[go: up one dir, main page]

CN106866162A - 一种用于碳-碳化硅复合材料的涂层材料 - Google Patents

一种用于碳-碳化硅复合材料的涂层材料 Download PDF

Info

Publication number
CN106866162A
CN106866162A CN201510931346.8A CN201510931346A CN106866162A CN 106866162 A CN106866162 A CN 106866162A CN 201510931346 A CN201510931346 A CN 201510931346A CN 106866162 A CN106866162 A CN 106866162A
Authority
CN
China
Prior art keywords
powder
weight
weight portion
parts
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510931346.8A
Other languages
English (en)
Inventor
于新民
王涛
刘俊鹏
孙同臣
詹万初
裴雨辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN201510931346.8A priority Critical patent/CN106866162A/zh
Publication of CN106866162A publication Critical patent/CN106866162A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/486Boron containing organic compounds, e.g. borazine, borane or boranyl
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种用于碳-碳化硅复合材料的涂层材料,所述材料采用如下原料制得:硼酚醛、一碳化四硼、三硅化七锆合金粉、碳化硅粉、碳化锆粉、二硼化一锆粉、氮化硼和无水乙醇。在一个优选的所述方式中,所述原料包括:硼酚醛12至14重量份,一碳化四硼3至5重量份,三硅化七锆合金粉84至86重量份,碳化硅粉1至3重量份,碳化锆粉2至4重量份,二硼化一锆粉2至4重量份,氮化硼10至20重量份,无水乙醇15至21重量份。本发明能够解决了耐高温抗氧化涂层成本高、操作复杂,修复修补困难等问题,提供了一种既耐高温又抗氧化的涂层材料。

Description

一种用于碳-碳化硅复合材料的涂层材料
技术领域
本发明涉及复合材料技术领域,具体地说,本发明涉及一种用于碳-碳化硅复合材料的涂层材料。
背景技术
C/SiC(有时称为“碳-碳化硅”)复合材料具有低密度、高强度、耐高温、抗烧蚀和抗冲刷等一系列优异性能,同时具有比C/C复合材料更好的抗氧化性。C/SiC复合材料在高推重比航空发动机、超高声速冲压发动机、航空航天往返防热系统、液体发动机和固体火箭发动机等武器装备领域,以及在先进摩擦及离合器系统等刹车工业领域具有非常广阔的应用前景。然而,需要采用陶瓷基复合材料制备的构件种类繁多,如机翼前缘、燃烧室、喷管、热防护材料、刹车盘、以及要求极低的热膨胀系数的太空反射镜、陶瓷支架、刻度盘等,它们的工作条件各不相同,因而对C/SiC复合材料的力学性能、热物理性能和环境性能的要求也不尽相同。为了使C/SiC复合材料的性能可在很大范围内变化,以便满足各种构件的使用要求,必须对其显微结构及相成分进行合理的设计。
现有技术采用减压化学气相渗透法制备了基体为PyC/SiC交替叠层的C/C-SiC复合材料,研究了PyC的引入位置和引入量对C/C-SiC复合材料力学性能和抗氧化性能的影响,包括研究了PyC的引入位置和引入量对2DC/C-SiC复合材料力学性能的影响,发现PyC的引入可以显著提高复合材料的断裂韧性、断裂功及断裂应变,抗弯强度、拉伸强度及拉伸模量基本保持不变。纤维束外部基体中PyC的引入不利于提高2DC/C-SiC复合材料的力学性能;还研究了PyC的引入位置和引入量对3DC/C-SiC复合材料力学性能的影响,发现纤维束外部的PyC层降低了复合材料的抗弯强度和断裂韧性,但可以明显提高拉伸 强度、拉伸模量及断裂应变;还研究了PyC的引入位置和引入量对2DC/C-SiC复合材料抗氧化性能的影响,发现2DC/SiC与2DC/C-SiC复合材料具有相似的氧化行为,受缺陷控制。2DC/SiC与2DC/C-SiC复合材料在700℃、1000℃、1300℃时都表现为氧化失重,且都在700℃氧化失重率最大,1000℃时氧化失重率最小;2DC/SiC与2DC/C-SiC复合材料在空气中恒温氧化时表现出完全相似的氧化动力学行为和残余强度对应关系,残余抗弯强度随失重率的增加而降低;2DC/SiC与2DC/C-SiC复合材料的残余强度受C相的氧化消耗控制。
飞行器高温氧化部位通常使用碳-碳化硅复合材料,如高超声速飞行器、再入飞行器以及临近空间飞行器的前缘、被动热防护面板以及发动机燃烧室等高温氧化部位,而未经过抗氧化改性处理的碳-碳化硅复合材料长时抗氧化温度不超过1650℃,当温度超过此温度时,碳-碳化硅复合材料基体和纤维迅速氧化损耗,材料力学性能急剧下降,因此,在碳-碳化硅复合材料表面制备抗氧化、耐冲刷的涂层材料是提高复合材料使用温度的有效手段。
氮化硼具有多种优良性能,广泛应用于高压高频电及等离子弧的绝缘体、自动焊接耐高温架的涂层、高频感应电炉的材料、半导体的固相掺和料、原子反应堆的结构材料、防止中子辐射的包装材料、雷达的传递窗、雷达天线的介质和火箭发动机的组成物等。由于具有优良的润滑性能,用作高温润滑剂和多种模型的脱模剂。模压的氮化硼可制造耐高温坩埚和其他制品。可作超硬材料,适用于地质勘探、石油钻探的钻头和高速切削工具。也可用作金属加工研磨材料,具有加工表面温度低、部件表面缺陷少的特点。氮化硼还可用作各种材料的添加剂。由氮化硼加工制成的氮化硼纤维,为中模数高功能纤维,是一种无机合成工程材料,可广泛使用于化学工业、纺织工业、宇航技术和其他尖端工业部门。2.氮化硼纤维用途:由于氮化硼热稳定性和耐磨性好以及化学稳定性强,可用作温度传感器套,火箭、燃烧室内衬和等离子体喷射炉材料;用作陶瓷基复合材料的增强剂、导弹和飞行器的天线窗部件、电绝缘器、防护服、重返大气层的降落伞以及火箭喷管鼻锥等材料;用于高温润滑剂、脱模剂、高频绝缘材料和半导 体的固相掺杂材料等。3.由于氮化硼热稳定性和耐磨性好以及化学稳定性强,可用作温度传感器套,制造高温物件,如火箭、燃烧室内衬和等离子体喷射炉材料。可作高温润滑剂、脱模剂、高频绝缘材料和半导体的固相掺杂材料等。六方氮化硼转化立方体,粉状可转化纤维状,使其用途更加广泛,可用作超硬材料,用于电绝缘器、天线窗、防护服、重返大气层的降落伞以及火箭喷管鼻锥等。
目前,普遍使用化学气相沉积和等离子喷涂技术制备用于航天器的抗氧化涂层材料,这两种过程在飞行器发射前经过高温、高压等过程直接将涂层材料涂布在飞行器表面,但这两种技术都需要投入精密复杂的大型设备,成本高、操作复杂,且涂层一旦制备完成后,其修复修补将变得及其困难,甚至根本无法实现。
发明内容
为了解决上述技术问题,本发明提供了如下技术方案:
1、一种用于碳-碳化硅复合材料的涂层材料,其特征在于,所述材料采用如下原料制得:硼酚醛、一碳化四硼、三硅化七锆合金粉、碳化硅粉、碳化锆粉、二硼化一锆粉、氮化硼和无水乙醇。
2、根据技术方案1所述的涂层材料,其特征在于,所述原料包括:硼酚醛12至14重量份,一碳化四硼3至5重量份,三硅化七锆合金粉84至86重量份,碳化硅粉1至3重量份,碳化锆粉2至4重量份,二硼化一锆粉2至4重量份,氮化硼10至20重量份,无水乙醇15至21重量份。
3、根据技术方案1所述的涂层材料,其特征在于,所述原料的组成如下:硼酚醛12至14重量份,一碳化四硼3至5重量份,三硅化七锆合金粉84至86重量份,碳化硅粉1至3重量份,碳化锆粉2至4重量份,二硼化一锆粉2至4重量份,氮化硼10至20重量份,无水乙醇15至21重量份。
4、根据技术方案1所述的涂层材料,其特征在于,所述氮化硼 15至18重量份。
5、根据技术方案1所述的涂层材料,其特征在于,所述所述氮化硼为六方氮化硼(HBN)、菱方氮化硼(RBN)、立方氮化硼(CBN)和纤锌矿氮化硼(WBN)。
本发明实施例提供的用于碳-碳化硅复合材料的涂层材料,一方面涂层中存在并生成ZrC、ZrB2、SiC和BN四种陶瓷组分,它们形成了一个较合适的比例含量,使其在高温氧化环境下生成的ZrO2、SiO2和ZrSiO4会形成一种致密、稳定且与基材具有较高结合强度的混合物,这种混合物能够有效阻挡氧气的渗透进入,从而保护内部的材料不被氧化,因此具有非常优良的抗氧化性能;另一方面,该涂层中含有硼酚醛、碳化硼(B4C)和Zr7Si3合金粉三种活性成分,使涂层在高温使用过程中会原位反应生成ZrC、ZrB2和SiC以及其相应的氧化产物,实现其良好的高温抗氧化性能,可以说涂层制备所需的高温处理工序是在使用中完成的,因此在构件使用之前,涂层缺损的修补不需要再回炉进行高温处理,涂层修补简单方便。因此,该涂层材料具有超高温(>2000℃)抗氧化性能好、成本低、制备简单以及易于修补的显著优点。
而且,原料中的氮化硼热稳定性和耐磨性好以及化学稳定性强,可用作温度传感器套,火箭、燃烧室内衬和等离子体喷射炉材料;用作陶瓷基复合材料的增强剂、导弹和飞行器的天线窗部件、电绝缘器、防护服、重返大气层的降落伞以及火箭喷管鼻锥等材料;用于高温润滑剂、脱模剂、高频绝缘材料和半导体的固相掺杂材料等;尤其是六方氮化硼转化立方体,粉状可转化纤维状,使其用途更加广泛,可用作超硬材料,用于电绝缘器、天线窗、防护服、重返大气层的降落伞以及火箭喷管鼻锥等。
本发明能够有效解决目前飞行器耐高温抗氧化涂层成本高、操作复杂,修复修补困难的问题。
具体实施方式
下面将对本发明的具体实施例进行详细说明。在下面的描述中,出于解释而非限制性的目的,阐述了具体细节,以帮助全面地理解本发明。然而,对本领域技术人员来说显而易见的是,也可以在脱离了这些具体细节的其它实施例中实践本发明。
下面提供几个具体实施例及实验数据:
实施例1
称取12克硼酚醛,3/克碳化硼(B4C)粉,84克Zr7Si3合金粉,1克SiC粉,2克ZrC粉,2克ZrB2粉,10克氮化硼,15克无水乙醇,混合均匀即得涂层材料。
实施例2
称取13克硼酚醛,4克碳化硼(B4C)粉,85克Zr7Si3合金粉,2克SiC粉,3克ZrC粉,3克ZrB2粉,12克氮化硼,18克无水乙醇,混合均匀即得涂层材料。
实施例3
称取14克硼酚醛,5克碳化硼(B4C)粉,86克Zr7Si3合金粉,3克SiC粉,4克ZrC粉,4克ZrB2粉,14克氮化硼,21克无水乙醇,混合均匀即得涂层材料。
对使用了实施例3制备的涂层材料的碳-碳化硅复合材料平板进行了Tt2500K/Pt0.6MPa/Ma0.6状态电弧风洞的600秒考核试验,试验后线烧蚀量仅有0.01mm,实施例1、实施例2实验结果类似,此处不再赘述,具有很好的耐高温、抗氧化效果。
本发明提供的用于碳-碳化硅复合材料的涂层材料,一方面涂层中存在并生成ZrC、ZrB2、SiC和BN四种陶瓷组分,形成了一个较合适的比例含量,使其在高温氧化环境下生成的ZrO2、SiO2和ZrSiO4会形成一种致密、稳定且与基材具有较高结合强度的混合物,这种混合物能够有效阻挡氧气的渗透进入,从而保护内部的材料不被氧化,因此具有非常优良的抗氧化性能;另一方面,该涂层中含有硼酚醛、碳化硼(B4C)和Zr7Si3合金粉三种活性成分,使涂层在高温使用过程中会原位反应生成ZrC、ZrB2和SiC以及其相应的氧化产物,实现 其良好的高温抗氧化性能,可以说涂层制备所需的高温处理工序是在使用中完成的,因此在构件使用之前,涂层缺损的修补不需要再回炉进行高温处理,涂层修补简单方便。因此,该涂层材料具有超高温(>2000℃)抗氧化性能好、成本低、制备简单以及易于修补的显著优点。
如上针对一种实施例描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施例中使用,和/或与其它实施例中的特征相结合或替代其它实施例中的特征使用。
应当理解的是,根据本发明所公开的内容以及现有技术,本领域技术人员可以对本发明进行各种改进和/或改变,这些经改进和/或改变的技术方案应当理解为处在所附权利要求的范围内,并没有脱离本发明的实质。

Claims (5)

1.一种用于碳-碳化硅复合材料的涂层材料,其特征在于,所述材料采用如下原料制得:硼酚醛、一碳化四硼、三硅化七锆合金粉、碳化硅粉、碳化锆粉、二硼化一锆粉、氮化硼和无水乙醇。
2.根据权利要求1所述的涂层材料,其特征在于,所述原料包括:硼酚醛12至14重量份,一碳化四硼3至5重量份,三硅化七锆合金粉84至86重量份,碳化硅粉1至3重量份,碳化锆粉2至4重量份,二硼化一锆粉2至4重量份,氮化硼10至20重量份,无水乙醇15至21重量份。
3.根据权利要求1所述的涂层材料,其特征在于,所述原料的组成如下:硼酚醛12至14重量份,一碳化四硼3至5重量份,三硅化七锆合金粉84至86重量份,碳化硅粉1至3重量份,碳化锆粉2至4重量份,二硼化一锆粉2至4重量份,氮化硼10至20重量份,无水乙醇15至21重量份。
4.根据权利要求1所述的涂层材料,其特征在于,所述氮化硼15至18重量份。
5.根据权利要求1所述的涂层材料,其特征在于,所述所述氮化硼为六方氮化硼、菱方氮化硼、立方氮化硼和纤锌矿氮化硼。
CN201510931346.8A 2015-12-14 2015-12-14 一种用于碳-碳化硅复合材料的涂层材料 Pending CN106866162A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510931346.8A CN106866162A (zh) 2015-12-14 2015-12-14 一种用于碳-碳化硅复合材料的涂层材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510931346.8A CN106866162A (zh) 2015-12-14 2015-12-14 一种用于碳-碳化硅复合材料的涂层材料

Publications (1)

Publication Number Publication Date
CN106866162A true CN106866162A (zh) 2017-06-20

Family

ID=59238504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510931346.8A Pending CN106866162A (zh) 2015-12-14 2015-12-14 一种用于碳-碳化硅复合材料的涂层材料

Country Status (1)

Country Link
CN (1) CN106866162A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063206A (zh) * 2020-09-28 2020-12-11 宜兴市耐火材料有限公司 一种高耐磨和高抗氧化滑板涂料及其制备工艺
CN112645711A (zh) * 2020-12-24 2021-04-13 江苏集芯半导体硅材料研究院有限公司 一种单晶硅炉用加热器SiC-ZrC-BN复合涂层及制备方法
CN113402298A (zh) * 2021-07-03 2021-09-17 西北工业大学 一种用于碳化硅陶瓷基复合材料表层损伤的修复剂及修复方法
CN115231954A (zh) * 2022-07-26 2022-10-25 北京理工大学 一种多组分超高温抗氧化耐烧蚀陶瓷涂层的制备方法
CN117623747A (zh) * 2023-12-12 2024-03-01 新化县群华陶瓷科技有限公司 一种98氧化铝陶瓷材料及制备工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063206A (zh) * 2020-09-28 2020-12-11 宜兴市耐火材料有限公司 一种高耐磨和高抗氧化滑板涂料及其制备工艺
CN112063206B (zh) * 2020-09-28 2021-12-31 宜兴市耐火材料有限公司 一种高耐磨和高抗氧化滑板涂料及其制备工艺
CN112645711A (zh) * 2020-12-24 2021-04-13 江苏集芯半导体硅材料研究院有限公司 一种单晶硅炉用加热器SiC-ZrC-BN复合涂层及制备方法
CN113402298A (zh) * 2021-07-03 2021-09-17 西北工业大学 一种用于碳化硅陶瓷基复合材料表层损伤的修复剂及修复方法
CN113402298B (zh) * 2021-07-03 2022-07-26 西北工业大学 一种用于碳化硅陶瓷基复合材料表层损伤的修复剂及修复方法
CN115231954A (zh) * 2022-07-26 2022-10-25 北京理工大学 一种多组分超高温抗氧化耐烧蚀陶瓷涂层的制备方法
CN117623747A (zh) * 2023-12-12 2024-03-01 新化县群华陶瓷科技有限公司 一种98氧化铝陶瓷材料及制备工艺

Similar Documents

Publication Publication Date Title
Rueschhoff et al. Processing of fiber‐reinforced ultra‐high temperature ceramic composites: A review
Naslain Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview
Naslain SiC‐matrix composites: nonbrittle ceramics for thermo‐structural application
Patel et al. High temperature C/C–SiC composite by liquid silicon infiltration: a literature review
Jiang et al. Oxidation and ablation protection of multiphase Hf0. 5Ta0. 5B2-SiC-Si coating for graphite prepared by dipping-pyrolysis and reactive infiltration of gaseous silicon
CN106866162A (zh) 一种用于碳-碳化硅复合材料的涂层材料
Zhu et al. Research and application prospect of short carbon fiber reinforced ceramic composites
Jiang et al. Oxidation and ablation protection of double layer HfB2-SiC-Si/SiC-Si coating for graphite materials
Zhang et al. Current research art of rare earth compound modified SiC-CMCs for enhanced wet-oxygen corrosion resistance
US11505508B2 (en) Part comprising a substrate and an environmental barrier
Zhou et al. A novel oxidation protective SiC-ZrB2-ZrSi2 coating with mosaic structure for carbon/carbon composites
Yan et al. Mechanical properties and microstructure of Cf/ZrC-SiC and Cf/SiC composites produced by precursor infiltration and pyrolysis combined with gaseous silicon infiltration
Shirani et al. ZrB2-SiC-WC coating with SiC diffusion bond coat on graphite by spark plasma sintering process
Luo et al. High-temperature mechanical properties of thermal barrier coated SiC/SiC composites by PIP process with a new precursor polymer
Ren et al. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering
Xiang et al. ZrB2-SiC ceramics coating for Cf/SiC composites: Microstructure and anti-ablation mechanism
Cheng et al. Oxidation Behavior from Room Temperature to 1500° C of 3D‐C/SiC Composites with Different Coatings
Wang et al. Oxidation resistance behavior of SiC nanowires/Si layer on the C/SiC composites
CN112010663B (zh) 一种具有难熔金属碳化物界面的C/SiC陶瓷基复合材料及其制备方法
Wang et al. Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler
Wang et al. Effects of the single layer CVD BN interface on mechanical properties of oxide–oxide composites fabricated by a sol–gel process
Zhang et al. Microstructure and oxidation resistant behavior of Er2Si2O7 and Er2Si2O7/LaMgAl11O19 coatings deposited on Cf/SiC composites by APS at 1723 K
Zhang et al. Optimization of SiC–ZrC high emissivity composite flexible coating for thermal protection with high interfacial bond strength and temperature resistance
Udayakumar et al. Carbon Fiber Reinforced Silicon Carbide Ceramic Matrix Composites: Processing and Characterization When Fabricated by CVI and Hybrid Technique
Chen et al. Effect of processing technology on structural stability of SiC/SiBCZr ceramic matrix composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170620