CN106872905A - A kind of full battery parameter acquisition methods of monomer lithium ion - Google Patents
A kind of full battery parameter acquisition methods of monomer lithium ion Download PDFInfo
- Publication number
- CN106872905A CN106872905A CN201710100658.3A CN201710100658A CN106872905A CN 106872905 A CN106872905 A CN 106872905A CN 201710100658 A CN201710100658 A CN 201710100658A CN 106872905 A CN106872905 A CN 106872905A
- Authority
- CN
- China
- Prior art keywords
- lithium
- battery
- impedance
- sei
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
本发明提供一种单体锂离子全电池参数获取方法,属于新能源研究领域。包括如下步骤:步骤一:建立锂离子电池电化学阻抗谱数学模型;步骤二:实测待测单体锂离子全电池的电化学阻抗谱;步骤三:根据建立的数学模型,对实测的电化学阻抗谱进行分频段参数辨识,获取待测单体锂离子全电池的正负极参数。本发明针对现有的半电池模型用于全电池时,参数辨识效果差的缺陷,结合锂离子电池电化学阻抗谱的特点,采用一种分频段参数辨识的方式,可以快速、精确得到锂离子全电池的正、负极模型参数。本发明用于锂离子电池进行老化机理分析、SOC估计和寿命预测。
The invention provides a method for acquiring parameters of a single lithium-ion full battery, which belongs to the field of new energy research. It includes the following steps: Step 1: Establish a mathematical model of electrochemical impedance spectroscopy of lithium-ion batteries; Step 2: Measure the electrochemical impedance spectroscopy of single lithium-ion full batteries to be tested; Step 3: According to the established mathematical model, the measured electrochemical impedance spectroscopy Impedance spectroscopy is used to identify parameters in frequency bands to obtain the parameters of the positive and negative electrodes of the single lithium-ion full battery to be tested. The present invention aims at the defect of poor parameter identification effect when the existing half-battery model is used for a full battery, and combines the characteristics of the electrochemical impedance spectrum of the lithium-ion battery, adopts a method of parameter identification in frequency bands, and can quickly and accurately obtain lithium-ion The positive and negative model parameters of the full battery. The invention is used for aging mechanism analysis, SOC estimation and life prediction of lithium ion battery.
Description
技术领域technical field
本发明涉及一种锂离子电池的参数获取方法,特别涉及一种单体锂离子全电池参数获取方法,属于新能源研究领域。The invention relates to a parameter acquisition method of a lithium ion battery, in particular to a parameter acquisition method of a single lithium ion full battery, belonging to the field of new energy research.
背景技术Background technique
锂离子电池具有电压高、能量密度大、循环性能好无记忆效应等突出优点,得到了广泛的应用。在锂离子电池的研究中,广泛应用到了电化学阻抗谱(ElectrochemicalImpedance Spectroscopy,简称EIS)技术,电化学阻抗谱又称交流阻抗谱,其特点是能够在频域中用复阻抗的形式将电极内部的界面反应、传荷、扩散等过程有效解耦,其测量、分析技术被广泛应用于电池的特性描述,进而可以分析电池状态,改进电池制备。EIS技术也为电池的健康状态评估提供了判断依据,但目前多用于定性分析电池内部过程的快慢、电极反应的难易等方面,较少应用于电池管理。Lithium-ion batteries have outstanding advantages such as high voltage, high energy density, good cycle performance and no memory effect, and have been widely used. In the research of lithium-ion batteries, Electrochemical Impedance Spectroscopy (EIS) technology is widely used. Electrochemical Impedance Spectroscopy is also called AC Impedance Spectroscopy. The interface reaction, charge transfer, diffusion and other processes are effectively decoupled, and its measurement and analysis techniques are widely used in the description of battery characteristics, which can then analyze the battery state and improve battery preparation. EIS technology also provides a basis for judging the battery's health status assessment, but it is currently mostly used for qualitative analysis of the speed of the internal process of the battery, the difficulty of the electrode reaction, etc., and is rarely used in battery management.
锂离子电池电化学阻抗谱数学模型是基于多孔电极理论和浓溶液的理论,在数学上描述了电化学反应和单个粒子构成的凝聚物中的电荷转移,把凝聚物模型延伸到多孔电极,精确描述了主要活性物质粒子的电极/电解质界面的结构,并且建立了电化学反应和在凝聚物中的电荷转移的解析公式,具有较高的精度。但该模型为一个半电池模型,多用于半电池、三电极锂离子电池(带有参考电极)的研究,而目前的商业化锂离子电池多为二电极全电池(简称全电池),若该模型用于锂离子全电池,则需要正、负电极两个模型叠加才能得到全电池模型,此时,模型参数过多,相互耦合,所需辨识时间长、精度很低,因此该模型难以应用到两电极锂离子电池中。The mathematical model of electrochemical impedance spectroscopy for lithium-ion batteries is based on the theory of porous electrodes and concentrated solutions. It mathematically describes the electrochemical reaction and the charge transfer in condensates composed of single particles, and extends the condensate model to porous electrodes. The structure of the electrode/electrolyte interface of the main active material particles is described, and analytical formulas for the electrochemical reactions and charge transfer in condensates are established with high precision. However, this model is a half-cell model, which is mostly used in the research of half-cells and three-electrode lithium-ion batteries (with reference electrodes), while the current commercial lithium-ion batteries are mostly two-electrode full batteries (abbreviated as full batteries). If the model is used in a lithium-ion full battery, it is necessary to superimpose two models of the positive electrode and the negative electrode to obtain the full battery model. At this time, the model parameters are too many and coupled with each other, the identification time is long and the accuracy is very low, so the model is difficult to apply into a two-electrode Li-ion battery.
发明内容Contents of the invention
本发明提供一种将半电池的电化学阻抗谱数学模型和参数辨识相结合、且提高参数辨识精度的单体锂离子全电池参数获取方法。The invention provides a method for acquiring parameters of a single lithium-ion full battery that combines the electrochemical impedance spectrum mathematical model of the half-cell with parameter identification and improves the accuracy of parameter identification.
本发明的一种单体锂离子全电池参数获取方法,所述方法包括如下步骤:A method for acquiring parameters of a single lithium ion full battery of the present invention, said method comprising the steps of:
步骤一:建立锂离子电池电化学阻抗谱数学模型;Step 1: Establish a mathematical model of lithium-ion battery electrochemical impedance spectroscopy;
步骤二:实测待测单体锂离子全电池的电化学阻抗谱;Step 2: Measure the electrochemical impedance spectroscopy of the single lithium-ion full battery to be tested;
步骤三:根据建立的数学模型,对实测的电化学阻抗谱进行分频段参数辨识,获取待测单体锂离子全电池的正负极参数。Step 3: According to the established mathematical model, the parameters of the measured electrochemical impedance spectrum are identified in frequency bands, and the parameters of the positive and negative electrodes of the single lithium-ion full battery to be tested are obtained.
优选的是,所述步骤三包括:Preferably, said step three includes:
在实测电化学阻抗谱的高频段,利用建立的阻抗数学模型对电化学阻抗谱进行解析,采用遗传算法进行参数辨识,得到待测单体锂离子全电池的负极参数;In the high-frequency band of the measured electrochemical impedance spectrum, the established impedance mathematical model is used to analyze the electrochemical impedance spectrum, and the genetic algorithm is used for parameter identification to obtain the negative electrode parameters of the single lithium-ion full battery to be tested;
在实测电化学阻抗谱的中、低频段,利用建立的阻抗数学模型对电化学阻抗谱进行解析,采用遗传算法进行参数辨识,得到待测单体锂离子全电池的正极参数。In the middle and low frequency bands of the measured electrochemical impedance spectrum, the established impedance mathematical model is used to analyze the electrochemical impedance spectrum, and the genetic algorithm is used for parameter identification to obtain the positive electrode parameters of the single lithium-ion full battery to be tested.
优选的是,建立的锂离子电池电化学阻抗谱数学模型包括:Preferably, the lithium-ion battery electrochemical impedance spectroscopy mathematical model established includes:
不考虑SEI膜的单个粒子阻抗:The single particle impedance of the SEI film is not considered:
其中,传荷电阻Rct=RT/(i0F),R表示气体常数,T表示温度,i0表示交换电流密度,F表示法拉第常数,κ取1,j表示虚数,ω表示频率,表示电势对浓度的偏导,Cdl表示双电层电容;Among them, the load transfer resistance R ct =RT/(i 0 F), R represents the gas constant, T represents the temperature, i 0 represents the exchange current density, F represents the Faraday constant, κ is 1, j represents an imaginary number, ω represents the frequency, Indicates the partial conduction of the potential to the concentration, and C dl indicates the electric double layer capacitance;
传递函数:Rpp表示粒子半径,Ds表示固相扩散系数;Transfer Function: R pp represents the particle radius, D s represents the solid phase diffusion coefficient;
考虑SEI膜的单个粒子阻抗:Consider the single particle impedance of the SEI film:
其中,R0表示欧姆内阻,Zsei表示SEI膜的阻抗,Csei表示SEI膜的电容;Among them, R 0 represents the ohmic internal resistance, Z sei represents the impedance of the SEI film, and C sei represents the capacitance of the SEI film;
SEI模的阻抗:Impedance of SEI mode:
其中,中间变量Dsei表示SEI膜中的扩散系数,δ′sei=δsei-δdl,δsei表示SEI膜的厚度,δdl表示电双层厚度,σsei表示SEI膜的电导率,R2=Rpp+δdl,R3=R2+δ′sei;Among them, the intermediate variable D sei represents the diffusion coefficient in the SEI film, δ′ sei = δ sei -δ dl , δ sei represents the thickness of the SEI film, δ dl represents the thickness of the electrical double layer, σ sei represents the conductivity of the SEI film, R 2 =R pp +δ dl , R 3 =R 2 +δ′ sei ;
凝聚物阻抗:Condensate resistance:
其中,引入函数中间变量D△,e=D+,e-D-,e,D+,e表示正极液相扩散系数,D-,e表示负极液相扩散系数,τsp表示凝聚物中曲折因子,表示凝聚物中电解质体积分数,σe表示液相电导率,Rsp表示凝聚物半径,cref表示锂离子参考浓度;Among them, the import function Intermediate variable D △, e = D +, e -D -, e , D +, e represent the liquid phase diffusion coefficient of the positive electrode, D -, e represent the liquid phase diffusion coefficient of the negative electrode, τ sp represents the tortuous factor in the condensate, Indicates the electrolyte volume fraction in the condensate, σ e represents the liquid phase conductivity, R sp represents the radius of the condensate, and c ref represents the lithium ion reference concentration;
多孔电极阻抗:Porous electrode impedance:
其中,中间变量L表示电极厚度,表示电解质体积分数,τpe电极中曲折因子,扰动分量液相扩散系数,De液相扩散系数,Among them, the intermediate variable L represents the electrode thickness, Indicates the electrolyte volume fraction, the tortuosity factor in the τ pe electrode, Disturbance component liquid phase diffusion coefficient, D e liquid phase diffusion coefficient,
表1凝聚物阻抗和多孔电极阻抗的部分相关参数Table 1 Some related parameters of condensate impedance and porous electrode impedance
中间变量ζ=D△,e/De,中间变量Zpp取或中间变量t+表示锂离子迁移数。Intermediate variable ζ=D △,e /D e , intermediate variable Z pp take or Intermediate variables t + represents the lithium ion transfer number.
优选的是,所述步骤二采用恒电位原位电化学阻抗谱测试方法实测待测单体锂离子全电池的电化学阻抗谱。Preferably, the second step adopts a potentiostatic in-situ electrochemical impedance spectroscopy test method to measure the electrochemical impedance spectroscopy of the single lithium-ion full battery to be tested.
优选的是,所述步骤二中:测试时的正弦电压幅值选为5mV~10mV,测试频率的高频上限值为1000Hz,测试频率的低频下限为0.01Hz,待测单体锂离子全电池所处室温为25℃。Preferably, in the second step: the amplitude of the sinusoidal voltage during the test is selected as 5mV to 10mV, the upper limit of the high frequency of the test frequency is 1000Hz, the lower limit of the low frequency of the test frequency is 0.01Hz, and the single lithium ion to be tested is fully The room temperature of the battery is 25°C.
上述技术特征可以各种适合的方式组合或由等效的技术特征来替代,只要能够达到本发明的目的。The above technical features can be combined in various suitable ways or replaced by equivalent technical features, as long as the purpose of the present invention can be achieved.
本发明的有益效果在于,本发明针对现有的锂离子电池电化学阻抗谱数学模型用于全电池时,参数辨识效果差的缺陷,结合锂离子电池电化学阻抗谱的特点,采用一种分频段参数辨识的方式,可以快速、精确得到锂离子全电池的正、负极模型参数,实现该模型在商业化的锂离子电池研究中的直接应用,为利用该模型对锂离子电池进行老化机理分析、SOC估计、寿命预测等打下了基础。The beneficial effect of the present invention is that the present invention aims at the defect that the existing lithium-ion battery electrochemical impedance spectrum mathematical model is used for a full battery, and the parameter identification effect is poor. Combining with the characteristics of the lithium-ion battery electrochemical impedance spectrum, a The frequency band parameter identification method can quickly and accurately obtain the positive and negative electrode model parameters of lithium-ion full batteries, and realize the direct application of this model in the research of commercial lithium-ion batteries, in order to use this model to analyze the aging mechanism of lithium-ion batteries , SOC estimation, life prediction, etc. have laid the foundation.
附图说明Description of drawings
图1为本发明的流程示意图。Fig. 1 is a schematic flow chart of the present invention.
图2为遗传算法的流程示意图。Figure 2 is a schematic flow chart of the genetic algorithm.
图3为实测的单体锂离子全电池的电化学阻抗谱图。FIG. 3 is an electrochemical impedance spectrum of a single lithium-ion full battery measured.
图4为采用本发明方法的实测电化学阻抗谱和仿真电化学阻抗谱图。Fig. 4 is a measured electrochemical impedance spectrum and a simulated electrochemical impedance spectrum using the method of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that, in the case of no conflict, the embodiments of the present invention and the features in the embodiments can be combined with each other.
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
结合图1说明本实施方式,本实施方式的一种单体锂离子全电池参数获取方法,包括如下步骤:This embodiment is described in conjunction with FIG. 1. A method for acquiring parameters of a single lithium-ion full battery in this embodiment includes the following steps:
步骤一:建立锂离子电池电化学阻抗谱数学模型;Step 1: Establish a mathematical model of lithium-ion battery electrochemical impedance spectroscopy;
步骤二:实测待测单体锂离子全电池的电化学阻抗谱;Step 2: Measure the electrochemical impedance spectroscopy of the single lithium-ion full battery to be tested;
步骤三:根据建立的数学模型,对实测的电化学阻抗谱进行分频段参数辨识,获取待测单体锂离子全电池的正负极参数。Step 3: According to the established mathematical model, the parameters of the measured electrochemical impedance spectrum are identified in frequency bands, and the parameters of the positive and negative electrodes of the single lithium-ion full battery to be tested are obtained.
本实施方式步骤一建立的锂离子电池电化学阻抗谱数学模型是半电池模型,步骤二测的是全电池的电化学阻抗谱,步骤三中采用分频段参数辨识,快速、精确得到锂离子全电池的正、负极模型参数,即获取了待测单体锂离子全电池的参数。The mathematical model of the electrochemical impedance spectrum of the lithium-ion battery established in the first step of this embodiment is a half-cell model, and the electrochemical impedance spectrum of the full battery is measured in the second step. The model parameters of the positive and negative electrodes of the battery, that is, the parameters of the single lithium-ion full battery to be tested are obtained.
优选实施例中,步骤三包括:In a preferred embodiment, step three includes:
在实测电化学阻抗谱的高频段,利用建立的阻抗数学模型对电化学阻抗谱进行解析,采用遗传算法进行参数辨识,得到待测单体锂离子全电池的负极参数;In the high-frequency band of the measured electrochemical impedance spectrum, the established impedance mathematical model is used to analyze the electrochemical impedance spectrum, and the genetic algorithm is used for parameter identification to obtain the negative electrode parameters of the single lithium-ion full battery to be tested;
在实测电化学阻抗谱的中、低频段,利用建立的阻抗数学模型对电化学阻抗谱进行解析,采用遗传算法进行参数辨识,得到待测单体锂离子全电池的正极参数。In the middle and low frequency bands of the measured electrochemical impedance spectrum, the established impedance mathematical model is used to analyze the electrochemical impedance spectrum, and the genetic algorithm is used for parameter identification to obtain the positive electrode parameters of the single lithium-ion full battery to be tested.
本实施方式的遗传算法是借鉴生物的自然选择和遗传进化机制而开发的一种全局优化自适应概率搜索算法,下面对遗传算法加以说明。The genetic algorithm in this embodiment is a global optimization adaptive probability search algorithm developed by referring to the natural selection and genetic evolution mechanism of organisms, and the genetic algorithm will be described below.
假设需要优化的问题为:Suppose the problem to be optimized is:
其中X为待辨识参数集,采用实值编码,内含Nd个待辨识参数;S为搜索空间,有:Among them, X is the parameter set to be identified, which adopts real-valued coding and contains N d parameters to be identified; S is the search space, which is:
Lower和Upper分别为各待辨识参数的搜索空间下界与上界。算法流程图如图2所示。Lower and Upper are the lower and upper bounds of the search space for each parameter to be identified, respectively. The flow chart of the algorithm is shown in Figure 2.
在实施方式中,遗传算法确定的目标函数设为:In an embodiment, the objective function determined by the genetic algorithm is set as:
其中,N为电化学阻抗谱测试中的频点数,和分别为实测电化学阻抗谱的实部与虚部,和分别为仿真电化学阻抗谱的实部与虚部。α为调整虚部在目标函数中比重的权。由于锂离子电池阻抗的虚部对低频更敏感,因此目标函数在高、中、低频所用的权是不同的,频率越低,权重越大。Among them, N is the number of frequency points in the electrochemical impedance spectroscopy test, with are the real and imaginary parts of the measured electrochemical impedance spectrum, respectively, with are the real and imaginary parts of the simulated electrochemical impedance spectrum, respectively. α is the weight to adjust the proportion of the imaginary part in the objective function. Since the imaginary part of the lithium-ion battery impedance is more sensitive to low frequencies, the weights used by the objective function are different at high, medium, and low frequencies. The lower the frequency, the greater the weight.
在锂离子电池的电化学阻抗谱中,在高频段下的电池阻抗由负极支配,在低频段主要由正极贡献。高频段下的电池阻抗由负极支配原因在于,高频区域是与锂离子通过SEI膜有关的半圆,而负极的SEI膜起主要作用;此外,SEI膜十分稳定,在锂离子电池正常使用和电池的整个充放电循环寿命期间不会发生较大变化,因此电池负极阻抗几乎保持不变。全电池的阻抗主要由正极贡献,且负极阻抗较小、稳定,电池在使用过程中的阻抗增大也是由于正极阻抗造成,因此在中低频段,可以用正极阻抗代替全电池的阻抗。In the electrochemical impedance spectroscopy of lithium-ion batteries, the battery impedance in the high frequency band is dominated by the negative electrode, and in the low frequency band it is mainly contributed by the positive electrode. The reason why the battery impedance in the high-frequency band is dominated by the negative electrode is that the high-frequency region is a semicircle related to the passage of lithium ions through the SEI film, and the SEI film of the negative electrode plays a major role; in addition, the SEI film is very stable and can be used normally in lithium-ion batteries and batteries. During the entire charge and discharge cycle life of the battery, there will not be a large change, so the impedance of the negative electrode of the battery remains almost unchanged. The impedance of the full battery is mainly contributed by the positive electrode, and the impedance of the negative electrode is small and stable. The impedance of the battery increases during use is also caused by the impedance of the positive electrode. Therefore, in the middle and low frequency bands, the impedance of the full battery can be replaced by the positive electrode impedance.
综上所述,本实施方式采用了分频段辨识的方法实现了半电池模型在商业化全电池上的应用,实现了电池正、负极参数的解耦,可分别得到较为精确的正、负极参数。To sum up, this embodiment adopts the method of frequency division identification to realize the application of the half-cell model in the commercial full battery, realize the decoupling of the positive and negative parameters of the battery, and obtain more accurate positive and negative parameters respectively. .
本实施方式的高频段是指频率大于30Hz的频段,中、低频段是指频率小于20Hz的频段。The high frequency band in this embodiment refers to a frequency band with a frequency greater than 30 Hz, and the middle and low frequency bands refer to a frequency band with a frequency less than 20 Hz.
优选实施例中,建立的锂离子电池电化学阻抗谱数学模型包括:In a preferred embodiment, the established lithium-ion battery electrochemical impedance spectroscopy mathematical model includes:
在单个粒子的阻抗建模中,通过对频率ω的小正弦信号的激励下的系统的控制方程的求解来建立阻抗响应,得到的单个粒子阻抗如公式(4)和(5)所示。In the impedance modeling of a single particle, the impedance response of the system under the excitation of a small sinusoidal signal of frequency ω is solved to establish the impedance response, and the obtained single particle impedance is shown in formulas (4) and (5).
不考虑SEI膜的单个粒子阻抗:The single particle impedance of the SEI film is not considered:
其中,传荷电阻Rct=RT/(i0F),R表示气体常数,T表示温度,i0表示交换电流密度,F表示法拉第常数,κ取1,j表示虚数,ω表示频率,表示电势对浓度的偏导,Cdl表示双电层电容;Among them, the load transfer resistance R ct =RT/(i 0 F), R represents the gas constant, T represents the temperature, i 0 represents the exchange current density, F represents the Faraday constant, κ is 1, j represents an imaginary number, ω represents the frequency, Indicates the partial conduction of the potential to the concentration, and C dl indicates the electric double layer capacitance;
传递函数: Transfer Function:
Rpp表示粒子半径,Ds表示固相扩散系数; R pp represents the particle radius, D s represents the solid phase diffusion coefficient;
考虑SEI膜的单个粒子阻抗:Consider the single particle impedance of the SEI film:
其中,R0表示欧姆内阻,Zsei表示SEI膜的阻抗,Csei表示SEI膜的电容;Among them, R 0 represents the ohmic internal resistance, Z sei represents the impedance of the SEI film, and C sei represents the capacitance of the SEI film;
SEI模的阻抗:Impedance of SEI mode:
其中,中间变量Dsei表示SEI膜中的扩散系数,δ′sei=δsei-δdl,δsei表示SEI膜的厚度,δdl表示电双层厚度,σsei表示SEI膜的电导率,R2=Rpp+δdl,R3=R2+δ′sei;Among them, the intermediate variable D sei represents the diffusion coefficient in the SEI film, δ′ sei = δ sei -δ dl , δ sei represents the thickness of the SEI film, δ dl represents the thickness of the electrical double layer, σ sei represents the conductivity of the SEI film, R 2 =R pp +δ dl , R 3 =R 2 +δ′ sei ;
在凝聚物阻抗建摸中,是通过代表性体积单元来平均微观方程,如用体积平均法平均液相控制方程等等,得到的凝聚物阻抗:In the modeling of condensate impedance, the microscopic equations are averaged by representative volume units, such as the volume average method to average the liquid phase control equation, etc., to obtain the condensate impedance:
其中,引入函数中间变量D△,e=D+,e-D-,e,D+,e表示正极液相扩散系数,D-,e表示负极液相扩散系数,τsp表示凝聚物中曲折因子,表示凝聚物中电解质体积分数,σe表示液相电导率,Rsp表示凝聚物半径,cref表示锂离子参考浓度;Among them, the import function Intermediate variable D △, e = D +, e -D -, e , D +, e represent the liquid phase diffusion coefficient of the positive electrode, D -, e represent the liquid phase diffusion coefficient of the negative electrode, τ sp represents the tortuous factor in the condensate, Indicates the electrolyte volume fraction in the condensate, σ e represents the liquid phase conductivity, R sp represents the radius of the condensate, and c ref represents the lithium ion reference concentration;
根据多孔电极理论、浓溶液理论将凝聚物阻抗模型扩展到多孔电极阻抗建模中,多孔电极阻抗:According to the porous electrode theory and concentrated solution theory, the condensate impedance model is extended to the porous electrode impedance modeling. The porous electrode impedance:
其中,中间变量L表示电极厚度,表示电解质体积分数,τpe电极中曲折因子,扰动分量液相扩散系数,De液相扩散系数,Among them, the intermediate variable L represents the electrode thickness, Indicates the electrolyte volume fraction, the tortuosity factor in the τ pe electrode, Disturbance component liquid phase diffusion coefficient, D e liquid phase diffusion coefficient,
表1凝聚物阻抗和多孔电极阻抗的部分相关参数Table 1 Some related parameters of condensate impedance and porous electrode impedance
中间变量ζ=D△,e/De,中间变量Zpp表示单个粒子阻抗,中间变量t+表示锂离子迁移数。该模型中共26个参数,其中6个参数取值已知,19个需要辨识的参数。已知的参数主要包括物理常量以及一部分通过相关文献和电池手册查阅得到的参数,如表2所示。需要辨识的参数包括未知参数以及在电池老化过程中的发生变化的参数,如表3所示。Intermediate variable ζ=D △,e /D e , intermediate variable Z pp represents the individual particle impedance, the intermediate variable t + represents the lithium ion transfer number. The model has a total of 26 parameters, of which 6 parameters have known values and 19 parameters need to be identified. The known parameters mainly include physical constants and some parameters obtained from relevant literature and battery manuals, as shown in Table 2. The parameters to be identified include unknown parameters and parameters that change during battery aging, as shown in Table 3.
表2锂离子电池阻抗模型已知参数Table 2 Known parameters of lithium-ion battery impedance model
表3锂离子电池阻抗模型待辨识的参数Table 3 Parameters to be identified in the lithium-ion battery impedance model
电化学阻抗谱的测试方式通常有恒电流测试和恒电位测试两种测试方式。恒电流测试是指对电池的激励是由一直流电流(可以为0)叠加一正弦电流得到的复合电流值,同时测量系统的交流电压响应,根据电压和电流的比值可得阻抗;恒电位测试是指电池的激励是由一恒电压与一幅值确定的正弦电压叠加得到的复合电压值,同时测量系统的交流电流响应,根据电压和电流的比值可得阻抗。There are usually two test methods for electrochemical impedance spectroscopy: constant current test and constant potential test. Constant current test means that the excitation of the battery is a composite current value obtained by superimposing a direct current (can be 0) with a sinusoidal current, and at the same time measure the AC voltage response of the system, and the impedance can be obtained according to the ratio of voltage and current; constant potential test It means that the excitation of the battery is a composite voltage value obtained by superimposing a constant voltage and a sinusoidal voltage determined by a certain value. At the same time, the AC current response of the system is measured, and the impedance can be obtained according to the ratio of voltage and current.
在锂离子电池的测试中,若采用恒电流的方式进行测量,则电池将处在充放电的情况下,造成阻抗测试不准确,所以本实施方式的步骤二采用恒电位原位电化学阻抗谱测试方法实测待测单体锂离子全电池的电化学阻抗谱。在原位电化学阻抗谱测试方法中,恒定电位设为电池的开路电压,这样可以保证测试是在电池内部保持稳定状态下进行的,这种方式称为恒电位原位EIS测试。In the test of lithium-ion batteries, if the constant current method is used for measurement, the battery will be in the case of charging and discharging, resulting in inaccurate impedance testing, so step 2 of this embodiment adopts constant potential in-situ electrochemical impedance spectroscopy The test method is to measure the electrochemical impedance spectrum of the single lithium-ion full battery to be tested. In the in-situ electrochemical impedance spectroscopy test method, the constant potential is set to the open circuit voltage of the battery, which can ensure that the test is carried out in a stable state inside the battery. This method is called constant potential in-situ EIS test.
在电化学阻抗谱测试过程中,测试的正弦电压幅值不能过高,否则容易影响电池系统的线性特征,测试的正弦电压幅值过低,不能有效地激励电池系统,一般正弦电压幅值选为5mV~10mV;测量频率范围考虑模型的应用频率范围及电化学阻抗谱的实际意义,一般取频率的高频上限值为1000Hz,考虑到电化学工作站在低频处测量的准确性、测量时间长短,在满足化电化学阻抗谱能够反应电池扩散行为的前提下,采用的低频下限为0.01Hz;此外,恒温时间、维持开路电压的持续时间等都对电池的电化学阻抗谱测试有着重要影响。During the electrochemical impedance spectroscopy test, the amplitude of the sinusoidal voltage to be tested should not be too high, otherwise it will easily affect the linear characteristics of the battery system, and the amplitude of the sinusoidal voltage to be tested is too low to effectively stimulate the battery system. It is 5mV~10mV; the measurement frequency range considers the application frequency range of the model and the practical significance of electrochemical impedance spectroscopy. Generally, the high-frequency upper limit of the frequency is 1000Hz, considering the accuracy of the electrochemical workstation at low frequencies and the measurement time. The length, under the premise that electrochemical impedance spectroscopy can reflect the diffusion behavior of the battery, the lower limit of the low frequency used is 0.01Hz; in addition, the constant temperature time, the duration of maintaining the open circuit voltage, etc. have an important impact on the electrochemical impedance spectroscopy test of the battery .
本实施方式的测量设备包括CS阻抗谱测试仪、PC机、电池座、夹具等。待测电池为三星公司生产型号ICR18650-22F锂离子电池,容量为2200mhA,实际测量中,正弦电压幅值选为10mV;测量频率范围为0.01~1000Hz,室温为25℃,测得的电化学阻抗谱如图3所示,阻抗频谱常用奈奎斯特图表示,需要注意的是,在电化学中Nyquist图习惯以-Z″为纵轴,以Z′为横轴。锂离子电池的电化学阻抗谱通常由高、中频的两个容性半圆和低频的一条斜线组成。其中,高频区域时与锂离子扩散迁移通过SEI膜有关的半圆;中频区域是与电荷传递过程有关的半圆;低频区域时与锂离子固态扩散有关的斜线。The measuring equipment in this embodiment includes a CS impedance spectroscopy tester, a PC, a battery holder, a fixture, and the like. The battery to be tested is a Samsung ICR18650-22F lithium-ion battery with a capacity of 2200mhA. In the actual measurement, the sinusoidal voltage amplitude is selected as 10mV; the measurement frequency range is 0.01-1000Hz, and the room temperature is 25°C. The measured electrochemical impedance The spectrum is shown in Figure 3. The impedance spectrum is often represented by a Nyquist diagram. It should be noted that in electrochemistry, the Nyquist diagram is used to take -Z" as the vertical axis and Z' as the horizontal axis. The electrochemical performance of lithium-ion batteries The impedance spectrum usually consists of two capacitive semicircles at high and intermediate frequencies and a slanted line at low frequencies. Among them, the high frequency region is a semicircle related to the diffusion and migration of lithium ions through the SEI film; the intermediate frequency region is a semicircle related to the charge transfer process; The oblique line related to the solid-state diffusion of lithium ions in the low frequency region.
利用步骤三的方法得到锂离子电池的正、负极参数如表4、表5、表6所示。利用辨识得到的参数得到的仿真电化学阻抗谱与实际电化学阻抗谱如图4所示。The positive and negative electrode parameters of the lithium-ion battery obtained by the method of step three are shown in Table 4, Table 5, and Table 6. The simulated electrochemical impedance spectrum and the actual electrochemical impedance spectrum obtained by using the identified parameters are shown in Fig. 4 .
表4锂离子电池阻抗模型已知参数Table 4 Known parameters of lithium-ion battery impedance model
表5正极锂离子电池阻抗模型参数Table 5 Impedance model parameters of positive lithium-ion battery
表6负极锂离子电池阻抗模型参数Table 6 Negative Lithium-ion Battery Impedance Model Parameters
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。Although the invention is described herein with reference to specific embodiments, it should be understood that these embodiments are merely illustrative of the principles and applications of the invention. It is therefore to be understood that numerous modifications may be made to the exemplary embodiments and that other arrangements may be devised without departing from the spirit and scope of the invention as defined by the appended claims. It shall be understood that different dependent claims and features described herein may be combined in a different way than that described in the original claims. It will also be appreciated that features described in connection with individual embodiments can be used in other described embodiments.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710100658.3A CN106872905A (en) | 2017-02-23 | 2017-02-23 | A kind of full battery parameter acquisition methods of monomer lithium ion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710100658.3A CN106872905A (en) | 2017-02-23 | 2017-02-23 | A kind of full battery parameter acquisition methods of monomer lithium ion |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106872905A true CN106872905A (en) | 2017-06-20 |
Family
ID=59168976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710100658.3A Pending CN106872905A (en) | 2017-02-23 | 2017-02-23 | A kind of full battery parameter acquisition methods of monomer lithium ion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106872905A (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107607880A (en) * | 2017-09-19 | 2018-01-19 | 哈尔滨工业大学 | A method for extracting internal health features of lithium-ion batteries based on impedance spectroscopy |
CN107658921A (en) * | 2017-09-08 | 2018-02-02 | 成都瓦力特新能源技术有限公司 | Communication base station fixed sources of energy management system and its management method |
CN107677712A (en) * | 2017-09-14 | 2018-02-09 | 合肥国轩高科动力能源有限公司 | Method for testing electrochemical impedance spectrum of lithium ion battery |
CN108152752A (en) * | 2017-12-29 | 2018-06-12 | 惠州亿纬锂能股份有限公司 | A kind of battery measuring method |
CN108199122A (en) * | 2017-12-28 | 2018-06-22 | 哈尔滨工业大学 | Lithium ion battery based on electrochemistry-thermal coupling model is without analysis lithium low-temperature heating method |
CN108646198A (en) * | 2018-07-27 | 2018-10-12 | 安徽师范大学 | A kind of battery parameter estimating system |
CN108663631A (en) * | 2018-05-16 | 2018-10-16 | 哈尔滨工业大学 | A lithium-ion battery pack electrochemical impedance spectroscopy online measurement device |
CN108919137A (en) * | 2018-08-22 | 2018-11-30 | 同济大学 | A kind of battery aging status estimation method considering different battery status |
CN109143108A (en) * | 2018-07-25 | 2019-01-04 | 合肥工业大学 | A kind of estimation method of the lithium ion battery SOH based on electrochemical impedance spectroscopy |
CN109472079A (en) * | 2018-10-31 | 2019-03-15 | 北京理工大学 | An Electrochemical Impedance Spectrum Fitting Method for Lithium-ion Batteries |
CN109633454A (en) * | 2019-01-13 | 2019-04-16 | 浙江大学 | A Method for Realizing Online Estimation of Equivalent Temperature of Li-ion Battery |
CN110118942A (en) * | 2019-05-22 | 2019-08-13 | 北京科技大学 | A kind of detection method of lithium battery chemical polarization impedance |
CN110658469A (en) * | 2019-09-26 | 2020-01-07 | 合肥国轩高科动力能源有限公司 | A method for evaluating the exchange current density of lithium-ion battery electrodes |
CN110888057A (en) * | 2019-11-27 | 2020-03-17 | 上海交通大学 | Power lithium ion battery electrochemical parameter identification method and system |
CN111352034A (en) * | 2018-12-20 | 2020-06-30 | 丰田自动车株式会社 | Battery capacity estimation method and battery capacity estimation device |
CN111682255A (en) * | 2020-05-08 | 2020-09-18 | 深圳市鹏诚新能源科技有限公司 | Design method of battery |
CN111983477A (en) * | 2020-08-24 | 2020-11-24 | 哈尔滨理工大学 | Lithium ion battery safety degree estimation method and estimation device based on impedance spectrum model |
CN112327172A (en) * | 2020-11-30 | 2021-02-05 | 同济大学 | A Lithium-ion Battery Modeling Method Based on Relaxation Time Distribution |
CN112394289A (en) * | 2020-10-27 | 2021-02-23 | 同济大学 | Lithium analysis detection method during charging of lithium ion battery |
CN112415415A (en) * | 2020-11-02 | 2021-02-26 | 同济大学 | Battery service life diagnosis method based on low-temperature environment measurement |
CN112540316A (en) * | 2020-11-03 | 2021-03-23 | 华中科技大学 | Complicated battery impedance spectrum analysis method |
CN112733427A (en) * | 2020-12-16 | 2021-04-30 | 清华大学 | Method for establishing negative electrode potential estimation model of lithium ion battery and computer equipment |
CN112731181A (en) * | 2020-12-30 | 2021-04-30 | 哈尔滨工业大学(威海) | Lithium ion battery impedance model based on electrochemical principle |
CN112883531A (en) * | 2019-11-29 | 2021-06-01 | 比亚迪股份有限公司 | Lithium ion battery data processing method, computer device and storage medium |
CN113189507A (en) * | 2021-03-23 | 2021-07-30 | 天津力神电池股份有限公司 | Method for rapidly representing stability of SEI (solid electrolyte interface) film of lithium battery |
CN113341325A (en) * | 2021-05-31 | 2021-09-03 | 湖北亿纬动力有限公司 | Method for evaluating cell compaction system |
CN113484784A (en) * | 2021-06-24 | 2021-10-08 | 浙江大学 | Lithium battery online aging diagnosis method based on two-point impedance aging characteristics |
CN114778633A (en) * | 2022-04-12 | 2022-07-22 | 华中科技大学 | Single-layer particle electrode for electrochemical analysis and electrochemical analysis method |
CN115116555A (en) * | 2022-06-29 | 2022-09-27 | 上海玫克生储能科技有限公司 | Electric field decoupling method and device of electrochemical model based on target practice |
CN115372841A (en) * | 2022-08-15 | 2022-11-22 | 中国华能集团清洁能源技术研究院有限公司 | A method and device for evaluating the risk of thermal runaway of a lithium-ion battery cell |
CN115494396A (en) * | 2022-08-31 | 2022-12-20 | 重庆长安新能源汽车科技有限公司 | Method, device, equipment and medium for evaluating performance of battery in service |
CN116027199A (en) * | 2022-12-08 | 2023-04-28 | 帕诺(常熟)新能源科技有限公司 | Method of detecting short circuit in the whole life of battery cell based on parameter identification of electrochemical model |
CN116087794A (en) * | 2023-04-07 | 2023-05-09 | 湖北工业大学 | Battery failure classification early warning method and system |
CN116400240A (en) * | 2023-03-15 | 2023-07-07 | 广州巨湾技研有限公司 | Measuring method for ionic resistance of unit thickness of liquid phase and electrode tortuosity measuring method |
CN118624838A (en) * | 2024-08-08 | 2024-09-10 | 南京源化新材料科技有限公司 | A performance evaluation method and system for lithium-ion battery negative electrode porous carbon material |
WO2024244234A1 (en) * | 2023-05-30 | 2024-12-05 | 深蓝汽车科技有限公司 | Lithium ion battery internal resistance calculation method and apparatus, electronic device and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105738829A (en) * | 2016-04-08 | 2016-07-06 | 深圳市国创动力系统有限公司 | Method for identifying equivalent circuit model parameters of power lithium battery |
CN105912799A (en) * | 2016-04-27 | 2016-08-31 | 华中科技大学 | Modeling method of liquid state or semi-liquid state metal battery |
-
2017
- 2017-02-23 CN CN201710100658.3A patent/CN106872905A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105738829A (en) * | 2016-04-08 | 2016-07-06 | 深圳市国创动力系统有限公司 | Method for identifying equivalent circuit model parameters of power lithium battery |
CN105912799A (en) * | 2016-04-27 | 2016-08-31 | 华中科技大学 | Modeling method of liquid state or semi-liquid state metal battery |
Non-Patent Citations (4)
Title |
---|
JOEL C. FORMAN等: ""Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePO4 cell"", 《JOURNAL OF POWER SOURCES》 * |
JUN HUANG等: ""An Analytical Three-Scale Impedance Model for Porous Electrode with Agglomerates in Lithium-Ion Batteries"", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 * |
唐殊: ""基于 EIS 的锂电池阻抗模型研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 * |
席安静等: ""磷酸铁锂锂离子电池EIS参数随SOC变化的规律"", 《电池》 * |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107658921A (en) * | 2017-09-08 | 2018-02-02 | 成都瓦力特新能源技术有限公司 | Communication base station fixed sources of energy management system and its management method |
CN107658921B (en) * | 2017-09-08 | 2020-12-04 | 成都安普利菲能源技术有限公司 | Fixed energy management system of communication base station and management method thereof |
CN107677712A (en) * | 2017-09-14 | 2018-02-09 | 合肥国轩高科动力能源有限公司 | Method for testing electrochemical impedance spectrum of lithium ion battery |
CN107607880A (en) * | 2017-09-19 | 2018-01-19 | 哈尔滨工业大学 | A method for extracting internal health features of lithium-ion batteries based on impedance spectroscopy |
CN107607880B (en) * | 2017-09-19 | 2020-04-24 | 哈尔滨工业大学 | Lithium ion battery internal health feature extraction method based on impedance spectrum |
CN108199122B (en) * | 2017-12-28 | 2019-09-13 | 哈尔滨工业大学 | Low temperature heating method for lithium ion battery without analytic lithium based on electrochemical-thermal coupling model |
CN108199122A (en) * | 2017-12-28 | 2018-06-22 | 哈尔滨工业大学 | Lithium ion battery based on electrochemistry-thermal coupling model is without analysis lithium low-temperature heating method |
CN108152752A (en) * | 2017-12-29 | 2018-06-12 | 惠州亿纬锂能股份有限公司 | A kind of battery measuring method |
CN108152752B (en) * | 2017-12-29 | 2020-07-14 | 惠州亿纬锂能股份有限公司 | Battery measuring method |
CN108663631A (en) * | 2018-05-16 | 2018-10-16 | 哈尔滨工业大学 | A lithium-ion battery pack electrochemical impedance spectroscopy online measurement device |
CN108663631B (en) * | 2018-05-16 | 2020-12-25 | 哈尔滨工业大学 | Electrochemical impedance spectrum on-line measuring device for lithium ion battery pack |
CN109143108A (en) * | 2018-07-25 | 2019-01-04 | 合肥工业大学 | A kind of estimation method of the lithium ion battery SOH based on electrochemical impedance spectroscopy |
CN108646198A (en) * | 2018-07-27 | 2018-10-12 | 安徽师范大学 | A kind of battery parameter estimating system |
CN108919137A (en) * | 2018-08-22 | 2018-11-30 | 同济大学 | A kind of battery aging status estimation method considering different battery status |
CN109472079A (en) * | 2018-10-31 | 2019-03-15 | 北京理工大学 | An Electrochemical Impedance Spectrum Fitting Method for Lithium-ion Batteries |
CN109472079B (en) * | 2018-10-31 | 2022-11-15 | 北京理工大学 | Electrochemical impedance spectrum fitting method of lithium ion battery |
CN111352034A (en) * | 2018-12-20 | 2020-06-30 | 丰田自动车株式会社 | Battery capacity estimation method and battery capacity estimation device |
CN109633454B (en) * | 2019-01-13 | 2020-06-23 | 浙江大学 | Method for realizing on-line estimation of equivalent temperature of lithium ion battery |
CN109633454A (en) * | 2019-01-13 | 2019-04-16 | 浙江大学 | A Method for Realizing Online Estimation of Equivalent Temperature of Li-ion Battery |
CN110118942A (en) * | 2019-05-22 | 2019-08-13 | 北京科技大学 | A kind of detection method of lithium battery chemical polarization impedance |
CN110658469A (en) * | 2019-09-26 | 2020-01-07 | 合肥国轩高科动力能源有限公司 | A method for evaluating the exchange current density of lithium-ion battery electrodes |
CN110658469B (en) * | 2019-09-26 | 2021-10-29 | 合肥国轩高科动力能源有限公司 | A method for evaluating the exchange current density of lithium-ion battery electrodes |
CN110888057A (en) * | 2019-11-27 | 2020-03-17 | 上海交通大学 | Power lithium ion battery electrochemical parameter identification method and system |
CN110888057B (en) * | 2019-11-27 | 2020-11-17 | 上海交通大学 | Power lithium ion battery electrochemical parameter identification method and system |
CN112883531B (en) * | 2019-11-29 | 2022-10-18 | 比亚迪股份有限公司 | Lithium ion battery data processing method, computer device and storage medium |
CN112883531A (en) * | 2019-11-29 | 2021-06-01 | 比亚迪股份有限公司 | Lithium ion battery data processing method, computer device and storage medium |
CN111682255A (en) * | 2020-05-08 | 2020-09-18 | 深圳市鹏诚新能源科技有限公司 | Design method of battery |
CN111983477A (en) * | 2020-08-24 | 2020-11-24 | 哈尔滨理工大学 | Lithium ion battery safety degree estimation method and estimation device based on impedance spectrum model |
CN111983477B (en) * | 2020-08-24 | 2022-09-02 | 哈尔滨理工大学 | Lithium ion battery safety degree estimation method and estimation device based on impedance spectrum model |
CN112394289A (en) * | 2020-10-27 | 2021-02-23 | 同济大学 | Lithium analysis detection method during charging of lithium ion battery |
CN112394289B (en) * | 2020-10-27 | 2021-10-08 | 同济大学 | A method for detecting lithium evolution during charging of a lithium ion battery |
CN112415415A (en) * | 2020-11-02 | 2021-02-26 | 同济大学 | Battery service life diagnosis method based on low-temperature environment measurement |
CN112415415B (en) * | 2020-11-02 | 2022-02-18 | 同济大学 | A battery life diagnosis method based on low temperature environment measurement |
CN112540316A (en) * | 2020-11-03 | 2021-03-23 | 华中科技大学 | Complicated battery impedance spectrum analysis method |
CN112327172A (en) * | 2020-11-30 | 2021-02-05 | 同济大学 | A Lithium-ion Battery Modeling Method Based on Relaxation Time Distribution |
CN112327172B (en) * | 2020-11-30 | 2021-09-03 | 同济大学 | Lithium ion battery modeling method based on relaxation time distribution |
CN112733427A (en) * | 2020-12-16 | 2021-04-30 | 清华大学 | Method for establishing negative electrode potential estimation model of lithium ion battery and computer equipment |
CN112731181A (en) * | 2020-12-30 | 2021-04-30 | 哈尔滨工业大学(威海) | Lithium ion battery impedance model based on electrochemical principle |
CN113189507A (en) * | 2021-03-23 | 2021-07-30 | 天津力神电池股份有限公司 | Method for rapidly representing stability of SEI (solid electrolyte interface) film of lithium battery |
CN113341325A (en) * | 2021-05-31 | 2021-09-03 | 湖北亿纬动力有限公司 | Method for evaluating cell compaction system |
CN113484784A (en) * | 2021-06-24 | 2021-10-08 | 浙江大学 | Lithium battery online aging diagnosis method based on two-point impedance aging characteristics |
CN114778633B (en) * | 2022-04-12 | 2023-12-15 | 华中科技大学 | Single-layer particle electrode for electrochemical analysis and electrochemical analysis method |
CN114778633A (en) * | 2022-04-12 | 2022-07-22 | 华中科技大学 | Single-layer particle electrode for electrochemical analysis and electrochemical analysis method |
CN115116555A (en) * | 2022-06-29 | 2022-09-27 | 上海玫克生储能科技有限公司 | Electric field decoupling method and device of electrochemical model based on target practice |
CN115372841A (en) * | 2022-08-15 | 2022-11-22 | 中国华能集团清洁能源技术研究院有限公司 | A method and device for evaluating the risk of thermal runaway of a lithium-ion battery cell |
CN115372841B (en) * | 2022-08-15 | 2025-01-03 | 中国华能集团清洁能源技术研究院有限公司 | A method and device for evaluating thermal runaway risk of lithium-ion battery cells |
CN115494396A (en) * | 2022-08-31 | 2022-12-20 | 重庆长安新能源汽车科技有限公司 | Method, device, equipment and medium for evaluating performance of battery in service |
CN116027199A (en) * | 2022-12-08 | 2023-04-28 | 帕诺(常熟)新能源科技有限公司 | Method of detecting short circuit in the whole life of battery cell based on parameter identification of electrochemical model |
CN116027199B (en) * | 2022-12-08 | 2023-09-29 | 帕诺(常熟)新能源科技有限公司 | Method for detecting short circuits within the entire life of battery cells based on electrochemical model parameter identification |
CN116400240A (en) * | 2023-03-15 | 2023-07-07 | 广州巨湾技研有限公司 | Measuring method for ionic resistance of unit thickness of liquid phase and electrode tortuosity measuring method |
CN116087794A (en) * | 2023-04-07 | 2023-05-09 | 湖北工业大学 | Battery failure classification early warning method and system |
WO2024244234A1 (en) * | 2023-05-30 | 2024-12-05 | 深蓝汽车科技有限公司 | Lithium ion battery internal resistance calculation method and apparatus, electronic device and storage medium |
CN118624838A (en) * | 2024-08-08 | 2024-09-10 | 南京源化新材料科技有限公司 | A performance evaluation method and system for lithium-ion battery negative electrode porous carbon material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106872905A (en) | A kind of full battery parameter acquisition methods of monomer lithium ion | |
CN107607880B (en) | Lithium ion battery internal health feature extraction method based on impedance spectrum | |
CN112069739B (en) | Battery fractional order model parameter identification method | |
Zhang et al. | A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties | |
CN107066722B (en) | Electrochemical model-based combined estimation method for state of charge and state of health of power battery system | |
CN104502859B (en) | Method for detecting and diagnosing battery charge and battery health state | |
Lyu et al. | SOH estimation of lithium-ion batteries based on fast time domain impedance spectroscopy | |
CN108509762A (en) | A kind of the physicochemical change performance parameter analogy method and device of battery | |
CN114280493B (en) | Battery internal health state diagnosis method and system based on simplified P2D model | |
CN113702845B (en) | Retired lithium battery core parameter evaluation method and equipment | |
Zhao et al. | Investigation of the distribution of relaxation times of a porous electrode using a physics-based impedance model | |
CN111812530A (en) | A method for estimating the state of charge of a lithium battery | |
CN109738806B (en) | Method, device and medium for simulating battery heat production rate | |
Gagneur et al. | Modeling of the diffusion phenomenon in a lithium-ion cell using frequency or time domain identification | |
CN105550452B (en) | The discrimination method of lithium ion battery P2D model parameter based on heuritic approach | |
CN105866700A (en) | Lithium ion battery quick screening method | |
CN109581064A (en) | Measure method, apparatus, the medium of battery low temperature direct resistance | |
Perry et al. | Probing mass transport processes in Li-ion batteries using electrochemical impedance spectroscopy | |
CN113868934A (en) | Parallel lithium ion battery electrochemical parameter identification method | |
CN109946622A (en) | A kind of the lithium deposition prediction technique and device of lithium ion battery | |
CN116027199A (en) | Method of detecting short circuit in the whole life of battery cell based on parameter identification of electrochemical model | |
Wang et al. | Parameter sensitivity analysis and parameter identifiability analysis of electrochemical model under wide discharge rate | |
Rodríguez-Iturriaga et al. | A physics-based fractional-order equivalent circuit model for time and frequency-domain applications in lithium-ion batteries | |
Zhou et al. | Construction of simplified impedance model based on electrochemical mechanism and identification of mechanism parameters | |
Kwiecien | Electrochemical impedance spectroscopy on lead-acid cells during aging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170620 |
|
RJ01 | Rejection of invention patent application after publication |