[go: up one dir, main page]

CN106876538A - A kind of LED epitaxial growing method and light emitting diode - Google Patents

A kind of LED epitaxial growing method and light emitting diode Download PDF

Info

Publication number
CN106876538A
CN106876538A CN201710084616.5A CN201710084616A CN106876538A CN 106876538 A CN106876538 A CN 106876538A CN 201710084616 A CN201710084616 A CN 201710084616A CN 106876538 A CN106876538 A CN 106876538A
Authority
CN
China
Prior art keywords
layer
growing
light
temperature
sigan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710084616.5A
Other languages
Chinese (zh)
Other versions
CN106876538B (en
Inventor
徐平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangneng Hualei Optoelectrical Co Ltd
Original Assignee
Xiangneng Hualei Optoelectrical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangneng Hualei Optoelectrical Co Ltd filed Critical Xiangneng Hualei Optoelectrical Co Ltd
Priority to CN201710084616.5A priority Critical patent/CN106876538B/en
Publication of CN106876538A publication Critical patent/CN106876538A/en
Application granted granted Critical
Publication of CN106876538B publication Critical patent/CN106876538B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0137Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions

Landscapes

  • Led Devices (AREA)

Abstract

本发明公开一种发光二极管外延生长方法,包括:处理蓝宝石衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长MgInAlN/SiGaN超晶格层、生长InxGa(1‑x)N/GaN发光层、生长P型AlGaN层、生长掺镁的P型GaN层、降温冷却得到发光二极管。本发明提升了LED的发光效率。

The invention discloses a light-emitting diode epitaxial growth method, comprising: processing a sapphire substrate, growing a low-temperature buffer layer GaN, growing an undoped GaN layer, growing an N-type GaN layer doped with Si, growing a MgInAlN/SiGaN superlattice layer, Growing an In x Ga (1-x) N/GaN light-emitting layer, growing a P-type AlGaN layer, growing a P-type GaN layer doped with magnesium, and cooling down to obtain a light-emitting diode. The invention improves the luminous efficiency of the LED.

Description

一种发光二极管外延生长方法及发光二极管A light-emitting diode epitaxial growth method and light-emitting diode

技术领域technical field

本发明涉及发光二极管的技术领域,更具体地,涉及一种发光二极管外延生长方法及发光二极管。The present invention relates to the technical field of light-emitting diodes, and more specifically, to a light-emitting diode epitaxial growth method and a light-emitting diode.

背景技术Background technique

发光二极管(Light Emitting Diode,简称LED)是一种固体照明器件,因其体积小、耗电量低、使用寿命长、亮度高、环保、坚固耐用等优点受到广大消费者认可。目前,国内生产LED的规模也在逐步扩大,随着人们生活水平的提高,市场上对提升LED亮度和光效的需求与日俱增,用户广泛关注的是希望获得更省电、亮度更高、光效更好的LED,这就对LED的生产提出了更高的要求。如何生长发光效率更好的LED日益受到重视。Light Emitting Diode (LED for short) is a solid-state lighting device, which is recognized by consumers for its advantages such as small size, low power consumption, long service life, high brightness, environmental protection, and durability. At present, the scale of domestic production of LEDs is also gradually expanding. With the improvement of people's living standards, the demand for improving the brightness and light efficiency of LEDs is increasing day by day. Good LED, which puts forward higher requirements for the production of LED. How to grow LEDs with better luminous efficiency has been paid more and more attention.

而LED外延层作为LED的重要组成部分,对LED发光效率起着极其重要的作用,因为外延层晶体质量的提高,可以使得LED器件的性能得以提升,进而提升LED的发光效率、寿命、抗老化能力、抗静电能力、稳定性。The LED epitaxial layer, as an important part of the LED, plays an extremely important role in the LED luminous efficiency, because the improvement of the crystal quality of the epitaxial layer can improve the performance of the LED device, thereby improving the luminous efficiency, life, and anti-aging of the LED. Ability, antistatic ability, stability.

传统的LED结构包括如下外延结构:基板蓝宝石衬底、低温缓冲层GaN层、不掺杂的GaN层、掺杂Si的N型GaN层、发光层(由InxGa(1-x)N层和GaN层周期性生长得到)、P型AlGaN层、掺Mg的P型GaN层、ITO层、保护层SiO2层、P电极及N电极。The traditional LED structure includes the following epitaxial structure: substrate sapphire substrate, low-temperature buffer layer GaN layer, undoped GaN layer, Si-doped N-type GaN layer, light-emitting layer (made of In x Ga (1-x) N layer and GaN layer periodically grown), P-type AlGaN layer, Mg-doped P-type GaN layer, ITO layer, protective layer SiO 2 layer, P electrode and N electrode.

传统的LED在蓝宝石衬底外延生长得到的掺杂Si的N型GaN层中,不能阻挡电子传输的速度,速度过快的电子传输到发光层后导致电子拥挤,从而使得电流分布不均匀,引起N型GaN层的阻值变高,进而导致LED中电流在LED的发光层内部消耗掉而出现LED发光效率降低的问题。In the Si-doped N-type GaN layer obtained by the epitaxial growth of the sapphire substrate, the traditional LED cannot block the speed of electron transmission. The electrons that are too fast are transported to the light-emitting layer and cause electron crowding, which makes the current distribution uneven and causes The resistance value of the N-type GaN layer becomes higher, which in turn causes the current in the LED to be consumed inside the light-emitting layer of the LED, thereby reducing the luminous efficiency of the LED.

因此,提供一种改善LED外延结构并提升LED发光效率的方案是本领域亟待解决的问题。Therefore, it is an urgent problem to be solved in this field to provide a solution for improving the epitaxial structure of the LED and improving the luminous efficiency of the LED.

发明内容Contents of the invention

有鉴于此,本发明提供了一种发光二极管外延生长方法及发光二极管,解决了现有技术中LED外延结构中电流分布不均匀导致的发光效率降低的技术问题。In view of this, the present invention provides a light-emitting diode epitaxial growth method and a light-emitting diode, which solve the technical problem of reduced luminous efficiency caused by uneven current distribution in the LED epitaxial structure in the prior art.

为了解决上述技术问题,本发明提出一种发光二极管外延生长方法,包括:处理蓝宝石衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长MgInAlN/SiGaN超晶格层、生长InxGa(1-x)N/GaN发光层、生长P型AlGaN层、生长掺镁的P型GaN层、降温冷却得到发光二极管;其中,In order to solve the above technical problems, the present invention proposes a light-emitting diode epitaxial growth method, including: processing the sapphire substrate, growing a low-temperature buffer layer GaN, growing an undoped GaN layer, growing an N-type GaN layer doped with Si, growing a MgInAlN/ SiGaN superlattice layer, growing In x Ga (1-x) N/GaN light-emitting layer, growing P-type AlGaN layer, growing magnesium-doped P-type GaN layer, and cooling to obtain a light-emitting diode; wherein,

生长MgInAlN/SiGaN超晶格层,进一步包括:growing the MgInAlN/SiGaN superlattice layer, further comprising:

在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、50-70sccm的TMGa、90-110L/min的H2、1200-1400sccm的TMIn、100-200sccm的TMAl、900-1000sccm的Cp2Mg、20-30sccm的SiH4的条件下,生长MgInAlN/SiGaN超晶格层:In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH3 , 50-70sccm of TMGa, 90-110L/min of H2 , 1200-1400sccm of TMIn, 100- Under the conditions of 200sccm TMAl, 900-1000sccm Cp 2 Mg, and 20-30sccm SiH 4 , grow the MgInAlN/SiGaN superlattice layer:

在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、100-200sccm的TMAl、90-110L/min的H2、1200-1400sccm的TMIn及900-1000sccm的Cp2Mg的条件下,生长4-7nm的MgInAlN层,其中,In掺杂浓度为3E19-4E19atom/cm3,Mg掺杂浓度为1E19-1E20atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH3 , 100-200sccm of TMAl, 90-110L/min of H2 , 1200-1400sccm of TMIn and 900- Under the condition of 1000sccm Cp 2 Mg, grow a 4-7nm MgInAlN layer, wherein the In doping concentration is 3E19-4E19atom/cm 3 , and the Mg doping concentration is 1E19-1E20atom/cm 3 ;

在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、90-110L/min的H2、50-70sccm的TMGa、20-30sccm的SiH4的条件下,生长厚度为8-15nm的SiGaN层,其中,Si掺杂浓度为1E18-5E18atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000℃, and the flow rate is 50000-55000sccm NH3 , 90-110L/min H2 , 50-70sccm TMGa, 20-30sccm SiH4 conditions Next, grow a SiGaN layer with a thickness of 8-15nm, wherein the Si doping concentration is 1E18-5E18atom/cm 3 ;

周期性生长MgInAlN层和SiGaN层得到MgInAlN/SiGaN超晶格层,其中,生长周期为4-20;Periodically grow MgInAlN layers and SiGaN layers to obtain MgInAlN/SiGaN superlattice layers, wherein the growth period is 4-20;

降温冷却得到发光二极管,进一步包括:The light-emitting diode obtained by cooling down further includes:

降温至650-680℃后保温20-30min,接着关闭加热系统、关闭给气系统随炉冷却得到发光二极管。Cool down to 650-680°C and keep warm for 20-30 minutes, then turn off the heating system, turn off the gas supply system and cool down with the furnace to obtain light-emitting diodes.

进一步地,其中,处理蓝宝石衬底为:Further, wherein, processing the sapphire substrate is:

在1000-1100℃的氢气气氛下,通入100L/min-130L/min的H2,保持反应腔压力为100-300mbar的条件下,处理蓝宝石衬底5-10分钟。In a hydrogen atmosphere at 1000-1100°C, 100L/min-130L/min of H 2 is introduced, and the reaction chamber pressure is kept at 100-300mbar, and the sapphire substrate is processed for 5-10 minutes.

进一步地,其中,生长低温缓冲层GaN为:Further, wherein, growing the low-temperature buffer layer GaN is:

在温度为500-600℃、反应腔压力为300-600mbar、通入流量为10000-20000sccm的NH3、50-100sccm的TMGa及100L/min-130L/min的H2的条件下,在蓝宝石衬底上生长厚度为20-40nm的低温缓冲层GaN。Under the conditions of a temperature of 500-600°C, a reaction chamber pressure of 300-600mbar, a flow rate of 10000-20000sccm of NH 3 , 50-100sccm of TMGa and 100L/min-130L/min of H2 , the sapphire substrate A low-temperature buffer layer GaN with a thickness of 20-40nm is grown on the bottom.

进一步地,其中,该方法还包括:Further, wherein, the method also includes:

升高温度至1000-1100℃,保持反应腔压力为300-600mbar,通入流量为30000-40000sccm的NH3及100L/min-130L/min的H2的条件下,保持温度稳定持续300-500秒将所述低温缓冲层GaN腐蚀成不规则的岛状。Raise the temperature to 1000-1100°C, keep the pressure of the reaction chamber at 300-600mbar, feed the flow rate of 30000-40000sccm of NH3 and 100L/min-130L/min of H2 , and keep the temperature stable for 300-500 seconds to etch the low-temperature buffer layer GaN into irregular island shapes.

进一步地,其中,生长不掺杂GaN层为:Further, wherein, growing an undoped GaN layer is:

在温度为1000-1200℃、反应腔压力为300-600mbar、通入流量为30000-40000sccm的NH3、200-400sccm的TMGa及100-130L/min的H2的条件下,持续生长厚度为2-4μm的不掺杂GaN层。Under the conditions of a temperature of 1000-1200°C, a reaction chamber pressure of 300-600mbar, a flow rate of 30000-40000sccm of NH 3 , 200-400sccm of TMGa and 100-130L/min of H2 , the continuous growth thickness is 2 -4 μm undoped GaN layer.

进一步地,其中,生长掺杂Si的N型GaN层为:Further, wherein, growing an N-type GaN layer doped with Si is:

在反应腔压力为300-600mbar、温度为1000-1200℃、通入流量为30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2及20-50sccm的SiH4的条件下,持续生长厚度为3-4μm的掺杂Si的N型GaN层,其中,Si掺杂浓度为5E18-1E19atom/cm3In the reaction chamber, the pressure is 300-600mbar, the temperature is 1000-1200℃, the flow rate is 30000-60000sccm NH3 , 200-400sccm TMGa, 100-130L/min H2 and 20-50sccm SiH4 conditions Next, continuously grow a Si-doped N-type GaN layer with a thickness of 3-4 μm, wherein the Si doping concentration is 5E18-1E19 atom/cm 3 .

进一步地,其中,生长InxGa(1-x)N/GaN发光层为:Further, wherein, growing the In x Ga (1-x) N/GaN light-emitting layer is:

在反应腔压力为300-400mbar、温度为700-750℃、通入流量为50000-70000sccm的NH3、20-40sccm的TMGa、1500-2000sccm的TMIn及100-130L/min的N2的条件下,生长厚度为2.5-3.5nm的掺杂In的InxGa(1-x)N层(x=0.20-0.25),发光波长450-455nm;Under the condition of reaction chamber pressure of 300-400mbar, temperature of 700-750℃, flow rate of 50000-70000sccm of NH3 , 20-40sccm of TMGa, 1500-2000sccm of TMIn and 100-130L/min of N2 , growing an In-doped In x Ga (1-x) N layer (x=0.20-0.25) with a thickness of 2.5-3.5nm, and an emission wavelength of 450-455nm;

升高温度至750-850℃,在反应腔压力为300-400mbar、通入流量为50000-70000sccm的NH3、20-100sccm的TMGa及100-130L/min的N2的条件下,生长厚度为8-15nm的GaN层;Raise the temperature to 750-850°C, under the condition that the reaction chamber pressure is 300-400mbar, the flow rate is 50000-70000sccm of NH3 , 20-100sccm of TMGa and 100-130L/min of N2 , the growth thickness is 8-15nm GaN layer;

周期性交替生长所述InxGa(1-x)N层和GaN层得到InxGa(1-x)N/GaN发光层,其中,生长周期数为7-15个。The In x Ga (1-x) N/GaN light-emitting layer is obtained by periodically growing the In x Ga (1-x) N layer and the GaN layer alternately, wherein the number of growth cycles is 7-15.

进一步地,其中,生长P型AlGaN层为:Further, wherein, growing the P-type AlGaN layer is:

在反应腔压力为200-400mbar、温度为900-950℃、通入流量为50000-70000sccm的NH3、30-60sccm的TMGa、100-130L/min的H2、100-130sccm的TMAl及1000-1300sccm的Cp2Mg的条件下,持续生长厚度为50-100nm的P型AlGaN层,其中,Al掺杂浓度为1E20-3E20atom/cm3,Mg掺杂浓度1E19-1E20atom/cm3In the reaction chamber, the pressure is 200-400mbar, the temperature is 900-950°C, and the flow rate is 50000-70000sccm of NH3 , 30-60sccm of TMGa, 100-130L/min of H2 , 100-130sccm of TMAl and 1000- Under the condition of 1300sccm Cp 2 Mg, a P-type AlGaN layer with a thickness of 50-100nm is continuously grown, wherein the Al doping concentration is 1E20-3E20atom/cm 3 , and the Mg doping concentration is 1E19-1E20atom/cm 3 .

进一步地,其中,生长掺镁的P型GaN层为:Further, wherein, growing the p-type GaN layer doped with magnesium is:

在反应腔压力为400-900mbar、温度为950-1000℃、通入流量为50000-70000sccm的NH3、20-100sccm的TMGa、100-130L/min的H2及1000-3000sccm的Cp2Mg的条件下,持续生长厚度为50-200nm的掺镁的P型GaN层,其中,Mg掺杂浓度为1E19-1E20atom/cm3In the reaction chamber, the pressure is 400-900mbar, the temperature is 950-1000℃, and the flow rate is 50000-70000sccm of NH3 , 20-100sccm of TMGa, 100-130L /min of H2 and 1000-3000sccm of Cp2Mg. Under the conditions, a magnesium-doped P-type GaN layer with a thickness of 50-200 nm is continuously grown, wherein the Mg doping concentration is 1E19-1E20 atom/cm 3 .

另一方面,本发明还提供一种发光二极管,由下至上依次包括:蓝宝石衬底、低温缓冲层GaN、不掺杂GaN层、掺杂Si的N型GaN层、MgInAlN/SiGaN超晶格层、InxGa(1-x)N/GaN发光层、P型AlGaN层及掺镁的P型GaN层;其中,所述MgInAlN/SiGaN超晶格层由如下步骤制得:On the other hand, the present invention also provides a light-emitting diode, which includes from bottom to top: a sapphire substrate, a low-temperature buffer layer GaN, an undoped GaN layer, an N-type GaN layer doped with Si, and a MgInAlN/SiGaN superlattice layer. , In x Ga (1-x) N/GaN light-emitting layer, P-type AlGaN layer and P-type GaN layer doped with magnesium; wherein, the MgInAlN/SiGaN superlattice layer is made by the following steps:

在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、50-70sccm的TMGa、90-110L/min的H2、1200-1400sccm的TMIn、100-200sccm的TMAl、900-1000sccm的Cp2Mg、20-30sccm的SiH4的条件下,生长MgInAlN/SiGaN超晶格层:In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH3 , 50-70sccm of TMGa, 90-110L/min of H2 , 1200-1400sccm of TMIn, 100- Under the conditions of 200sccm TMAl, 900-1000sccm Cp 2 Mg, and 20-30sccm SiH 4 , grow the MgInAlN/SiGaN superlattice layer:

在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、100-200sccm的TMAl、90-110L/min的H2、1200-1400sccm的TMIn及900-1000sccm的Cp2Mg的条件下,生长4-7nm的MgInAlN层,其中,In掺杂浓度为3E19-4E19atom/cm3,Mg掺杂浓度为1E19-1E20atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH3 , 100-200sccm of TMAl, 90-110L/min of H2 , 1200-1400sccm of TMIn and 900- Under the condition of 1000sccm Cp 2 Mg, grow a 4-7nm MgInAlN layer, wherein the In doping concentration is 3E19-4E19atom/cm 3 , and the Mg doping concentration is 1E19-1E20atom/cm 3 ;

在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、90-110L/min的H2、50-70sccm的TMGa、20-30sccm的SiH4的条件下,生长SiGaN层,其中,Si掺杂浓度为1E18-5E18atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000℃, and the flow rate is 50000-55000sccm NH3 , 90-110L/min H2 , 50-70sccm TMGa, 20-30sccm SiH4 conditions Next, grow a SiGaN layer, wherein the Si doping concentration is 1E18-5E18atom/cm 3 ;

周期性生长MgInAlN层和SiGaN层得到MgInAlN/SiGaN超晶格层,其中,生长周期为4-20。The MgInAlN/SiGaN superlattice layer is obtained by periodically growing the MgInAlN layer and the SiGaN layer, wherein the growth period is 4-20.

与现有技术相比,本发明的发光二极管外延生长方法及发光二极管,实现了如下的有益效果:Compared with the prior art, the light-emitting diode epitaxial growth method and the light-emitting diode of the present invention have achieved the following beneficial effects:

(1)本发明所述的发光二极管外延生长方法及发光二极管,在掺杂Si的N型GaN层上生长MgInAlN/SiGaN超晶格层,利用SiGaN层的高能带作为势磊阻挡电子,防止电子过快由掺杂Si的N型GaN层传播到发光层,使得纵向传播的拥挤电子遇到SiGaN层时,受到SiGaN层的高能带阻挡而适当地横向扩散开来,使得LED外延结构中电流均匀分布,从而避免了LED外延结构中电流分布不均匀导致的阻值变高的问题,提升了LED的发光效率。(1) In the light-emitting diode epitaxial growth method and the light-emitting diode of the present invention, a MgInAlN/SiGaN superlattice layer is grown on the Si-doped N-type GaN layer, and the high-energy band of the SiGaN layer is used as a potential to block electrons to prevent electrons from Propagate from the Si-doped N-type GaN layer to the light-emitting layer too quickly, so that when the crowded electrons propagating vertically meet the SiGaN layer, they are blocked by the high-energy band of the SiGaN layer and properly diffused laterally, so that the current in the LED epitaxial structure is uniform. distribution, thereby avoiding the problem of high resistance caused by uneven current distribution in the LED epitaxial structure, and improving the luminous efficiency of the LED.

(2)本发明所述的发光二极管外延生长方法及发光二极管,在掺杂Si的N型GaN层上生长MgInAlN/SiGaN超晶格层,该MgInAlN/SiGaN超晶格层可以形成高浓度的二维电子气,利用二维电子气的横向高迁移率,加速了LED中电子的横向扩展,使得宏观上电流通过MgInAlN/SiGaN超晶格层时被有效的扩展开来,使得发光层电流的分布变得均匀,MgInAlN/SiGaN超晶格层的运用使得LED各方面的性能得到提升。(2) In the light-emitting diode epitaxial growth method and the light-emitting diode of the present invention, a MgInAlN/SiGaN superlattice layer is grown on the Si-doped N-type GaN layer, and the MgInAlN/SiGaN superlattice layer can form a high-concentration di Two-dimensional electron gas, using the high lateral mobility of two-dimensional electron gas, accelerates the lateral expansion of electrons in the LED, so that the macroscopic current is effectively expanded when passing through the MgInAlN/SiGaN superlattice layer, making the current distribution of the light-emitting layer Become uniform, the use of MgInAlN/SiGaN superlattice layer can improve the performance of LED in all aspects.

当然,实施本发明的任一产品必不特定需要同时达到以上所述的所有技术效果。Of course, any product implementing the present invention does not necessarily need to achieve all the above-mentioned technical effects at the same time.

通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。Other features of the present invention and advantages thereof will become apparent from the following detailed description of exemplary embodiments of the present invention with reference to the accompanying drawings.

附图说明Description of drawings

被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.

图1为现有技术中LED结构外延生长方法的流程示意图;FIG. 1 is a schematic flow chart of an LED structure epitaxial growth method in the prior art;

图2为图1中方法制备得到LED的结构示意图;Fig. 2 is the structural representation of LED prepared by the method in Fig. 1;

图3为本发明实施例1中所述发光二极管外延生长方法的流程示意图;FIG. 3 is a schematic flow chart of the epitaxial growth method of light-emitting diodes described in Embodiment 1 of the present invention;

图4为本发明实施例1中所述发光二极管外延生长方法制备得到的光二极管的结构示意图;4 is a schematic structural diagram of a photodiode prepared by the epitaxial growth method of a light emitting diode described in Example 1 of the present invention;

图5为本发明实施例2中所述发光二极管外延生长方法的流程示意图。FIG. 5 is a schematic flow chart of the epitaxial growth method for light emitting diodes described in Embodiment 2 of the present invention.

具体实施方式detailed description

现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangements of components and steps, numerical expressions and numerical values set forth in these embodiments do not limit the scope of the present invention unless specifically stated otherwise.

以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and in no way taken as limiting the invention, its application or uses.

对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。Techniques, methods and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods and devices should be considered part of the description.

在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as exemplary only, and not as limitations. Therefore, other instances of the exemplary embodiment may have different values.

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numerals and letters denote like items in the following figures, therefore, once an item is defined in one figure, it does not require further discussion in subsequent figures.

实施例1Example 1

如图1和图2所示,图1为现有技术中LED结构外延生长方法的流程示意图;图2为图1中方法制备得到LED的结构示意图。现有技术中LED结构外延生长方法包括如下步骤:As shown in FIG. 1 and FIG. 2 , FIG. 1 is a schematic flowchart of a method for epitaxial growth of an LED structure in the prior art; FIG. 2 is a schematic structural schematic diagram of an LED prepared by the method in FIG. 1 . The LED structure epitaxial growth method in the prior art includes the following steps:

步骤101、处理蓝宝石衬底:Step 101, processing the sapphire substrate:

在1000-1100℃的氢气气氛下,通入100L/min-130L/min的H2,保持反应腔压力为100-300mbar(气压单位),处理蓝宝石衬底5-10分钟。Under the hydrogen atmosphere at 1000-1100°C, feed 100L/min-130L/min H 2 , keep the reaction chamber pressure at 100-300mbar (air pressure unit), and process the sapphire substrate for 5-10 minutes.

步骤102、生长低温缓冲层GaN:Step 102, growing a low-temperature buffer layer GaN:

降温至500-600℃下,保持反应腔压力300-600mbar,通入流量为10000-20000sccm(sccm备注标准毫升每分钟)的NH3、50-100sccm的TMGa及100L/min-130L/min的H2,在蓝宝石衬底上生长厚度为20-40nm的低温缓冲层GaN。Cool down to 500-600°C, keep the reaction chamber pressure at 300-600mbar, and feed NH 3 at a flow rate of 10,000-20,000sccm (sccm notes standard milliliters per minute), TMGa at 50-100sccm, and H at 100L/min-130L/min 2. A low-temperature buffer layer GaN with a thickness of 20-40 nm is grown on the sapphire substrate.

步骤103、低温缓冲层GaN腐蚀处理:Step 103, low temperature buffer layer GaN etching treatment:

升高温度至1000-1100℃,保持反应腔压力300-600mbar,通入流量为30000-40000sccm的NH3及100L/min-130L/min的H2,保持温度稳定持续300-500秒将低温缓冲层GaN腐蚀成不规则的岛状。Raise the temperature to 1000-1100°C, keep the pressure in the reaction chamber at 300-600mbar, feed in NH 3 at a flow rate of 30000-40000sccm and H2 at 100L/min-130L/min, keep the temperature stable for 300-500 seconds to buffer the low temperature Layer GaN is etched into irregular islands.

步骤104、生长不掺杂的GaN层:Step 104, growing an undoped GaN layer:

升高温度到1000-1200℃,保持反应腔压力300-600mbar,通入流量为30000-40000sccm(sccm备注标准毫升每分钟)的NH3、200-400sccm的TMGa及100-130L/min的H2,持续生长厚度为2-4μm的不掺杂GaN层。Raise the temperature to 1000-1200°C, keep the reaction chamber pressure at 300-600mbar, and feed NH 3 with a flow rate of 30,000-40,000sccm (sccm remark standard ml per minute), TMGa at 200-400sccm and H 2 at 100-130L/min , continuously growing an undoped GaN layer with a thickness of 2-4 μm.

步骤105、生长第一掺杂Si的N型GaN层:Step 105, growing a first Si-doped N-type GaN layer:

保持反应腔压力、温度不变,通入流量为30000-60000sccm(sccm备注标准毫升每分钟)的NH3、200-400sccm的TMGa、100-130L/min的H2及20-50sccm的SiH4,持续生长厚度为3-4μm第一掺杂Si的N型GaN层,其中,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3(备注1E19代表10的19次方,以此类推,atoms/cm3掺杂浓度单位下同)。Keep the pressure and temperature of the reaction chamber constant, and feed NH 3 with a flow rate of 30000-60000 sccm (sccm notes standard milliliters per minute), TMGa with 200-400 sccm, H 2 with 100-130 L/min and SiH 4 with 20-50 sccm, Continue to grow the N-type GaN layer first doped with Si with a thickness of 3-4 μm, wherein the Si doping concentration is 5E18atoms/cm3-1E19atoms/cm 3 (Note 1E19 represents 10 to the 19th power, and so on, atoms/cm 3 The unit of doping concentration is the same below).

步骤106、生长第二掺杂Si的N型GaN层:Step 106, growing a second Si-doped N-type GaN layer:

保持反应腔压力、温度不变,通入流量为30000-60000sccm(sccm备注标准毫升每分钟)的NH3、200-400sccm的TMGa、100-130L/min的H2及2-10sccm的SiH4,持续生长厚度为200-400nm的第二掺杂Si的N型GaN层,其中,Si掺杂浓度为5E17-1E18atoms/cm3Keep the pressure and temperature of the reaction chamber constant, and feed NH 3 with a flow rate of 30,000-60,000 sccm (sccm notes standard milliliters per minute), TMGa at 200-400 sccm, H 2 at 100-130 L/min, and SiH 4 at 2-10 sccm, Continuously growing a second Si-doped N-type GaN layer with a thickness of 200-400 nm, wherein the Si doping concentration is 5E17-1E18 atoms/cm 3 .

步骤107、生长InxGa(1-x)N/GaN发光层:Step 107, growing an In x Ga (1-x) N/GaN light-emitting layer:

保持反应腔压力为300-400mbar、温度为700-750℃,通入流量为50000-70000sccm的NH3、20-40sccm的TMGa、1500-2000sccm的TMIn及100-130L/min的N2,生长厚度为2.5-3.5nm的掺杂In的InxGa(1-x)N层(x=0.20-0.25),发光波长450-455nm;Keep the pressure of the reaction chamber at 300-400mbar, the temperature at 700-750°C, the flow rate of 50000-70000sccm NH3 , 20-40sccm TMGa, 1500-2000sccm TMIn and 100-130L/min N2 , the growth thickness An In x Ga (1-x) N layer (x=0.20-0.25) doped with In of 2.5-3.5nm, with an emission wavelength of 450-455nm;

接着升高温度至750-850℃,保持反应腔压力300-400mbar通入流量为50000-70000sccm的NH3、20-100sccm的TMGa及100-130L/min的N2,生长厚度为8-15nm的GaN层;Then increase the temperature to 750-850°C, keep the reaction chamber pressure at 300-400mbar, and feed in NH 3 at a flow rate of 50000-70000sccm, TMGa at 20-100sccm and N2 at 100-130L/min, and grow 8-15nm thick GaN layer;

然后重复InxGa(1-x)N层的生长,然后重复GaN层的生长,交替生长得到InxGa(1-x)N/GaN发光层,控制周期数为7-15个。Then repeat the growth of the In x Ga (1-x) N layer, and then repeat the growth of the GaN layer, alternately grow to obtain the In x Ga (1-x) N/GaN light emitting layer, and control the number of cycles to 7-15.

步骤108、生长P型AlGaN层:Step 108, growing a P-type AlGaN layer:

保持反应腔压力为200-400mbar、温度为900-950℃,通入流量为50000-70000sccm的NH3、30-60sccm的TMGa、100-130L/min的H2、100-130sccm的TMAl及1000-1300sccm的Cp2Mg,持续生长厚度为50-100nm的P型AlGaN层,其中,Al掺杂浓度1E20-3E20,Mg掺杂浓度1E19-1E20。Keep the pressure of the reaction chamber at 200-400mbar, the temperature at 900-950°C, and the flow rate of NH 3 at 50000-70000sccm, TMGa at 30-60sccm, H2 at 100-130L/min, TMAl at 100-130sccm and 1000- 1300 sccm of Cp 2 Mg, continuously growing a P-type AlGaN layer with a thickness of 50-100 nm, wherein, the Al doping concentration is 1E20-3E20, and the Mg doping concentration is 1E19-1E20.

步骤109、生长掺镁的P型GaN层:Step 109, growing a p-type GaN layer doped with magnesium:

保持反应腔压力为400-900mbar、温度为950-1000℃,通入流量为50000-70000sccm的NH3、20-100sccm的TMGa、100-130L/min的H2及1000-3000sccm的Cp2Mg,持续生长厚度为50-200nm的掺镁的P型GaN层,其中,Mg掺杂浓度1E19-1E20。Keep the pressure of the reaction chamber at 400-900 mbar, the temperature at 950-1000 ° C, and feed the flow rate of 50000-70000 sccm of NH 3 , 20-100 sccm of TMGa, 100-130 L/min of H 2 and 1000-3000 sccm of Cp 2 Mg, A magnesium-doped P-type GaN layer with a thickness of 50-200 nm is continuously grown, wherein the Mg doping concentration is 1E19-1E20.

步骤110、降温、冷却:Step 110, cooling down, cooling down:

最后降温至650-680℃,保温20-30min,接着关闭加热系统、关闭给气系统,随炉冷却。Finally, cool down to 650-680°C, keep warm for 20-30 minutes, then turn off the heating system, turn off the gas supply system, and cool down with the furnace.

图2中LED的结构包括:基板蓝宝石衬底201、低温缓冲层GaN层202、不掺杂的GaN层203、掺杂Si的N型GaN层204、发光层205(由InxGa(1-x)N层和GaN层周期性生长得到)、P型AlGaN层206、掺Mg的P型GaN层207、ITO层208、保护层SiO2层209、P电极210及N电极211。The structure of LED in Fig. 2 comprises: substrate sapphire substrate 201, low-temperature buffer layer GaN layer 202, undoped GaN layer 203, N-type GaN layer 204 doped with Si, light-emitting layer 205 (by In x Ga (1- x) N layer and GaN layer are periodically grown), P-type AlGaN layer 206, Mg-doped P-type GaN layer 207, ITO layer 208, protective layer SiO 2 layer 209, P electrode 210 and N electrode 211.

通过现有技术制备得到的LED在工作时,电子可以以较快的速度由N型GaN层传播到发光层,造成纵向传播的电子出现拥挤的情况,导致LED中发光层电流的分布变得不均匀,进而影响到LED的发光效率。为了解决现有技术中的上述问题,本实施例提供一种如下的发光二极管外延生长方法:When the LED prepared by the existing technology is working, electrons can travel from the N-type GaN layer to the light-emitting layer at a relatively fast speed, causing the electrons traveling in the longitudinal direction to be crowded, resulting in an uneven distribution of current in the light-emitting layer in the LED. Uniformity, which in turn affects the luminous efficiency of the LED. In order to solve the above-mentioned problems in the prior art, this embodiment provides a method for epitaxial growth of light-emitting diodes as follows:

如图3所示,为本实施中所述发光二极管外延生长方法的流程示意图,该方法包括如下步骤:As shown in Fig. 3, it is a schematic flow chart of the epitaxial growth method of light-emitting diodes described in this implementation, and the method includes the following steps:

步骤301、处理蓝宝石衬底。Step 301, processing the sapphire substrate.

步骤302、生长低温缓冲层GaN。Step 302 , growing a low-temperature buffer layer GaN.

步骤303、低温缓冲层GaN腐蚀处理Step 303, low temperature buffer layer GaN etching treatment

步骤304、生长不掺杂GaN层。Step 304 , growing an undoped GaN layer.

步骤305、生长掺杂Si的N型GaN层。Step 305 , growing a Si-doped N-type GaN layer.

步骤306、生长MgInAlN/SiGaN超晶格层:在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、50-70sccm的TMGa、90-110L/min的H2、1200-1400sccm的TMIn、100-200sccm的TMAl、900-1000sccm的Cp2Mg、20-30sccm的SiH4的条件下,生长MgInAlN/SiGaN超晶格层。Step 306, growing the MgInAlN/SiGaN superlattice layer: in the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH 3 , 50-70sccm of TMGa, 90-110L/min The MgInAlN/SiGaN superlattice layer is grown under the conditions of H 2 of 1200-1400 sccm, TMAl of 100-200 sccm, Cp 2 Mg of 900-1000 sccm, and SiH 4 of 20-30 sccm.

在一些可选的实施例中,生长MgInAlN/SiGaN超晶格层可以为:在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、100-200sccm的TMAl、90-110L/min的H2、1200-1400sccm的TMIn及900-1000sccm的Cp2Mg的条件下,生长4-7nm的MgInAlN层,其中,In掺杂浓度为3E19-4E19atom/cm3,Mg掺杂浓度为1E19-1E20atom/cm3In some optional embodiments, the growth of the MgInAlN/SiGaN superlattice layer may be: NH 3 , 100-200 sccm at a reaction chamber pressure of 500-750 mbar, temperature of 950-1000 ° C, and flow rate of 50000-55000 sccm Under the conditions of TMAl of 90-110L/min, H 2 of 90-110L/min, TMIn of 1200-1400sccm and Cp 2 Mg of 900-1000sccm, a MgInAlN layer of 4-7nm is grown, wherein, the In doping concentration is 3E19-4E19atom/cm 3 , Mg doping concentration is 1E19-1E20atom/cm 3 ;

在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、90-110L/min的H2、50-70sccm的TMGa、20-30sccm的SiH4的条件下,生长厚度为8-15nm的SiGaN层,其中,Si掺杂浓度为1E18-5E18atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000℃, and the flow rate is 50000-55000sccm NH3 , 90-110L/min H2 , 50-70sccm TMGa, 20-30sccm SiH4 conditions Next, grow a SiGaN layer with a thickness of 8-15nm, wherein the Si doping concentration is 1E18-5E18atom/cm 3 ;

周期性生长MgInAlN层和SiGaN层得到MgInAlN/SiGaN超晶格层,其中,生长周期为4-20。The MgInAlN/SiGaN superlattice layer is obtained by periodically growing the MgInAlN layer and the SiGaN layer, wherein the growth period is 4-20.

MgInAlN/SiGaN超晶格层中的SiGaN层具有高能带,通过SiGaN层的高能带作为势磊阻挡电子过快由N型GaN层传播到发光层,避免了电子在发光层拥挤导致阻值变高的情况,使得发光层中电流的分布变得均匀,进而提升了LED的发光效率。The SiGaN layer in the MgInAlN/SiGaN superlattice layer has a high-energy band, and the high-energy band of the SiGaN layer acts as a barrier to prevent electrons from propagating too quickly from the N-type GaN layer to the light-emitting layer, avoiding the crowding of electrons in the light-emitting layer and causing the resistance to increase. The situation makes the current distribution in the light-emitting layer uniform, thereby improving the luminous efficiency of the LED.

步骤307、生长InxGa(1-x)N/GaN发光层。Step 307, growing an In x Ga (1-x) N/GaN light emitting layer.

步骤308、生长P型AlGaN层。Step 308 , growing a P-type AlGaN layer.

步骤309、生长掺镁的P型GaN层。Step 309 , growing a p-type GaN layer doped with magnesium.

步骤310、降温冷却得到发光二极管:Step 310, cooling down to obtain light-emitting diodes:

降温至650-680℃后保温20-30min,接着关闭加热系统、关闭给气系统随炉冷却得到发光二极管。Cool down to 650-680°C and keep warm for 20-30 minutes, then turn off the heating system, turn off the gas supply system and cool down with the furnace to obtain light-emitting diodes.

如图4所示,为本实施例所述发光二极管外延生长方法制备得到的光二极管的结构示意图,该光二极管包括:基板蓝宝石衬底401、低温缓冲层GaN层402、不掺杂的GaN层403、掺杂Si的N型GaN层404、MgInAlN/SiGaN超晶格层405、发光层406(由InxGa(1-x)N层和GaN层周期性生长得到)、P型AlGaN层407、掺Mg的P型GaN层408、ITO层409、保护层SiO2层410、P电极411及N电极412。As shown in Figure 4, it is a schematic structural diagram of a photodiode prepared by the epitaxial growth method of a light emitting diode described in this embodiment. The photodiode includes: a substrate sapphire substrate 401, a low-temperature buffer layer GaN layer 402, an undoped GaN layer 403, Si-doped N-type GaN layer 404, MgInAlN/SiGaN superlattice layer 405, light emitting layer 406 (obtained by periodic growth of In x Ga (1-x) N layer and GaN layer), P-type AlGaN layer 407 , Mg-doped P-type GaN layer 408, ITO layer 409, protective layer SiO 2 layer 410, P electrode 411 and N electrode 412.

实施例2Example 2

如图5所示,为本实施例所述发光二极管外延生长方法的流程示意图,该方法包括如下步骤:As shown in FIG. 5, it is a schematic flow chart of the epitaxial growth method of light-emitting diodes described in this embodiment. The method includes the following steps:

步骤501、处理蓝宝石衬底:在1000-1100℃的氢气气氛下,通入100L/min-130L/min的H2,保持反应腔压力为100-300mbar的条件下,处理蓝宝石衬底5-10分钟。Step 501, processing the sapphire substrate: in a hydrogen atmosphere at 1000-1100°C, inject 100L/min-130L/min of H2 , and keep the reaction chamber pressure at 100-300mbar, and process the sapphire substrate for 5-10 minute.

步骤502、生长低温缓冲层GaN:在温度为500-600℃、反应腔压力为300-600mbar、通入流量为10000-20000sccm的NH3、50-100sccm的TMGa及100L/min-130L/min的H2的条件下,在蓝宝石衬底上生长厚度为20-40nm的低温缓冲层GaN。Step 502, growing low-temperature buffer layer GaN: at a temperature of 500-600°C, a reaction chamber pressure of 300-600mbar, and a flow rate of 10000-20000sccm of NH 3 , 50-100sccm of TMGa and 100L/min-130L/min Under the condition of H 2 , grow a low-temperature buffer layer GaN with a thickness of 20-40nm on the sapphire substrate.

步骤503、低温缓冲层GaN腐蚀处理:升高温度至1000-1100℃,保持反应腔压力为300-600mbar,通入流量为30000-40000sccm的NH3及100L/min-130L/min的H2的条件下,保持温度稳定持续300-500秒将所述低温缓冲层GaN腐蚀成不规则的岛状。Step 503, low-temperature buffer layer GaN etching treatment: raise the temperature to 1000-1100°C, keep the reaction chamber pressure at 300-600mbar, and feed in NH3 at a flow rate of 30000-40000sccm and H2 at 100L/min-130L/min Under the conditions, keep the temperature stable for 300-500 seconds to etch the low-temperature buffer layer GaN into an irregular island shape.

步骤504、生长不掺杂GaN层:在温度为1000-1200℃、反应腔压力为300-600mbar、通入流量为30000-40000sccm的NH3、200-400sccm的TMGa及100-130L/min的H2的条件下,持续生长2-4μm的不掺杂GaN层。Step 504, growing an undoped GaN layer: at a temperature of 1000-1200° C., a reaction chamber pressure of 300-600 mbar, and a flow rate of 30,000-40,000 sccm of NH 3 , 200-400 sccm of TMGa, and 100-130 L/min of H Under the condition of 2 , a 2-4μm undoped GaN layer is continuously grown.

步骤505、生长掺杂Si的N型GaN层:在反应腔压力为300-600mbar、温度为1000-1200℃、通入流量为30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2及20-50sccm的SiH4的条件下,持续生长厚度为3-4μm的掺杂Si的N型GaN层,其中,Si掺杂浓度为5E18-1E19atom/cm3Step 505, growing Si-doped N-type GaN layer: In the reaction chamber, the pressure is 300-600mbar, the temperature is 1000-1200°C, and the flow rate is 30000-60000sccm of NH 3 , 200-400sccm of TMGa, 100-130L/ Under the conditions of min H 2 and 20-50 sccm SiH 4 , a Si-doped N-type GaN layer with a thickness of 3-4 μm is continuously grown, wherein the Si doping concentration is 5E18-1E19 atom/cm 3 .

步骤506、生长MgInAlN/SiGaN超晶格层:在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、50-70sccm的TMGa、90-110L/min的H2、1200-1400sccm的TMIn、100-200sccm的TMAl、900-1000sccm的Cp2Mg、20-30sccm的SiH4的条件下,生长MgInAlN/SiGaN超晶格层。Step 506, growing the MgInAlN/SiGaN superlattice layer: in the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH 3 , 50-70sccm of TMGa, 90-110L/min The MgInAlN/SiGaN superlattice layer is grown under the conditions of H 2 of 1200-1400 sccm, TMAl of 100-200 sccm, Cp 2 Mg of 900-1000 sccm, and SiH 4 of 20-30 sccm.

在一些可选的实施例中,生长MgInAlN/SiGaN超晶格层可以为:在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、100-200sccm的TMAl、90-110L/min的H2、1200-1400sccm的TMIn及900-1000sccm的Cp2Mg的条件下,生长4-7nm的MgInAlN层,其中,In掺杂浓度为3E19-4E19atom/cm3,Mg掺杂浓度为1E19-1E20atom/cm3In some optional embodiments, the growth of the MgInAlN/SiGaN superlattice layer may be: NH 3 , 100-200 sccm at a reaction chamber pressure of 500-750 mbar, temperature of 950-1000 ° C, and flow rate of 50000-55000 sccm Under the conditions of TMAl of 90-110L/min, H 2 of 90-110L/min, TMIn of 1200-1400sccm and Cp 2 Mg of 900-1000sccm, a MgInAlN layer of 4-7nm is grown, wherein, the In doping concentration is 3E19-4E19atom/cm 3 , Mg doping concentration is 1E19-1E20atom/cm 3 ;

在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、90-110L/min的H2、50-70sccm的TMGa、20-30sccm的SiH4的条件下,生长SiGaN层,其中,Si掺杂浓度为1E18-5E18atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000℃, and the flow rate is 50000-55000sccm NH3 , 90-110L/min H2 , 50-70sccm TMGa, 20-30sccm SiH4 conditions Next, grow a SiGaN layer, wherein the Si doping concentration is 1E18-5E18atom/cm 3 ;

周期性生长MgInAlN层和SiGaN层得到MgInAlN/SiGaN超晶格层,其中,生长周期为4-20。本实施例并不限定MgInAlN层和SiGaN层的先后生长顺序,也可以先生长SiGaN层,再生长MgInAlN层,再周期性交替生长SiGaN层和MgInAlN层得到MgInAlN/SiGaN超晶格层。The MgInAlN/SiGaN superlattice layer is obtained by periodically growing the MgInAlN layer and the SiGaN layer, wherein the growth period is 4-20. This embodiment does not limit the growth sequence of the MgInAlN layer and the SiGaN layer. It is also possible to grow the SiGaN layer first, then grow the MgInAlN layer, and then alternately grow the SiGaN layer and the MgInAlN layer periodically to obtain the MgInAlN/SiGaN superlattice layer.

MgInAlN/SiGaN超晶格层中的SiGaN层具有高能带,通过SiGaN层的高能带作为势磊阻挡电子过快由N型GaN层传播到发光层,避免了电子在发光层拥挤导致阻值变高的情况,使得发光层中电流的分布变得均匀,进而提升了LED的发光效率。The SiGaN layer in the MgInAlN/SiGaN superlattice layer has a high-energy band, and the high-energy band of the SiGaN layer acts as a barrier to prevent electrons from propagating too quickly from the N-type GaN layer to the light-emitting layer, avoiding the crowding of electrons in the light-emitting layer and causing the resistance to increase. The situation makes the current distribution in the light-emitting layer uniform, thereby improving the luminous efficiency of the LED.

步骤507、生长InxGa(1-x)N层:在反应腔压力为300-400mbar、温度为700-750℃、通入流量为50000-70000sccm的NH3、20-40sccm的TMGa、1500-2000sccm的TMIn及100-130L/min的N2的条件下,生长厚度为2.5-3.5nm的掺杂In的InxGa(1-x)N层(x=0.20-0.25),发光波长450-455nm。Step 507, growing an In x Ga (1-x) N layer: In the reaction chamber, the pressure is 300-400 mbar, the temperature is 700-750 ° C, and the flow rate is 50000-70000 sccm NH 3 , 20-40 sccm TMGa, 1500- Under the conditions of 2000sccm TMIn and 100-130L/min N 2 , grow an In-doped In x Ga (1-x) N layer (x=0.20-0.25) with a thickness of 2.5-3.5nm, and the emission wavelength is 450- 455nm.

步骤508、生长GaN层:升高温度至750-850℃,在反应腔压力为300-400mbar、通入流量为50000-70000sccm的NH3、20-100sccm的TMGa及100-130L/min的N2的条件下,生长厚度为8-15nm的GaN层;Step 508, growing the GaN layer: raise the temperature to 750-850°C, the pressure in the reaction chamber is 300-400mbar, and the flow rate is 50000-70000sccm of NH 3 , 20-100sccm of TMGa and 100-130L/min of N2 Under the conditions of , grow a GaN layer with a thickness of 8-15nm;

步骤509、生长InxGa(1-x)N/GaN发光层:周期性交替生长所述InxGa(1-x)N层和GaN层得到InxGa(1-x)N/GaN发光层,其中,生长周期数为7-15个。本实施例并不限定InxGa(1-x)N层和GaN层的先后生长顺序,也可以先生长GaN层,再生长InxGa(1-x)N层,再周期性交替生长GaN层和InxGa(1-x)N层得到InxGa(1-x)N/GaN发光层。Step 509, growing an In x Ga (1-x) N/GaN light-emitting layer: periodically and alternately growing the In x Ga (1-x) N layer and the GaN layer to obtain In x Ga (1-x) N/GaN light emission layer, wherein the number of growth cycles is 7-15. This embodiment does not limit the sequential growth sequence of the In x Ga (1-x) N layer and the GaN layer, it is also possible to grow the GaN layer first, then grow the In x Ga (1-x) N layer, and then grow GaN alternately periodically layer and an In x Ga (1-x) N layer to obtain an In x Ga (1-x) N/GaN light emitting layer.

步骤510、生长P型AlGaN层:在反应腔压力为200-400mbar、温度为900-950℃、通入流量为50000-70000sccm的NH3、30-60sccm的TMGa、100-130L/min的H2、100-130sccm的TMAl及1000-1300sccm的Cp2Mg的条件下,持续生长厚度为50-100nm的P型AlGaN层,其中,Al掺杂浓度为1E20-3E20atom/cm3,Mg掺杂浓度1E19-1E20atom/cm3Step 510, growing a P-type AlGaN layer: In the reaction chamber, the pressure is 200-400mbar, the temperature is 900-950°C, and the flow rate is 50000-70000sccm of NH 3 , 30-60sccm of TMGa, and 100-130L/min of H2 , TMAl of 100-130sccm and Cp 2 Mg of 1000-1300sccm, continuously grow a P-type AlGaN layer with a thickness of 50-100nm, wherein, the Al doping concentration is 1E20-3E20atom/cm 3 , and the Mg doping concentration is 1E19 -1E20atom/cm 3 .

步骤511、生长掺镁的P型GaN层:在反应腔压力为400-900mbar、温度为950-1000℃、通入流量为50000-70000sccm的NH3、20-100sccm的TMGa、100-130L/min的H2及1000-3000sccm的Cp2Mg的条件下,持续生长厚度为50-200nm的掺镁的P型GaN层,其中,Mg掺杂浓度为1E19-1E20atom/cm3Step 511, growing a P-type GaN layer doped with magnesium: in the reaction chamber, the pressure is 400-900mbar, the temperature is 950-1000°C, and the flow rate is 50000-70000sccm of NH 3 , 20-100sccm of TMGa, 100-130L/min Under the conditions of H 2 and 1000-3000sccm Cp 2 Mg, a magnesium-doped P-type GaN layer with a thickness of 50-200nm is continuously grown, wherein the Mg doping concentration is 1E19-1E20atom/cm 3 .

步骤512、降温冷却得到发光二极管:降温至650-680℃后保温20-30min,接着关闭加热系统、关闭给气系统随炉冷却得到发光二极管。Step 512 , cooling down to obtain light-emitting diodes: cooling down to 650-680° C. and keeping warm for 20-30 minutes, then turning off the heating system and gas supply system to cool down in the furnace to obtain light-emitting diodes.

实施例3Example 3

本实施例提供一种本发明方案的发光二极管与传统方案的发光二极管的发光性能对比实施例。本实施例的对比方法包括如下内容:This example provides a comparison example of the luminous performance of the light-emitting diode of the present invention and the light-emitting diode of the traditional solution. The comparative method of the present embodiment comprises the following contents:

根据传统的LED的生长方法制备样品1,根据本发明描述的方法制备样品2;样品1和样品2外延生长方法参数不同点在于:样品2的制备过程生长了MgInAlN/SiGaN超晶格层,样品1和样品2的其它外延层生长条件完全一样(请参考表1)。将样品1和样品2在相同的前工艺条件下镀上厚度约为150nm的ITO层,并在相同的条件下镀厚度约为1500nm的Cr/Pt/Au电极,相同的条件下镀厚度约为100nm的SiO2保护层,然后在相同的条件下将样品研磨切割成635μm*635μm(25mil*25mil)的芯片颗粒,然后样品1和样品2在相同位置各自挑选100颗晶粒,在相同的封装工艺下,封装成白光LED。然后采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能。Sample 1 is prepared according to the traditional LED growth method, and sample 2 is prepared according to the method described in the present invention; the difference between sample 1 and sample 2 epitaxial growth method parameters is: the preparation process of sample 2 grows a MgInAlN/SiGaN superlattice layer, sample The growth conditions of other epitaxial layers of sample 1 and sample 2 are exactly the same (please refer to Table 1). Sample 1 and sample 2 were plated with an ITO layer with a thickness of about 150nm under the same pre-process conditions, and a Cr/Pt/Au electrode with a thickness of about 1500nm was plated under the same conditions, and the plated thickness was about 1500nm under the same conditions. 100nm SiO 2 protective layer, and then grind and cut the sample into chip particles of 635μm*635μm (25mil*25mil) under the same conditions, and then select 100 crystal grains in the same position for sample 1 and sample 2, in the same package Under the advanced technology, it is packaged into a white light LED. Then an integrating sphere was used to test the photoelectric performance of samples 1 and 2 under the condition of a driving current of 350mA.

如下为样品1和样品2的发光层生长参数的对比表及样品1和样品2电性的测试参数对比表。The following is the comparison table of the growth parameters of the light-emitting layer of sample 1 and sample 2 and the comparison table of the electrical test parameters of sample 1 and sample 2.

表1、发光层生长参数的对比表Table 1. Comparison table of growth parameters of luminescent layer

表2、样品1和样品2产品电性测试参数对比表Table 2. Comparison table of electrical test parameters of samples 1 and 2

从表1和表2中可以看出:将样品1和样品2产品电性测试参数的数据进行分析对比,本发明提供的LED生长方法制备得到的LED光效较高、其它各项LED电性参数也变好,实验数据证明了本发明方法能提升LED产品光效的可行性。It can be seen from Table 1 and Table 2 that: after analyzing and comparing the data of sample 1 and sample 2 product electrical test parameters, the LEDs prepared by the LED growth method provided by the present invention have higher luminous efficiency, and the electrical properties of other LEDs are higher. The parameters also become better, and the experimental data proves that the method of the present invention can improve the feasibility of the light efficiency of LED products.

通过上述实施例可知,本发明的发光二极管外延生长方法及发光二极管,达到了如下的有益效果:It can be known from the above embodiments that the light-emitting diode epitaxial growth method and the light-emitting diode of the present invention have achieved the following beneficial effects:

(1)本发明所述的发光二极管外延生长方法及发光二极管,在掺杂Si的N型GaN层上生长MgInAlN/SiGaN超晶格层,利用SiGaN层的高能带作为势磊阻挡电子,防止电子过快由掺杂Si的N型GaN层传播到发光层,使得纵向传播的拥挤电子遇到SiGaN层时,受到SiGaN层的高能带阻挡而适当地横向扩散开来,使得LED外延结构中电流均匀分布,从而避免了LED外延结构中电流分布不均匀导致的阻值变高的问题,提升了LED的发光效率。(1) In the light-emitting diode epitaxial growth method and the light-emitting diode of the present invention, a MgInAlN/SiGaN superlattice layer is grown on the Si-doped N-type GaN layer, and the high-energy band of the SiGaN layer is used as a potential to block electrons to prevent electrons from Propagate from the Si-doped N-type GaN layer to the light-emitting layer too quickly, so that when the crowded electrons propagating vertically meet the SiGaN layer, they are blocked by the high-energy band of the SiGaN layer and properly diffused laterally, so that the current in the LED epitaxial structure is uniform. distribution, thereby avoiding the problem of high resistance caused by uneven current distribution in the LED epitaxial structure, and improving the luminous efficiency of the LED.

(2)本发明所述的发光二极管外延生长方法及发光二极管,在掺杂Si的N型GaN层上生长MgInAlN/SiGaN超晶格层,该MgInAlN/SiGaN超晶格层可以形成高浓度的二维电子气,利用二维电子气的横向高迁移率,加速了LED中电子的横向扩展,使得宏观上电流通过MgInAlN/SiGaN超晶格层时被有效的扩展开来,使得发光层电流的分布变得均匀,MgInAlN/SiGaN超晶格层的运用使得LED各方面的性能得到提升。(2) In the light-emitting diode epitaxial growth method and the light-emitting diode of the present invention, a MgInAlN/SiGaN superlattice layer is grown on the Si-doped N-type GaN layer, and the MgInAlN/SiGaN superlattice layer can form a high-concentration di Two-dimensional electron gas, using the high lateral mobility of two-dimensional electron gas, accelerates the lateral expansion of electrons in the LED, so that the macroscopic current is effectively expanded when passing through the MgInAlN/SiGaN superlattice layer, making the current distribution of the light-emitting layer Become uniform, the use of MgInAlN/SiGaN superlattice layer can improve the performance of LED in all aspects.

本领域内的技术人员应明白,本发明的实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may be provided as methods, apparatuses, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。Although some specific embodiments of the present invention have been described in detail through examples, those skilled in the art should understand that the above examples are for illustration only and not intended to limit the scope of the present invention. Those skilled in the art will appreciate that modifications can be made to the above embodiments without departing from the scope and spirit of the invention. The scope of the invention is defined by the appended claims.

Claims (10)

1.一种发光二极管外延生长方法,其特征在于,包括:处理蓝宝石衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长MgInAlN/SiGaN超晶格层、生长InxGa(1-x)N/GaN发光层、生长P型AlGaN层、生长掺镁的P型GaN层、降温冷却得到发光二极管;其中,1. A light-emitting diode epitaxial growth method, characterized in that, comprising: processing a sapphire substrate, growing a low-temperature buffer layer GaN, growing an undoped GaN layer, growing an N-type GaN layer doped with Si, growing a MgInAlN/SiGaN supercrystal grid layer, growing In x Ga (1-x) N/GaN light-emitting layer, growing P-type AlGaN layer, growing magnesium-doped P-type GaN layer, and cooling to obtain a light-emitting diode; wherein, 生长MgInAlN/SiGaN超晶格层,进一步包括:growing the MgInAlN/SiGaN superlattice layer, further comprising: 在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、50-70sccm的TMGa、90-110L/min的H2、1200-1400sccm的TMIn、100-200sccm的TMAl、900-1000sccm的Cp2Mg、20-30sccm的SiH4的条件下,生长MgInAlN/SiGaN超晶格层:In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH3 , 50-70sccm of TMGa, 90-110L/min of H2 , 1200-1400sccm of TMIn, 100- Under the conditions of 200sccm TMAl, 900-1000sccm Cp 2 Mg, and 20-30sccm SiH 4 , grow the MgInAlN/SiGaN superlattice layer: 在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、100-200sccm的TMAl、90-110L/min的H2、1200-1400sccm的TMIn及900-1000sccm的Cp2Mg的条件下,生长4-7nm的MgInAlN层,其中,In掺杂浓度为3E19-4E19atom/cm3,Mg掺杂浓度为1E19-1E20atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH3 , 100-200sccm of TMAl, 90-110L/min of H2 , 1200-1400sccm of TMIn and 900- Under the condition of 1000sccm Cp 2 Mg, grow a 4-7nm MgInAlN layer, wherein the In doping concentration is 3E19-4E19atom/cm 3 , and the Mg doping concentration is 1E19-1E20atom/cm 3 ; 在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、90-110L/min的H2、50-70sccm的TMGa、20-30sccm的SiH4的条件下,生长厚度为8-15nm的SiGaN层,其中,Si掺杂浓度为1E18-5E18atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000℃, and the flow rate is 50000-55000sccm NH3 , 90-110L/min H2 , 50-70sccm TMGa, 20-30sccm SiH4 conditions Next, grow a SiGaN layer with a thickness of 8-15nm, wherein the Si doping concentration is 1E18-5E18atom/cm 3 ; 周期性生长MgInAlN层和SiGaN层得到MgInAlN/SiGaN超晶格层,其中,生长周期为4-20;Periodically grow MgInAlN layers and SiGaN layers to obtain MgInAlN/SiGaN superlattice layers, wherein the growth period is 4-20; 降温冷却得到发光二极管,进一步包括:The light-emitting diode obtained by cooling down further includes: 降温至650-680℃后保温20-30min,接着关闭加热系统、关闭给气系统随炉冷却得到发光二极管。Cool down to 650-680°C and keep warm for 20-30 minutes, then turn off the heating system, turn off the gas supply system and cool down with the furnace to obtain light-emitting diodes. 2.根据权利要求1所述的发光二极管外延生长方法,其特征在于,处理蓝宝石衬底,进一步为:2. The light-emitting diode epitaxial growth method according to claim 1, characterized in that, processing the sapphire substrate is further: 在1000-1100℃的氢气气氛下,通入100L/min-130L/min的H2,保持反应腔压力为100-300mbar的条件下,处理蓝宝石衬底5-10分钟。In a hydrogen atmosphere at 1000-1100°C, 100L/min-130L/min of H 2 is introduced, and the reaction chamber pressure is kept at 100-300mbar, and the sapphire substrate is processed for 5-10 minutes. 3.根据权利要求1所述的发光二极管外延生长方法,其特征在于,生长低温缓冲层GaN,进一步为:3. The light-emitting diode epitaxial growth method according to claim 1, characterized in that, growing the low-temperature buffer layer GaN is further: 在温度为500-600℃、反应腔压力为300-600mbar、通入流量为10000-20000sccm的NH3、50-100sccm的TMGa及100L/min-130L/min的H2的条件下,在蓝宝石衬底上生长厚度为20-40nm的低温缓冲层GaN。Under the conditions of a temperature of 500-600°C, a reaction chamber pressure of 300-600mbar, a flow rate of 10000-20000sccm of NH 3 , 50-100sccm of TMGa and 100L/min-130L/min of H2 , the sapphire substrate A low-temperature buffer layer GaN with a thickness of 20-40nm is grown on the bottom. 4.根据权利要求3所述的发光二极管外延生长方法,其特征在于,进一步包括:4. The light-emitting diode epitaxial growth method according to claim 3, further comprising: 升高温度至1000-1100℃,保持反应腔压力为300-600mbar,通入流量为30000-40000sccm的NH3及100L/min-130L/min的H2的条件下,保持温度稳定持续300-500秒将所述低温缓冲层GaN腐蚀成不规则的岛状。Raise the temperature to 1000-1100°C, keep the pressure of the reaction chamber at 300-600mbar, feed the flow rate of 30000-40000sccm of NH3 and 100L/min-130L/min of H2 , and keep the temperature stable for 300-500 seconds to etch the low-temperature buffer layer GaN into irregular island shapes. 5.根据权利要求1所述的发光二极管外延生长方法,其特征在于,生长不掺杂GaN层,进一步为:5. The light-emitting diode epitaxial growth method according to claim 1, characterized in that, growing an undoped GaN layer is further: 在温度为1000-1200℃、反应腔压力为300-600mbar、通入流量为30000-40000sccm的NH3、200-400sccm的TMGa及100-130L/min的H2的条件下,持续生长厚度为2-4μm的不掺杂GaN层。Under the conditions of a temperature of 1000-1200°C, a reaction chamber pressure of 300-600mbar, a flow rate of 30000-40000sccm of NH 3 , 200-400sccm of TMGa and 100-130L/min of H2 , the continuous growth thickness is 2 -4 μm undoped GaN layer. 6.根据权利要求1所述的发光二极管外延生长方法,其特征在于,生长掺杂Si的N型GaN层,进一步为:6. The light-emitting diode epitaxial growth method according to claim 1, characterized in that, growing an N-type GaN layer doped with Si is further: 在反应腔压力为300-600mbar、温度为1000-1200℃、通入流量为30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2及20-50sccm的SiH4的条件下,持续生长厚度为3-4μm的掺杂Si的N型GaN层,其中,Si掺杂浓度为5E18-1E19atom/cm3In the reaction chamber, the pressure is 300-600mbar, the temperature is 1000-1200℃, the flow rate is 30000-60000sccm NH3 , 200-400sccm TMGa, 100-130L/min H2 and 20-50sccm SiH4 conditions Next, continuously grow a Si-doped N-type GaN layer with a thickness of 3-4 μm, wherein the Si doping concentration is 5E18-1E19 atom/cm 3 . 7.根据权利要求1所述的发光二极管外延生长方法,其特征在于,生长InxGa(1-x)N/GaN发光层,进一步为:7. The light-emitting diode epitaxial growth method according to claim 1, characterized in that, growing an InxGa (1-x) N /GaN light-emitting layer is further: 在反应腔压力为300-400mbar、温度为700-750℃、通入流量为50000-70000sccm的NH3、20-40sccm的TMGa、1500-2000sccm的TMIn及100-130L/min的N2的条件下,生长厚度为2.5-3.5nm的掺杂In的InxGa(1-x)N层(x=0.20-0.25),发光波长450-455nm;Under the condition of reaction chamber pressure of 300-400mbar, temperature of 700-750℃, flow rate of 50000-70000sccm of NH3 , 20-40sccm of TMGa, 1500-2000sccm of TMIn and 100-130L/min of N2 , growing an In-doped In x Ga (1-x) N layer (x=0.20-0.25) with a thickness of 2.5-3.5nm, and an emission wavelength of 450-455nm; 升高温度至750-850℃,在反应腔压力为300-400mbar、通入流量为50000-70000sccm的NH3、20-100sccm的TMGa及100-130L/min的N2的条件下,生长厚度为8-15nm的GaN层;Raise the temperature to 750-850°C, under the condition that the reaction chamber pressure is 300-400mbar, the flow rate is 50000-70000sccm of NH3 , 20-100sccm of TMGa and 100-130L/min of N2 , the growth thickness is 8-15nm GaN layer; 周期性交替生长所述InxGa(1-x)N层和GaN层得到InxGa(1-x)N/GaN发光层,其中,生长周期数为7-15个。The In x Ga (1-x) N/GaN light-emitting layer is obtained by periodically growing the In x Ga (1-x) N layer and the GaN layer alternately, wherein the number of growth cycles is 7-15. 8.根据权利要求1所述的发光二极管外延生长方法,其特征在于,生长P型AlGaN层,进一步为:8. The light-emitting diode epitaxial growth method according to claim 1, characterized in that growing a P-type AlGaN layer further comprises: 在反应腔压力为200-400mbar、温度为900-950℃、通入流量为50000-70000sccm的NH3、30-60sccm的TMGa、100-130L/min的H2、100-130sccm的TMAl及1000-1300sccm的Cp2Mg的条件下,持续生长厚度为50-100nm的P型AlGaN层,其中,Al掺杂浓度为1E20-3E20atom/cm3,Mg掺杂浓度1E19-1E20atom/cm3In the reaction chamber, the pressure is 200-400mbar, the temperature is 900-950°C, and the flow rate is 50000-70000sccm of NH3 , 30-60sccm of TMGa, 100-130L/min of H2 , 100-130sccm of TMAl and 1000- Under the condition of 1300sccm Cp 2 Mg, a P-type AlGaN layer with a thickness of 50-100nm is continuously grown, wherein the Al doping concentration is 1E20-3E20atom/cm 3 , and the Mg doping concentration is 1E19-1E20atom/cm 3 . 9.根据权利要求1所述的发光二极管外延生长方法,其特征在于,生长掺镁的P型GaN层,进一步为:9. The light-emitting diode epitaxial growth method according to claim 1, characterized in that, growing a p-type GaN layer doped with magnesium is further: 在反应腔压力为400-900mbar、温度为950-1000℃、通入流量为50000-70000sccm的NH3、20-100sccm的TMGa、100-130L/min的H2及1000-3000sccm的Cp2Mg的条件下,持续生长厚度为50-200nm的掺镁的P型GaN层,其中,Mg掺杂浓度为1E19-1E20atom/cm3In the reaction chamber, the pressure is 400-900mbar, the temperature is 950-1000℃, and the flow rate is 50000-70000sccm of NH3 , 20-100sccm of TMGa, 100-130L /min of H2 and 1000-3000sccm of Cp2Mg. Under the conditions, a magnesium-doped P-type GaN layer with a thickness of 50-200 nm is continuously grown, wherein the Mg doping concentration is 1E19-1E20 atom/cm 3 . 10.一种发光二极管,其特征在于,由下至上依次包括:蓝宝石衬底、低温缓冲层GaN、不掺杂GaN层、掺杂Si的N型GaN层、MgInAlN/SiGaN超晶格层、InxGa(1-x)N/GaN发光层、P型AlGaN层及掺镁的P型GaN层;其中,所述MgInAlN/SiGaN超晶格层由如下步骤制得:10. A light-emitting diode, characterized in that it comprises, from bottom to top: a sapphire substrate, a low-temperature buffer layer GaN, an undoped GaN layer, an N-type GaN layer doped with Si, a MgInAlN/SiGaN superlattice layer, an In x Ga (1-x) N/GaN light-emitting layer, P-type AlGaN layer and P-type GaN layer doped with magnesium; wherein, the MgInAlN/SiGaN superlattice layer is made by the following steps: 在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、50-70sccm的TMGa、90-110L/min的H2、1200-1400sccm的TMIn、100-200sccm的TMAl、900-1000sccm的Cp2Mg、20-30sccm的SiH4的条件下,生长MgInAlN/SiGaN超晶格层:In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH3 , 50-70sccm of TMGa, 90-110L/min of H2 , 1200-1400sccm of TMIn, 100- Under the conditions of 200sccm TMAl, 900-1000sccm Cp 2 Mg, and 20-30sccm SiH 4 , grow the MgInAlN/SiGaN superlattice layer: 在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、100-200sccm的TMAl、90-110L/min的H2、1200-1400sccm的TMIn及900-1000sccm的Cp2Mg的条件下,生长4-7nm的MgInAlN层,其中,In掺杂浓度为3E19-4E19atom/cm3,Mg掺杂浓度为1E19-1E20atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000°C, and the flow rate is 50000-55000sccm of NH3 , 100-200sccm of TMAl, 90-110L/min of H2 , 1200-1400sccm of TMIn and 900- Under the condition of 1000sccm Cp 2 Mg, grow a 4-7nm MgInAlN layer, wherein the In doping concentration is 3E19-4E19atom/cm 3 , and the Mg doping concentration is 1E19-1E20atom/cm 3 ; 在反应腔压力为500-750mbar、温度为950-1000℃、通入流量为50000-55000sccm的NH3、90-110L/min的H2、50-70sccm的TMGa、20-30sccm的SiH4的条件下,生长SiGaN层,其中,Si掺杂浓度为1E18-5E18atom/cm3In the reaction chamber, the pressure is 500-750mbar, the temperature is 950-1000℃, and the flow rate is 50000-55000sccm NH3 , 90-110L/min H2 , 50-70sccm TMGa, 20-30sccm SiH4 conditions Next, grow a SiGaN layer, wherein the Si doping concentration is 1E18-5E18atom/cm 3 ; 周期性生长MgInAlN层和SiGaN层得到MgInAlN/SiGaN超晶格层,其中,生长周期为4-20。The MgInAlN/SiGaN superlattice layer is obtained by periodically growing the MgInAlN layer and the SiGaN layer, wherein the growth period is 4-20.
CN201710084616.5A 2017-02-16 2017-02-16 A kind of LED epitaxial growing method and light emitting diode Active CN106876538B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710084616.5A CN106876538B (en) 2017-02-16 2017-02-16 A kind of LED epitaxial growing method and light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710084616.5A CN106876538B (en) 2017-02-16 2017-02-16 A kind of LED epitaxial growing method and light emitting diode

Publications (2)

Publication Number Publication Date
CN106876538A true CN106876538A (en) 2017-06-20
CN106876538B CN106876538B (en) 2019-01-25

Family

ID=59167468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710084616.5A Active CN106876538B (en) 2017-02-16 2017-02-16 A kind of LED epitaxial growing method and light emitting diode

Country Status (1)

Country Link
CN (1) CN106876538B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888066A (en) * 2019-03-22 2019-06-14 湘能华磊光电股份有限公司 LED epitaxial growth method
CN115832134A (en) * 2023-02-08 2023-03-21 江西兆驰半导体有限公司 Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845788A (en) * 2016-04-08 2016-08-10 湘能华磊光电股份有限公司 LED current extension layer epitaxial growth method
CN106299062A (en) * 2016-09-20 2017-01-04 湘能华磊光电股份有限公司 The epitaxial growth method of current extending
CN106409999A (en) * 2016-11-15 2017-02-15 湘能华磊光电股份有限公司 LED epitaxy superlattice growth method
CN106410000A (en) * 2016-11-15 2017-02-15 湘能华磊光电股份有限公司 LED epitaxial layer growth method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845788A (en) * 2016-04-08 2016-08-10 湘能华磊光电股份有限公司 LED current extension layer epitaxial growth method
CN106299062A (en) * 2016-09-20 2017-01-04 湘能华磊光电股份有限公司 The epitaxial growth method of current extending
CN106409999A (en) * 2016-11-15 2017-02-15 湘能华磊光电股份有限公司 LED epitaxy superlattice growth method
CN106410000A (en) * 2016-11-15 2017-02-15 湘能华磊光电股份有限公司 LED epitaxial layer growth method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888066A (en) * 2019-03-22 2019-06-14 湘能华磊光电股份有限公司 LED epitaxial growth method
CN109888066B (en) * 2019-03-22 2021-06-01 湘能华磊光电股份有限公司 LED epitaxial growth method
CN115832134A (en) * 2023-02-08 2023-03-21 江西兆驰半导体有限公司 Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode

Also Published As

Publication number Publication date
CN106876538B (en) 2019-01-25

Similar Documents

Publication Publication Date Title
CN106328777B (en) A kind of epitaxial growth method of light emitting diode stress release layer
CN105405939B (en) A kind of light emitting diode and its manufacture method
CN105869999B (en) LED epitaxial growth methods
CN105244424B (en) A kind of epitaxial growth method for improving LED component light efficiency
CN110629197B (en) A kind of LED epitaxial structure growth method
CN107068822A (en) A kind of smooth extraction efficiency high LED epitaxial structure and its growing method
CN109411573B (en) LED epitaxial structure growth method
CN106229389B (en) Method for preparing light-emitting diode on metal gallium nitride composite substrate
CN105870270B (en) LED extensional superlattice growing methods
CN107507891B (en) LED Epitaxial Growth Method for Improving Internal Quantum Efficiency
CN110957403B (en) LED epitaxial structure growth method
CN105932126A (en) Epitaxial growth method for improving brightness of light-emitting diode based on active layer
CN106129199A (en) Reduce the LED epitaxial growth method of contact resistance
CN106328780B (en) The method of light emitting diode substrate epitaxial growth based on AlN templates
CN105869994B (en) A kind of growing method of superlattice layer and the LED epitaxial structure containing this structure
CN105895753A (en) Epitaxial growth method improving luminous efficiency of LED
CN106410000B (en) A kind of LED outer layer growth method
CN106206884B (en) P layers of growing method of LED extensions
CN106711298B (en) A kind of light-emitting diode epitaxial growth method and light-emitting diode
CN106374021A (en) LED Epitaxial Growth Method Based on Sapphire Patterned Substrate
CN109004073A (en) A kind of epitaxial growth method improving GaN base LED chip luminous efficiency
CN106876538B (en) A kind of LED epitaxial growing method and light emitting diode
CN112941490A (en) LED epitaxial quantum well growth method
CN105845788A (en) LED current extension layer epitaxial growth method
CN116598391A (en) Manufacturing method of light-emitting diode epitaxial wafer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for epitaxial growth of light-emitting diodes and light-emitting diodes

Granted publication date: 20190125

Pledgee: Huaxia Bank Co.,Ltd. Chenzhou Branch

Pledgor: XIANGNENG HUALEI OPTOELECTRONIC Co.,Ltd.

Registration number: Y2024980045783