CN106876871A - Fabrication Method of SiGe Base Frequency Reconfigurable Sleeve Dipole Antenna - Google Patents
Fabrication Method of SiGe Base Frequency Reconfigurable Sleeve Dipole Antenna Download PDFInfo
- Publication number
- CN106876871A CN106876871A CN201611184362.6A CN201611184362A CN106876871A CN 106876871 A CN106876871 A CN 106876871A CN 201611184362 A CN201611184362 A CN 201611184362A CN 106876871 A CN106876871 A CN 106876871A
- Authority
- CN
- China
- Prior art keywords
- spin diode
- type
- sleeve
- region
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 229910000577 Silicon-germanium Inorganic materials 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims abstract description 56
- 238000002360 preparation method Methods 0.000 claims abstract description 24
- 239000010410 layer Substances 0.000 claims description 48
- 238000002955 isolation Methods 0.000 claims description 32
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 27
- 229920005591 polysilicon Polymers 0.000 claims description 27
- 238000005468 ion implantation Methods 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 238000011049 filling Methods 0.000 claims description 10
- 238000001039 wet etching Methods 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 8
- 238000001259 photo etching Methods 0.000 claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 8
- 239000011241 protective layer Substances 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 5
- 238000000206 photolithography Methods 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 11
- 239000002184 metal Substances 0.000 abstract description 11
- 230000010354 integration Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000005404 monopole Effects 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2283—Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/321—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明涉及一种SiGe基频率可重构套筒偶极子天线的制备方法。该方法包括:选取SiGeOI衬底;在SiGeOI衬底上按照套筒偶极子天线的结构制作多个SPiN二极管串;制作直流偏置线以连接SPiN二极管串与直流偏置电源;制作SPiN二极管天线臂、第一SPiN二极管套筒及第二SPiN二极管套筒;制作同轴馈线以连接SPiN二极管天线臂、第一SPiN二极管套筒及第二SPiN二极管套筒,最终形成套筒偶极子天线。本发明实施例的套筒偶极子天线,通过金属直流偏置线控制SPiN二极管导通,形成等离子天线臂及套筒长度的可调,从而实现天线工作频率的可重构,具有易集成、可隐身、频率可快速跳变的特点。
The invention relates to a preparation method of a SiGe base frequency reconfigurable sleeve dipole antenna. The method comprises: selecting a SiGeOI substrate; making a plurality of SPiN diode strings on the SiGeOI substrate according to the structure of a sleeve dipole antenna; making a DC bias line to connect the SPiN diode strings and a DC bias power supply; making an SPiN diode antenna arm, the first SPiN diode sleeve and the second SPiN diode sleeve; making a coaxial feeder to connect the SPiN diode antenna arm, the first SPiN diode sleeve and the second SPiN diode sleeve to finally form a sleeve dipole antenna. The sleeve dipole antenna of the embodiment of the present invention controls the conduction of the SPiN diode through the metal DC bias line to form the adjustable length of the plasma antenna arm and the sleeve, thereby realizing the reconfigurable antenna operating frequency, which has the advantages of easy integration, It can be invisible and the frequency can be quickly changed.
Description
技术领域technical field
本发明属于半导体技术领域,具体涉及一种SiGe基频率可重构套筒偶极子天线的制备方法。The invention belongs to the technical field of semiconductors, and in particular relates to a preparation method of a SiGe-based frequency reconfigurable sleeve dipole antenna.
背景技术Background technique
在天线技术发展迅猛的今天,传统的套筒单极子天线以其宽频带、高增益、结构简单、馈电容易且纵向尺寸、方位面全向等诸多优点广泛应用于车载、舰载和遥感等通信系统中。但是普遍使用的套筒单极子天线的电特征不仅依赖于套筒结构,且与地面有很大的关系,这就很难满足舰载通信工程中架高天线对宽频带和小型化的需求。Today, with the rapid development of antenna technology, the traditional sleeve monopole antenna is widely used in vehicle, shipboard and remote sensing due to its wide frequency band, high gain, simple structure, easy feeding, longitudinal size, omnidirectional and many other advantages. and other communication systems. However, the electrical characteristics of the commonly used sleeve monopole antenna not only depend on the sleeve structure, but also have a great relationship with the ground, which makes it difficult to meet the requirements of broadband and miniaturization for elevated antennas in shipboard communication engineering .
套筒偶极子天线是天线辐射体外加上了一个与之同轴的金属套筒而形成的振子天线。套筒天线在加粗振子的同时,引入不对称馈电,起到了类似电路中参差调谐的作用,进而更有效地展宽了阻抗带宽。同时,为突破传统天线固定不变的工作性能难以满足多样的系统需求和复杂多变的应用环境,可重构天线的概念得到重视并获得发展。可重构微带天线因其体积小,剖面低等优点成为可重构天线研究的热点。基于此,可重构的套筒偶极子天线成为当前市场前景较好的产品之一。The sleeve dipole antenna is a dipole antenna formed by adding a coaxial metal sleeve to the antenna radiator. While thickening the vibrator, the sleeve antenna introduces asymmetrical feeding, which plays a similar role in the staggered tuning in the circuit, thereby broadening the impedance bandwidth more effectively. At the same time, the concept of reconfigurable antennas has been valued and developed in order to break through the fact that the fixed performance of traditional antennas is difficult to meet diverse system requirements and complex and changeable application environments. Reconfigurable microstrip antennas have become a hotspot in the research of reconfigurable antennas because of their small size and low profile. Based on this, the reconfigurable sleeve dipole antenna has become one of the products with better prospects in the current market.
随着微电子技术的发展,采用半导体材料制作可重构天线已经成为当前技术发展的趋势。因此,如何采用半导体工艺技术设计出结构简单,易于实现的频率可重构的套筒偶极子天线,是本领域技术人员亟需解决的问题。With the development of microelectronics technology, the use of semiconductor materials to make reconfigurable antennas has become the trend of current technology development. Therefore, how to design a frequency-reconfigurable sleeve dipole antenna with a simple structure and easy implementation by using semiconductor process technology is an urgent problem to be solved by those skilled in the art.
发明内容Contents of the invention
为了解决现有技术中存在的上述问题,本发明提供了一种SPiN二极管可重构等离子套筒偶极子天线。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above-mentioned problems in the prior art, the present invention provides a SPiN diode reconfigurable plasma sleeve dipole antenna. The technical problem to be solved in the present invention is realized through the following technical solutions:
本发明的实施例提供了一种SiGe基频率可重构套筒偶极子天线的制备方法,其中,所述天线包括半导体基片、SPiN二极管天线臂、第一SPiN二极管套筒、第二SPiN二极管套筒、同轴馈线、直流偏置线;其中,所述制备方法包括:An embodiment of the present invention provides a method for preparing a SiGe base frequency reconfigurable sleeve dipole antenna, wherein the antenna includes a semiconductor substrate, an SPiN diode antenna arm, a first SPiN diode sleeve, a second SPiN A diode sleeve, a coaxial feeder, and a DC bias line; wherein, the preparation method includes:
选取SiGeOI衬底;Select SiGeOI substrate;
在所述SiGeOI衬底上按照所述套筒偶极子天线的结构制作多个SPiN二极管串;making a plurality of SPiN diode strings on the SiGeOI substrate according to the structure of the sleeve dipole antenna;
制作直流偏置线以连接所述SPiN二极管串与直流偏置电源;making a DC bias line to connect the SPiN diode strings to a DC bias power supply;
制作所述SPiN二极管天线臂、所述第一SPiN二极管套筒及所述第二SPiN二极管套筒;making the SPiN diode antenna arm, the first SPiN diode sleeve and the second SPiN diode sleeve;
制作所述同轴馈线以连接所述SPiN二极管天线臂、所述第一SPiN二极管套筒及所述第二SPiN二极管套筒,最终形成所述套筒偶极子天线。The coaxial feeder is made to connect the SPiN diode antenna arm, the first SPiN diode sleeve and the second SPiN diode sleeve, finally forming the sleeve dipole antenna.
在本发明的一个实施例中,在所述SiGeOI衬底上按照所述套筒偶极子天线的结构制作多个SPiN二极管串,包括:In one embodiment of the present invention, a plurality of SPiN diode strings are fabricated on the SiGeOI substrate according to the structure of the sleeve dipole antenna, including:
(a)在所述SiGeOI衬底上按照所述套筒偶极子天线的结构设置隔离区;(a) setting an isolation region on the SiGeOI substrate according to the structure of the sleeve dipole antenna;
(b)刻蚀所述SiGeOI衬底形成P型沟槽和N型沟槽;(b) etching the SiGeOI substrate to form a P-type trench and an N-type trench;
(c)在所述P型沟槽和所述N型沟槽内采用离子注入形成第一P型有源区和第一N型有源区;(c) forming a first P-type active region and a first N-type active region by ion implantation in the P-type trench and the N-type trench;
(d)填充所述P型沟槽和所述N型沟槽,并采用离子注入在所述SiGeOI衬底的顶层SiGe内形成第二P型有源区和第二N型有源区;(d) filling the P-type trench and the N-type trench, and forming a second P-type active region and a second N-type active region in the top layer SiGe of the SiGeOI substrate by ion implantation;
(e)在所述SiGeOI衬底上形成引线以形成横向SPiN二极管;(e) forming leads on the SiGeOI substrate to form a lateral SPiN diode;
(f)光刻PAD以实现多个所述横向SPiN二极管的串行连接从而形成多个所述SPiN二极管串。(f) Photoetching the PAD to realize serial connection of a plurality of lateral SPiN diodes to form a plurality of SPiN diode strings.
在本发明的一个实施例中,步骤(a)包括:In one embodiment of the invention, step (a) includes:
(a1)在所述SiGeOI衬底表面形成第一保护层;(a1) forming a first protective layer on the surface of the SiGeOI substrate;
(a2)利用光刻工艺在所述第一保护层上形成第一隔离区图形;(a2) forming a first isolation region pattern on the first protective layer by using a photolithography process;
(a3)利用干法刻蚀工艺在所述第一隔离区图形的指定位置处刻蚀所述第一保护层及所述SiGeOI衬底以形成隔离槽,且所述隔离槽的深度大于等于所述SiGeOI衬底的顶层SiGe的厚度;(a3) Etching the first protection layer and the SiGeOI substrate at a designated position of the first isolation region pattern by a dry etching process to form an isolation trench, and the depth of the isolation trench is greater than or equal to the specified position Describe the thickness of the top layer SiGe of SiGeOI substrate;
(a4)填充所述隔离槽以形成所述隔离区。(a4) Filling the isolation trench to form the isolation region.
在本发明的一个实施例中,步骤(c)包括:In one embodiment of the invention, step (c) comprises:
(c1)氧化所述P型沟槽和所述N型沟槽以使所述P型沟槽和所述N型沟槽的内壁形成氧化层;(c1) oxidizing the P-type trench and the N-type trench to form an oxide layer on the inner walls of the P-type trench and the N-type trench;
(c2)利用湿法刻蚀工艺刻蚀所述P型沟槽和所述N型沟槽内壁的氧化层以完成所述P型沟槽和所述N型沟槽内壁的平整化;(c2) etching the oxide layer on the inner wall of the P-type trench and the N-type trench by a wet etching process to complete the planarization of the inner wall of the P-type trench and the N-type trench;
(c3)对所述P型沟槽和所述N型沟槽进行离子注入以形成所述第一P型有源区和所述第一N型有源区。(c3) performing ion implantation on the P-type trench and the N-type trench to form the first P-type active region and the first N-type active region.
在本发明的一个实施例中,所述第一N型有源区为沿离子扩散方向距所述N型沟槽侧壁和底部深度小于1微米的区域,所述第一P型有源区为沿离子扩散方向距所述P型沟槽侧壁和底部深度小于1微米的区域。In one embodiment of the present invention, the first N-type active region is a region whose depth is less than 1 micron from the sidewall and bottom of the N-type trench along the direction of ion diffusion, and the first P-type active region It is a region whose depth is less than 1 micron from the side wall and bottom of the P-type trench along the direction of ion diffusion.
在本发明的一个实施例中,步骤(d),包括:In one embodiment of the invention, step (d) includes:
(d1)利用多晶硅填充所述P型沟槽和N型沟槽以形成P+区(27)和N+区(26);(d1) filling the P-type trench and the N-type trench with polysilicon to form a P+ region (27) and an N+ region (26);
(d2)平整化处理所述SiGeOI衬底后,在所述SiGeOI衬底上形成多晶硅层;(d2) After planarizing the SiGeOI substrate, forming a polysilicon layer on the SiGeOI substrate;
(d3)光刻所述多晶硅层,并采用带胶离子注入的方法对所述P+区(27)和所述N+区(26)注入P型杂质和N型杂质以形成第二P型有源区和第二N型有源区且同时形成P型接触区和N型接触区;(d3) photoetching the polysilicon layer, and implanting P-type impurities and N-type impurities into the P+ region (27) and the N+ region (26) to form a second P-type active layer by implanting gelled ions. region and the second N-type active region and simultaneously form a P-type contact region and an N-type contact region;
(d4))去除光刻胶;(d4)) removing the photoresist;
(d5)利用湿法刻蚀去除P型电极和N型电极以外的所述多晶硅。(d5) Removing the polysilicon except for the P-type electrode and the N-type electrode by wet etching.
在本发明的一个实施例中,步骤(e)包括:In one embodiment of the invention, step (e) includes:
在所述SiGeOI衬底上生成二氧化硅;growing silicon dioxide on the SiGeOI substrate;
利用退火工艺激活所述P型有源区和N型有源区中的杂质;activating impurities in the P-type active region and the N-type active region by an annealing process;
在所述P+区(27)和所述N+区(26)光刻引线孔以形成引线。Lead holes are photolithographically etched in the P+ region (27) and the N+ region (26) to form leads.
在本发明的一个实施例中,制备直流偏置线,包括:In one embodiment of the present invention, preparing a DC bias line includes:
利用CVD工艺采用铜、铝或者高掺杂的多晶硅制备形成所述直流偏置线。The DC bias line is formed by using copper, aluminum or highly doped polysilicon by using a CVD process.
在本发明的一个实施例中,所述SPiN二极管天线臂、所述第一SPiN二极管套筒及所述第二SPiN二极管套筒均包括串行连接的相同个数的所述SPiN二极管串,且对应位置的所述SPiN二极管串包括相同个数的横向SPiN二极管。In one embodiment of the present invention, the SPiN diode antenna arm, the first SPiN diode sleeve and the second SPiN diode sleeve all include the same number of the SPiN diode strings connected in series, and The SPiN diode strings at corresponding positions include the same number of lateral SPiN diodes.
在本发明的一个实施例中,制作所述同轴馈线,包括:In one embodiment of the present invention, making the coaxial feeder includes:
将所述同轴馈线的内芯线连接至所述SPiN二极管天线臂且将所述同轴馈线的外导体连接至所述第一SPiN二极管套筒与所述第二SPiN二极管套筒。The inner core wire of the coaxial feeder is connected to the SPiN diode antenna arm and the outer conductor of the coaxial feeder is connected to the first SPiN diode sleeve and the second SPiN diode sleeve.
与现有技术相比,本发明的有益效果:Compared with prior art, the beneficial effect of the present invention:
本发明制备的基于SiGe基SPiN二极管的频率可重构套筒偶极子天线,体积小、剖面低,结构简单、易于加工、无复杂馈源结构、频率可快速跳变,且天线关闭时将处于电磁波隐身状态,可用于各种跳频电台或设备;由于其所有组成部分均在半导体基片一侧,为平面结构,易于组阵,可用作相控阵天线的基本组成单元。The frequency reconfigurable sleeve dipole antenna based on SiGe-based SPiN diodes prepared by the present invention has small volume, low profile, simple structure, easy processing, no complicated feed source structure, fast frequency jump, and the antenna will turn off when the antenna is turned off. In the state of electromagnetic wave stealth, it can be used in various frequency hopping stations or equipment; because all its components are on the side of the semiconductor substrate, it is a planar structure, easy to form an array, and can be used as the basic component of a phased array antenna.
附图说明Description of drawings
图1为本发明实施例提供的一种SiGe基频率可重构套筒偶极子天线的结构示意图;Fig. 1 is a schematic structural diagram of a SiGe base frequency reconfigurable sleeve dipole antenna provided by an embodiment of the present invention;
图2为本发明实施例提供的一种SiGe基频率可重构套筒偶极子天线的制备方法示意图;2 is a schematic diagram of a method for preparing a SiGe-based frequency reconfigurable sleeve dipole antenna provided by an embodiment of the present invention;
图3为本发明实施例提供的一种SPiN二极管串的制备方法示意图;3 is a schematic diagram of a method for preparing an SPiN diode string provided by an embodiment of the present invention;
图4为本发明实施例提供的一种横向SPiN二极管的结构示意图;4 is a schematic structural diagram of a lateral SPiN diode provided by an embodiment of the present invention;
图5为本发明实施例提供的一种SPiN二极管串的结构示意图;以及5 is a schematic structural diagram of an SPiN diode string provided by an embodiment of the present invention; and
图6a-图6s为本发明实施例的一种横向SPiN二极管的制备方法示意图。6a-6s are schematic diagrams of a method for fabricating a lateral SPiN diode according to an embodiment of the present invention.
具体实施方式detailed description
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below in conjunction with specific examples, but the embodiments of the present invention are not limited thereto.
实施例一Embodiment one
请参见图1,图1为本发明实施例提供的一种SiGe基频率可重构套筒偶极子天线的结构示意图。该天线包括半导体基片1、SPiN二极管天线臂2、第一SPiN二极管套筒3、第二SPiN二极管套筒4、同轴馈线5、直流偏置线9、10、11、12、13、14、15、16、17、18、19;Please refer to FIG. 1 . FIG. 1 is a schematic structural diagram of a SiGe fundamental frequency reconfigurable sleeve dipole antenna provided by an embodiment of the present invention. The antenna includes a semiconductor substrate 1, an SPiN diode antenna arm 2, a first SPiN diode sleeve 3, a second SPiN diode sleeve 4, a coaxial feeder 5, and DC bias lines 9, 10, 11, 12, 13, 14 , 15, 16, 17, 18, 19;
所述SPiN二极管天线臂2、所述第一SPiN二极管套筒3、所述第二SPiN二极管套筒4及所述直流偏置线9、10、11、12、13、14、15、16、17、18、19均制作于所述半导体基片1上;所述SPiN二极管天线臂2与所述第一SPiN二极管套筒3及所述第二SPiN二极管套筒4通过所述同轴馈线5连接,所述同轴馈线5的内芯线7连接所述SPiN二极管天线臂2且所述同轴馈线5的外导体8连接所述第一SPiN二极管套筒3及所述第二SPiN二极管套筒4;The SPiN diode antenna arm 2, the first SPiN diode sleeve 3, the second SPiN diode sleeve 4, and the DC bias lines 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 are all fabricated on the semiconductor substrate 1; the SPiN diode antenna arm 2, the first SPiN diode sleeve 3 and the second SPiN diode sleeve 4 pass through the coaxial feeder 5 connection, the inner core wire 7 of the coaxial feeder 5 is connected to the SPiN diode antenna arm 2 and the outer conductor 8 of the coaxial feeder 5 is connected to the first SPiN diode sleeve 3 and the second SPiN diode sleeve cartridge 4;
其中,所述SPiN二极管天线臂2包括串行连接的SPiN二极管w1、w2、w3,所述第一SPiN二极管套筒3包括串行连接的SPiN二极管w4、w5、w6,所述第二SPiN二极管套筒4包括串行连接的SPiN二极管w7、w8、w9,每个所述SPiN二极管串w1、w2、w3、w4、w5、w6、w7、w8、w9通过对应的所述直流偏置线9、10、11、12、13、14、15、16、17、18、19连接至直流偏置电源。Wherein, the SPiN diode antenna arm 2 includes SPiN diodes w1, w2, w3 connected in series, the first SPiN diode sleeve 3 includes SPiN diodes w4, w5, w6 connected in series, and the second SPiN diode The sleeve 4 includes SPiN diodes w7, w8, w9 connected in series, and each of the SPiN diode strings w1, w2, w3, w4, w5, w6, w7, w8, w9 passes through the corresponding DC bias line 9 , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 are connected to the DC bias supply.
该天线是通过金属直流偏置线控制SPiN二极管导通时形成的等离子天线臂及套筒长度实现天线工作频率的可重构,本发明的天线具有易集成、可隐身、频率可快速跳变的特点。The antenna controls the length of the plasma antenna arm and the sleeve formed when the SPiN diode is turned on through the metal DC bias line to realize the reconfigurability of the antenna operating frequency. features.
请参见图2,图2本发明实施例提供的一种SiGe基频率可重构套筒偶极子天线的制备方法示意图。该天线的制备方法可以包括:Please refer to FIG. 2 , which is a schematic diagram of a method for preparing a SiGe fundamental frequency reconfigurable sleeve dipole antenna provided by an embodiment of the present invention. The preparation method of the antenna may include:
选取SiGeOI衬底;Select SiGeOI substrate;
在所述SiGeOI衬底上按照所述套筒偶极子天线的结构制作多个SPiN二极管串;making a plurality of SPiN diode strings on the SiGeOI substrate according to the structure of the sleeve dipole antenna;
制作直流偏置线以连接所述SPiN二极管串与直流偏置电源;making a DC bias line to connect the SPiN diode strings to a DC bias power supply;
制作所述SPiN二极管天线臂、所述第一SPiN二极管套筒及所述第二SPiN二极管套筒;making the SPiN diode antenna arm, the first SPiN diode sleeve and the second SPiN diode sleeve;
制作所述同轴馈线以连接所述SPiN二极管天线臂、所述第一SPiN二极管套筒及所述第二SPiN二极管套筒,最终形成所述套筒偶极子天线。The coaxial feeder is made to connect the SPiN diode antenna arm, the first SPiN diode sleeve and the second SPiN diode sleeve, finally forming the sleeve dipole antenna.
其中,采用SiGeOI衬底的原因在于,对于固态等离子天线由于其需要良好的微波特性,而固态等离子pin二极管为了满足这个需求,需要具备良好的隔离特性和载流子即固态等离子体的限定能力,而SiGeOI衬底由于其具有能够与隔离槽方便的形成pin隔离区域、二氧化硅(SiO2)也能够将载流子即固态等离子体限定在顶层硅中,所以优选采用SiGeOI作为固态等离子pin二极管的衬底。且SiGe材料的载流子迁移率比较大,故可提高器件性能。Among them, the reason for using the SiGeOI substrate is that the solid-state plasma antenna needs good microwave characteristics, and the solid-state plasma pin diode needs to have good isolation characteristics and the ability to limit the carrier, that is, the solid-state plasma, in order to meet this requirement. The SiGeOI substrate is preferably used as a solid-state plasma pin diode because it has a pin isolation region that can be easily formed with the isolation groove, and silicon dioxide (SiO 2 ) can also confine carriers, that is, a solid-state plasma, in the top layer of silicon. the substrate. Moreover, the carrier mobility of the SiGe material is relatively large, so the performance of the device can be improved.
其中,制备直流偏置线,可以包括:Wherein, preparing the DC bias line may include:
利用CVD工艺采用铜、铝或者高掺杂的多晶硅制备形成所述直流偏置线。The DC bias line is formed by using copper, aluminum or highly doped polysilicon by using a CVD process.
优选地,制作所述同轴馈线,可以包括:Preferably, making the coaxial feeder may include:
将所述同轴馈线的内芯线连接至所述SPiN二极管天线臂且将所述同轴馈线的外导体连接至所述第一SPiN二极管套筒与所述第二SPiN二极管套筒。The inner core wire of the coaxial feeder is connected to the SPiN diode antenna arm and the outer conductor of the coaxial feeder is connected to the first SPiN diode sleeve and the second SPiN diode sleeve.
需要说明的是,上述步骤并非具有特定的制作顺序,在实际制备中可以根据实际情况进行调整,此处不做限制。It should be noted that the above-mentioned steps do not have a specific production sequence, and can be adjusted according to actual conditions in actual preparation, which is not limited here.
本实施例中,SPiN二极管天线臂和SPiN二极管套筒均包括N段SPiN二极管串,N的取值范围为N≥2。且每段SPiN二极管串中的SPiN二极管的个数可根据实际需要选取,此处不做任何限制。In this embodiment, both the SPiN diode antenna arm and the SPiN diode sleeve include N sections of SPiN diode strings, and the range of N is N≧2. Moreover, the number of SPiN diodes in each segment of the SPiN diode string can be selected according to actual needs, and there is no limitation here.
优选地,N=3。即所述SPiN二极管天线臂2包括三段SPiN二极管串w1、w2、w3。所述第一SPiN二极管套筒3和所述第二SPiN二极管套筒4分别包括三段SPiN二极管串,其中,所述第一SPiN二极管套筒3包括三段SPiN二极管串w4、w5、w6,所述第二SPiN二极管套筒4包括三段SPiN二极管串w7、w8、w9。且所述SPiN二极管串w1和所述SPiN二极管串w6、所述SPiN二极管串w9的长度相等,所述SPiN二极管串w2和所述SPiN二极管串w5、所述SPiN二极管串w8的长度相等,所述SPiN二极管串w3和所述SPiN二极管串w4、所述SPiN二极管串w7的长度相等。每一个SPiN二极管串亦有直流偏置线外接电压正极。Preferably, N=3. That is, the SPiN diode antenna arm 2 includes three sections of SPiN diode strings w1, w2, w3. The first SPiN diode sleeve 3 and the second SPiN diode sleeve 4 respectively include three sections of SPiN diode strings, wherein the first SPiN diode sleeve 3 includes three sections of SPiN diode strings w4, w5, w6, The second SPiN diode sleeve 4 includes three sections of SPiN diode strings w7, w8, w9. And the lengths of the SPiN diode string w1, the SPiN diode string w6, and the SPiN diode string w9 are equal, the lengths of the SPiN diode string w2, the SPiN diode string w5, and the SPiN diode string w8 are equal, so The lengths of the SPiN diode string w3, the SPiN diode string w4, and the SPiN diode string w7 are equal. Each SPiN diode string also has a DC bias line externally connected to the positive voltage.
本实施例制备的天线,其频率可重构偶极子天线体积小、剖面低,结构简单、易于加工、无复杂馈源结构、频率可快速跳变,且天线关闭时将处于电磁波隐身状态,可用于各种跳频电台或设备;由于其所有组成部分均在半导体基片一侧,为平面结构,易于组阵,可用作相控阵天线的基本组成单元。The antenna prepared in this embodiment has a frequency reconfigurable dipole antenna with small volume, low profile, simple structure, easy processing, no complicated feed source structure, fast frequency jump, and the antenna will be in an electromagnetic stealth state when it is turned off. It can be used in various frequency hopping radio stations or equipment; because all its components are on the side of the semiconductor substrate, it is a planar structure, easy to form an array, and can be used as the basic component of a phased array antenna.
实施例二Embodiment two
请参见图3,图3为本发明实施例提供的一种SPiN二极管串的制备方法示意图。该制备方法可以包括如下步骤:Please refer to FIG. 3 . FIG. 3 is a schematic diagram of a method for preparing an SPiN diode string provided by an embodiment of the present invention. The preparation method may comprise the steps of:
(a)在所述SiGeOI衬底上按照所述套筒偶极子天线的结构设置隔离区;(a) setting an isolation region on the SiGeOI substrate according to the structure of the sleeve dipole antenna;
(b)刻蚀所述SiGeOI衬底形成P型沟槽和N型沟槽;(b) etching the SiGeOI substrate to form a P-type trench and an N-type trench;
(c)在所述P型沟槽和所述N型沟槽内采用离子注入形成第一P型有源区和第一N型有源区;(c) forming a first P-type active region and a first N-type active region by ion implantation in the P-type trench and the N-type trench;
(d)填充所述P型沟槽和所述N型沟槽,并采用离子注入在所述SiGeOI衬底的顶层SiGe内形成第二P型有源区和第二N型有源区;(d) filling the P-type trench and the N-type trench, and forming a second P-type active region and a second N-type active region in the top layer SiGe of the SiGeOI substrate by ion implantation;
(e)在所述SiGeOI衬底上形成引线以形成横向SPiN二极管;(e) forming leads on the SiGeOI substrate to form a lateral SPiN diode;
(f)光刻PAD以实现多个所述横向SPiN二极管的串行连接从而形成多个所述SPiN二极管串。(f) Photoetching the PAD to realize serial connection of a plurality of lateral SPiN diodes to form a plurality of SPiN diode strings.
其中,步骤(a)可以包括:Wherein, step (a) may include:
(a1)在所述SiGeOI衬底表面形成第一保护层;(a1) forming a first protective layer on the surface of the SiGeOI substrate;
(a2)利用光刻工艺在所述第一保护层上形成第一隔离区图形;(a2) forming a first isolation region pattern on the first protective layer by using a photolithography process;
(a3)利用干法刻蚀工艺在所述第一隔离区图形的指定位置处刻蚀所述第一保护层及所述SiGeOI衬底以形成隔离槽,且所述隔离槽的深度大于等于所述SiGeOI衬底的顶层SiGe的厚度;(a3) Etching the first protection layer and the SiGeOI substrate at a designated position of the first isolation region pattern by a dry etching process to form an isolation trench, and the depth of the isolation trench is greater than or equal to the specified position Describe the thickness of the top layer SiGe of SiGeOI substrate;
(a4)填充所述隔离槽以形成所述隔离区。(a4) Filling the isolation trench to form the isolation region.
其中,步骤(c)可以包括:Wherein, step (c) may comprise:
(c1)氧化所述P型沟槽和所述N型沟槽以使所述P型沟槽和所述N型沟槽的内壁形成氧化层;(c1) oxidizing the P-type trench and the N-type trench to form an oxide layer on the inner walls of the P-type trench and the N-type trench;
(c2)利用湿法刻蚀工艺刻蚀所述P型沟槽和所述N型沟槽内壁的氧化层以完成所述P型沟槽和所述N型沟槽内壁的平整化;具体地,平整化处理可以采用如下步骤:氧化P型沟槽和N型沟槽以使P型沟槽和N型沟槽的内壁形成氧化层;利用湿法刻蚀工艺刻蚀P型沟槽和N型沟槽内壁的氧化层以完成P型沟槽和N型沟槽内壁的平整化。这样做的好处在于:可以防止沟槽侧壁的突起形成电场集中区域,造成Pi和Ni结击穿。(c2) using a wet etching process to etch the oxide layer on the inner wall of the P-type trench and the N-type trench to complete the planarization of the inner wall of the P-type trench and the N-type trench; specifically , the planarization process can adopt the following steps: oxidize the P-type trench and the N-type trench to form an oxide layer on the inner wall of the P-type trench and the N-type trench; use a wet etching process to etch the P-type trench and the N-type trench The oxide layer on the inner wall of the P-type trench is used to complete the planarization of the inner wall of the P-type trench and the N-type trench. The advantage of doing this is that it can prevent the protrusion of the trench side wall from forming an electric field concentration area, causing breakdown of the Pi and Ni junctions.
(c3)对所述P型沟槽和所述N型沟槽进行离子注入以形成所述第一P型有源区和所述第一N型有源区。所述第一N型有源区为沿离子扩散方向距所述N型沟槽侧壁和底部深度小于1微米的区域,所述第一P型有源区为沿离子扩散方向距所述P型沟槽侧壁和底部深度小于1微米的区域。(c3) performing ion implantation on the P-type trench and the N-type trench to form the first P-type active region and the first N-type active region. The first N-type active region is a region with a depth of less than 1 micron from the side wall and bottom of the N-type trench along the direction of ion diffusion, and the first P-type active region is a region farther from the P The area where the depth of the sidewall and bottom of the type trench is less than 1 micron.
形成第一有源区的目的在于:在沟槽的侧壁形成一层均匀的重掺杂区域,该区域即为Pi和Ni结中的重掺杂区,而第一有源区的形成具有如下几个好处,以槽中填入多晶硅作为电极为例说明,第一、避免了多晶硅与Si之间的异质结与Pi和Ni结重合,导致的性能的不确定性;第二、可以利用多晶硅中杂质的扩散速度比Si中快的特性,进一步向P和N区扩散,进一步提高P和N区的掺杂浓度;第三、这样做防止了在多晶硅工艺过程中,多晶硅生长的不均性造成的多晶硅与槽壁之间形成空洞,该空洞会造成多晶硅与侧壁的接触不好,影响器件性能。The purpose of forming the first active region is to form a layer of uniform heavily doped region on the side wall of the trench, which is the heavily doped region in the junction of Pi and Ni, and the formation of the first active region has The following advantages are illustrated by filling polysilicon in the groove as an example. First, it avoids the uncertainty of the performance caused by the heterojunction between polysilicon and Si and the junction of Pi and Ni. Second, it can Utilize the characteristics that the diffusion speed of impurities in polysilicon is faster than that in Si, further diffuse to P and N regions, and further increase the doping concentration of P and N regions; third, this prevents the inappropriate growth of polysilicon during the polysilicon process. Voids are formed between the polysilicon and the groove wall caused by homogeneity, and the voids will cause poor contact between the polysilicon and the sidewall, affecting device performance.
其中,步骤(d)可以包括:Wherein, step (d) may comprise:
(d1)利用多晶硅填充所述P型沟槽和N型沟槽以形成P+区(27)和N+区(26);(d1) filling the P-type trench and the N-type trench with polysilicon to form a P+ region (27) and an N+ region (26);
(d2)平整化处理所述SiGeOI衬底后,在所述SiGeOI衬底上形成多晶硅层;(d2) After planarizing the SiGeOI substrate, forming a polysilicon layer on the SiGeOI substrate;
(d3)光刻所述多晶硅层,并采用带胶离子注入的方法对所述P+区(27)和所述N+区(26)注入P型杂质和N型杂质以形成第二P型有源区和第二N型有源区且同时形成P型接触区和N型接触区;(d3) photoetching the polysilicon layer, and implanting P-type impurities and N-type impurities into the P+ region (27) and the N+ region (26) to form a second P-type active layer by implanting gelled ions. region and the second N-type active region and simultaneously form a P-type contact region and an N-type contact region;
(d4))去除光刻胶;(d4)) removing the photoresist;
(d5)利用湿法刻蚀去除P型电极和N型电极以外的所述多晶硅。(d5) Removing the polysilicon except for the P-type electrode and the N-type electrode by wet etching.
其中,步骤(e)可以包括:Wherein, step (e) may include:
(e1)在所述SiGeOI衬底上生成二氧化硅;(e1) generating silicon dioxide on the SiGeOI substrate;
(e2)利用退火工艺激活所述P型有源区和N型有源区中的杂质;(e2) activating impurities in the P-type active region and the N-type active region by an annealing process;
(e3)在所述P+区(27)和所述N+区(26)光刻引线孔以形成引线。(e3) Lithographically etching wire holes in the P+ region (27) and the N+ region (26) to form wires.
请一并参见图4及图5,图4为本发明实施例提供的一种横向SPiN二极管的结构示意图;图5为本发明实施例提供的一种SPiN二极管串的结构示意图。每个SPiN二极管串中包括多个横向SPiN二极管,且这些SPiN二极管串行连接。所述SPiN二极管串中的横向SPiN二极管由P+区27、N+区26和本征区22组成,金属接触区23位于P+区27处,金属接触区24位于N+区26处,处于SPiN二极管串的一端的横向SPiN二极管的金属接触区23连接至直流偏置的正极,处于SPiN二极管串的另一端的横向SPiN二极管的金属接触区24连接至直流偏置的负极,通过施加直流电压可使整个SPiN二极管串中所有横向SPiN二极管处于正向导通状态。Please refer to FIG. 4 and FIG. 5 together. FIG. 4 is a schematic structural diagram of a lateral SPiN diode provided by an embodiment of the present invention; FIG. 5 is a schematic structural diagram of an SPiN diode string provided by an embodiment of the present invention. Each SPiN diode string includes a plurality of lateral SPiN diodes, and these SPiN diodes are connected in series. The lateral SPiN diode in the SPiN diode string is composed of a P+ region 27, an N+ region 26 and an intrinsic region 22, the metal contact region 23 is located at the P+ region 27, the metal contact region 24 is located at the N+ region 26, and is in the SPiN diode string The metal contact region 23 of the lateral SPiN diode at one end is connected to the positive pole of the DC bias, and the metal contact region 24 of the lateral SPiN diode at the other end of the SPiN diode string is connected to the negative pole of the DC bias. By applying a DC voltage, the entire SPiN All lateral SPiN diodes in the diode string are in a forward conduction state.
实施例三Embodiment three
请参见图6a-图6s,图6a-图6s为本发明实施例的一种横向SPiN二极管的制备方法示意图。本实施例在上述实施例的基础上,以制备等离子区域长度为100μm的SiGeOI基SPiN二极管(固态等离子PiN二极管)为例对SPiN二极管的制备进行详细说明,具体步骤如下:Please refer to FIG. 6a-FIG. 6s. FIG. 6a-FIG. 6s are schematic diagrams of a method for fabricating a lateral SPiN diode according to an embodiment of the present invention. In this embodiment, on the basis of the above-mentioned embodiments, the preparation of the SPiN diode is described in detail by taking the preparation of a SiGeOI-based SPiN diode (solid-state plasma PiN diode) with a plasma region length of 100 μm as an example, and the specific steps are as follows:
步骤1,衬底材料制备步骤:Step 1, substrate material preparation steps:
(1a)如图6a所示,选取(100)晶向,掺杂类型为p型,掺杂浓度为1014cm-3的SiGeOI衬底片101,顶层SiGe的厚度为50μm;(1a) As shown in Figure 6a, select (100) crystal orientation, doping type is p-type, SiGeOI substrate sheet 101 with doping concentration of 10 14 cm -3 , and the thickness of the top layer SiGe is 50 μm;
(1b)如图6b所示,采用化学气相沉积(Chemical vapor deposition,简称CVD)的方法,在SiGeOI衬底上淀积一层40nm厚度的第一SiO2层201;采用化学气相淀积的方法,在SiO2层淀积一层2μm厚度的第一Si3N4/SiN层202;(1b) As shown in Figure 6b, the first SiO2 layer 201 with a thickness of 40nm is deposited on the SiGeOI substrate by chemical vapor deposition (Chemical vapor deposition, CVD for short); , depositing a first Si 3 N 4 /SiN layer 202 with a thickness of 2 μm on the SiO 2 layer;
步骤2,隔离制备步骤:Step 2, isolation preparation steps:
(2a)如图6c所示,通过光刻工艺在上述保护层上形成隔离区,湿法刻蚀隔离区第一Si3N4/SiN层202,形成隔离区图形;采用干法刻蚀,在隔离区形成宽5μm,深为50μm的深隔离槽301;(2a) As shown in FIG. 6c, an isolation region is formed on the protective layer by a photolithography process, and the first Si 3 N 4 /SiN layer 202 in the isolation region is wet-etched to form an isolation region pattern; dry etching is used, forming a deep isolation trench 301 with a width of 5 μm and a depth of 50 μm in the isolation region;
(2b)如图6d所示,采用CVD的方法,淀积SiO2 401将该深隔离槽填满;(2b) As shown in FIG. 6d , deposit SiO 2 401 by CVD to fill up the deep isolation trench;
(2c)如图6e所示,采用化学机械抛光(Chemical Mechanical Polishing,简称CMP)方法,去除表面第一Si3N4/SiN层202和第一SiO2层201,使SiGeOI衬底表面平整;(2c) As shown in FIG. 6e, the first Si 3 N 4 /SiN layer 202 and the first SiO 2 layer 201 on the surface are removed by using a chemical mechanical polishing (CMP) method to make the surface of the SiGeOI substrate smooth;
步骤3,P、N区深槽制备步骤:Step 3, preparation steps of deep grooves in P and N regions:
(3a)如图6f所示,采用CVD方法,在衬底上连续淀积两层材料,第一层为300nm厚度的第二SiO2层601,第二层为600nm厚度的第二Si3N4/SiN层602;(3a) As shown in Figure 6f, two layers of materials are continuously deposited on the substrate by CVD method, the first layer is a second SiO 2 layer 601 with a thickness of 300nm, and the second layer is a second Si 3 N layer with a thickness of 600nm 4 /SiN layer 602;
(3b)如图6g所示,光刻P、N区深槽,湿法刻蚀P、N区第二Si3N4/SiN层602和第二SiO2层601,形成P、N区图形;采用干法刻蚀,在P、N区形成宽4μm,深5μm的深槽701,P、N区槽的长度根据在所制备的天线中的应用情况而确定;(3b) As shown in Figure 6g, photolithography of deep grooves in the P and N regions, wet etching of the second Si 3 N 4 /SiN layer 602 and the second SiO 2 layer 601 in the P and N regions to form patterns in the P and N regions ;Use dry etching to form a deep groove 701 with a width of 4 μm and a depth of 5 μm in the P and N regions, and the length of the grooves in the P and N regions is determined according to the application in the prepared antenna;
(3c)如图6h所示,在850℃下,高温处理10分钟,氧化槽内壁形成氧化层801;(3c) As shown in FIG. 6h, at 850° C. for 10 minutes at high temperature, an oxide layer 801 is formed on the inner wall of the oxidation tank;
(3d)如图6i所示,利用湿法刻蚀工艺去除P、N区槽内壁的氧化层801,以使P、N区槽内壁平整。(3d) As shown in FIG. 6i , the oxide layer 801 on the inner walls of the grooves in the P and N regions is removed by a wet etching process, so that the inner walls of the grooves in the P and N regions are flat.
步骤4,P、N接触区制备步骤:Step 4, P, N contact region preparation steps:
(4a)如图6j所示,光刻P区深槽,采用带胶离子注入的方法对P区槽侧壁进行p+注入,使侧壁上形成薄的p+有源区1001,浓度达到0.5×1020cm-3,除掉光刻胶;(4a) As shown in Figure 6j, the deep groove in the P region is photolithographically, and p + implantation is performed on the side wall of the groove in the P region by the method of ion implantation with glue, so that a thin p + active region 1001 is formed on the side wall, and the concentration reaches 0.5×10 20 cm -3 , remove the photoresist;
(4b)光刻N区深槽,采用带胶离子注入的方法对N区槽侧壁进行n+注入,使侧壁上形成薄的n+有源区1002,浓度达到0.5×1020cm-3,除掉光刻胶;(4b) Lithograph the deep groove in the N region, and use the method of ion implantation with glue to carry out n + implantation on the side wall of the N region groove, so that a thin n + active region 1002 is formed on the side wall, and the concentration reaches 0.5×10 20 cm - 3 , remove the photoresist;
(4c)如图6k所示,采用CVD的方法,在P、N区槽中淀积多晶硅1101,并将沟槽填满;(4c) As shown in FIG. 6k, adopt CVD method to deposit polysilicon 1101 in the grooves of P and N regions, and fill the grooves;
(4d)如图6l所示,采用CMP,去除表面多晶硅1101与第二Si3N4/SiN层602,使表面平整;(4d) As shown in FIG. 6l, CMP is used to remove the surface polysilicon 1101 and the second Si 3 N 4 /SiN layer 602 to make the surface smooth;
(4e)如图6m所示,采用CVD的方法,在表面淀积一层多晶硅1301,厚度为200~500nm;(4e) As shown in FIG. 6m, a layer of polysilicon 1301 is deposited on the surface by CVD with a thickness of 200-500nm;
(4f)如图6n所示,光刻P区有源区,采用带胶离子注入方法进行p+注入,使P区有源区掺杂浓度达到0.5×1020cm-3,去除光刻胶,形成P接触1401;(4f) As shown in Figure 6n, photoresist the active region of the P region, and perform p + implantation by using the ion implantation method with glue, so that the doping concentration of the active region of the P region reaches 0.5×10 20 cm -3 , and remove the photoresist , forming a P-contact 1401;
(4g)光刻N区有源区,采用带胶离子注入方法进行n+注入,使N区有源区掺杂浓度为0.5×1020cm-3,去除光刻胶,形成N接触1402;(4g) Photoetching the active region of the N region, using glued ion implantation to perform n + implantation, so that the doping concentration of the active region of the N region is 0.5×10 20 cm -3 , removing the photoresist, and forming an N contact 1402;
(4h)如图6o所示,采用湿法刻蚀,刻蚀掉P、N接触区以外的多晶硅1301,形成P、N接触区;(4h) As shown in FIG. 6o, wet etching is used to etch away the polysilicon 1301 outside the P and N contact regions to form P and N contact regions;
(4i)如图6p所示,采用CVD的方法,在表面淀积SiO2 1601,厚度为800nm;(4i) As shown in FIG. 6p, deposit SiO 2 1601 on the surface by CVD with a thickness of 800nm;
(4j)在1000℃,退火1分钟,使离子注入的杂质激活、并且推进多晶锗中杂质;(4j) annealing at 1000°C for 1 minute to activate the ion-implanted impurities and advance the impurities in the polycrystalline germanium;
步骤5,构成PIN二极管步骤:Step 5, forming the PIN diode steps:
(5a)如图6q所示,在P、N接触区光刻引线孔1701;(5a) As shown in FIG. 6q, photolithographic lead holes 1701 are formed in the P and N contact areas;
(5b)如图6r所示,衬底表面溅射金属,在750℃合金形成金属硅化物1801,并刻蚀掉表面的金属;(5b) As shown in Figure 6r, metal is sputtered on the surface of the substrate, a metal silicide 1801 is formed at 750° C., and the metal on the surface is etched away;
(5c)衬底表面溅射金属,光刻引线;(5c) sputtering metal on the surface of the substrate, and photoetching leads;
(5d)如图6s所示,淀积Si3N4/SiN形成钝化层1901,光刻PAD,形成PIN二极管,作为制备固态等离子天线材料。(5d) As shown in FIG. 6s , deposit Si 3 N 4 /SiN to form a passivation layer 1901 , photoetch PAD, and form a PIN diode as a material for preparing a solid plasma antenna.
本实施例中,上述各种工艺参数均为举例说明,依据本领域技术人员的常规手段所做的变换均为本申请之保护范围。In this embodiment, the above-mentioned various process parameters are all examples, and the transformations made according to the conventional means of those skilled in the art are within the protection scope of the present application.
本发明制备的应用于固态等离子可重构天线的SPiN二极管,首先,所使用的SiGe材料,由于其高迁移率和大载流子寿命的特性,提高了SPiN二极管的固态等离子体浓度;另外,SPiN二极管的P区与N区采用了基于刻蚀的深槽刻蚀的多晶硅镶嵌工艺,该工艺能够提供突变结pi与ni结,并且能够有效地提高pi结、ni结的结深,使固态等离子体的浓度和分布的可控性增强,有利于制备出高性能的等离子天线;再次,本发明制备的应用于固态等离子可重构天线的SPiN二极管采用了一种基于刻蚀的深槽介质隔离工艺,有效地提高了器件的击穿电压,抑制了漏电流对器件性能的影响。The SPiN diode used in the solid-state plasma reconfigurable antenna prepared by the present invention, firstly, the SiGe material used improves the solid-state plasma concentration of the SPiN diode due to its high mobility and large carrier lifetime characteristics; in addition, The P region and N region of the SPiN diode adopt the polysilicon damascene process based on etching deep groove etching, which can provide sudden junction pi and ni junctions, and can effectively increase the junction depth of pi and ni junctions, making solid The controllability of plasma concentration and distribution is enhanced, which is conducive to the preparation of high-performance plasma antennas; again, the SPiN diodes used in solid-state plasma reconfigurable antennas prepared by the present invention adopt a deep groove dielectric based on etching The isolation process effectively increases the breakdown voltage of the device and suppresses the influence of leakage current on the performance of the device.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611184362.6A CN106876871A (en) | 2016-12-20 | 2016-12-20 | Fabrication Method of SiGe Base Frequency Reconfigurable Sleeve Dipole Antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611184362.6A CN106876871A (en) | 2016-12-20 | 2016-12-20 | Fabrication Method of SiGe Base Frequency Reconfigurable Sleeve Dipole Antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106876871A true CN106876871A (en) | 2017-06-20 |
Family
ID=59164687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611184362.6A Withdrawn CN106876871A (en) | 2016-12-20 | 2016-12-20 | Fabrication Method of SiGe Base Frequency Reconfigurable Sleeve Dipole Antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106876871A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101714591A (en) * | 2009-11-10 | 2010-05-26 | 大连理工大学 | Method for manufacturing silicon photoelectric diode |
CN102903736A (en) * | 2011-07-27 | 2013-01-30 | 中国科学院微电子研究所 | Diode and manufacturing method thereof |
US20130025785A1 (en) * | 2009-01-07 | 2013-01-31 | Lam Research Corporation | Profile and cd uniformity control by plasma oxidation treatment |
CN103871900A (en) * | 2014-03-06 | 2014-06-18 | 上海华虹宏力半导体制造有限公司 | Groove field effect transistor and forming method thereof |
CN104992942A (en) * | 2015-07-03 | 2015-10-21 | 西安电子科技大学 | Vertically-stacked strain Si/SiGe heterojunction CMOS device structure and preparation method thereof |
-
2016
- 2016-12-20 CN CN201611184362.6A patent/CN106876871A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130025785A1 (en) * | 2009-01-07 | 2013-01-31 | Lam Research Corporation | Profile and cd uniformity control by plasma oxidation treatment |
CN101714591A (en) * | 2009-11-10 | 2010-05-26 | 大连理工大学 | Method for manufacturing silicon photoelectric diode |
CN102903736A (en) * | 2011-07-27 | 2013-01-30 | 中国科学院微电子研究所 | Diode and manufacturing method thereof |
CN103871900A (en) * | 2014-03-06 | 2014-06-18 | 上海华虹宏力半导体制造有限公司 | Groove field effect transistor and forming method thereof |
CN104992942A (en) * | 2015-07-03 | 2015-10-21 | 西安电子科技大学 | Vertically-stacked strain Si/SiGe heterojunction CMOS device structure and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
DA-JIN KIM等: "Optomization of the Intrinsic Length of a PIN Diode for a Reconfigurable Antenna", 《2016 INTERNATIONAL CONFERENCE ON ELECTRONICS,INFORMATION,AND COMMUNICATIONS》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106847903A (en) | For the preparation method of the heterogeneous SPiN diodes of SiGe bases of restructural loop aerial | |
CN106785335A (en) | The preparation technology of the Ge base plasma pin diodes of frequency reconfigurable dipole antenna | |
CN106784019B (en) | Ge-based solid-state plasma PiN diode and preparation method thereof | |
WO2018113452A1 (en) | Method for manufacturing alas-ge-alas structure-based plasma pin diode in multilayered holographic antenna | |
CN106847680B (en) | Preparation method of GaAs-based frequency reconfigurable sleeve dipole antenna | |
CN106783593B (en) | Preparation method of Ge-based heterogeneous solid-state plasma diode applied to loop antenna | |
CN106783595B (en) | Preparation method of GaAs/Ge/GaAs heterogeneous SPiN diode for loop antenna | |
CN106876871A (en) | Fabrication Method of SiGe Base Frequency Reconfigurable Sleeve Dipole Antenna | |
US10177141B2 (en) | Preparation method for heterogeneous SiGe based plasma P-I-N diode string for sleeve antenna | |
CN106783559B (en) | Frequency reconfigurable sleeve-dipole antenna preparation method based on SPiN diode | |
CN106601616B (en) | Fabrication method of heterogeneous Ge-based pin diode strings in reconfigurable multilayer holographic antenna | |
CN106847692B (en) | Preparation method of GaAs-based lateral plasmonic pin diode for multilayer holographic antenna | |
CN106898857A (en) | The preparation method of Ge fundamental frequency restructural sleeve-dipole antennas | |
CN106783591A (en) | Frequency reconfigurable holographic antenna preparation method based on Ge base heterojunction materials | |
CN112993044B (en) | Preparation method of CdTe-GeSn-CdTe heterogeneous transverse PiN diode and device thereof | |
CN113013258B (en) | Preparation method of SiGe-GeSn-SiGe heterostructure high injection ratio PiN diode array and device thereof | |
CN112992676B (en) | Preparation method and device of a high injection ratio heterogeneous PiN diode with AlAs-GeSn-AlAs structure | |
CN106876872A (en) | Preparation method of Ge-based reconfigurable dipole antenna based on AlAs/Ge/AlAs structure | |
CN112993051B (en) | Preparation method of heterogeneous deep-groove Pin array, device and silicon-based reconfigurable stealth antenna | |
CN106783603B (en) | Preparation method of heterogeneous Ge-based plasma pin diode applied to sleeve antenna | |
WO2018113454A1 (en) | Preparation method for heterogeneous sige-based plasma pin diode string used for sleeve antenna | |
CN106783599B (en) | Preparation method of heterogeneous Ge-based plasma pin diode for making dipole antenna | |
CN106847693B (en) | Preparation method of GaAs solid plasma pin diode applied to reconfigurable loop antenna | |
CN106816686A (en) | The preparation method of the restructural dipole antenna based on heterogeneous SiGeSPiN diodes | |
CN106953155A (en) | A kind of preparation method of solid-state plasmonic reconfigurable dipole antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20170620 |