. 3 is the sectional view structural representation of full-color micro-display device of the present invention, and section position is positioned at the dashed line position of Fig. A substrate with a driving circuit, welding electrodes 308, 309 and 310, a GaN-based or AlGaN-based light-emitting structure 307, a sapphire substrate 303, grooves 301 and 302 filled with quantum dots on the side of the light-emitting surface of the sapphire substrate, covering the sapphire substrate The light emitting surface of the bottom protects the protective material layer 304 of the quantum dots. The invention realizes light color conversion on the chip level to make the size of the micro-display LED chip smaller, so as to realize a small-sized and high-resolution full-color micro-display device.
请结合图1—图3,本发明提供一种全彩微显示器件,包括带有驱动电路的基板300、倒装焊接于带有驱动电路的基板300上的阵列式LED芯片、以及蓝宝石衬底303,阵列式LED芯片设置于同一蓝宝石衬底上且发射同一光谱,LED芯片之间设置有隔离沟道205,每个LED芯片包括三个GaN基发光结构307和焊接电极308、309、310,焊接电极用于连接GaN基发光结构307和带有驱动电路的基板300,蓝宝石衬底303的出光面设置有沟槽301、302,沟槽301、302和GaN基发光结构307的位置和大小一一对应,每个LED芯片的三个GaN基发光结构307对应的沟槽分别填充用于激发红、绿、蓝三种光的量子点,量子点填充后覆盖上一层保护材料层304。通过倒装LED芯片阵列和量子点色转换技术实现,由倒装LED芯片激发量子点,分别产生红绿蓝三原色,发出红绿蓝光色的三个GaN基发光结构组成一个像素,倒装LED芯片是基于蓝宝石衬底的LED芯片并且倒装焊接到带有驱动电路的基板上,用于光色转换的量子点填充于蓝宝石衬底出光面的沟槽,填充量子点后覆盖上保护材料。本发明提供的全彩微显示芯片具有芯片体积小、分辨率高、色彩控制简单等优势。Please refer to Fig. 1-Fig. 3, the present invention provides a kind of full-color micro-display device, comprises the substrate 300 with drive circuit, the array type LED chip that is flip-chip welded on the substrate 300 with drive circuit, and sapphire substrate 303, arrayed LED chips are arranged on the same sapphire substrate and emit the same spectrum, isolation channels 205 are arranged between the LED chips, and each LED chip includes three GaN-based light emitting structures 307 and welding electrodes 308, 309, 310, The welding electrodes are used to connect the GaN-based light-emitting structure 307 and the substrate 300 with the drive circuit. The light-emitting surface of the sapphire substrate 303 is provided with grooves 301, 302. The positions and sizes of the grooves 301, 302 and the GaN-based light-emitting structure 307 are the same. For one-to-one correspondence, the grooves corresponding to the three GaN-based light emitting structures 307 of each LED chip are respectively filled with quantum dots for exciting red, green and blue light, and the quantum dots are filled and covered with a protective material layer 304 . Realized by flip-chip LED chip array and quantum dot color conversion technology, the quantum dots are excited by the flip-chip LED chip to generate the three primary colors of red, green and blue respectively, and the three GaN-based light-emitting structures that emit red, green and blue light colors form a pixel. The flip-chip LED chip It is an LED chip based on a sapphire substrate and is flip-chip welded to a substrate with a driving circuit. The quantum dots used for light color conversion are filled in the grooves on the light-emitting surface of the sapphire substrate, and the quantum dots are filled and covered with protective materials. The full-color micro-display chip provided by the invention has the advantages of small chip size, high resolution, simple color control and the like.
量子点吸收光谱与LED芯片的发射光谱对应,而其发射光谱则相应的为红绿蓝三原色,量子点优选CdSe量子点,能够通过改变其尺度大小和成分达到改变发射光谱的目的。The quantum dot absorption spectrum corresponds to the emission spectrum of the LED chip, and its emission spectrum corresponds to the three primary colors of red, green and blue. Quantum dots are preferably CdSe quantum dots, which can achieve the purpose of changing the emission spectrum by changing their size and composition.
本发明的一实施例中,每个像素四侧有隔离沟道205,隔离沟道蚀刻掉GaN基发光结构直到蓝宝石衬底。在像素间的隔离沟道205内和两侧壁设置绝缘层305和挡光层306,绝缘层的材料优选SiO2或AlN,厚度优选为500~2000nm;挡光层的材料优选Cr/Al或者Cr/Ag,厚度优选为100~500nm。在所述隔离沟道205以及每个像素的四壁沉积绝缘层,进一步地在绝缘层上再沉积挡光金属层结构,以达到减少像素间的光串扰的同时,起到反射杯的作用,增加出光和让出光准直。In an embodiment of the present invention, there are isolation trenches 205 on four sides of each pixel, and the isolation trenches etch away the GaN-based light-emitting structure until the sapphire substrate. An insulating layer 305 and a light-shielding layer 306 are arranged in the isolation trench 205 between pixels and on both side walls. The material of the insulating layer is preferably SiO 2 or AlN, and the thickness is preferably 500-2000 nm; the material of the light-shielding layer is preferably Cr/Al or Cr/Ag preferably has a thickness of 100 to 500 nm. An insulating layer is deposited on the isolation trench 205 and the four walls of each pixel, and a light-shielding metal layer structure is further deposited on the insulating layer to reduce optical crosstalk between pixels and play the role of a reflective cup. Increase and collimate the output light.
本发明的一实施例中,蓝宝石衬底优选图形化蓝宝石衬底。In an embodiment of the present invention, the sapphire substrate is preferably a patterned sapphire substrate.
本发明的一实施例中,所述沟槽由ICP蚀刻蓝宝石形成或在蓝宝石衬底上沉积SiO2层后蚀刻形成,所述蓝宝石衬底在形成沟槽前经过减薄处理,减薄后的厚度为100μm。所述沟槽位于GaN基发光结构正上方,沟槽尺寸为5~40μm,沟槽深度为5~20μm。In an embodiment of the present invention, the groove is formed by ICP etching sapphire or depositing a SiO2 layer on the sapphire substrate and then etching. The sapphire substrate is thinned before forming the groove, and the thinned The thickness is 100 μm. The groove is located directly above the GaN-based light-emitting structure, the size of the groove is 5-40 μm, and the depth of the groove is 5-20 μm.
本发明的一实施例中,保护材料层采用SiO2或有机树脂制成。In an embodiment of the present invention, the protective material layer is made of SiO 2 or organic resin.
本发明还提供了一种全彩微显示器件的制备方法,步骤如下:The present invention also provides a method for preparing a full-color micro-display device, the steps are as follows:
(1)在蓝宝石衬底303上外延生长GaN或AlGaN LED外延片,GaN外延片依次包括缓冲层,N-GaN层、有源层和P-GaN层。(1) GaN or AlGaN LED epitaxial wafers are epitaxially grown on the sapphire substrate 303 , and the GaN epitaxial wafers sequentially include a buffer layer, an N-GaN layer, an active layer and a P-GaN layer.
(2)在P-GaN层上继续沉积透明导电膜层作为接触层,用于与P-GaN和反射层金属均形成良好的欧姆接触,接触层优选ITO和ZnO,但不限于此。(2) Continue to deposit a transparent conductive film layer on the P-GaN layer as a contact layer for forming good ohmic contact with both the P-GaN and the reflective layer metal. The contact layer is preferably ITO and ZnO, but not limited thereto.
(3)在LED外延片上蚀刻到N-GaN,形成每个像素所需的三个LED芯片,三个芯片的形状优选为矩形,但不限于此,三个芯片的发光面积占像素总面积的比例优选为1:1:1,但不限于此。(3) Etch N-GaN on the LED epitaxial wafer to form three LED chips required for each pixel. The shape of the three chips is preferably rectangular, but not limited thereto. The ratio is preferably 1:1:1, but not limited thereto.
(4)在LED外延片上用ICP蚀刻出像素间的隔离沟道205,即一直蚀刻到蓝宝石衬底,形成全彩微显示像素的陈列,像素形状优选为矩形,但不限于矩形,像素尺寸优选为40μm×40μm,但不限于此。(4) Use ICP to etch the isolation channel 205 between pixels on the LED epitaxial wafer, that is, etch all the way to the sapphire substrate to form an array of full-color micro-display pixels. The pixel shape is preferably rectangular, but not limited to rectangular, and the pixel size is preferred. 40 μm×40 μm, but not limited thereto.
(5)在像素间的隔离沟道内以及沟道两侧壁上沉积绝缘层305和挡光层306,绝缘层优先SiO2或AlN,厚度优选500~2000nm,挡光层优先Cr/Al或者Cr/Ag金属,厚度100nm~500nm,挡光层也可做成反射结构,优选Al或Ag作为反射层结构,后面沉积Ti/Au或Ni/Au,沉积厚度1~2μm。挡光层可以一定程度上减少像素间光的串扰。(5) Deposit an insulating layer 305 and a light-shielding layer 306 in the isolation trench between pixels and on both side walls of the trench. The insulating layer is preferably SiO 2 or AlN, with a thickness of preferably 500-2000nm. The light-shielding layer is preferably Cr/Al or Cr /Ag metal, with a thickness of 100nm to 500nm, and the light blocking layer can also be made into a reflective structure, preferably Al or Ag as the reflective layer structure, followed by deposition of Ti/Au or Ni/Au, with a thickness of 1 to 2μm. The light blocking layer can reduce the crosstalk of light between pixels to a certain extent.
(6)沉积N电极202,N电极优选Ti/Al/Ni/Au,但不限于此,总厚度为1~2um。(6) Deposit the N electrode 202 , the N electrode is preferably Ti/Al/Ni/Au, but not limited thereto, and the total thickness is 1-2 um.
(7)沉积P电极201、203和204,P电极还需要起到反射光的功能,优选Al或Ag作为反射层结构,后面沉积Ti/Au或Ni/Au,沉积厚度为1~2μm。(7) Deposit P electrodes 201, 203, and 204. The P electrodes also need to reflect light. Al or Ag is preferred as the reflective layer structure, followed by deposition of Ti/Au or Ni/Au with a thickness of 1-2 μm.
(8)将微显示倒装LED芯片的蓝宝石衬底进行减薄,减薄后的厚度优选为80μm~150μm。(8) The sapphire substrate of the micro-display flip-chip LED chip is thinned, and the thickness after thinning is preferably 80 μm˜150 μm.
(9)在蓝宝石衬底的出光面蚀刻出用于填充量子点的沟槽301和302等,可以直接蚀刻蓝宝石形成,也可以先在蓝宝石上沉积SiO2后用BOE蚀刻形成,沟槽位于每个像素中三个LED芯片的正上方,形状大小与三个LED芯片对应,沟槽深度优选为10~20μm。(9) Etch grooves 301 and 302 for filling quantum dots on the light-emitting surface of the sapphire substrate, which can be formed by directly etching sapphire, or can be formed by depositing SiO2 on the sapphire first and then etched with BOE. The grooves are located in each Directly above the three LED chips in the pixel, the shape and size correspond to the three LED chips, and the groove depth is preferably 10-20 μm.
(10)用滴涂或3D打印的方法在每个像素的三个沟槽内分别填充可发射红绿蓝三种颜色的光的量子点。(10) Fill the three grooves of each pixel with quantum dots that can emit light of red, green and blue colors by drop coating or 3D printing.
(11)填充完量子点后再芯片表面覆盖一沉保护层,保护层优选SiO2或树脂,选择SiO2时,厚度优选100nm~500nm。(11) After the quantum dots are filled, the surface of the chip is covered with a protective layer. The protective layer is preferably SiO2 or resin. When SiO2 is selected, the thickness is preferably 100nm-500nm.
(12)把微显示倒装LED芯片倒装焊接到带有驱动电路的基板上,基板优选Si基板,但不限于此,基板上的驱动电路可以独立控制每个像素中的三个LED芯片。(12) Flip-chip welding the micro-display flip-chip LED chip to a substrate with a driving circuit, the substrate is preferably a Si substrate, but not limited thereto, and the driving circuit on the substrate can independently control three LED chips in each pixel.
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。It should be understood that the above specific embodiments of the present invention are only used to illustrate or explain the principles of the present invention, and not to limit the present invention. Therefore, any modification, equivalent replacement, improvement, etc. made without departing from the spirit and scope of the present invention shall fall within the protection scope of the present invention. Furthermore, it is intended that the appended claims of the present invention embrace all changes and modifications that come within the scope and metesques of the appended claims, or equivalents of such scope and metes and bounds.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2017100527920 | 2017-01-24 | ||
CN201710052792 | 2017-01-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106920790A true CN106920790A (en) | 2017-07-04 |
Family
ID=59568743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710214037.8A Pending CN106920790A (en) | 2017-01-24 | 2017-04-01 | A kind of full-color micro-display device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106920790A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107357085A (en) * | 2017-08-12 | 2017-11-17 | 左洪波 | The method for packing of blue light TFT LCD displays |
CN107393938A (en) * | 2017-08-12 | 2017-11-24 | 左洪波 | Micro LED blue light display screen method for packing |
CN108022963A (en) * | 2017-12-06 | 2018-05-11 | 北海威德电子科技有限公司 | A kind of mixing LED illuminator for display |
CN108039359A (en) * | 2017-12-06 | 2018-05-15 | 北海威德电子科技有限公司 | A kind of ULED for display OLED joint illuminator |
CN108105647A (en) * | 2017-12-20 | 2018-06-01 | 西安智盛锐芯半导体科技有限公司 | Intelligent LED shot-light |
CN108183159A (en) * | 2017-11-17 | 2018-06-19 | 广州市香港科大霍英东研究院 | A kind of micro- light emitting diode, micro- active display structure of arrays and packaging method |
CN108281092A (en) * | 2018-01-24 | 2018-07-13 | 福州大学 | A kind of micron order LED shows the micro-structure and its manufacturing method of light efficiency extraction |
CN108447965A (en) * | 2018-04-12 | 2018-08-24 | 广东普加福光电科技有限公司 | A kind of preparation method of full-color microdisplay device |
CN109888082A (en) * | 2019-01-25 | 2019-06-14 | 山东省科学院激光研究所 | A kind of white light emitting diode chip and preparation method thereof |
CN110518033A (en) * | 2019-09-29 | 2019-11-29 | 深圳市晶台股份有限公司 | A kind of integrated full-color light-emitting chip structure |
CN110854257A (en) * | 2019-12-12 | 2020-02-28 | 佛山市国星半导体技术有限公司 | A flip-chip LED chip with switchable color and method of making the same |
CN111081694A (en) * | 2018-10-18 | 2020-04-28 | 群创光电股份有限公司 | Electronic device, splicing electronic equipment and operation method thereof |
CN111276470A (en) * | 2018-12-04 | 2020-06-12 | 錼创显示科技股份有限公司 | Micro semiconductor device structure |
CN112151650A (en) * | 2020-10-23 | 2020-12-29 | 江苏第三代半导体研究院有限公司 | Micro light-emitting diode array and preparation method thereof |
CN112909215A (en) * | 2021-01-29 | 2021-06-04 | 中国科学院长春光学精密机械与物理研究所 | Preparation method of quantum dot color conversion array |
CN113206176A (en) * | 2021-04-23 | 2021-08-03 | 武汉大学 | Selective etching epitaxial Micro-LED chip and design and preparation method thereof |
CN114038875A (en) * | 2021-08-04 | 2022-02-11 | 重庆康佳光电技术研究院有限公司 | LED chip, display panel and electronic equipment |
CN114050170A (en) * | 2021-08-19 | 2022-02-15 | 重庆康佳光电技术研究院有限公司 | Display panel and manufacturing method thereof |
CN114122220A (en) * | 2021-08-24 | 2022-03-01 | 友达光电股份有限公司 | Display device and method of manufacturing the same |
CN114203877A (en) * | 2021-12-10 | 2022-03-18 | 东莞市中晶半导体科技有限公司 | Light-emitting chip manufacturing method and light-emitting chip |
US11296257B2 (en) | 2018-02-28 | 2022-04-05 | Huawei Technologies Co., Ltd. | Light-emitting diode chip and preparation method therefor |
CN114300602A (en) * | 2021-12-30 | 2022-04-08 | 深圳市思坦科技有限公司 | Full-color Micro-LED, preparation method thereof and display device |
CN114373848A (en) * | 2021-01-27 | 2022-04-19 | 昆山麦沄显示技术有限公司 | LED chip and method of making the same |
CN114927600A (en) * | 2022-05-25 | 2022-08-19 | 厦门大学 | Micro LED full-color display device based on micro-fluidic technology and preparation method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1442836A (en) * | 2003-04-11 | 2003-09-17 | 田志辉 | Colour mixture full coloured LED display module |
CN102214651A (en) * | 2011-05-25 | 2011-10-12 | 映瑞光电科技(上海)有限公司 | LED (light emitting diode) pixel unit device structure and preparation method thereof |
CN103579461A (en) * | 2013-11-08 | 2014-02-12 | 中国科学院半导体研究所 | Method for manufacturing wafer full-color LED display array |
CN104733593A (en) * | 2013-12-18 | 2015-06-24 | 晶科电子(广州)有限公司 | Quantum dot-based white LED device and manufacturing method thereof |
CN105047780A (en) * | 2015-09-01 | 2015-11-11 | 山东浪潮华光光电子股份有限公司 | Parallel-connected GaN-based LED chip preparation method |
CN105529346A (en) * | 2014-09-30 | 2016-04-27 | 业鑫科技顾问股份有限公司 | Display panel and method of manufacturing the same |
CN105679196A (en) * | 2016-04-11 | 2016-06-15 | 深圳市丽格特光电有限公司 | Full-color high-resolution micro-display chip based on gallium nitride LEDs and quantum dot technology |
CN106205401A (en) * | 2016-07-21 | 2016-12-07 | 长春希达电子技术有限公司 | A kind of integration packaging LED display module and preparation method thereof |
-
2017
- 2017-04-01 CN CN201710214037.8A patent/CN106920790A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1442836A (en) * | 2003-04-11 | 2003-09-17 | 田志辉 | Colour mixture full coloured LED display module |
CN102214651A (en) * | 2011-05-25 | 2011-10-12 | 映瑞光电科技(上海)有限公司 | LED (light emitting diode) pixel unit device structure and preparation method thereof |
CN103579461A (en) * | 2013-11-08 | 2014-02-12 | 中国科学院半导体研究所 | Method for manufacturing wafer full-color LED display array |
CN104733593A (en) * | 2013-12-18 | 2015-06-24 | 晶科电子(广州)有限公司 | Quantum dot-based white LED device and manufacturing method thereof |
CN105529346A (en) * | 2014-09-30 | 2016-04-27 | 业鑫科技顾问股份有限公司 | Display panel and method of manufacturing the same |
CN105047780A (en) * | 2015-09-01 | 2015-11-11 | 山东浪潮华光光电子股份有限公司 | Parallel-connected GaN-based LED chip preparation method |
CN105679196A (en) * | 2016-04-11 | 2016-06-15 | 深圳市丽格特光电有限公司 | Full-color high-resolution micro-display chip based on gallium nitride LEDs and quantum dot technology |
CN106205401A (en) * | 2016-07-21 | 2016-12-07 | 长春希达电子技术有限公司 | A kind of integration packaging LED display module and preparation method thereof |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107393938A (en) * | 2017-08-12 | 2017-11-24 | 左洪波 | Micro LED blue light display screen method for packing |
CN107357085A (en) * | 2017-08-12 | 2017-11-17 | 左洪波 | The method for packing of blue light TFT LCD displays |
CN108183159A (en) * | 2017-11-17 | 2018-06-19 | 广州市香港科大霍英东研究院 | A kind of micro- light emitting diode, micro- active display structure of arrays and packaging method |
CN108039359B (en) * | 2017-12-06 | 2020-08-14 | 宁波远志立方能源科技有限公司 | ULED/OLED combined light-emitting body for display |
CN108022963A (en) * | 2017-12-06 | 2018-05-11 | 北海威德电子科技有限公司 | A kind of mixing LED illuminator for display |
CN108039359A (en) * | 2017-12-06 | 2018-05-15 | 北海威德电子科技有限公司 | A kind of ULED for display OLED joint illuminator |
CN108105647A (en) * | 2017-12-20 | 2018-06-01 | 西安智盛锐芯半导体科技有限公司 | Intelligent LED shot-light |
CN108281092A (en) * | 2018-01-24 | 2018-07-13 | 福州大学 | A kind of micron order LED shows the micro-structure and its manufacturing method of light efficiency extraction |
US11296257B2 (en) | 2018-02-28 | 2022-04-05 | Huawei Technologies Co., Ltd. | Light-emitting diode chip and preparation method therefor |
CN108447965A (en) * | 2018-04-12 | 2018-08-24 | 广东普加福光电科技有限公司 | A kind of preparation method of full-color microdisplay device |
CN108447965B (en) * | 2018-04-12 | 2019-06-11 | 广东普加福光电科技有限公司 | A kind of preparation method of full-color microdisplay device |
CN111081694A (en) * | 2018-10-18 | 2020-04-28 | 群创光电股份有限公司 | Electronic device, splicing electronic equipment and operation method thereof |
CN111276470A (en) * | 2018-12-04 | 2020-06-12 | 錼创显示科技股份有限公司 | Micro semiconductor device structure |
CN111276470B (en) * | 2018-12-04 | 2021-11-02 | 錼创显示科技股份有限公司 | Micro semiconductor device structure |
CN109888082A (en) * | 2019-01-25 | 2019-06-14 | 山东省科学院激光研究所 | A kind of white light emitting diode chip and preparation method thereof |
CN110518033A (en) * | 2019-09-29 | 2019-11-29 | 深圳市晶台股份有限公司 | A kind of integrated full-color light-emitting chip structure |
CN110854257A (en) * | 2019-12-12 | 2020-02-28 | 佛山市国星半导体技术有限公司 | A flip-chip LED chip with switchable color and method of making the same |
CN112151650A (en) * | 2020-10-23 | 2020-12-29 | 江苏第三代半导体研究院有限公司 | Micro light-emitting diode array and preparation method thereof |
CN114373848A (en) * | 2021-01-27 | 2022-04-19 | 昆山麦沄显示技术有限公司 | LED chip and method of making the same |
CN112909215A (en) * | 2021-01-29 | 2021-06-04 | 中国科学院长春光学精密机械与物理研究所 | Preparation method of quantum dot color conversion array |
CN113206176A (en) * | 2021-04-23 | 2021-08-03 | 武汉大学 | Selective etching epitaxial Micro-LED chip and design and preparation method thereof |
CN113206176B (en) * | 2021-04-23 | 2022-03-15 | 武汉大学 | Selective area etching epitaxial Micro-LED chip and its design and preparation method |
CN114038875A (en) * | 2021-08-04 | 2022-02-11 | 重庆康佳光电技术研究院有限公司 | LED chip, display panel and electronic equipment |
CN114050170A (en) * | 2021-08-19 | 2022-02-15 | 重庆康佳光电技术研究院有限公司 | Display panel and manufacturing method thereof |
CN114122220A (en) * | 2021-08-24 | 2022-03-01 | 友达光电股份有限公司 | Display device and method of manufacturing the same |
CN114122220B (en) * | 2021-08-24 | 2023-10-03 | 友达光电股份有限公司 | Display device and manufacturing method thereof |
CN114203877A (en) * | 2021-12-10 | 2022-03-18 | 东莞市中晶半导体科技有限公司 | Light-emitting chip manufacturing method and light-emitting chip |
CN114300602A (en) * | 2021-12-30 | 2022-04-08 | 深圳市思坦科技有限公司 | Full-color Micro-LED, preparation method thereof and display device |
CN114300602B (en) * | 2021-12-30 | 2024-04-02 | 深圳市思坦科技有限公司 | Full-color Micro-LED, preparation method thereof and display device |
CN114927600A (en) * | 2022-05-25 | 2022-08-19 | 厦门大学 | Micro LED full-color display device based on micro-fluidic technology and preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106920790A (en) | A kind of full-color micro-display device and preparation method thereof | |
JP7402023B2 (en) | Display device and its manufacturing method | |
CN106876406B (en) | LED full-color display device structure based on III-V nitride semiconductor and preparation method thereof | |
CN104584110B (en) | Display device using semiconductor light emitting device and method of fabricating the same | |
CN108281456B (en) | Micro-LED device structure and manufacturing method | |
US11915962B2 (en) | High-resolution micro-LED display panel and manufacturing method of the same | |
CN111863856A (en) | Light source device and light-emitting device | |
CN110212064B (en) | Light emitting diode chip and preparation method thereof | |
CN113644086B (en) | A kind of preparation method of display panel and display panel | |
TWI441351B (en) | White light emitting diode chip and manufacturing method thereof | |
CN114497325B (en) | Full-color Micro-LED display chip embedded with quantum dots and preparation method thereof | |
KR20210132465A (en) | Full-color diplay using micro-nano-fin light-emitting diodes and method for manufacturing thereof | |
CN110311053A (en) | Display panel and manufacturing method thereof | |
CN108051951B (en) | LED light source, backlight module and liquid crystal display device | |
CN110265587A (en) | Display panel and manufacturing method thereof | |
JP2013055170A (en) | Spontaneous light emitting display and method of manufacturing spontaneous light emitting display | |
CN108196396A (en) | Backlight module and liquid crystal display device | |
JP2022070551A (en) | Manufacturing method of light source device, display device and light source device | |
CN114975507B (en) | Array substrate and display panel | |
CN107611232A (en) | Light emitting diode and preparation method thereof | |
CN116918068A (en) | Semiconductor light-emitting device and preparation method thereof | |
US20250072180A1 (en) | Micro Light Emitting Diode Display Screen and Preparation Method | |
CN118676287B (en) | Micro-LED display chip, display device and manufacturing method | |
CN117352625B (en) | Micro LED micro display chip and preparation method | |
WO2024245198A1 (en) | Light-emitting chip, display device, and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170704 |
|
RJ01 | Rejection of invention patent application after publication |