CN106796279A - The geography of guiding surface ripple - Google Patents
The geography of guiding surface ripple Download PDFInfo
- Publication number
- CN106796279A CN106796279A CN201580055447.1A CN201580055447A CN106796279A CN 106796279 A CN106796279 A CN 106796279A CN 201580055447 A CN201580055447 A CN 201580055447A CN 106796279 A CN106796279 A CN 106796279A
- Authority
- CN
- China
- Prior art keywords
- guided surface
- surface wave
- waveguide probe
- wave
- guided
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S11/00—Systems for determining distance or velocity not using reflection or reradiation
- G01S11/02—Systems for determining distance or velocity not using reflection or reradiation using radio waves
- G01S11/06—Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/06—Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/52—Systems for transmission between fixed stations via waveguides
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/24—Inductive coupling
- H04B5/26—Inductive coupling using coils
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/22—Capacitive coupling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/24—Inductive coupling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/72—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Power Engineering (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radar Systems Or Details Thereof (AREA)
- Aerials With Secondary Devices (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Navigation (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Optical Integrated Circuits (AREA)
Abstract
公开了使用从各个地面站处的引导表面波波导探头发射的引导表面波来固定导航位置的各种实施例。导航单元可以通过确定从地面站到导航单元的引导表面波的行进时间来固定其位置。在另一实施例中,导航单元还可以通过确定在从地面站行进到导航单元之后引导表面波的强度变化来固定其位置。在其他实施例中,导航单元还可以通过确定锁相引导表面波在从地面站行进到导航单元时的相位差来固定其位置。
Various embodiments are disclosed for fixing a navigation position using guided surface waves emitted from guided surface wave waveguide probes at various ground stations. The navigation unit can fix its position by determining the travel time of the guided surface waves from the ground station to the navigation unit. In another embodiment, the navigation unit may also fix its position by determining changes in the strength of the guided surface waves after traveling from the ground station to the navigation unit. In other embodiments, the navigation unit may also fix its position by determining the phase difference of the phase-locked guided surface wave as it travels from the ground station to the navigation unit.
Description
相关申请的交叉引用Cross References to Related Applications
本申请要求于2014年9月11日提交的、题为“GEOLOCATION WITH GUIDED SURFACEWAVES”的共同未决的美国临时专利申请No.62/049,039的权益和优先权,并且还要求于2015年8月28日提交的美国专利申请第14/839,175号的权益和优先权,其全部内容通过引用并入本文。This application claims benefit of and priority to co-pending U.S. Provisional Patent Application No. 62/049,039, filed September 11, 2014, entitled "GEOLOCATION WITH GUIDED SURFACEWAVES," and also claims The benefit and priority of U.S. Patent Application No. 14/839,175, filed on , is hereby incorporated by reference in its entirety.
本申请涉及于2013年3月7日提交的并被分配申请号13/789,538、并且于2014年9月11日公开为公开号US2014/0252886 A1的标题为“Excitation and Use of GuidedSurface Wave Modes on Lossy Media”的共同未决美国非临时专利申请,并将其通过引用全部合并于此。本申请还涉及于2013年3月7日提交的并被分配申请号13/789,525、并且于2014年9月11日公开为公开号US2014/0252865 A1的标题为“Excitation and Use ofGuided Surface Wave Modes on Lossy Media”的共同未决美国非临时专利申请,并将其通过引用全部合并于此。本申请进一步涉及于2014年9月10日提交的并被分配申请号14/483,089的标题为“Excitation and Use of Guided Surface Wave Modes on LossyMedia”的共同未决美国非临时专利申请,且将其通过引用全部合并于此。本申请进一步涉及于2015年6月2日提交的并被分配申请号14/728,507的标题为“Excitation and Use ofGuided Surface Waves”的共同未决美国非临时专利申请,且将其通过引用全部合并于此。本申请进一步涉及于2015年6月2日提交的并被分配申请号14/728,492的标题为“Excitation and Use of Guided Surface Waves”的共同未决美国非临时专利申请,且将其通过引用全部合并于此。This application is related to "Excitation and Use of Guided Surface Wave Modes on Lossy Media”, which is hereby incorporated by reference in its entirety. This application is also related to the application entitled "Excitation and Use of Guided Surface Wave Modes on Lossy Media”, which is hereby incorporated by reference in its entirety. This application is further related to co-pending U.S. Nonprovisional Patent Application, entitled "Excitation and Use of Guided Surface Wave Modes on Lossy Media," filed September 10, 2014 and assigned application number 14/483,089, which is adopted by All references are incorporated herein. This application is further related to co-pending U.S. Nonprovisional Patent Application entitled "Excitation and Use of Guided Surface Waves," filed June 2, 2015, and assigned Application Serial No. 14/728,507, which is incorporated by reference in its entirety in this. This application is further related to co-pending U.S. nonprovisional patent application entitled "Excitation and Use of Guided Surface Waves," filed June 2, 2015 and assigned application number 14/728,492, which is incorporated by reference in its entirety here.
背景技术Background technique
近百年来,通过无线电波发送的信号涉及使用传统的天线结构启动的辐射场。相比无线电科学,最近一世纪的电功率分布系统涉及沿着导电体引导的能量的传输。自从1900年代早期以来,已经存在射频(RF)和功率传输之间的区别的理解。For nearly a hundred years, signals sent over radio waves have involved radiating fields launched using conventional antenna structures. Compared to radio science, electrical power distribution systems of the last century involve the transmission of energy guided along electrical conductors. An understanding of the difference between radio frequency (RF) and power transfer has existed since the early 1900's.
发明内容Contents of the invention
公开了一种系统,包括:第一引导表面波导探头,包括在第一损耗传导介质上升高的第一充电端子,被配置为产生至少一个复合场,其合成以第一损耗传导介质的第一复数布鲁斯特入射角入射的第一波前(θi,B);通信地耦合到所述第一引导表面波导探头的电路,其中耦合到所述第一引导表面波导探头的电路被配置为经由所述第一引导表面波导探头至少以第一频率发射第一引导表面波;第二引导表面波导探头,包括在第二损耗传导介质上升高的第二充电端子,配置为产生至少一个复合场,其合成以第二损耗传导介质的第二复数布鲁斯特入射角(θi,B)的第二波前;通信地耦合到所述第二引导表面波导探头的电路,其中所述通信地耦合到所述第二引导表面波导探头的电路被配置成经由所述第二引导表面波导探头至少以第二频率发射第二引导表面波;第三引导表面波导探头,包括在第三损耗传导介质上升高的第三充电端子,被配置为产生至少一个复合场,所述复合场合成以第三损耗传导介质的第二复数布鲁斯特入射角(θi,B)的第三波前;以及通信地耦合到所述第三引导表面波导探头的电路,其中通信地耦合到所述第三引导表面波导探头的所述电路被配置为经由所述第三引导表面波导探头至少以第三频率发射第三引导表面波。在一些实施例中,系统还包括被配置为从沿着地面介质行进的第一引导表面波获得电能的第一引导表面波接收结构和被配置为从沿着地面介质行进的第二引导表面波获得电能的第二引导表面波接收结构,其中通信地耦合到所述第二引导表面波导探头的所述电路还通信地耦合到所述第一引导表面波接收结构,并且所述通信地耦合到所述第二引导表面波导探头的电路被配置为至少:确定所述第一引导表面波由所述第一引导表面波接收结构接收;以及响应于所述第一引导表面波由所述第一引导表面波接收结构接收的确定,经由所述第二引导表面波导探头以所述第二频率发射所述第二引导表面波;通信地耦合到第三引导表面波导探头的电路进一步通信地耦合到第二引导表面波接收结构,并且通信地耦合到第三引导表面波导探头的电路被配置为至少:确定第一引导表面波由所述第二引导表面波接收结构接收;以及响应于所述第一引导表面波由所述第二引导表面波接收结构接收的确定,经由所述第三引导表面波导探头以所述第三频率发射所述第三引导表面波。在该系统的一些实施例中,第二引导表面波在第一引导表面波由第一引导表面波接收器接收到之后的预定义时间段发射。在该系统的一些实施例中,第三引导表面波在第一引导表面波由第一引导表面波接收器接收到之后的预定义时间段发射。在该系统的一些实施例中,第一引导表面波、第二引导表面波或第三引导表面波中的至少一个包括用于传输数据的载波。在系统的一些实施例中,数据包括传输分组,传输分组包括:时间戳;以及第一引导表面波波导探头、第二引导表面波波导探头或第三引导表面波波导探头中的至少一个的位置。在一些实施例中,系统还包括电耦合到第一充电端子的馈送网络,馈送网络提供与波倾斜角(Ψ)相匹配的相位延迟(Φ),波倾斜角与和第一引导表面波导探头附近的损耗传导介质相关联的复数布鲁斯特入射角(θi,B)相关。A system is disclosed comprising: a first guided surface waveguide probe comprising a first charging terminal raised above a first lossy conducting medium configured to generate at least one recombination field synthesized with a first charge terminal of the first lossy conducting medium a first wavefront (θ i,B ) incident at a complex Brewster angle of incidence; circuitry coupled communicatively to said first guided surface waveguide probe, wherein circuitry coupled to said first guided surface waveguide probe is configured to via said first guided surface waveguide probe emits a first guided surface wave at least at a first frequency; a second guided surface waveguide probe comprising a second charging terminal raised on a second lossy conducting medium configured to generate at least one recombination field, which synthesizes a second wavefront at a second complex Brewster angle of incidence (θ i,B ) of a second lossy conducting medium; circuitry communicatively coupled to said second guiding surface waveguide probe, wherein said communicatively coupled to The circuitry of the second guided surface waveguide probe is configured to transmit a second guided surface wave at least at a second frequency via the second guided surface waveguide probe; a third guided surface waveguide probe comprising a third guided surface waveguide probe raised a third charging terminal configured to generate at least one recombination field that synthesizes a third wavefront at a second complex Brewster incidence angle (θ i,B ) of a third lossy conducting medium; and communicatively coupled circuitry to the third guided surface waveguide probe, wherein the circuitry communicatively coupled to the third guided surface waveguide probe is configured to transmit a third guided surface waveguide probe at least at a third frequency via the third guided surface waveguide probe surface waves. In some embodiments, the system further includes a first guided surface wave receiving structure configured to obtain electrical power from a first guided surface wave traveling along the ground medium and a second guided surface wave configured to obtain electrical power from a second guided surface wave traveling along the ground medium. obtaining electrical power from a second guided surface wave receiving structure, wherein the circuitry communicatively coupled to the second guided surface wave guide probe is also communicatively coupled to the first guided surface wave receiving structure, and the circuit is communicatively coupled to the The circuitry of the second guided surface waveguide probe is configured to at least: determine that the first guided surface wave is received by the first guided surface wave receiving structure; and respond to the first guided surface wave being received by the first guided surface wave a determination of reception by a guided surface wave receiving structure, transmitting said second guided surface wave at said second frequency via said second guided surface waveguide probe; circuitry communicatively coupled to a third guided surface waveguide probe further communicatively coupled to A second guided surface wave receiving structure, and circuitry communicatively coupled to a third guided surface waveguide probe configured to at least: determine that a first guided surface wave is received by said second guided surface wave receiving structure; and respond to said first guided surface wave receiving structure; A guided surface wave is received by the second guided surface wave receiving structure, and the third guided surface wave is transmitted at the third frequency via the third guided surface waveguide probe. In some embodiments of the system, the second guided surface wave is transmitted a predefined time period after the first guided surface wave is received by the first guided surface wave receiver. In some embodiments of the system, the third guided surface wave is transmitted a predefined time period after the first guided surface wave is received by the first guided surface wave receiver. In some embodiments of the system, at least one of the first guided surface wave, the second guided surface wave or the third guided surface wave includes a carrier wave for transmitting data. In some embodiments of the system, the data comprises a transmission packet comprising: a time stamp; and a position of at least one of the first guided surface wave waveguide probe, the second guided surface wave waveguide probe or the third guided surface wave waveguide probe . In some embodiments, the system further includes a feed network electrically coupled to the first charging terminal, the feed network providing a phase delay (Φ) matched to a wave tilt angle (Ψ) that is the same as that of the first guided surface waveguide probe Depends on the complex Brewster incidence angle (θ i,B ) associated with the nearby lossy conducting medium.
公开了一种方法,包括经由第一引导表面波探头以第一频率发射第一引导表面波;经由第二引导表面波探头以第二频率发射第二引导表面波,其中所述第二引导表面波与所述第一引导表面波相位锁定;以及经由第三引导表面波探头以第三频率发射第三引导表面波,其中所述第三引导表面波与所述第一引导表面波相位锁定。在该方法的一些实施例中,第一频率、第二频率和第三频率是基频的谐波。在该方法的一些实施例中,第二频率和第三频率是第一频率的谐波。在该方法的一些实施例中,第一引导表面波包括连续产生的波。在该方法的一些实施例中,第二引导表面波包括连续产生的波。在该方法的一些实施例中,第三引导表面波包括连续产生的。在该方法的一些实施例中,第一引导表面波、第二引导表面波或第三引导表面波中的至少一个被幅度调制以携带包括第一引导表面波的初始相位的传输分组。A method is disclosed comprising transmitting a first guided surface wave at a first frequency via a first guided surface wave probe; transmitting a second guided surface wave at a second frequency via a second guided surface wave probe, wherein the second guided surface wave waves phase locked to the first guided surface wave; and transmitting a third guided surface wave at a third frequency via a third guided surface wave probe, wherein the third guided surface wave is phase locked to the first guided surface wave. In some embodiments of the method, the first frequency, the second frequency and the third frequency are harmonics of the fundamental frequency. In some embodiments of the method, the second frequency and the third frequency are harmonics of the first frequency. In some embodiments of the method, the first guided surface wave comprises a continuously generated wave. In some embodiments of the method, the second guided surface wave comprises a continuously generated wave. In some embodiments of the method, the third guided surface wave comprises continuously generated. In some embodiments of the method, at least one of the first guided surface wave, the second guided surface wave or the third guided surface wave is amplitude modulated to carry a transmission packet comprising an initial phase of the first guided surface wave.
公开了一种装置,包括:引导表面波接收结构,被配置为从沿着地面介质行进的引导表面波获得电能;耦合到所述引导表面波接收结构的电负载,所述电负载作为耦合到产生所述引导表面波的引导表面波波导探头的激励源处的负载;处理器;存储器;以及应用,其包括存储在所述存储器中的一组指令,当由所述处理器执行时,所述指令使所述处理器:计算所述引导表面波从所述引导表面波波导探头到所述引导表面波接收结构的位置行进的距离;以及至少部分地基于所述引导表面波从所述引导表面波波导探头到所述引导表面波接收结构所行进的距离来确定所述位置的一组坐标。在装置的一些实施例中,引导表面波接收结构选自由线性探头、调谐谐振器和线圈组成的组。在该装置的一些实施例中,引导表面波接收结构被配置为基本上同时接收多个不同频率上的引导表面波。在装置的一些实施例中,使处理器计算引导表面波到装置的位置所行进的距离还包括使处理器至少:确定与在引导表面波波导探头处的引导表面波的初始强度相对应的引导表面波的第一强度;确定与在所述装置的位置处的引导表面波的强度相对应的引导表面波的第二强度;计算所述第一强度和所述第二强度之间的强度变化;并且至少部分地基于强度的变化来计算引导表面波所行进的距离。在装置的一些实施例中,使处理器计算引导表面波行进的距离还包括使处理器至少:确定来自引导表面波波导探头的引导表面波的发射时间;确定所述引导表面波在所述装置处的到达时间;计算所述发射时间和所述到达时间之间的时间差,以产生所述引导表面波的行进时间;并且至少部分地基于引导表面波的行进时间来计算引导表面波行进的距离。在一些实施例中,引导表面波的发射时间被编码在引导表面波中。An apparatus is disclosed, comprising: a guided surface wave receiving structure configured to obtain electrical power from a guided surface wave traveling along a ground medium; an electrical load coupled to the guided surface wave receiving structure, the electrical load being coupled to the a load at an excitation source of a guided surface wave waveguide probe generating said guided surface wave; a processor; a memory; and an application comprising a set of instructions stored in said memory which, when executed by said processor, The instructions cause the processor to: calculate the distance traveled by the guided surface wave from the guided surface wave waveguide probe to the location of the guided surface wave receiving structure; The distance traveled by the surface wave waveguide probe to the guided surface wave receiving structure determines a set of coordinates for the position. In some embodiments of the device, the guided surface wave receiving structure is selected from the group consisting of a linear probe, a tuned resonator and a coil. In some embodiments of the apparatus, the guided surface wave receiving structure is configured to receive the guided surface waves at a plurality of different frequencies substantially simultaneously. In some embodiments of the apparatus, causing the processor to calculate the distance traveled by the guided surface wave to the location of the apparatus further comprises causing the processor to at least: determine a guided surface wave corresponding to an initial intensity of the guided surface wave at the guided surface wave waveguide probe a first intensity of the surface wave; determining a second intensity of the guided surface wave corresponding to the intensity of the guided surface wave at the location of the device; calculating an intensity change between the first intensity and the second intensity ; and calculating the distance traveled by the guided surface wave based at least in part on the change in intensity. In some embodiments of the apparatus, causing the processor to calculate the distance traveled by the guided surface wave further comprises causing the processor to at least: determine the launch time of the guided surface wave from the guided surface wave waveguide probe; calculating a time difference between the launch time and the arrival time to generate a travel time of the guided surface wave; and calculating a distance traveled by the guided surface wave based at least in part on the travel time of the guided surface wave . In some embodiments, the emission times of the guided surface waves are encoded in the guided surface waves.
在研究了以下附图和详细描述后,本公开的其他系统、方法、特征和优点对于本领域技术人员而言将是显而易见的。意图是所有这样的附加系统、方法、特征和优点包括在本说明书内,在本公开的范围内,并且由所附权利要求保护。Other systems, methods, features and advantages of the present disclosure will be apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
另外,所描述的实施例的所有可选和优选特征和修改可用于本文教导的本公开的所有方面。此外,从属权利要求的各个特征以及所描述的实施例的所有可选的和优选的特征和修改是可组合的并且可以彼此互换。Furthermore, all optional and preferred features and modifications of the described embodiments can be used in all aspects of the disclosure taught herein. Furthermore, the individual features of the dependent claims as well as all optional and preferred features and modifications of the described embodiments are combinable and interchangeable with each other.
附图说明Description of drawings
参考以下附图能够更好地理解本公开的许多方面。在图中的组件并非必须是按比例的,代替地可以强调以清楚地图示本公开的原理。此外,在图中,类似的附图标记指定遍及几幅图的对应部分。Many aspects of the disclosure can be better understood with reference to the following figures. The components in the figures are not necessarily to scale, emphasis instead may be placed in order to clearly illustrate the principles of the present disclosure. Also, in the figures, like reference numerals designate corresponding parts throughout the several figures.
图1是示出对于引导电磁场和辐射电磁场的作为距离的函数的场强的图表。FIG. 1 is a graph showing field strength as a function of distance for a guided electromagnetic field and a radiated electromagnetic field.
图2是图示根据本公开的各种实施例的为了引导表面波的传输采用的具有两个区域的传播接口的图。Figure 2 is a diagram illustrating a propagation interface with two regions employed for guiding the transmission of surface waves according to various embodiments of the present disclosure.
图3是图示根据本公开的各种实施例的针对图2的传播接口部署的引导表面波导探头的图。3 is a diagram illustrating a guided surface waveguide probe deployed for the propagation interface of FIG. 2 according to various embodiments of the present disclosure.
图4是根据本公开的各种实施例的一阶汉克尔函数的逼近和远离渐近线的幅值的实例的绘图。4 is a plot of examples of magnitudes of the approach and departure asymptotes of a first order Hankel function, according to various embodiments of the present disclosure.
图5A和5B是图示根据本公开的各种实施例的由引导表面波导探头合成的电场的复数入射角的图。5A and 5B are graphs illustrating complex angles of incidence of an electric field synthesized by a guided surface waveguide probe, according to various embodiments of the present disclosure.
图6是图示根据本公开的各种实施例的在图5A的电场以布鲁斯特角与损耗传导介质交叉的位置上充电端子的升高效果的图形表示。6 is a graphical representation illustrating the effect of raising the charge terminal at locations where the electric field of FIG. 5A intersects a lossy conducting medium at Brewster's angle, according to various embodiments of the present disclosure.
图7是根据本公开的各种实施例的引导表面波导探头的实例的图形表示。7 is a graphical representation of an example of a guided surface waveguide probe according to various embodiments of the present disclosure.
图8A到8C是图示根据本公开的各种实施例的图3和7的引导表面波导探头的等效像平面模型的实例的图形表示。8A-8C are graphical representations illustrating examples of equivalent image plane models of the guided surface waveguide probes of FIGS. 3 and 7 according to various embodiments of the present disclosure.
图9A和9B是图示根据本公开的各种实施例的图8B和8C的等效像平面模型的单线传输线和经典传输线模型的实例的图形表示。9A and 9B are graphical representations illustrating examples of single-wire transmission line and classical transmission line models of the equivalent image plane models of FIGS. 8B and 8C according to various embodiments of the present disclosure.
图10是图示根据本公开的各种实施例的调整图3和7的引导表面波导探头以沿着损耗传导介质的表面启动引导表面波的实例的流程图。10 is a flow diagram illustrating an example of adapting the guided surface waveguide probe of FIGS. 3 and 7 to initiate guided surface waves along the surface of a lossy conducting medium, according to various embodiments of the present disclosure.
图11是图示根据本公开的各种实施例的在图3和7的引导表面波导探头的波倾斜角度和相位延迟之间的关系的实例的绘图。11 is a plot illustrating an example of a relationship between wave tilt angle and phase delay of the guided surface waveguide probes of FIGS. 3 and 7 according to various embodiments of the present disclosure.
图12是图示根据本公开的各种实施例的引导表面波导探头的实例的图。12 is a diagram illustrating an example of a guided surface waveguide probe according to various embodiments of the present disclosure.
图13是图示根据本公开的各种实施例的按照复数布鲁斯特角入射合成电场、以匹配在汉克尔跨越距离处的引导表面波导模式的图形表示。13 is a graphical representation illustrating incident resultant electric fields at complex Brewster angles to match guided surface waveguide modes at Hankel spanning distances, according to various embodiments of the present disclosure.
图14是根据本公开的各种实施例的图12的引导表面波导探头的实例的图形表示。14 is a graphical representation of an example of the guided surface waveguide probe of FIG. 12 according to various embodiments of the present disclosure.
图15A包括根据本公开的各种实施例的引导表面波导探头的充电端子T1的相位延迟(ΦU)的虚数和实数部分的实例的绘图。15A includes plots of examples of the imaginary and real parts of the phase delay (Φ U ) of the charging terminal T1 of a guided surface waveguide probe according to various embodiments of the present disclosure.
图15B是根据本公开的各种实施例的图14的引导表面波导探头的示意图。15B is a schematic illustration of the guided surface waveguide probe of FIG. 14 according to various embodiments of the present disclosure.
图16是图示根据本公开的各种实施例的引导表面波导探头的实例的图。FIG. 16 is a diagram illustrating an example of a guided surface waveguide probe according to various embodiments of the present disclosure.
图17是根据本公开的各种实施例的图16的引导表面波导探头的实例的图形表示。17 is a graphical representation of an example of the guided surface waveguide probe of FIG. 16 according to various embodiments of the present disclosure.
图18A到18C示出根据本公开的各种实施例的为了接收按照由引导表面波导探头启动的引导表面波的形式发送的能量、所能采用的接收结构的实例。18A to 18C illustrate examples of receiving structures that may be employed for receiving energy transmitted in the form of guided surface waves initiated by a guided surface waveguide probe, according to various embodiments of the present disclosure.
图18D是图示根据本公开的各种实施例的调整接收结构的实例的流程图。Figure 18D is a flowchart illustrating an example of adjusting a receiving structure according to various embodiments of the present disclosure.
图19示出根据本公开的各种实施例的为了接收按照由引导表面波导探头启动的引导表面波的形式发送的能量、所能采用的附加的接收结构的实例。19 illustrates an example of an additional receiving structure that may be employed to receive energy transmitted in the form of guided surface waves initiated by a guided surface waveguide probe, according to various embodiments of the present disclosure.
图20A-E描绘根据本公开的各种实施例的在用于地理定位的引导表面波的应用的讨论中使用的各种电路符号。20A-E depict various circuit symbols used in the discussion of applications of guided surface waves for geolocation, according to various embodiments of the present disclosure.
图21是示出根据本公开的各种实施例的能够基于由一个或多个引导表面波探头发射的引导表面波来确定其位置的导航单元的示意性框图。21 is a schematic block diagram illustrating a navigation unit capable of determining its position based on guided surface waves emitted by one or more guided surface wave probes, according to various embodiments of the present disclosure.
图22是示出根据本公开的各种实施例的在图21所示的导航单元的位置的图。FIG. 22 is a diagram illustrating positions of the navigation unit shown in FIG. 21 according to various embodiments of the present disclosure.
图23是示出根据本公开的各种实施例的在图21所示的导航单元的位置的图。FIG. 23 is a diagram illustrating positions of the navigation unit shown in FIG. 21 according to various embodiments of the present disclosure.
图24是示出根据本公开的各种实施例的经由引导表面波从地面站发送的传输分组的示意性框图。24 is a schematic block diagram illustrating transmission packets sent from a ground station via guided surface waves according to various embodiments of the present disclosure.
图25是示出根据本公开的各种实施例被实现为在图21所示的接收器中执行的多点定位应用(multilateration application)的部分的功能的一个示例的流程图。FIG. 25 is a flowchart illustrating one example of functionality implemented as part of a multilateration application executed in the receiver shown in FIG. 21 according to various embodiments of the present disclosure.
图26是示出根据本公开的各种实施例被实现为在图21中描绘的接收器中执行的多点定位应用的部分的功能的一个示例的流程图。26 is a flowchart illustrating one example of functionality implemented as part of a multilateration application executing in the receiver depicted in FIG. 21 according to various embodiments of the present disclosure.
图27是示出根据本公开的各种实施例被实现为在图21所示的接收器中执行的多点定位应用的部分的功能的一个示例的流程图。27 is a flowchart illustrating one example of functionality implemented as part of a multilateration application executing in the receiver shown in FIG. 21 according to various embodiments of the present disclosure.
具体实施方式detailed description
开始,应该建立某些术语以提供后续概念的讨论的清楚。首先,如在这里考虑的,在辐射电磁场和引导电磁场之间划清形式区别。To begin, some terminology should be established to provide clarity for subsequent discussions of concepts. First, as considered here, draw a formal distinction between radiating and directing electromagnetic fields.
如在这里考虑的,辐射电磁场包括以不与波导绑定的波的形式从源结构发出的电磁能。例如,辐射电磁场通常是离开诸如天线的电气结构、并通过大气或者其他介质传播、且不与任何波导结构绑定的场。一旦辐射电磁波离开诸如天线的电气结构,它们继续独立于它们的源在传播介质(比如空气)中传播,直到它们耗散为止,无论源是否继续操作。一旦辐射电磁波,它们除非被截取是不可回收的,且如果不截取,辐射电磁波中固有的能量永远丢失。比如天线的电气结构被设计,以通过最大化辐射电阻对结构损耗电阻的比率,来辐射电磁场。辐射能在空间中扩散并丢失,而无论是否存在接收器。辐射场的能量密度由于几何发散所以是距离的函数。因此,按照在此使用的它的所有形式的术语“辐射”指的是电磁传播的该形式。As considered herein, radiated electromagnetic fields include electromagnetic energy emanating from a source structure in the form of waves that are not bound to a waveguide. For example, a radiated electromagnetic field is typically a field that leaves an electrical structure, such as an antenna, and propagates through the atmosphere or other medium, and is not bound to any waveguide structure. Once radiated electromagnetic waves leave an electrical structure such as an antenna, they continue to propagate in a propagation medium (such as air) independently of their source until they are dissipated, whether or not the source continues to operate. Once electromagnetic waves are radiated, they are not recoverable unless intercepted, and if not intercepted, the energy inherent in the radiated electromagnetic waves is lost forever. Electrical structures such as antennas are designed to radiate electromagnetic fields by maximizing the ratio of radiation resistance to structure loss resistance. Radiant energy is diffused and lost in space, whether or not a receiver is present. The energy density of the radiation field is a function of distance due to geometric divergence. Thus, the term "radiation" in all its forms as used herein refers to this form of electromagnetic propagation.
引导电磁场是其能量集中在具有不同电磁性质的介质之间的边界内或者该边界附近的传播电磁波。在这种意义上,引导电磁场是与波导绑定的电磁场,且其可被特征化为由波导中流动的电流传送。如果没有负载来接收和/或耗散在引导电磁波中传送的能量,则除了引导介质的电导率中耗散的能量之外不丢失能量。换言之,如果没有用于引导电磁波的负载,则不消耗能量。因此,产生引导电磁场的发生器或者其他源不传递实际功率,除非存在电阻负载。为此,这种发生器或者其他源基本上空闲地运行,直到存在负载为止。这类似于运行发生器以生成通过没有电负载的电力线发送的60赫兹电磁波。应当注意,引导电磁场或者波等效于所谓的“传输线模式”。这与其中总是供应实际功率以生成辐射波的辐射电磁波形成对比。与辐射电磁波不同,引导电磁能在能量源关断之后不继续沿着有限长度波导传播。因此,术语“引导”以如在此使用的它的所有形式指的是电磁传播的该传输模式。A guided electromagnetic field is a propagating electromagnetic wave whose energy is concentrated in or near a boundary between media with different electromagnetic properties. In this sense, a guided electromagnetic field is an electromagnetic field bound to a waveguide, and which can be characterized as being carried by an electric current flowing in the waveguide. If there is no load to receive and/or dissipate the energy transmitted in the guided electromagnetic wave, no energy is lost except for the energy dissipated in the conductivity of the guided medium. In other words, if there is no load for guiding electromagnetic waves, no energy is consumed. Thus, a generator or other source that produces a guided electromagnetic field delivers no real power unless a resistive load is present. For this reason, such generators or other sources run essentially idle until there is a load. This is similar to running a generator to generate 60 Hz electromagnetic waves sent through a power line with no electrical load. It should be noted that guiding an electromagnetic field or wave is equivalent to a so-called "transmission line mode". This is in contrast to radiated electromagnetic waves where actual power is always supplied to generate radiated waves. Unlike radiating electromagnetic waves, guided electromagnetic energy does not continue to propagate along a waveguide of finite length after the energy source is turned off. Accordingly, the term "guided" in all its forms as used herein refers to this transfer mode of electromagnetic propagation.
现在参考图1,示出了在log-dB绘图上作为以千米为单位的距离的函数的以伏特/米为单位的任意基准以上的以分贝(dB)为单位的场强的曲线图100,以进一步图示辐射电磁场和引导电磁场之间的区别。图1的曲线图100示出引导场强曲线103,该曲线示出作为距离的函数的引导电磁场的场强。该引导场强曲线103基本上与传输线模式相同。此外,图1的曲线图100示出辐射场强曲线106,该曲线示出作为距离的函数的辐射电磁场的场强。Referring now to FIG. 1 , there is shown a graph 100 of field strength in decibels (dB) above an arbitrary reference in volts per meter on a log-dB plot as a function of distance in kilometers , to further illustrate the difference between radiated and guided electromagnetic fields. Graph 100 of FIG. 1 shows a guided field strength curve 103 showing the field strength of the guided electromagnetic field as a function of distance. The guided field strength curve 103 is basically the same as the transmission line mode. Furthermore, the graph 100 of FIG. 1 shows a radiated field strength curve 106 which shows the field strength of the radiated electromagnetic field as a function of distance.
感兴趣的是分别用于引导波和用于辐射传播的曲线103和106的形状。辐射场强曲线106几何地下降(1/d,其中d是距离),这在对数-对数尺度上描绘为直线。另一方面,引导场强曲线103具有的特性指数衰减,并在对数-对数尺度上展现有区别的拐点109。引导场强曲线103和辐射场强曲线106在点112交叉,在相交距离出现点112。在小于在交点112的相交距离的距离处,引导电磁场的场强在大部分位置显著地大于辐射电磁场的场强。在大于相交距离的距离时,情况相反。因此,引导场强曲线和辐射场强曲线103和106进一步图示引导电磁场和辐射电磁场之间的基本传播差。对于引导电磁场和辐射电磁场之间的差别的非正式讨论,参考Milligan,T.,Modern Antenna Design,McGraw-Hill,第一版,1985,pp.8-9,将其通过引用完全包括于此。Of interest is the shape of the curves 103 and 106 for the guided wave and for the radiation propagation, respectively. The radiated field strength curve 106 falls geometrically (1/d, where d is distance), which is depicted as a straight line on a log-log scale. On the other hand, the guided field strength curve 103 has The characteristic decays exponentially and exhibits a distinct inflection point on the log-log scale109. The guided field strength curve 103 and the radiated field strength curve 106 intersect at a point 112, which occurs at a distance from the intersection. At distances less than the intersection distance at intersection point 112, the field strength of the guided electromagnetic field is substantially greater than the field strength of the radiated electromagnetic field at most locations. The opposite is true for distances greater than the intersection distance. Thus, the guided and radiated field strength curves 103 and 106 further illustrate the fundamental difference in propagation between the guided and radiated electromagnetic fields. For an informal discussion of the distinction between guided and radiated electromagnetic fields, see Milligan, T., Modern Antenna Design , McGraw-Hill, First Edition, 1985, pp. 8-9, which is fully incorporated herein by reference.
以上做出的辐射电磁波和引导电磁波之间的区别容易正式地表示,并置于严格的基础上。两个这种不同的解决方案可以从同一个线性偏微分方程显露出来,其是波动方程,分析上从施加于该问题的边界条件得出。用于波动方程本身的格林函数包括辐射波和引导波的本质之间的区别。The distinction made above between radiating electromagnetic waves and guided electromagnetic waves is easily expressed formally and placed on a strict basis. Two such different solutions can emerge from the same linear partial differential equation, which is a wave equation, derived analytically from the boundary conditions imposed on the problem. The Green's function used in the wave equation itself includes a distinction between the nature of radiated and guided waves.
在空的空间中,该波动方程是其特征函数拥有复数波数平面上的特征值的连续谱的微分算子。该横向电磁(TEM)场被称为辐射场,且那些传播场被称作“赫兹波”。但是,在传导边界的存在时,波动方程加上边界条件数学地导致由连续谱组成的波数的谱表示加上离散谱的和。为此,对Sommerfeld,A.,“Uber die Ausbreitung der Wellen in derDrahtlosen Telegraphie”,Annalen der Physik,Vol.28,1909,pp.665-736做出参考。还参见Sommerfeld,A.,“Problems of Radio”,作为第6章在Partial Differential Equations in Physics–Lectures on Theoretical Physics:Volume VI中发表,AcademicPress,1949,pp.236-289,295-296;Collin,R.E.,“Hertzian Dipole Radiating Over aLossy Earth or Sea:Some Early and Late 20th Century Controversies”,IEEE Antennas and Propagation Magazine,Vol.46,No.2,2004年4月,pp.64-79;和Reich,H.J.,Ordnung,P.F,Krauss,H.L.和Skalnik,J.G.,Microwave Theory and Techniques,Van Nostrand,1953,pp.291-293,这些参考中的每一个通过引用完全包括于此。In empty space, the wave equation is a differential operator on a continuum whose eigenfunctions possess eigenvalues on the complex wavenumber plane. The transverse electromagnetic (TEM) fields are called radiation fields, and those propagating fields are called "Hertzian waves". However, in the presence of conducting boundaries, the wave equation plus boundary conditions mathematically leads to a spectral representation of the wavenumbers consisting of a continuous spectrum plus a sum of discrete spectra. For this, reference is made to Sommerfeld, A., "Uber die Ausbreitung der Wellen in der Drahtlosen Telegraphie", Annalen der Physik, Vol. 28, 1909, pp. 665-736. See also Sommerfeld, A., "Problems of Radio", published as Chapter 6 in Partial Differential Equations in Physics - Lectures on Theoretical Physics: Volume VI , Academic Press, 1949, pp. 236-289, 295-296; Collin, RE, "Hertzian Dipole Radiating Over a Lossy Earth or Sea: Some Early and Late 20th Century Controversies", IEEE Antennas and Propagation Magazine , Vol.46, No.2, April 2004, pp.64-79; and Reich, HJ , Ordnung, PF, Krauss, HL and Skalnik, JG, Microwave Theory and Techniques , Van Nostrand, 1953, pp. 291-293, each of which is fully incorporated herein by reference.
术语“地波”和“表面波”标识两个明显不同的物理传播现象。表面波分析上从产生平面波谱中的离散分量的不同的极出现。例如,参见Cullen,A.L.的“The Excitation ofPlane Surface Waves”,(Proceedings of the IEE(British),Vol.101,部分IV,1954年8月,pp.225-235)。在上下文中,表面波被认为是引导表面波。表面波(在Zenneck-Sommerfeld引导波意义中),物理地和数学地与来自无线电广播的现在如此熟悉的地波(在Weyl-Norton-FCC意义中)不相同。这两个传播机制起因于复平面上不同类型的特征值频谱(连续或者分立的)的激励。引导表面波的场强随着距离指数地衰减,如图1的曲线103所示(更类似于有损波导中的传播),并且聚集径向传输线中的传播,这与地波的经典赫兹辐射相反,地波球形地传播,拥有特征值的连续,如图1的曲线106所示地几何地下降,且来自分支切割积分。如由C.R.Burrows在“The Surface Wave in Radio Propagation over PlaneEarth”(Proceedings of the IRE,Vol.25,No 2,1937年2月,pp.219-229)和“The SurfaceWave in Radio Transmission”(Bell Laboratories Record,Vol.15,1937年6月,pp.321-324)中实验地示范的,垂直天线辐射地波,而不启动引导表面波。The terms "ground wave" and "surface wave" identify two distinct physical propagation phenomena. Surface waves arise analytically from distinct poles producing discrete components in the plane wave spectrum. See, eg, "The Excitation of Plane Surface Waves" by Cullen, AL, ( Proceedings of the IEE (British), Vol. 101, Part IV, August 1954, pp. 225-235). In this context, surface waves are considered guided surface waves. Surface waves (in the Zenneck-Sommerfeld guided wave sense) are physically and mathematically distinct from the now so familiar ground waves (in the Weyl-Norton-FCC sense) from radio broadcasting. These two propagation mechanisms result from the excitation of different types of eigenvalue spectra (continuous or discrete) on the complex plane. The field strength of guided surface waves decays exponentially with distance, as shown by curve 103 of Fig. 1 (more similar to propagation in lossy waveguides), and concentrates propagation in radial transmission lines, which is consistent with the classical Hertzian radiation of ground waves In contrast, ground waves propagate spherically, possess a continuum of eigenvalues, descend geometrically as shown in curve 106 of FIG. 1 , and come from branch-cut integration. For example by CR Burrows in "The Surface Wave in Radio Propagation over PlaneEarth" ( Proceedings of the IRE , Vol. 25, No 2, February 1937, pp. 219-229) and "The Surface Wave in Radio Transmission" ( Bell Laboratories Record , Vol.15, June 1937, pp.321-324), as demonstrated experimentally, the vertical antenna radiates ground waves without launching guided surface waves.
综上所述,首先,与分支切割积分对应的波数特征值谱的连续部分产生辐射场,且其次,离散谱以及从由积分的轮廓包围的极出现的相应的剩余和导致在对传播横向的方向上指数地衰减的非TEM迁移表面波。这种表面波是引导传输线模式。为了进一步说明,对Friedman,B.,Principles and Techniques of Applied Mathematics,Wiley,1956,pp.pp.214,283-286,290,298-300做出参考。In summary, firstly, the continuous part of the spectrum of wavenumber eigenvalues corresponding to the branch-cut integral produces the radiation field, and secondly, the discrete spectrum with the corresponding residual sum emerging from the poles surrounded by the contour of the integral leads to Non-TEM migrating surface waves decaying exponentially in the direction of . This surface wave is a guided transmission line mode. For further illustration, reference is made to Friedman, B., Principles and Techniques of Applied Mathematics , Wiley, 1956, pp.pp.214, 283-286, 290, 298-300.
在自由空间中,天线激励波动方程的连续特征值,其是辐射场,其中具有Ez和Hφ同相的向外传播RF能量永久丢失。另一方面,波导探头激励离散特征值,这导致传输线传播。参见Collin,R.E.,Field Theory of Guided Waves,McGraw-Hill,1960,pp.453,474-477。虽然这种理论分析已经维持启动通过有损均匀介质的平面或者球面的、开放表面引导波的假定的可能性,但是一百多年来工程领域还没有已知的结构存在,用于以任何实际的效率实现此。不幸地,因为它在20世纪早期出现,所以以上提出的理论分析已经基本上只剩下理论,并且还没有已知的结构用于实际上实现通过有损均匀介质的平面或者球面的开放表面引导波的启动。In free space, the antenna excites a continuous eigenvalue of the wave equation, which is the radiated field in which outwardly propagating RF energy with Ez and Hφ in phase is permanently lost. On the other hand, waveguide probes excite discrete eigenvalues, which cause transmission line propagation. See Collin, RE, Field Theory of Guided Waves , McGraw-Hill, 1960, pp. 453, 474-477. While this theoretical analysis has maintained the postulated possibility of initiating guided waves through a planar or spherical, open surface of a lossy homogeneous medium, no structure known in engineering has existed for more than a hundred years for any practical The efficiency to achieve this. Unfortunately, since it emerged in the early 20th century, the theoretical analysis presented above has largely remained theoretical, and there are no known structures for actually realizing guidance through a planar or spherical open surface of a lossy homogeneous medium The start of the wave.
根据本公开的各种实施例,描述了各种引导表面波导探头,其配置为沿着损耗传导介质的表面激励耦合到引导表面波导模式中的电场。这种引导电磁场实质上在幅值和相位上与损耗传导介质的表面上的引导表面波模式模式匹配。这种引导表面波模式也可以被称为Zenneck波导模式。由于在这里描述的引导表面波导探头所激励的复合场实质上与损耗传导介质的表面上的引导表面波导模式模式匹配的事实,所以沿着损耗传导介质的表面启动具有引导表面波的形式的引导电磁场。根据一个实施例,损耗传导介质包括比如大地的陆地介质。According to various embodiments of the present disclosure, various guided surface waveguide probes are described that are configured to excite an electric field coupled into a guided surface waveguide mode along the surface of a lossy conducting medium. This guided electromagnetic field is substantially mode matched in magnitude and phase to the guided surface wave modes on the surface of the lossy conducting medium. Such guided surface wave modes may also be referred to as Zenneck waveguide modes. Due to the fact that the recombination field excited by the guided surface waveguide probe described here is substantially mode-matched to the guided surface waveguide mode on the surface of the lossy conducting medium, a guided wave in the form of a guided surface wave is initiated along the surface of the lossy conducting medium. electromagnetic field. According to one embodiment, the lossy conducting medium comprises a terrestrial medium such as the earth.
参考图2,示出了准备用于对在1907导出的麦克斯韦方程的边界值解的检查的传播界面,其由Jonathan Zenneck在他的论文Zenneck,J.,“On the Propagation of PlaneElectromagnetic Waves Along a Flat Conducting Surface and their Relation toWireless Telegraphy”,Annalen der Physik,Serial 4,Vol.23,1907年9月20日,pp.846-866中提出。图2示出用于沿着如区域1指定的损耗传导介质和如区域2指定的绝缘体之间的界面、径向地传播波的圆柱坐标。区域1例如可以包括任何损耗传导介质。在一个实例中,这种损耗传导介质可以包括比如大地的陆地介质或者其他介质。区域2是与区域1共享边界界面、且具有相对于区域1的不同构成参数的第二介质。区域2例如可以包括任何绝缘体,比如大气或者其他介质。这种边界界面的反射系数仅对于在复数布鲁斯特角的入射到达零。参见Stratton,J.A.,Electromagnetic Theory,McGraw-Hill,1941,p.516。Referring to FIG. 2, there is shown a propagation interface prepared for examination of boundary value solutions to Maxwell's equations derived in 1907, which was described by Jonathan Zenneck in his paper Zenneck, J., "On the Propagation of Plane Electromagnetic Waves Along a Flat Conducting Surface and their Relation to Wireless Telegraphy", Annalen der Physik, Serial 4, Vol. 23, September 20, 1907, pp. 846-866. FIG. 2 shows cylindrical coordinates for propagating a wave radially along the interface between a lossy conducting medium as specified by region 1 and an insulator as specified by region 2 . Region 1 may for example comprise any lossy conducting medium. In one example, such lossy conducting media may include terrestrial media such as the earth or other media. Region 2 is a second medium that shares a boundary interface with Region 1 and has different compositional parameters relative to Region 1. Region 2 may for example comprise any insulator, such as the atmosphere or another medium. The reflection coefficient of such a boundary interface reaches zero only for incidence at complex Brewster angles. See Stratton, JA, Electromagnetic Theory , McGraw-Hill, 1941, p.516.
根据各种实施例,本公开提出了各种引导表面波导探头,其产生与包括区域1的损耗传导介质的表面上的引导表面波导模式实质上模式匹配的电磁场。根据各种实施例,这种电磁场实质上合成按照可以导致零反射的损耗传导介质的复数布鲁斯特角入射的波前。According to various embodiments, the present disclosure proposes various guided surface waveguide probes that generate an electromagnetic field substantially mode-matched to a guided surface waveguide mode on the surface of the lossy conducting medium comprising region 1 . According to various embodiments, this electromagnetic field essentially synthesizes wavefronts incident at complex Brewster angles of the lossy conducting medium that may result in zero reflections.
为了进一步解释,在其中假定ejωt场变化且其中ρ≠0和z≥0(其中,z是垂直于区域1的表面的垂直坐标,且ρ是圆柱坐标中的径向维度)的区域2中,满足沿着界面的边界条件的麦克斯韦方程的Zenneck的封闭形式精确解由以下电场和磁场分量表示:For further explanation, in region 2 where it is assumed that the ejωt field varies and where ρ≠0 and z≥0 (where z is the vertical coordinate perpendicular to the surface of region 1 and ρ is the radial dimension in cylindrical coordinates) , the closed-form exact solution of Zenneck's equations satisfying the boundary conditions along the interface is represented by the following electric and magnetic field components:
在其中假定ejωt场变化且其中ρ≠0和z≤0的区域1中,满足沿着界面的边界条件的麦克斯韦方程的Zenneck的封闭形式精确解由以下电场和磁场分量表示:In region 1, where ejωt field variations are assumed and where ρ ≠ 0 and z ≤ 0, Zenneck's closed-form exact solution to Maxwell's equations satisfying the boundary conditions along the interface is represented by the following electric and magnetic field components:
在这些表达式中,z是垂直于区域1的表面的垂直坐标,且ρ是径向坐标,是第二种类和阶n的复数变元汉克尔函数,u1是区域1中的正垂直(z)方向上的传播常数,u2是区域2中的垂直(z)方向上的传播常数,σ1是区域1的电导率,ω等于2πf,其中f是激励的频率,εo是自由空间的介电常数,ε1是区域1的介电常数,A是由源施加的源常数,且γ是表面波径向传播常数。In these expressions, z is the vertical coordinate perpendicular to the surface of region 1, and ρ is the radial coordinate, is the complex-argument Hankel function of the second kind and order n, u 1 is the propagation constant in the positive vertical (z) direction in region 1, and u 2 is the propagation constant in the vertical (z) direction in region 2 , σ1 is the conductivity of region 1 , ω is equal to 2πf, where f is the frequency of excitation, εo is the permittivity of free space, ε1 is the permittivity of region 1 , A is the source constant imposed by the source, And γ is the surface wave radial propagation constant.
方向上的传播常数通过在区域1和2之间的界面以上和以下分离波动方程、且施加边界条件,而确定±z方向上的传播常数。该实践在区域2中给出:Propagation Constants in Directions The propagation constants in the ±z directions were determined by separating the wave equation above and below the interface between regions 1 and 2, and imposing boundary conditions. The practice is given in area 2:
并且在区域1中给出,and given in region 1,
u1=-u2(εr-jx)。 (8)u 1 =−u 2 (ε r −jx). (8)
径向传播常数γ由以下给出:The radial propagation constant γ is given by:
其是复数表示,其中n是由下式给出的复数折射率:It is a complex representation, where n is the complex index of refraction given by:
在所有上述等式中,In all the above equations,
其中εr包括区域1的相对介电常数,σ1是区域1的电导率,εo是自由空间的介电常数,且μo包括自由空间的渗透性。因此,生成的表面波平行于界面传播,且垂直于界面指数地衰减。这已知为光衰(evanescence)。where ε r includes the relative permittivity of region 1, σ 1 is the conductivity of region 1, ε o is the permittivity of free space, and μ o includes the permeability of free space. Thus, the generated surface waves propagate parallel to the interface and decay exponentially perpendicular to the interface. This is known as evanescence.
因此,等式(1)-(3)可以被看作圆柱对称的、径向传播的波导模式。参见Barlow,H.M.,和Brown,J.,Radio Surface Waves,Oxford University Press,1962,pp.10-12,29-33。本公开详述激励该“开放边界”波导模式的结构。特别的,根据各种实施例,向引导表面波导探头提供适当大小的充电端子,该充电端子被馈送电压和/或电流且相对于区域2和区域1之间的边界界面定位。这可以参考图3更好地理解,图3示出了包括沿着垂直于由损耗传导介质203(例如,地面)表示的平面的垂直轴z在损耗传导介质203上方升高的充电端子T1的引导表面波导探头200a的实例。该损耗传导介质203组成区域1,且第二介质206组成区域2并与损耗传导介质203共享边界界面。Therefore, equations (1)-(3) can be viewed as cylindrically symmetric, radially propagating waveguide modes. See Barlow, HM, and Brown, J., Radio Surface Waves , Oxford University Press, 1962, pp. 10-12, 29-33. This disclosure details structures that excite this "open boundary" waveguide mode. In particular, according to various embodiments, the guiding surface waveguide probe is provided with a suitably sized charging terminal that is fed with voltage and/or current and positioned relative to the boundary interface between region 2 and region 1 . This can be better understood with reference to FIG. 3 , which shows a charge terminal T1 comprising a charge terminal raised above a lossy conducting medium 203 along a vertical axis z perpendicular to the plane represented by the lossy conducting medium 203 (e.g., ground). An example of a guided surface waveguide probe 200a. The lossy conducting medium 203 constitutes region 1 , and the second dielectric 206 constitutes region 2 and shares a boundary interface with the lossy conducting medium 203 .
根据一个实施例,损耗传导介质203可以包括比如行星地球的陆地介质。为此,这种陆地介质包括在其上包括的所有结构或者形式,无论自然的或者人造的。例如,这种陆地介质可以包括比如岩石、土壤、沙土、淡水、海水、树木、植物之类的自然元素,以及组成我们的星球的所有其他自然元素。另外,这种陆地介质可以包括人造元素,比如混凝土、沥青、建筑材料和其他人造材料。在其他实施例中,损耗传导介质203可以包括地球之外的某些介质,无论自然出现或者人造的。在其他实施例中,损耗传导介质203可以包括比如人造表面和结构的其他介质,比如汽车、飞机、人造材料(比如胶合板、塑料片或者其他材料)或者其他介质。According to one embodiment, lossy conducting medium 203 may comprise a terrestrial medium such as planet Earth. To this end, such terrestrial medium includes all structures or forms, whether natural or man-made, subsumed thereon. For example, this terrestrial medium can include natural elements such as rocks, soil, sand, fresh water, sea water, trees, plants, and all other natural elements that make up our planet. Additionally, such terrestrial media may include man-made elements such as concrete, asphalt, building materials, and other man-made materials. In other embodiments, lossy conducting medium 203 may comprise some medium other than Earth, whether naturally occurring or man-made. In other embodiments, lossy conductive medium 203 may include other media such as man-made surfaces and structures, such as automobiles, airplanes, man-made materials such as plywood, plastic sheets, or other materials, or other media.
在损耗传导介质203包括陆地介质或者大地的情况下,第二介质206可以包括地面以上的大气。因此,大气可以被称为包括空气和组成大地的大气的其他元素的“大气介质”。另外,第二介质206可以包括相对于损耗传导介质203的其他介质。Where the lossy conducting medium 203 comprises a terrestrial medium or the earth, the second medium 206 may comprise the atmosphere above the ground. The atmosphere may thus be called the "atmospheric medium" comprising air and other elements that make up the atmosphere of the earth. Additionally, the second medium 206 may include other mediums relative to the lossy conducting medium 203 .
引导表面波导探头200a包括馈送网络209,该馈送网络209例如经由垂直馈线导体将激励源212耦合到充电端子T1。根据各种实施例,电荷Q1施加在充电端子T1上,以基于在任何给定时刻施加到端子T1的电压合成电场。取决于电场(E)的入射角度(θi),可能将电场与包括区域1的损耗传导介质203的表面上的引导表面波导模式实质上模式匹配。The guided surface waveguide probe 200a includes a feed network 209 that couples an excitation source 212 to a charging terminal T 1 , for example via a vertical feed line conductor. According to various embodiments, charge Q1 is applied across charge terminal T1 to synthesize an electric field based on the voltage applied to terminal T1 at any given moment. Depending on the angle of incidence (θ i ) of the electric field (E), it is possible to substantially mode match the electric field to the guided surface waveguide modes on the surface of the lossy conducting medium 203 comprising region 1 .
通过考虑等式(1)-(6)的Zenneck封闭形式解,区域1和区域2之间的Leontovich阻抗边界条件可以陈述为:By considering the Zenneck closed-form solutions of equations (1)–(6), the Leontovich impedance boundary condition between region 1 and region 2 can be stated as:
其中是在正垂直(+z)方向上垂直的单元,且是由以上等式(1)表示的区域2中的磁场强度。等式(13)暗示等式(1)-(3)中指定的电场和磁场可以导致沿着边界界面的径向表面电流密度,其中径向表面电流密度可以由下式指定:in is the cell vertical in the positive vertical (+z) direction, and is the magnetic field strength in region 2 expressed by equation (1) above. Equation (13) implies that the electric and magnetic fields specified in equations (1)–(3) can result in a radial surface current density along the boundary interface, where the radial surface current density can be specified by:
其中A是常数。另外,应该注意趋近引导表面波导探头200(对于ρ<<λ),以上等式(14)具有特性:where A is a constant. Additionally, it should be noted that approaching the guided surface waveguide probe 200 (for ρ<<λ), the above equation (14) has the property:
负号指的是当源电流(Io)垂直向上流动时,如图3所示,“趋近”地电流向内径向流动。通过关于Hφ“趋近”的场匹配,可以确定:The negative sign means that when the source current (I o ) flows vertically upwards, as shown in Figure 3, the "going" ground current flows radially inward. By field matching on the "approach" of H φ , it can be determined that:
其中在等式(1)-(6)和(14)中,q1=C1V1。因此,等式(14)的径向表面电流密度可以重申为:Wherein in equations (1)-(6) and (14), q 1 =C 1 V 1 . Therefore, the radial surface current density of equation (14) can be restated as:
等式(1)-(6)和(17)表示的场具有对有损界面绑定的传输线模式的性质,不是与地波传播关联的辐射场。参见Barlow,H.M.和Brown,J.,,Radio Surface Waves,OxfordUniversity Press,1962,pp.1-5。The fields represented by equations (1)-(6) and (17) are of the nature of transmission line modes bound to lossy interfaces, not the radiation fields associated with ground wave propagation. See Barlow, HM and Brown, J., Radio Surface Waves , Oxford University Press, 1962, pp. 1-5.
在这点上,对于波动方程的这些解提供等式(1)-(6)和(17)中使用的汉克尔函数的性质的评述。人们可以观察到第一和第二种类和阶n的汉克尔函数被定义为第一和第二种类的标准巴塞尔函数的复数组合:In this regard, a review of the properties of the Hankel functions used in equations (1)-(6) and (17) is provided for these solutions of the wave equation. One can observe that the Hankel functions of the first and second kind and order n are defined as complex combinations of the standard Basel functions of the first and second kind:
这些函数分别表示径向向内和向外传播的柱面波。该定义类似于关系e±jx=cos x±j sin x。例如,参见Harrington,R.F.,Time-Harmonic Fields,McGraw-Hill,1961,pp.460-463。These functions represent the radially inward and outward Propagated cylindrical waves. This definition is analogous to the relation e ± jx = cos x ± j sin x. See, eg, Harrington, RF, Time-Harmonic Fields , McGraw-Hill, 1961, pp. 460-463.
该是可以从它的大变元渐近线性态识别的输出波,它的大变元渐近线性态可以从Jn(x)和Nn(x)的系列定义直接获得。从引导表面波导探头的远离:Should is the output wave that can be identified from its large variable asymptotically linear state, and its large variable variable asymptotically linear state can be obtained directly from the series definitions of J n (x) and N n (x). Steering away from the surface waveguide probe:
其在乘以ejωt时,是具有空间变化的形式ej(ωt-kρ)的向外传播的柱面波。该第一阶(n=1)的解能通过等式(20a)被确定为When it is multiplied by e jωt , it has Spatially varying outwardly propagating cylindrical waves of the form e j(ωt-kρ) . The first order (n=1) solution can be determined by equation (20a) as
趋近引导表面波导探头(对于ρ<<λ),第一阶和第二种类的汉克尔函数表现为:Approaching the guided surface waveguide probe (for ρ<<λ), the Hankel functions of the first and second kind are expressed as:
注意到这些渐近线表示是复数量。当x是实数量时,等式(20b)和(21)在相位上相差其对应于45°的额外相位提前或者“相位提升”,或者等效的,λ/8。第二种类的第一阶汉克尔函数的趋近和远离渐近线具有汉克尔“相交”或者转换点,在这里它们与距离ρ=Rx的具有相等幅值。Note that these asymptotes represent complex quantities. When x is a real quantity, equations (20b) and (21) differ in phase by This corresponds to an additional phase advance or "phase boost" of 45°, or equivalently, λ/8. The approaching and departing asymptotes of the first order Hankel functions of the second kind have Hankel "intersecting" or transition points where they are of equal magnitude to that of the distance p = Rx.
因此,超出汉克尔相交点,“远离”表示相对于汉克尔函数的“趋近”表示占据主导。可以通过对于-jγρ令等式(20b)和(21)相等,并求解Rx,来求出到汉克尔相交点的距离(或者汉克尔相交距离)。对于x=σ/ωεo,可以看到远离和趋近汉克尔函数渐近线是取决于频率的,其中当频率降低时汉克尔相交点向外移动。还应当注意,汉克尔函数渐近线也随着损耗传导介质的电导率(σ)改变而变化。例如,土壤的电导率可以随着天气状况的改变而变化。Thus, beyond the Hankel intersection point, the "far away" representation dominates with respect to the "approaching" representation of the Hankel function. The distance to the Hankel intersection point (or the Hankel intersection distance) can be found by equating equations (20b) and (21) for -jγρ, and solving for R x . For x = σ/ωε o , it can be seen that the asymptotes away from and towards the Hankel function are frequency dependent, with the Hankel intersection point moving outward as the frequency decreases. It should also be noted that the Hankel function asymptote also changes as the conductivity (σ) of the lossy conducting medium changes. For example, the electrical conductivity of soil can change as weather conditions change.
参考图4,示出了在1850kHz的操作频率、电导率σ=0.010mhos/m且相对介电常数εr=15的区域1的等式(20b)和(21)的第一阶汉克尔函数的幅值的绘图的实例。曲线115是等式(20b)的远离渐近线的幅值,且曲线118是等式(21)的趋近渐近线的幅值,其中在Rx=54英尺的距离出现汉克尔相交点121。当幅值相等时,在汉克尔相交点121的两个渐近线之间存在相位偏移。还可以看到汉克尔相交距离远小于操作频率的波长。Referring to FIG. 4 , there is shown the first-order Hankel of equations (20b) and (21 ) for region 1 at an operating frequency of 1850 kHz, conductivity σ=0.010 mhos/m, and relative permittivity ε r =15. Example of a plot of the magnitude of a function. Curve 115 is the magnitude away from the asymptote of equation (20b), and curve 118 is the magnitude of the approaching asymptote of equation (21), where the Hankel intersection occurs at a distance of Rx = 54 feet Point 121. There is a phase shift between the two asymptotes at the Hankel intersection point 121 when the magnitudes are equal. It can also be seen that the Hankel crossing distance is much smaller than the wavelength of the operating frequency.
考虑由区域2中的Zenneck封闭形式解的等式(2)和(3)给出的电场分量,可以看到Ez和Eρ的比率渐近地转为:Considering the electric field components given by equations (2) and (3) for the Zenneck closed-form solution in region 2, it can be seen that the ratio of E z and E ρ turns asymptotically as:
其中n是等式(10)的复数折射率,且θi是电场的入射角。另外,等式(3)的模式匹配的电场的垂直分量渐近地转为:where n is the complex index of Equation (10), and θ i is the angle of incidence of the electric field. In addition, the vertical component of the mode-matched electric field of equation (3) turns asymptotically into:
其与在端子电压处升高的充电端子的电容的隔离分量上的自由电荷线性成正比,qfree=Cfree×VT。It is linearly proportional to the free charge on the isolated component of the capacitance of the charging terminal rising at the terminal voltage, q free =C free ×V T .
例如,图3中的升高的充电端子T1的高度H1影响充电端子T1上的自由电荷量。当充电端子T1在区域1的地平面附近时,端子上的大部分电荷Q1被“绑定”。当充电端子T1升高时,绑定的电荷减少,直到充电端子T1达到实质上所有隔离电荷自由的高度为止。For example, the height H 1 of the raised charging terminal T 1 in FIG. 3 affects the amount of free charge on the charging terminal T 1 . When the charging terminal T1 is near the ground plane of region 1 , most of the charge Q1 on the terminal is "bound". As charge terminal T 1 rises, the bound charge decreases until charge terminal T 1 reaches a height at which substantially all isolated charges are free.
充电端子T1的增加的电容升高的优点在于从地平面进一步去除升高的充电端子T1上的电荷,导致增加量的自由电荷qfree将能量耦合到引导表面波导模式中。当充电端子T1移动远离地平面时,电荷分布变得在端子的表面周围更均匀地分布。自由电荷量与充电端子T1的自电容相关。The advantage of the increased capacitive boosting of charge terminal T1 is that the charge on the raised charge terminal T1 is further removed from the ground plane, resulting in an increased amount of free charge q free coupling energy into guided surface waveguide modes. As the charge terminal T1 moves away from the ground plane, the charge distribution becomes more evenly distributed around the surface of the terminal. The amount of free charge is related to the self - capacitance of the charging terminal T1.
例如,球形端子的电容可以表示为地平面以上的物理高度的函数。在完美的地面以上的物理高度h处的球的电容由下式给出:For example, the capacitance of a ball terminal can be expressed as a function of physical height above ground plane. The capacitance of a sphere at a physical height h above perfect ground is given by:
Celevated sphere=4πεoa(1+M+M2+M3+2M4+3M5+…), (24)C elevated sphere = 4πε o a(1+M+M 2 +M 3 +2M 4 +3M 5 +…), (24)
其中球的直径是2a,且其中M=a/2h,h是球形端子的高度。如可以看到的,端子高度h的增加减小充电端子的电容C。可以示出对于在大约直径4倍或者更大的高度(4D=8a)处的充电端子T1的升高,电荷分布在球形端子周围近似均匀,这可以改进到引导表面波导模式中的耦合。where the diameter of the ball is 2a, and where M=a/2h, h being the height of the ball terminal. As can be seen, the increase in terminal height h reduces the capacitance C of the charging terminal. It can be shown that for a rise in charging terminal T1 at a height of about 4 times the diameter or greater (4D=8a), the charge distribution is approximately uniform around the spherical terminal, which can improve coupling into guided surface waveguide modes.
在充分隔离的端子的情况下,导电球的自电容可以由C=4πεoa近似,其中a是以米为单位的球的直径,且盘的自电容可以由C=8εoa近似,其中a是以米为单位的盘的半径。充电端子T1可以包括任何形状,比如球形、盘形、圆柱形、锥形、环形、罩形、一个或多个环或者任何其他随机形状或者形状的组合。等效的球直径可以被确定和使用用于充电端子T1的定位。In the case of well-isolated terminals, the self-capacitance of a conductive ball can be approximated by C = 4πεo a, where a is the diameter of the ball in meters, and the self-capacitance of a disk can be approximated by C = 8εo a, where a is the radius of the disk in meters. Charging terminal T 1 may comprise any shape, such as a sphere, disc, cylinder, cone, ring, cap, one or more rings, or any other random shape or combination of shapes. An equivalent ball diameter can be determined and used for the positioning of the charging terminal T 1 .
这可以进一步参考图3的实例理解,在图3中,充电端子T1在损耗传导介质203以上的物理高度hp=H1处升高。为了减小“绑定”电荷的效果,充电端子T1可以位于充电端子T1的球面半径(或者等效的球面半径)至少四倍的物理高度处,以减小绑定的电荷效果。This can further be understood with reference to the example of FIG. 3 , where the charging terminal T 1 is raised at a physical height h p =H 1 above the lossy conducting medium 203 . To reduce the effect of "bonded" charges, charging terminal T1 may be located at a physical height of at least four times the spherical radius (or equivalent spherical radius) of charging terminal T1 to reduce the effect of bonded charge.
接下来参考图5A,示出了由图3的充电端子T1上的升高电荷Q1产生的电场的射线光学解释。因为在光学中,最小化入射电场的反射可以改进和/或最大化耦合到损耗传导介质203的引导表面波导模式中的能量。对于平行于入射面(不是边界界面)极化的电场(E||),可以使用Fresnel反射系数来确定入射电场的反射量,Fresnel反射系数可表示为:Referring next to FIG. 5A , a ray optics interpretation of the electric field generated by the raised charge Q 1 on the charging terminal T 1 of FIG. 3 is shown. As in optics, minimizing the reflection of the incident electric field can improve and/or maximize the energy coupling into the guided surface waveguide modes of the lossy conducting medium 203 . For an electric field (E || ) polarized parallel to the incident surface (not the boundary interface), the Fresnel reflection coefficient can be used to determine the reflection amount of the incident electric field, and the Fresnel reflection coefficient can be expressed as:
其中θi是针对表面法线测量的常规的入射角。where θi is the conventional angle of incidence measured against the surface normal.
在图5A的实例中,射线光学解释示出平行于具有针对表面法线测量的入射角θi的入射面极化的入射场。当Γ||(θi)=0时将没有入射电场的反射,且因此入射电场将沿着损耗传导介质203的表面完全耦合到引导表面波导模式中。可以看到当入射角如下时等式(25)的分子变为零:In the example of Figure 5A, the optical interpretation of the rays shows parallel to the surface normal with Measure the incidence angle θi of the incident plane polarized incident field. When Γ || (θ i ) = 0 there will be no reflection of the incident electric field, and thus the incident electric field will be fully coupled into the guided surface waveguide mode along the surface of the lossy conducting medium 203 . It can be seen that the numerator of equation (25) becomes zero when the incident angle is as follows:
其中x=σ/ωεo。该复数入射角(θi,B)被称为布鲁斯特角。回去参考等式(22),可以看到在等式(22)和(26)两者中存在相同的复数布鲁斯特角(θi,B)关系。where x = σ/ωε o . This complex angle of incidence (θ i,B ) is called Brewster's angle. Referring back to equation (22), it can be seen that the same complex Brewster angle (θ i,B ) relationship exists in both equations (22) and (26).
如图5A所示,电场矢量E可以被示出为平行于入射平面而极化的输入非均匀平面波。可以从如下的独立的水平和垂直分量创建电场矢量E:As shown in Figure 5A, the electric field vector E can be shown as an input non-uniform plane wave polarized parallel to the plane of incidence. The electric field vector E can be created from separate horizontal and vertical components as follows:
几何上,图5A的图示提出电场矢量E可以由下式给出:Geometrically, the illustration of Figure 5A proposes that the electric field vector E can be given by:
Eρ(ρ,z)=E(ρ,z)cosθi,和 (28a)E ρ (ρ,z)=E(ρ,z)cosθ i , and (28a)
这意味着场比率是:This means that the field ratio is:
称为“波倾斜”的广义参数W为在这里被记录为水平电场分量对垂直电场分量的比率,由下式给出:A generalized parameter W called "wave tilt" is reported here as the ratio of the horizontal electric field component to the vertical electric field component and is given by:
其是复数且具有幅值和相位两者。对于区域2中的电磁波,波倾斜角(Ψ)等于在与区域1的边界界面处的波前的法线和该边界界面的切线之间的角。这可以在图5B中更容易地看到,图5B图示了电磁波的等相表面和它们对于径向圆柱引导表面波的法线。在与完美导体的边界界面(z=0)处,波前法线平行于边界界面的切线,导致W=0。但是,在有损电介质的情况下,因为波前法线不平行于在z=0处的边界界面的切线,所以存在波倾斜W。It is complex and has both magnitude and phase. For electromagnetic waves in region 2, the wave tilt angle (Ψ) is equal to the angle between the normal to the wavefront at the boundary interface with region 1 and the tangent to the boundary interface. This can be seen more easily in Fig. 5B, which illustrates the isophase surfaces of electromagnetic waves and their normals to the radial cylindrically guided surface waves. At the boundary interface with a perfect conductor (z=0), the wavefront normal is parallel to the tangent to the boundary interface, resulting in W=0. However, in the case of lossy dielectrics, there is a wave tilt W because the wavefront normal is not parallel to the tangent to the boundary interface at z=0.
将等式(30b)应用于引导表面波给出:Applying equation (30b) to guided surface waves gives:
其中入射角等于复数布鲁斯特角(θi,B),等式(25)的Fresnel反射系数消失,如下式所示:where the incident angle is equal to the complex Brewster angle (θ i,B ), the Fresnel reflection coefficient of equation (25) disappears as shown in the following equation:
通过调整等式(22)的复数场比率,可以合成入射场以按照复数角入射,在该复数角,反射减小或者被消除。将该比率建立为导致合成电场以复数布鲁斯特角入射,使得反射消失。By adjusting the complex field ratio of equation (22), the incident field can be synthesized to be incident at complex angles where reflections are reduced or eliminated. establish this ratio as The resultant electric field is caused to be incident at complex Brewster angles so that the reflection disappears.
电有效高度的概念可以提供以下进一步洞察,以利用引导表面波导探头200合成具有复数入射角的电场。对于具有物理高度(或者长度)hp(或者长度)的单极,电有效高度(heff)已被定义为:The concept of electrical effective height may provide further insight into synthesizing electric fields with complex angles of incidence using guided surface waveguide probes 200 . For a monopole with a physical height (or length) h p (or length), the electrical effective height (h eff ) has been defined as:
因为该表达式取决于沿着该结构的源分布的幅值和相位,所以有效高度(或者长度)通常是复数。该结构的分布电流I(z)的积分在该结构(hp)的物理高度上执行,且被归一化为通过该结构的基极(或者输入)向上流动的地电流(I0)。沿着该结构的分布电流可以表示为:Since this expression depends on the magnitude and phase of the source distribution along the structure, the effective height (or length) is usually complex. The integration of the distribution current I( z ) of the structure is performed over the physical height of the structure (hp ) and normalized to the ground current (I 0 ) flowing upwards through the base (or input) of the structure. The distributed current along this structure can be expressed as:
I(z)=IC cos(β0z), (34)I(z)=I C cos(β 0 z), (34)
其中β0是在该结构上传播的电流的传播因数。在图3的实例中,IC是沿着引导表面波导探头200a的垂直结构分布的电流。where β0 is the propagation factor of the current propagating on the structure. In the example of FIG. 3, IC is the current distributed along the vertical structure guiding the surface waveguide probe 200a.
例如,考虑包括该结构的底部的低损耗线圈(例如,螺旋线圈)以及在该线圈和充电端子T1之间连接的垂直馈线导体的馈送网络209。由于线圈(或者螺旋延迟线)导致的相位延迟是θc=βplC,其中物理长度是lC且传播因数如下:For example, consider a feed network 209 comprising a low loss coil (eg a helical coil) at the bottom of the structure and a vertical feeder conductor connected between this coil and charging terminal T1. The phase delay due to the coil (or helical delay line) is θ c = β p l C , where the physical length is l C and the propagation factor is as follows:
其中Vf是该结构上的速度因数,λ0是在供应频率处的波长,且λp是从速度因数Vf产生导致的传播波长。相对于地(桩)电流I0测量相位延迟。where Vf is the velocity factor on the structure, λ0 is the wavelength at the supply frequency, and λp is the propagation wavelength resulting from the velocity factor Vf. The phase delay is measured with respect to the ground (pile) current I 0 .
另外,沿着垂直馈线导体的长度lw的空间相位延迟可以由θy=βwlw给出,其中βw是用于垂直馈线导体的传播相位常数。在某些实现中,空间相位延迟可以由θy=βwhp近似,因为引导表面波导探头200a的物理高度hp和垂直馈线导体长度lw之间的差值远小于供应频率处的波长(λ0)。结果,通过线圈和垂直馈线导体的总相位延迟是Φ=θc+θy,且从物理结构的底部馈送到线圈顶部的电流是:Additionally, the spatial phase delay along the length lw of the vertical feedline conductor can be given by θy = βw lw , where βw is the propagation phase constant for the vertical feedline conductor. In some implementations, the spatial phase delay can be approximated by θy = βwhp because the difference between the physical height hp of the guided surface waveguide probe 200a and the vertical feedline conductor length lw is much smaller than the wavelength at the supply frequency (λ 0 ). As a result, the total phase delay through the coil and the vertical feedline conductor is Φ = θ c + θ y , and the current fed from the bottom of the physical structure to the top of the coil is:
IC(θc+θy)=I0ejΦ, (36)I C (θ c +θ y )=I 0 e jΦ , (36)
其中相对于地(桩)电流I0测量总相位延迟Φ。因此,对于物理高度hp<<λ0的情况,引导表面波导探头200的电有效高度可以由下式近似:Among them, the total phase delay Φ is measured relative to the ground (pile) current I 0 . Therefore, for the case of physical height h p << λ 0 , the electrical effective height of the guided surface waveguide probe 200 can be approximated by the following formula:
在角度(或者相移)Φ处的单极的复数有效高度heff=hp可以被调整,以使得源场匹配导线表面波导模式,并使得在损耗传导介质203上启动引导表面波。The complex effective height h eff =h p of the monopole at angle (or phase shift) Φ can be tuned such that the source field matches the wire surface waveguide mode and that guided surface waves are initiated on the lossy conducting medium 203 .
在图5A的实例中,射线光学用于图示具有在汉克尔相交距离(Rx)121处的复数布鲁斯特入射角(θi,B)的入射电场(E)的复数角度三角学。从等式(26)回想,对于损耗传导介质,布鲁斯特角是复数且由下式指定:In the example of FIG. 5A , ray optics are used to illustrate the complex angle trigonometry of an incident electric field (E) with a complex Brewster angle of incidence (θ i,B ) at a Hankel intersection distance (R x ) 121 . Recall from equation (26) that for a lossy conducting medium, the Brewster's angle is complex and is specified by:
电气地,几何参数通过下式由充电端子T1的电有效高度(heff)相关:Electrically, the geometric parameter is related by the electrical effective height (h eff ) of the charging terminal T1 by the following equation:
Rxtanψi,B=Rx×W=heff=hpejΦ, (39)R x tanψ i,B = R x × W = h eff = h p e jΦ , (39)
其中ψi,B=(π/2)-θi,B是从损耗传导介质的表面测量的布鲁斯特角。为了耦合到引导表面波导模式中,在汉克尔相交距离处的电场的波倾斜可以表示为电有效高度和汉克尔相交距离的比率:where ψ i,B = (π/2) - θ i,B is the Brewster's angle measured from the surface of the lossy conducting medium. For coupling into guided surface waveguide modes, the wave tilt of the electric field at the Hankel intersection distance can be expressed as the ratio of the electrical effective height to the Hankel intersection distance:
因为物理高度(hp)和汉克尔相交距离(Rx)两者都是实数量,所以在汉克尔相交距离(Rx)处的所需的引导表面波倾斜的角度(Ψ)等于复数有效高度(heff)的相位(Φ)。这暗示通过在线圈的供应点改变相位,且因此改变等式(37)中的相移,可以操纵复数有效高度的相位Φ以匹配在汉克尔相交点121处的引导表面波导模式的波倾斜角Ψ:Φ=Ψ。Since both the physical height (h p ) and the Hankel intersection distance (R x ) are real quantities, the angle (Ψ) of the required guided surface wave tilt at the Hankel intersection distance (R x ) is equal to Phase (Φ) of the complex effective height (h eff ). This implies that by varying the phase at the coil's supply point, and thus the phase shift in equation (37), the phase Φ of the complex effective height can be manipulated to match the wave tilt of the guided surface waveguide mode at the Hankel intersection point 121 Angle Ψ: Φ=Ψ.
在图5A中,示出直角三角形具有沿着损耗传导介质表面的长度Rx的相邻边、以及在Rx处的汉克尔相交点121和充电端子T1的中心之间延伸的射线124与在汉克尔相交点121和充电端子T1之间的损耗传导介质表面127之间测量的复数布鲁斯特角ψi,B。对于位于物理高度hp处并以具有适当的相位延迟Φ的电荷激励的充电端子T1,产生的电场在汉克尔相交距离Rx,处并以布鲁斯特角对于该损耗传导介质边界界面入射。在这些条件下,可以激励引导表面波导模式,而没有反射或者实质上微不足道的反射。In FIG. 5A , a right triangle is shown having adjacent sides along the length Rx of the lossy conductive medium surface, and a ray 124 extending between the Hankel intersection 121 at Rx and the center of the charging terminal T1 and the complex Brewster angle ψ i,B measured between the lossy conductive medium surface 127 between the Hankel intersection 121 and the charging terminal T 1 . For a charging terminal T 1 located at a physical height h p and excited with a charge with an appropriate phase delay Φ, the resulting electric field is incident on this lossy conductive medium boundary interface at a Hankel intersection distance R x , and at Brewster's angle . Under these conditions, guided surface waveguide modes can be excited with no or substantially negligible reflections.
如果充电端子T1的物理高度减小而不改变有效高度(heff)的相移Φ,则产生的电场在距引导表面波导探头200的减小的距离处以布鲁斯特角与损耗传导介质203交叉。图6图形地图示减小充电端子T1的物理高度对于以布鲁斯特角入射电场的距离的影响。随着高度从h3通过h2减小到h1,电场以布鲁斯特角与损耗传导介质(例如,大地)交叉的点移动更靠近充电端子位置。但是,如等式(39)指示的,充电端子T1的高度H1(图3)应该等于或者高于物理高度(hp),以便激励汉克尔函数的远离分量。利用位于有效高度(heff)或者该有效高度以上的充电端子T1,损耗传导介质203可以以处于或者超出汉克尔相交距离(Rx)121以布鲁斯特入射角(ψi,B=(π/2)-θi,B)照射,如图5A所示。为了减小或者最小化充电端子T1上的绑定电荷,该高度应该是如上所述的充电端子T1的球面直径(或者等效的球面直径)的至少四倍。If the physical height of the charging terminal T1 is reduced without changing the phase shift Φ of the effective height (h eff ), the resulting electric field intersects the lossy conducting medium 203 at the Brewster angle at a reduced distance from the guiding surface waveguide probe 200 . FIG. 6 graphically illustrates the effect of reducing the physical height of the charging terminal T 1 on the distance of the incident electric field at Brewster's angle. As the height decreases from h3 through h2 to hi , the point where the electric field intersects the lossy conducting medium (eg, earth ) at Brewster's angle moves closer to the charging terminal location. However, as indicated by equation (39), the height H 1 ( FIG. 3 ) of the charging terminal T 1 should be equal to or higher than the physical height ( hp ) in order to excite the distant component of the Hankel function. With the charging terminal T 1 at or above the effective height (h eff ), the lossy conductive medium 203 can be at or beyond the Hankel intersection distance (R x ) 121 at Brewster's incidence angle (ψ i,B =( π/2)-θ i,B ) irradiation, as shown in Figure 5A. In order to reduce or minimize the bound charge on the charging terminal T1, the height should be at least four times the spherical diameter (or equivalent spherical diameter) of the charging terminal T1 as described above.
引导表面波导探头200可以配置为建立具有与以复数布鲁斯特角照射损耗传导介质203的表面的波对应的波倾斜的电场,由此通过实质上模式匹配到在(或者超出)Rx的汉克尔相交点121的引导表面波模式,来激励径向表面电流。The guided surface waveguide probe 200 may be configured to establish an electric field with a wave tilt corresponding to a wave impinging the surface of the lossy conducting medium 203 at complex Brewster angles, thereby by substantially mode matching to the Hank at (or beyond) Rx The guided surface wave modes at the intersection point 121 are used to excite radial surface currents.
参考图7,示出了包括充电端子T1的引导表面波导探头200b的实例的图形表示。AC源212用作充电端子T1的激励源,其通过包括比如螺旋线圈的线圈215的馈送网络(图3)耦合到引导表面波导探头200b。在其它实现中,AC源212可以通过主线圈电感地耦合到线圈215。在一些实施例中,可以包括阻抗匹配网络以改进和/或最大化AC源212到线圈215的耦合。Referring to FIG. 7 , a pictorial representation of an example of a guided surface waveguide probe 200b including charging terminal T 1 is shown. An AC source 212 is used as an excitation source for the charging terminal T1, which is coupled to the guided surface waveguide probe 200b through a feed network (Fig. 3) comprising a coil 215, such as a helical coil. In other implementations, AC source 212 may be inductively coupled to coil 215 through a primary coil. In some embodiments, an impedance matching network may be included to improve and/or maximize the coupling of AC source 212 to coil 215 .
如图7所示,引导表面波导探头200b可以包括沿着垂直轴z实质上正交由损耗传导介质定位的上部充电端子T1(例如,在高度hp的球形),该垂直轴z实质上与由损耗传导介质203表示的平面正交。第二介质206位于损耗传导介质203以上。充电端子T1具有自电容CT。在操作期间,电荷Q1取决于在任何给定时刻施加到端子T1的电压,而强加在端子T1上。As shown in FIG. 7, guided surface waveguide probe 200b may include an upper charging terminal T1 (e.g., spherical at height hp) positioned substantially orthogonally by the lossy conducting medium along a vertical axis z that is substantially Orthogonal to the plane represented by the lossy conducting medium 203 . The second medium 206 is located above the lossy conducting medium 203 . The charging terminal T 1 has a self-capacitance C T . During operation, a charge Q1 is imposed on terminal T1 depending on the voltage applied to terminal T1 at any given moment.
在图7的实例中,线圈215耦合到在第一端的地桩218,并经由垂直馈线导体221耦合到充电端子T1。在一些实现中,到充电端子T1的线圈连接可以使用如图7所示的线圈215的抽头224来调整。线圈215可以通过在线圈215的下部的抽头227由AC源212在操作频率处致能。在其它实现中,AC源212可以通过主线圈电感地耦合到线圈215。In the example of FIG. 7 , coil 215 is coupled to ground stake 218 at a first end, and is coupled to charging terminal T 1 via vertical feeder conductor 221 . In some implementations, the coil connection to charging terminal T 1 may be adjusted using tap 224 of coil 215 as shown in FIG. 7 . The coil 215 may be energized by the AC source 212 at the operating frequency through a tap 227 on the lower portion of the coil 215 . In other implementations, AC source 212 may be inductively coupled to coil 215 through a primary coil.
引导表面波导探头200的结构和调整基于各种操作条件,比如传输频率、损耗传导介质的条件(例如,土壤导电率σ和相对介电常数εr)和充电端子T1的大小。折射率可以如下从等式(10)和(11)计算:The structure and adjustment of the guided surface waveguide probe 200 is based on various operating conditions, such as the transmission frequency, the condition of the lossy conducting medium (eg, soil conductivity σ and relative permittivity ε r ), and the size of the charging terminal T 1 . The refractive index can be calculated from equations (10) and (11) as follows:
其中x=σ/ωεo,且ω=2πf。导电率σ和相对介电常数εr可以通过损耗传导介质203的测试测量来确定。从表面法线测量的复数布鲁斯特角(θi,B)也可以从等式(26)如下确定:where x=σ/ωε o , and ω=2πf. The conductivity σ and the relative permittivity ε r can be determined by test measurements of the lossy conducting medium 203 . The complex Brewster angle (θ i,B ) measured from the surface normal can also be determined from equation (26) as follows:
或者如下从如图5A所示的表面测量:Or measured from a surface as shown in Figure 5A as follows:
还可以使用等式(40)求出在汉克尔相交距离处的波倾斜(WRx)。The wave tilt (W Rx ) at the Hankel intersection distance can also be found using equation (40).
还可以通过对于-jγρ令等式(20b)和(21)的幅值相等,并求解如图4所示的Rx,来求出汉克尔相交距离。然后可以使用汉克尔相交距离和复数布鲁斯特角从等式(39)如下确定电有效高度:The Hankel intersection distance can also be found by equating the magnitudes of equations (20b) and (21) for -jγρ and solving for R x as shown in FIG. 4 . The electrical effective height can then be determined from equation (39) using the Hankel intersection distance and the complex Brewster angle as follows:
heff=hpejΦ=Rxtanψi,B。 (44)h eff = h p e jΦ = R x tanψ i,B . (44)
如可以从等式(44)看到的,复数有效高度(heff)包括与充电端子T1的物理高度(hp)关联的幅值、和要与在汉克尔相交距离(Rx)处的波倾斜的角度(Ψ)关联的相位延迟(Φ)。利用这些变量和所选的充电端子T1配置,可能确定引导表面波导探头200的配置。As can be seen from equation (44), the complex effective height (h eff ) includes the magnitude associated with the physical height (h p ) of the charge terminal T 1 , and the distance to intersect at Hankel (R x ) The angle (Ψ) at which the wave is tilted at is associated with a phase delay (Φ). Using these variables and the selected charging terminal T1 configuration, it is possible to determine the configuration of the guided surface waveguide probe 200 .
利用位于物理高度(hp)或以上的充电端子T1,馈送网络209(图3)和/或将馈送网络连接到充电端子T1的垂直馈线可以被调整,以将充电端子T1上的电荷Q1的相位(Φ)与波倾斜(W)的角度(Ψ)匹配。可以选择充电端子T1的大小,以对于强加在端子上的电荷Q1提供充分大的表面。总的来说,希望使得充电端子T1实际上尽可能大。充电端子T1的大小应该足够大以避免周围空气的电离,这可导致充电端子周围的放电或者火花。With charging terminal T 1 at or above physical height (h p ), feed network 209 ( FIG. 3 ) and/or vertical feed lines connecting the feed network to charging terminal T 1 can be adjusted to The phase (Φ) of the charge Q1 matches the angle (Ψ) of the wave tilt (W). The size of the charging terminal T1 may be chosen to provide a sufficiently large surface area for the charge Q1 imposed on the terminal. In general, it is desirable to make the charging terminal T1 as large as practical. The size of the charging terminal T1 should be large enough to avoid ionization of the surrounding air, which could lead to discharges or sparks around the charging terminal.
螺旋缠绕的线圈的相位延迟θc可以从麦克斯韦方程确定,如已经由Corum,K.L.和J.F.Corum,“RF Coils,Helical Resonators and Voltage Magnification by CoherentSpatial Modes”,Microwave Review,Vol.7,No.2,2001年9月,pp.36-45.讨论的,将其通过引用完全包括于此。对于具有H/D>1的螺旋线圈,沿着线圈的纵向轴的波的传播速率(υ)与光的速度(c)的比率,或者“速度因数”由下式给出:The phase delay θc of a helically wound coil can be determined from Maxwell's equations, as has been done by Corum, KL and JFCorum, "RF Coils, Helical Resonators and Voltage Magnification by CoherentSpatial Modes", Microwave Review , Vol.7, No.2, 2001 Discussed in September, pp. 36-45., which is fully incorporated herein by reference. For a helical coil with H/D > 1, the ratio of the velocity of propagation of waves (υ) to the speed of light (c) along the longitudinal axis of the coil, or "velocity factor", is given by:
其中H是螺线管螺旋线的轴向长度,D是线圈直径,N是线圈的匝数,s=H/N是线圈的匝到匝间隔(或者螺旋线间距),且λo是自由空间波长。基于该关系,螺旋线圈的电长度,或者相位延迟由下式给出:where H is the axial length of the solenoid helix, D is the coil diameter, N is the number of turns of the coil, s=H/N is the turn-to-turn spacing (or helix pitch) of the coil, and λ is the free space wavelength. Based on this relationship, the electrical length, or phase delay, of the helical coil is given by:
如果螺旋线以螺旋状地缠绕或者短和粗,该原理是相同的,但是Vf和θc更易于通过实验测量获得。螺旋传输线的特性(波)阻抗的表达还已经被导出为:The principle is the same if the helix is helically wound or short and thick, but V f and θ c are easier to obtain experimentally. An expression for the characteristic (wave) impedance of a helical transmission line has also been derived as:
该结构的空间相位延迟θy可以使用垂直馈线导体221(图7)的行波相位延迟确定。在完美地平面以上的圆柱垂直导体的电容可以表示为:The spatial phase delay [theta] y of the structure can be determined using the phase delay of the traveling wave of the vertical feeder conductor 221 (FIG. 7). The capacitance of a cylindrical vertical conductor above a perfect ground plane can be expressed as:
其中hw是导体的垂直长度(或者高度),且a是半径(以mk为单位)。对于螺旋线圈,垂直馈线导体的行波相位延迟可以由下式给出:where hw is the vertical length (or height) of the conductor and a is the radius in mk. For a helical coil, the phase delay of the traveling wave in the vertical feeder conductor can be given by:
其中βw是垂直馈线导体的传播相位常数,hw是垂直馈线导体的垂直长度(或者高度),Vw是线路上的速率因数,λ0是在供应频率的波长,且λw是从速率因数Vw导致的传播波长。对于均匀圆柱导体,速率因数是具有Vw≈0.94的常数,或者在从大约0.93到大约0.98的范围内。如果考虑桅是均匀传输线,则其平均特性阻抗可以由下式近似:where βw is the propagation phase constant of the vertical feeder conductor, hw is the vertical length (or height) of the vertical feeder conductor, Vw is the velocity factor on the line, λ0 is the wavelength at the supply frequency, and λw is the slave velocity The propagation wavelength due to the factor Vw . For a uniform cylindrical conductor, the rate factor is constant with Vw ≈0.94 , or in the range from about 0.93 to about 0.98. If the mast is considered to be a uniform transmission line, its average characteristic impedance can be approximated by the following formula:
其中对于均匀圆柱导体Vw≈0.94对于均匀圆柱导体,且a是导体的半径。在单线馈线的特性阻抗的业余无线电文献中已经采用的替代表示可以由下式给出:where for a uniform cylindrical conductor Vw ≈ 0.94 for a uniform cylindrical conductor, and a is the radius of the conductor. An alternative representation that has been used in the amateur radio literature for the characteristic impedance of a single-wire feeder can be given by:
等式(51)暗示用于单线馈送器的Zw随着频率改变。可以基于电容和特性阻抗,来确定相位延迟。Equation (51) implies that Zw for a single wire feed varies with frequency. The phase delay can be determined based on capacitance and characteristic impedance.
利用位于如图3所示的损耗传导介质203以上的充电端子T1,馈送网络209可以被调整,而以等于在汉克尔相交距离处的波倾斜的角度(Ψ)的复数有效高度(heff)的相位延迟(Φ)、或者Φ=Ψ,来激励充电端子T1。当满足该条件时,由在充电端子T1上振荡的电荷Q1产生的电场耦合到沿着损耗传导介质203的表面行进的引导表面波导模式中。例如,如果布鲁斯特角(θi,B)、与垂直馈线导体221相关联的相位延迟(θy)(图7)、和线圈215(图7)的配置已知,则抽头224(图7)的位置可以被确定和调整,以在具有相位Φ=Ψ的充电端子T1上施加振荡电荷Q1。抽头224的位置可以被调整为,将行进的表面波最大化耦合到引导表面波导模式中。超出抽头224的位置的过度线圈长度可以被去除,以减小电容效应。螺旋线圈的垂直线高度和/或几何参数也可以改变。With the charging terminal T 1 located above the lossy conducting medium 203 as shown in FIG. eff ), or Φ=Ψ, to energize the charging terminal T 1 . When this condition is met, the electric field generated by the charge Q 1 oscillating on the charging terminal T 1 is coupled into the guided surface waveguide mode traveling along the surface of the lossy conducting medium 203 . For example, if Brewster's angle (θ i,B ), the phase delay (θ y ) associated with vertical feeder conductor 221 (Fig. 7), and the configuration of coil 215 (Fig. 7) are known, then tap 224 (Fig. 7 ) can be determined and adjusted to apply an oscillating charge Q 1 on the charging terminal T 1 with phase Φ=Ψ. The position of the tap 224 can be adjusted to maximize the coupling of the traveling surface wave into the guided surface waveguide mode. Excessive coil length beyond the location of tap 224 may be removed to reduce capacitive effects. The vertical line height and/or geometric parameters of the helical coils can also be varied.
在损耗传导介质203的表面上耦合到引导表面波导模式可以通过针对与充电端子T1上的电荷Q1相关联的复数镜像平面、对于驻波谐振调谐引导表面波导探头200来改进和/或优化。通过这样做,可以调整引导表面波导探头200的性能,用于充电端子T1上增加的和/或最大的电压(且因此电荷Q1)。回头参考图3,可以使用镜像原理来检查区域1中的损耗传导介质203的效果。Coupling to the guided surface waveguide mode on the surface of the lossy conducting medium 203 can be improved and/or optimized by tuning the guided surface waveguide probe 200 to the standing wave resonance for the complex mirror plane associated with the charge Q on the charging terminal T . By doing so, the performance of the guided surface waveguide probe 200 can be tuned for increased and/or maximum voltage (and thus charge Q 1 ) on the charging terminal T 1 . Referring back to FIG. 3 , the effect of the lossy conducting medium 203 in zone 1 can be examined using the mirror image principle.
物理上,位于完美导电平面上方的升高的电荷Q1吸引完美导电平面上的自由电荷,其然后在升高的电荷Q1下的区域中“积累”。产生的完美导电平面上的“绑定”电荷的分布类似于钟形曲线。升高的电荷Q1的电势加上它下面的感应的“积累”电荷的电势的叠加促使完美导电平面的零等势面。描述完美导电平面以上的区域中的场的边界值问题解可以使用镜像电荷的经典概念而获得,其中来自升高的电荷的场与来自完美导电平面之下的相应的“镜像”电荷的场叠加。Physically, the raised charge Q1 lying above the perfectly conducting plane attracts the free charges on the perfectly conducting plane, which then "accumulate" in the region below the raised charge Q1 . The resulting distribution of "bound" charges on a perfectly conducting plane resembles a bell curve. The superposition of the potential of the rising charge Q1 plus the potential of the induced "accumulated" charge below it promotes the zero equipotential surface of a perfectly conducting plane. The solution to the boundary value problem describing the field in the region above the perfectly conducting plane can be obtained using the classical concept of image charges, where the field from a raised charge is superimposed with the field from the corresponding "image" charge below the perfectly conducting plane .
该分析还可以通过假定引导表面波导探头200之下的有效镜像电荷Q1'的存在而针对损耗传导介质203使用。有效镜像电荷Q1'关于导电镜像地平面130与充电端子T1上的电荷Q1一致,如图3所示。但是,镜像电荷Q1'不仅位于某个实际深度,而且与充电端子T1上的主要源电荷Q1成180°反向,如它们在完美导体的情况下那样。而是,损耗传导介质203(例如,陆地介质)表示相移镜像。就是说,镜像电荷Q1'在损耗传导介质203的表面(或者物理边界)以下的复数深度。对于复数镜像深度的讨论,参考Wait,J.R.,“Complex Image Theory—Revisited”,IEEE Antennas and Propagation Magazine,Vol.33,No.4,1991年8月,pp.27-29,将其通过引用完全包括于此。This analysis can also be used for the lossy conducting medium 203 by assuming the existence of an effective image charge Q 1 ′ beneath the guiding surface waveguide probe 200 . The effective image charge Q 1 ′ coincides with the charge Q 1 on the charge terminal T 1 with respect to the conductive image ground plane 130 , as shown in FIG. 3 . However, the image charge Q1 ' is not only at some actual depth, but also 180 ° opposite to the main source charge Q1 on the charging terminal T1, as they would be in the case of a perfect conductor. Instead, lossy conducting medium 203 (eg, terrestrial medium) represents a phase-shifted mirror image. That is, the complex depth of the image charge Q 1 ′ below the surface (or physical boundary) of the lossy conducting medium 203 . For a discussion of complex image depths, see Wait, JR, "Complex Image Theory—Revisited," IEEE Antennas and Propagation Magazine , Vol. 33, No. 4, August 1991, pp. 27-29, which is fully incorporated by reference included here.
代替在等于电荷Q1的物理高度(H1)的深度处的镜像电荷Q1',导电镜像地平面130(表示完美导体)位于复数深度z=-d/2,且镜像电荷Q1'在由-D1=-(d/2+d/2+H1)≠H1给出的复数深度(即,“深度”具有幅值和相位两者)出现。对于大地上的垂直极化源,Instead of an image charge Q 1 ' at a depth equal to the physical height (H 1 ) of the charge Q 1 , a conductive image ground plane 130 (representing a perfect conductor) is at a complex depth z=-d/2, and the image charge Q 1 ' is at The complex depth given by -D 1 =-(d/2+d/2+H 1 )≠H 1 (ie "depth" has both magnitude and phase) occurs. For a vertically polarized source on the ground,
其中in
如在等式(12)中指示的。镜像电荷的复数间隔又暗示外部场将经历当界面是电介质或者完美导体时未遇到的额外相移。在损耗传导介质中,波前法线在z=-d/2处,且不在区域1和2之间的边界界面处,平行于导电镜像地平面130的切线。as indicated in equation (12). The complex spacing of the image charges in turn implies that the external field will experience an additional phase shift not encountered when the interface is a dielectric or a perfect conductor. In a lossy conducting medium, the wavefront normal is parallel to the tangent to the conductive mirrored ground plane 130 at z=-d/2 and not at the boundary interface between regions 1 and 2 .
考虑图8A中图示的损耗传导介质203是具有物理边界136的有限导电大地133的情况。有限导电大地133可以由如图8B所示的完美导电镜像地平面139替代,其位于物理边界136之下的复数深度z1。当向下看到在物理边界136处的界面中时,该等效表示展现相同阻抗。图8B的等效表示可以被建模为等效传输线,如图8C所示。等效结构的截面表示为(z-方向)端负载传输线,该完美导电镜像平面的阻抗短路(zs=0)。该深度z1可以通过令在大地向下看的TEM波阻抗与看到图8C的传输线中的镜像地平面阻抗zin相等而确定。Consider the case where the lossy conductive medium 203 illustrated in FIG. 8A is a finite conductive ground 133 with a physical boundary 136 . The finite conductive ground 133 can be replaced by a perfectly conductive mirrored ground plane 139 as shown in FIG. 8B , which lies at a complex depth z 1 below the physical boundary 136 . This equivalent representation exhibits the same impedance when looking down into the interface at physical boundary 136 . The equivalent representation of Figure 8B can be modeled as an equivalent transmission line, as shown in Figure 8C. The cross-section of the equivalent structure is represented as a (z-direction) end-loaded transmission line, the impedance of this perfectly conductive mirror plane is short-circuited (z s =0). The depth z 1 can be determined by equating the TEM wave impedance looking down at earth with the mirrored ground plane impedance z in looking into the transmission line of FIG. 8C .
在图8A的情况下,上部区域(空气)142中的传播常数和波固有阻抗是:In the case of FIG. 8A, the propagation constant and wave intrinsic impedance in the upper region (air) 142 are:
在有损大地133中,传播常数和波固有阻抗是:In a lossy ground 133, the propagation constant and wave intrinsic impedance are:
对于法线入射,图8B的等效表示等效于其特性阻抗是空气的阻抗(zo)、具有传播常数γo,、且其长度是z1的TEM传输线。这样,在图8C的短的传输线的界面处看到的镜像地平面阻抗Zin由下式给出:For normal incidence, the equivalent representation of FIG. 8B is equivalent to a TEM transmission line whose characteristic impedance is that of air (z o ), has a propagation constant γ o , and whose length is z 1 . Thus, the mirrored ground plane impedance Z seen at the interface of the short transmission line of Figure 8C is given by:
Zin=Zotanh(γoz1)。 (59)Z in =Z o tanh(γ o z 1 ). (59)
令与图8C的等效模式相关联的镜像地平面阻抗Zin与图8A的法线入射波阻抗相同并求解z1给出到短路(完美导电镜像地平面139)的距离为:Letting the mirrored ground plane impedance Z in associated with the equivalent mode of Figure 8C be the same as the normal incident wave impedance of Figure 8A and solving for z gives the distance to the short (perfectly conductive mirrored ground plane 139) as:
其中对于该近似仅考虑反双曲线正切的串行扩展的第一项。注意到在空气区域142中,传播常数是γo=jβo,所以Zin=jZotanβoz1(其对于实数z1是完全虚数量),但是如果σ≠0则ze是复数值。因此,仅当z1是复数距离时,Zin=Ze。where only the first term of the serial extension of the inverse hyperbolic tangent is considered for this approximation. Note that in the air region 142, the propagation constant is γ o = jβ o , so Z in = jZ o tan β o z 1 (which is a completely imaginary quantity for the real number z 1 ), but z e is complex-valued if σ≠0 . Therefore, Z in =Z e only when z 1 is a complex distance.
因为图8B的等效表示包括完美导电镜像地平面139,所以位于大地表面(物理边界136)处的电荷或者电流的镜像深度等于在镜像地平面139的另一侧上的距离z1,或者在大地表面之下的d=2×z1(其位于z=0处)。因此,到完美导电镜像地平面139的距离可以由下式近似:Because the equivalent representation of FIG. 8B includes a perfectly conductive mirrored ground plane 139, the mirror depth of a charge or current located at the earth's surface (physical boundary 136) is equal to the distance z 1 on the other side of the mirrored ground plane 139, or at d=2×z 1 below the Earth's surface (which is located at z=0). Therefore, the distance to a perfectly conductive mirrored ground plane 139 can be approximated by:
另外,“镜像电荷”将与真实电荷“大小相等方向相反”,所以在深度z1=-d/2处的完美导电镜像地平面139的电势将是零。In addition, the "mirror charge" will be "equal and opposite" to the real charge, so the potential of a perfectly conductive mirror ground plane 139 at depth z 1 =-d/2 will be zero.
如果在如图3所示的大地表面以上的距离H1升高电荷Q1,则镜像电荷Q1驻留在该表面以下的复数距离D1=d+H1处,或者镜像地平面130以下的复数距离d/2+H1处。图7的引导表面波导探头200b可以建模为可以基于图8B的完美导电镜像地平面139的等效单线传输线镜像平面模型。图9A示出等效单线传输线镜像平面模型的实例,且图9B图示包括图8C的短路传输线的等效经典传输线模型的实例。If a charge Q 1 is raised at a distance H 1 above the earth's surface as shown in FIG . The complex distance of d/2+H 1 . The guided surface waveguide probe 200b of FIG. 7 can be modeled as an equivalent single-wire transmission line mirror plane model that can be based on the perfect conductive mirror ground plane 139 of FIG. 8B. Figure 9A shows an example of an equivalent single-wire transmission line mirror plane model, and Figure 9B illustrates an example of an equivalent classical transmission line model including the short-circuited transmission line of Figure 8C.
在图9A和图9B的等效镜像平面模型中,Φ=θy+θc是参考大地133(或者损耗传导介质203)的引导表面波导探头200的行波相位延迟,θc=βpH是以度表示的物理长度H的线圈215(图7)的电长度,θy=βwhw是以度表示的物理长度hw的垂直馈线导体221(图7)的电长度,且θd=βod/2是镜像地平面139和大地133(或者损耗传导介质203)的物理边界136之间的相移。在图9A和图9B的实例中,Zw是以欧姆为单位的升高垂直馈线导体221的特性阻抗,Zc是以欧姆为单位的线圈215的特性阻抗,且ZO是自由空间的特性阻抗。In the equivalent mirror plane model of Fig. 9A and Fig. 9B, Φ = θ y + θ c is the phase delay of the traveling wave of the guiding surface waveguide probe 200 referenced to the ground 133 (or lossy conducting medium 203), θ c = β p H is the electrical length of the coil 215 ( FIG. 7 ) of physical length H in degrees, θ y = β w h w is the electrical length of the vertical feeder conductor 221 ( FIG. 7 ) of physical length h w in degrees, and θ d = β o d/2 is the phase shift between the mirrored ground plane 139 and the physical boundary 136 of the earth 133 (or lossy conducting medium 203 ). In the example of FIGS. 9A and 9B , Z is the characteristic impedance of the raised vertical feeder conductor 221 in ohms, Z is the characteristic impedance of the coil 215 in ohms, and Z is the characteristic of free space impedance.
在引导表面波导探头200的基底(base),“向上看”到该结构中的阻抗是Z↑=Zbase。其中负载阻抗是:At the base of the guided surface waveguide probe 200, the impedance "looking up" into the structure is Z ↑ = Z base . where the load impedance is:
其中CT是充电端子T1的自电容,“向上看”到垂直馈线导体221(图7)中的阻抗由下式给出:where CT is the self - capacitance of charging terminal T1, the impedance "looking up" into the vertical feedline conductor 221 (FIG. 7) is given by:
且“向上看”到线圈215(图7)中的阻抗由下式给出:And the impedance "looking up" into coil 215 (FIG. 7) is given by:
在引导表面波导探头200的基底处,“向下看”到损耗传导介质203中的阻抗是Z↓=Zin,其由下式给出:At the base of the guided surface waveguide probe 200, the impedance "looking down" into the lossy conducting medium 203 is Z ↓ = Z in , which is given by:
其中Zs=0。where Z s =0.
忽略损耗,等效镜像平面模型可以被调谐为当Z↓+Z↑=0时在物理边界136处谐振。或者,在低损耗情况下,在物理边界136处X↓+X↑=0,其中X是相应的电抗分量。因此,“向上看”到引导表面波导探头200中的物理边界136处的阻抗是“向下看”到损耗传导介质203中的物理边界136处的阻抗的共轭。通过调整充电端子T1的负载阻抗ZL,同时维持行波相位延迟Φ等于介质的波倾斜Ψ的角度,以使得Φ=Ψ,这改进和/或最大化沿着损耗传导介质203(例如,大地)的表面的、探头的电场到引导表面波导模式的耦合,图9A和图9B的等效镜像平面模型可以被调谐以相对于镜像地平面139谐振。以该方式,等效复数镜像平面模型的阻抗是纯电阻的,这维持使得端子T1上的电压和升高电荷最大化的探头结构上的叠加驻波,并且通过等式(1)-(3)和(16)使得传播表面波最大化。Neglecting losses, the equivalent mirror plane model can be tuned to resonate at the physical boundary 136 when Z ↓ + Z ↑ = 0. Alternatively, in the low loss case, X ↓ + X ↑ = 0 at physical boundary 136 , where X is the corresponding reactive component. Thus, the impedance "looking up" to the physical boundary 136 in the guided surface waveguide probe 200 is the conjugate of the impedance "looking down" to the physical boundary 136 in the lossy conducting medium 203 . By adjusting the load impedance Z L of the charging terminal T 1 while maintaining the traveling wave phase delay Φ equal to the angle of the wave tilt Ψ of the medium such that Φ = Ψ, this improves and/or maximizes The coupling of the electric field of the probe to the guided surface waveguide mode of the surface of the ground), the equivalent mirror plane model of FIGS. 9A and 9B can be tuned to resonate relative to the mirrored ground plane 139. In this way, the impedance of the equivalent complex mirror plane model is purely resistive, which maintains a superimposed standing wave on the probe structure that maximizes the voltage and rising charge on terminal T1, and is expressed by equation ( 1 )-( 3) and (16) maximize the propagating surface waves.
从汉克尔解得出,由引导表面波导探头200激励的引导表面波是向外传播的行波。充电端子T1和引导表面波导探头200的地桩218之间的沿着馈送网络209的源分布(图3和图7)实际上由该结构上的行波加上驻波的叠加构成。利用位于物理高度hp或其以上的充电端子T1,通过馈送网络209移动的行波的相位延迟匹配与损耗传导介质203相关联的波倾斜的角度。该模式匹配允许沿着损耗传导介质203启动行波。一旦对于行波已建立了相位延迟,就调整充电端子T1的负载阻抗ZL以使得探头结构针对在复数深度-d/2的镜像地平面(图3的130或者图8的139)驻波谐振。在该情况下,从镜像地平面看的阻抗具有零电抗,且充电端子T1上的电荷最大化。From the Hankel solution, the guided surface wave excited by the guided surface waveguide probe 200 is an outwardly propagating traveling wave . The source distribution along the feed network 209 ( FIGS. 3 and 7 ) between the charging terminal T 1 and the ground pile 218 guiding the surface waveguide probe 200 actually consists of a superposition of traveling waves plus standing waves on the structure. With the charging terminal T 1 located at or above the physical height h p , the phase delay of the traveling wave moving through the feed network 209 matches the angle of wave inclination associated with the lossy conducting medium 203 . This mode matching allows the initiation of traveling waves along the lossy conducting medium 203 . Once the phase delay has been established for the traveling wave, the load impedance ZL of the charging terminal T1 is adjusted so that the probe structure is directed to the mirrored ground plane (130 of FIG. 3 or 139 of FIG. 8 ) at complex depth -d/2 for the standing wave resonance. In this case, the impedance seen from the mirrored ground plane has zero reactance and the charge on the charging terminal T1 is maximized.
行波现象和驻波现象之间的区别在于(1)在长度d的传输线(有时称为“延迟线”)的部分上的行波的相位延迟(θ=βd)是由于传播时间延迟;然而(2)驻波(由前向和后向传播波构成)的取决于位置的相位取决于线长度传播时间延迟和在不同特性阻抗的线部分之间的界面处的阻抗变换两者。除了由于以正弦稳态操作的传输线部分的物理长度导致的相位延迟,存在由于比率Zoa/Zob导致的阻抗不连续处的额外反射系数相位,其中Zoa和Zob是传输线的两个部分的特性阻抗,例如,特性阻抗的螺旋线圈部分Zoa=Zc(图9B)和特性阻抗的垂直馈线导体的直线部分Zob=Zw(图9B)。The difference between traveling wave phenomena and standing wave phenomena is that (1) the phase delay (θ = βd) of a traveling wave over a portion of a transmission line (sometimes called a "delay line") of length d is due to a propagation time delay; however (2) The position-dependent phase of the standing wave (consisting of forward and backward propagating waves) depends on both the line length propagation time delay and the impedance transformation at the interface between line sections of different characteristic impedance. In addition to the phase delay due to the physical length of the transmission line section operating in sinusoidal steady state, there is an additional reflection coefficient phase at the impedance discontinuity due to the ratio Zoa / Zob , where Zoa and Zob are the two sections of the transmission line For example, the characteristic impedance of the helical coil portion Z oa =Z c ( FIG. 9B ) and the characteristic impedance of the straight line portion of the vertical feeder conductor Z ob =Z w ( FIG. 9B ).
作为该现象的结果,普遍不同的特性阻抗的两个相对短的传输线部分可以用于提供非常大的相移。例如,可以制造由传输线的两个部分(一个是低阻抗另一个是高阻抗)与总共0.05λ的物理长度一起构成的探头结构,以提供等效于0.25λ谐振的90°的相移。这是由于特性阻抗的大的跳变。以该方式,物理上短的探头结构可以电气地长于组合的两个物理长度。这在图9A和图9B图示,其中阻抗比率的不连续性提供相位的大的跳变。阻抗不连续性提供其中各部分接合在一起的实质的相移。As a result of this phenomenon, two relatively short transmission line sections of generally different characteristic impedances can be used to provide very large phase shifts. For example, a probe structure consisting of two sections of a transmission line, one low impedance and one high impedance, together with a total physical length of 0.05λ can be fabricated to provide a 90° phase shift equivalent to a 0.25λ resonance. This is due to the large jump in the characteristic impedance. In this way, the physically short probe structure can be electrically longer than the two physical lengths combined. This is illustrated in Figures 9A and 9B, where a discontinuity in impedance ratio provides a large jump in phase. The impedance discontinuity provides a substantial phase shift where the parts join together.
参考图10,示出了流程图150,图示调整引导表面波导探头200(图3和图7)以实质上模式匹配到损耗传导介质的表面上的引导表面波导模式的实例,该引导表面波导模式启动沿着损耗传导介质203(图3)的表面的引导表面行波。以153开始,引导表面波导探头200的充电端子T1位于损耗传导介质203以上的限定高度。利用损耗传导介质203的特性和引导表面波导探头200的工作频率,可以通过对于-jγρ令等式(20b)和(21)的幅值相等,并求解图4所示的Rx,来求出汉克尔相交距离。可以使用等式(41)确定复数折射率(n),且然后可以从等式(42)确定复数布鲁斯特角(θi,B)。然后可以从等式(44)确定充电端子T1的物理高度(hp)。充电端子T1应该在或者高于物理高度(hp)以便激励汉克尔函数的远离分量。当启动表面波时,最初考虑该高度关系。为了减小或者最小化充电端子T1上的绑定电荷,该高度应该是充电端子T1的球面直径(或者等效球面直径)的至少四倍。Referring to FIG. 10 , there is shown a flowchart 150 illustrating an example of adjusting a guided surface waveguide probe 200 ( FIGS. 3 and 7 ) to substantially mode match to a guided surface waveguide mode on the surface of a lossy conducting medium, the guided surface waveguide The modes initiate guided surface traveling waves along the surface of the lossy conducting medium 203 (FIG. 3). Starting at 153 , the charging terminal T 1 of the guiding surface waveguide probe 200 is located at a defined height above the lossy conducting medium 203 . Using the properties of the lossy conducting medium 203 and the operating frequency of the guided surface waveguide probe 200, one can find Hankel intersection distance. The complex refractive index (n) can be determined using Equation (41), and then the complex Brewster's angle (θ i,B ) can be determined from Equation (42). The physical height ( hp ) of charging terminal T 1 can then be determined from equation (44). The charge terminal T 1 should be at or above the physical height ( hp ) in order to excite the distant component of the Hankel function. This height relationship is initially considered when surface waves are activated. In order to reduce or minimize the bound charge on the charging terminal T1, the height should be at least four times the spherical diameter (or equivalent spherical diameter) of the charging terminal T1.
在156,充电端子T1上的升高的电荷Q1的电相位延迟Φ匹配到复数波倾斜角Ψ。螺旋线圈的相位延迟(θc)和/或垂直馈线导体的相位延迟(θy)可以被调整以使得Φ等于波倾斜(W)的角度(Ψ)。基于等式(31),波倾斜的角度(Ψ)可以如下确定:At 156, the electrical phase delay Φ of the rising charge Q1 on the charging terminal T1 is matched to the complex wave tilt angle Ψ. The phase delay of the helical coil (θ c ) and/or the phase delay of the vertical feedline conductor (θ y ) can be adjusted such that Φ is equal to the angle (Ψ) of the wave tilt (W). Based on equation (31), the angle (Ψ) of wave inclination can be determined as follows:
电相位Φ然后可以匹配到波倾斜的角度。当启动表面波时,接下来考虑该角(或者相位)关系。例如,可以通过改变线圈215(图7)的几何参数和/或垂直馈线导体221(图7)的长度(或者高度),来调整电相位延迟Φ=θc+θy。通过匹配Φ=Ψ,可以在边界界面处具有复数布鲁斯特角的汉克尔相交距离(Rx)处或者超出该汉克尔相交距离(Rx)建立电场,以激励表面波导模式和沿着损耗传导介质203启动行波。The electrical phase Φ can then be matched to the angle of wave tilt. This angular (or phase) relationship is next considered when surface waves are activated. For example, the electrical phase delay Φ=θ c +θ y can be adjusted by changing the geometric parameters of the coil 215 ( FIG. 7 ) and/or the length (or height) of the vertical feeder conductor 221 ( FIG. 7 ). By matching Φ = Ψ, an electric field can be established at or beyond the Hankel intersection distance ( Rx ) with complex Brewster angles at the boundary interface to excite surface waveguide modes and along The lossy conducting medium 203 initiates a traveling wave.
接下来在159,调谐充电端子T1的负载阻抗,以谐振该引导表面波导探头200的等效镜像平面模型。图9A和图9B的导电镜像地平面139(或者图3的130)的深度(d/2)可以使用等式(52)、(53)和(54)以及可以测量的损耗传导介质203(例如,大地)的值确定。使用该深度,可以使用θd=βod/2确定损耗传导介质203的镜像地平面139和物理边界136之间的相移(θd)。然后可以使用等式(65)确定“向下看”到损耗传导介质203中的阻抗(Zin)。可以考虑该谐振关系,以最大化启动的表面波。Next at 159 , the load impedance of the charging terminal T 1 is tuned to resonate the equivalent mirror plane model of the guided surface waveguide probe 200 . The depth (d/2) of the conductive mirrored ground plane 139 of FIGS. 9A and 9B (or 130 of FIG. 3 ) can be measured using equations (52), (53) and (54) and the lossy conductive medium 203 (e.g. , the value of the earth) is determined. Using this depth, the phase shift (θ d ) between the mirrored ground plane 139 and the physical boundary 136 of the lossy conducting medium 203 can be determined using θ d =β o d/2. The impedance "looking down" into the lossy conducting medium 203 (Z in ) can then be determined using equation (65). This resonance relationship can be taken into account to maximize the launched surface waves.
基于线圈215的调整的参数以及垂直馈线导体221的长度,可以使用等式(45)到(51)确定线圈215和垂直馈线导体221的速率因数、相位延迟和阻抗。另外,可以例如使用等式(24)确定充电端子T1的自电容(CT)。可以使用等式(35)确定线圈215的传播因数(βp),且可以使用等式(49)确定垂直馈线导体221的传播相位常数(βw)。使用自电容以及线圈215和垂直馈线导体221的确定的值,可以使用等式(62)、(63)和(64)确定如“向上看”到线圈215中的引导表面波导探头200的阻抗(Zbase)。Based on the adjusted parameters of the coil 215 and the length of the vertical feeder conductor 221, the velocity factor, phase delay and impedance of the coil 215 and the vertical feeder conductor 221 can be determined using equations (45) to (51). In addition, the self-capacitance (C T ) of the charging terminal T 1 can be determined, for example, using equation (24). The propagation factor (β p ) of the coil 215 can be determined using equation (35), and the propagation phase constant (β w ) of the vertical feedline conductor 221 can be determined using equation (49). Using the self-capacitance and determined values of the coil 215 and vertical feedline conductor 221, the impedance of the guided surface waveguide probe 200 as "looking up" into the coil 215 can be determined using equations (62), (63) and (64) ( Z base ).
通过调整负载阻抗ZL以,可将引导表面波导探头200的等效镜像平面模型调谐为谐振,使得Zbase的电抗分量Xbase抵消Zin的电抗分量Xin,或者Xbase+Xin=0,来。因此,“向上看”到引导表面波导探头200中的物理边界136处的阻抗是在“向下看”到损耗传导介质203中的物理边界136处的阻抗的共轭。可以通过改变充电端子T1的电容(CT)而不改变充电端子T1的电相位延迟Φ=θc+θy,来调整负载阻抗ZL。可以采用迭代方案,来调谐负载阻抗ZL以,用于等效镜像平面模型相对于导电镜像地平面139(或者130)的谐振。以该方式,沿着损耗传导介质203(例如,大地)的表面的电场到引导表面波导模式的耦合可以改进和/或最大化。By adjusting the load impedance Z L , the equivalent mirror plane model of the guided surface waveguide probe 200 can be tuned to resonance, so that the reactance component X base of Z base cancels the reactance component X in of Z in , or X base +X in =0 ,Come. Thus, the impedance "looking up" to the physical boundary 136 in the guided surface waveguide probe 200 is the conjugate of the impedance "looking down" to the physical boundary 136 in the lossy conducting medium 203 . The load impedance ZL can be adjusted by changing the capacitance ( C T ) of the charging terminal T1 without changing the electrical phase delay Φ = θc + θy of the charging terminal T1. An iterative scheme may be employed to tune the load impedance Z L for the resonance of the equivalent mirror plane model with respect to the conductive mirror ground plane 139 (or 130 ). In this way, the coupling of the electric field along the surface of the lossy conducting medium 203 (eg, the ground) to the guided surface waveguide modes can be improved and/or maximized.
这可以通过图示具有数字实例的情况更好地理解。考虑以充电端子T1在顶部的包括物理高度hp的顶部负载垂直根的引导表面波导探头200,其中在1.85MHz的工作频率(fo)通过螺旋线圈和垂直馈线导体激励充电端子T1。对于16英尺的高度(H1)和具有相对介电常数εr=15和导电率σ1=0.010mhos/m的损耗传导介质203(例如,大地),可以对于fo=1.850MHz计算几个表面波传播参数。在这些情况下,可以求出汉克尔相交距离是具有hp=5.5英尺的物理高度的Rx=54.5英尺,其很好地在充电端子T1的实际高度以下。虽然可以使用充电端子高度H1=5.5英尺,但是更高的探头结构减小绑定电容,这允许充电端子T1上更大百分比的自由电荷,提供更大场强和行波的激励。This can be better understood by illustrating the situation with numerical examples. Consider a guided surface waveguide probe 200 with a top-loaded vertical root comprising a physical height h p with charging terminal T 1 excited through a helical coil and a vertical feeder conductor at an operating frequency (f o ) of 1.85 MHz. For a height (H 1 ) of 16 feet and a lossy conducting medium 203 (e.g., earth) with a relative permittivity ε r =15 and a conductivity σ 1 =0.010 mhos/m, several calculations can be made for f o =1.850 MHz Surface wave propagation parameters. In these cases, the Hankel intersection distance can be found to be Rx = 54.5 feet with a physical height of hp = 5.5 feet, which is well below the actual height of charging terminal T1. Although a charge terminal height H1 = 5.5 feet can be used, the taller probe structure reduces bond capacitance, which allows a greater percentage of free charge on the charge terminal T1, providing greater field strength and excitation of traveling waves.
波长度可以确定为:The wavelength length can be determined as:
其中c是光的速度。从等式(41),复数折射率是:where c is the speed of light. From equation (41), the complex refractive index is:
其中x=σ1/ωεo,且ω=2πfo,且从等式(42),复数布鲁斯特角是:where x = σ 1 /ωε o , and ω = 2πf o , and from equation (42), the complex Brewster angle is:
使用等式(66),波倾斜值可以确定为:Using equation (66), the wave tilt value can be determined as:
因此,可以调整螺旋线圈以匹配Φ=Ψ=40.614°Therefore, the helical coil can be tuned to match Φ = Ψ = 40.614°
垂直馈线导体(近似为具有0.27英寸的直径的均匀圆柱导体)的速率因数可以给出为Vw≈0.93。因为hp<<λo,所以垂直馈线导体的传播相位常数可以近似为:The velocity factor for a vertical feedline conductor (approximately a uniform cylindrical conductor with a diameter of 0.27 inches) can be given as Vw ≈0.93 . Since h p << λ o , the propagation phase constant of the vertical feeder conductor can be approximated as:
从等式(49),垂直馈线导体的相位延迟是:From equation (49), the phase delay of the vertical feeder conductor is:
θy=βwhw≈βwhp=11.640°。 (72)θ y =β w h w ≈β w h p =11.640°. (72)
通过调整螺旋线圈的相位延迟以使得θc=28.974°=40.614°-11.640°,Φ将等于Ψ以匹配引导表面波导模式。为图示Φ和Ψ之间的关系,图11示出两者在频率范围上的绘图。因为Φ和Ψ两者是取决于频率的,所以可以看到它们各自的曲线在大约1.85MHz处彼此相交。By adjusting the phase delay of the helical coil such that θc = 28.974° = 40.614° - 11.640°, Φ will be equal to Ψ to match the guided surface waveguide mode. To illustrate the relationship between Φ and Ψ, Figure 11 shows a plot of both over the frequency range. Since both Φ and Ψ are frequency dependent, it can be seen that their respective curves intersect each other at about 1.85 MHz.
对于具有0.0881英寸的导体直径、30英寸的线圈直径(D)和4英寸的匝到匝间隔(s)的螺旋线圈,该线圈的速率因数可以使用等式(45)确定为:For a helical coil with a conductor diameter of 0.0881 inches, a coil diameter (D) of 30 inches, and a turn-to-turn spacing (s) of 4 inches, the velocity factor for the coil can be determined using equation (45) as:
且来自等式(35)的传播因数是:and the propagation factor from equation (35) is:
在θc=28.974°的情况下,螺线管螺旋线(H)的轴向长度可以使用等式(46)确定,使得:With θc = 28.974°, the axial length of the solenoid helix (H) can be determined using equation (46) such that:
该高度确定螺旋线圈上连接垂直馈线导体的位置,导致具有8.818匝(N=H/s)的线圈。This height determines where on the helical coil the vertical feeder conductors are connected, resulting in a coil with 8.818 turns (N=H/s).
通过调整线圈和垂直馈线导体的行波相位延迟以匹配波倾斜角(Φ=θc+θy=Ψ),可以调整充电端子T1的负载阻抗(ZL),用于引导表面波导探头200的等效镜像平面模型的驻波谐振。从测量的大地的介电常数、电导率和渗透率,可以使用等式(57)确定径向传播常数:By adjusting the phase delay of the traveling wave in the coil and the vertical feedline conductor to match the wave tilt angle (Φ = θ c + θ y = Ψ), the load impedance (Z L ) of the charging terminal T 1 can be adjusted for guiding the surface waveguide probe 200 The standing wave resonance of the equivalent mirror plane model. From the measured permittivity, conductivity and permeability of the earth, the radial propagation constant can be determined using equation (57):
并且导电镜像地平面的复数深度可以从等式(52)近似为:And the complex depth of the conductive mirror ground plane can be approximated from equation (52) as:
其中导电镜像地平面和大地的物理边界之间的相应的相移由下式给出:where the corresponding phase shift between the conductive mirrored ground plane and the physical boundary of the earth is given by:
θd=βo(d/2)=4.015-j 4.73°。 (78)θ d = β o (d/2) = 4.015 - j 4.73°. (78)
使用等式(65),“向下看”到损耗传导介质203(即,大地)中的阻抗可以确定为:Using equation (65), the impedance "looking down" into the lossy conducting medium 203 (i.e., earth) can be determined as:
Zin=Zotanh(jθd)=Rin+jXin=31.191+j 26.27欧姆。 (79)Z in =Z o tanh(jθ d )=R in +jX in =31.191+j 26.27 ohms. (79)
通过匹配“向下看”到损耗传导介质203中的电抗分量(Xin)与“向上看”到引导表面波导探头200中的电抗分量(Xbase),可以使得到引导表面波导模式中的耦合最大化。这可以通过调整充电端子T1的电容来实现,而不改变线圈和垂直馈线导体的行波相位延迟。例如,通过将充电端子电容(CT)调整到61.8126pF,来自等式(62)的负载阻抗是:By matching the reactive component (X in ) "looking down" into the lossy conducting medium 203 with the reactive component (X base ) "looking up" into the guided surface waveguide probe 200, the coupling into the guided surface waveguide mode can be made maximize. This can be achieved by adjusting the capacitance of the charging terminal T1 without changing the phase delay of the traveling wave of the coil and the vertical feeder conductor. For example, by adjusting the charge terminal capacitance (C T ) to 61.8126pF, the load impedance from equation (62) is:
且匹配在边界处的电抗分量。and match the reactive component at the boundary.
使用等式(51),垂直馈线导体(具有0.27英寸的直径(2a))的阻抗给出为:Using equation (51), the impedance of the vertical feeder conductor (with a diameter (2a) of 0.27 inches) is given as:
且“向上看”到垂直馈线导体中的阻抗由等式(63)给出为:and the impedance "looking up" into the vertical feeder conductor is given by equation (63):
使用等式(47),螺旋线圈的特性阻抗给出为:Using equation (47), the characteristic impedance of the helical coil is given as:
且在基底处“向上看”到线圈中的阻抗由等式(64)给出为:and the impedance "looking up" into the coil at the base is given by equation (64) as:
当与等式(79)的解比较时,可以看到电抗分量相反且近似相等,且因此是彼此的共轭。因此,从完美导电镜像地平面“向上看”到图9A和图9B的等效镜像平面模型中的阻抗(Zip)仅是电阻,或者Zip=R+j0。When compared with the solution of equation (79), it can be seen that the reactive components are opposite and approximately equal, and are thus conjugates of each other. Thus, the impedance (Z ip ) looking "up" from the perfectly conductive mirrored ground plane into the equivalent mirrored plane model of Figures 9A and 9B is simply resistance, or Zip = R+j0.
当通过匹配馈送网络的行波相位延迟与波倾斜角建立由引导表面波导探头200(图3)产生的电场、且探头结构相对于在复数深度z=-d/2处的完美导电镜像地平面谐振时,场实质上被模式匹配到损耗传导介质的表面上的引导表面波导模式,沿着损耗传导介质的表面启动引导表面行波。如图1所示,引导电磁场的引导场强曲线103具有的特性指数衰减,且以对数-对数量级展现区别拐点109。When the electric field generated by the guided surface waveguide probe 200 (Fig. 3) is established by matching the phase delay of the traveling wave and the wave tilt angle of the feed network, and the probe structure is relative to a perfectly conductive mirror ground plane at complex depth z=-d/2 At resonance, the field is essentially mode matched to a guided surface waveguide mode on the surface of the lossy conducting medium, launching a guided surface traveling wave along the surface of the lossy conducting medium. As shown in Figure 1, the guided field strength curve 103 of the guided electromagnetic field has The characteristic decays exponentially and exhibits a distinguishing inflection point 109 on a log-log scale.
总之,分析地和实验地,引导表面波导探头200的结构上的行波分量在其上端具有匹配表面行波的波倾斜的角度(Ψ)的相位延迟(Φ)(Φ=Ψ)。在该情况下,可以认为该表面波导是“模式匹配的”。另外,引导表面波导探头200的结构上的谐振驻波分量在充电端子T1处具有VMAX且在镜像平面139(图8B)下具有VMIN,其中在复数深度z=-d/2处而不是在损耗传导介质203的物理边界136处的连接处,Zip=Rip+j 0。(图8B)。最后,充电端子T1处于图3的充分高度H1(h≥Rxtanψi,B),使得在复数布鲁斯特角处入射到损耗传导介质203上的电磁波在距离(≥Rx)之外这样做,其中项是占主导的。可以与一个或多个引导表面波导探头一起使用接收电路,以促进无线传输和/或功率传递系统。In summary, analytically and experimentally, the structural traveling wave component of the guided surface waveguide probe 200 has a phase delay (Φ) at its upper end matching the angle (Ψ) of the wave tilt of the surface traveling wave (Φ=Ψ). In this case, the surface waveguide can be said to be "mode matched". Additionally, the structurally resonant standing wave component of the guided surface waveguide probe 200 has V MAX at the charging terminal T 1 and V MIN at the mirror plane 139 ( FIG. 8B ), where at complex depth z=-d/2 and Not at the junction at the physical boundary 136 of the lossy conducting medium 203, Zip = Rip + j0. (FIG. 8B). Finally, charging terminal T 1 is at sufficient height H 1 (h≥R x tanψ i,B ) of FIG. do so, where Item is dominant. Receive circuitry may be used with one or more guided surface waveguide probes to facilitate wireless transmission and/or power transfer systems.
回去参考图3,可以控制引导表面波导探头200的操作,以调整与引导表面波导探头200相关联的操作条件的改变。例如,可以使用自适应探头控制系统230来控制馈送网络209和/或充电端子T1,以控制引导表面波导探头200的操作。操作条件可以包括,但是不限于损耗传导介质203的特性(例如,电导率σ和相对介电常数εr)的改变、场强的变化和/或引导表面波导探头200的负载的变化。如可以从等式(31)、(41)和(42)看到的,可以通过例如天气状况导致的土壤导电率和介电常数的改变,来影响折射率(n)、复数布鲁斯特角(θi,B)和波倾斜(|W|ejΨ)。Referring back to FIG. 3 , the operation of the guided surface waveguide probe 200 may be controlled to adjust for changes in operating conditions associated with the guided surface waveguide probe 200 . For example, adaptive probe control system 230 may be used to control feed network 209 and/or charging terminal T1 to control operation of guided surface waveguide probe 200 . Operating conditions may include, but are not limited to, changes in the properties of the lossy conducting medium 203 (eg, conductivity σ and relative permittivity ε r ), changes in field strength, and/or changes in the load guiding the surface waveguide probe 200 . As can be seen from equations (31), (41) and (42), the refractive index (n), complex Brewster angle ( θ i,B ) and wave tilt (|W|e jΨ ).
例如电导率测量探头、介电常数传感器、地参数计、场计、电流监视器和/或负载接收器之类的仪器可以用于监控操作条件的改变,并将关于当前操作条件的信息提供给自适应探头控制系统230。探头控制系统230然后可以对引导表面波导探头200做出一个或多个调整,以维持引导表面波导探头200的特定操作条件。例如,当湿度和温度改变时,土壤的电导率也将改变。电导率测量探头和/或介电常数传感器可以位于引导表面波导探头200周围的多个位置。通常,可期望在该操作频率的汉克尔相交距离Rx处或其周围监控电导率和/或介电常数。电导率测量探头和/或介电常数传感器可以位于引导表面波导探头200周围的多个位置(例如,每个象限中)。Instruments such as conductivity measurement probes, permittivity sensors, geometers, field meters, current monitors, and/or load receivers can be used to monitor changes in operating conditions and provide information about current operating conditions to the Adaptive Probe Control System 230. Probe control system 230 may then make one or more adjustments to guided surface waveguide probe 200 to maintain specific operating conditions for guided surface waveguide probe 200 . For example, when the humidity and temperature change, the electrical conductivity of the soil will also change. Conductivity measurement probes and/or permittivity sensors may be located at various locations around guided surface waveguide probe 200 . In general, it may be desirable to monitor conductivity and/or permittivity at or around the Hankel intersection distance Rx of the operating frequency. Conductivity measurement probes and/or permittivity sensors may be located at multiple locations around guided surface waveguide probe 200 (eg, in each quadrant).
电导率测量探头和/或介电常数传感器可以配置为按照周期性的基础估计电导率和/或介电常数,并将该信息传递到探头控制系统230。该信息可以通过网络传递到探头控制系统230,网络比如但是不限于LAN、WLAN、蜂窝网络、或者其它适当的有线或者无线通信网络。基于监控的电导率和/或介电常数,探头控制系统230可以估计折射率(n)、复数布鲁斯特角(θi,B)和/或波倾斜(|W|ejΨ)的变化,并调整引导表面波导探头200,以维持馈送网络209的相位延迟(Φ)等于波倾斜角(Ψ)和/或维持引导表面波导探头200的等效镜像平面模型的谐振。这可以通过例如调整θy、θc和/或CT来实现。例如,探头控制系统230可以调整充电端子T1的自电容和/或应用于充电端子T1的相位延迟(θy,θc),以将引导表面波的电启动效率维持在最大或其附近。例如,充电端子T1的自电容可以通过改变端子的大小来改变。电荷分布也可以通过增加充电端子T1的大小来改进,增加充电端子T1的大小可以减小从充电端子T1的放电的机会。在其它实施例中,充电端子T1可以包括可以调整以改变负载阻抗ZL的可变电感。应用于充电端子T1的相位可以通过改变线圈215(图7)上的抽头位置、和/或通过包括沿着线圈215的多个预定义抽头并在不同预定义抽头位置之间切换来调整,以最大化启动效率。The conductivity measurement probe and/or permittivity sensor may be configured to estimate the conductivity and/or permittivity on a periodic basis and communicate this information to the probe control system 230 . This information may be communicated to probe control system 230 over a network such as, but not limited to, a LAN, WLAN, cellular network, or other suitable wired or wireless communication network. Based on the monitored conductivity and/or permittivity, probe control system 230 can estimate changes in refractive index (n), complex Brewster angle (θ i,B ), and/or wave tilt (|W|e jΨ ), and The guided surface waveguide probe 200 is tuned to maintain the phase delay (Φ) of the feed network 209 equal to the wave tilt angle (Ψ) and/or to maintain the resonance of the equivalent mirror plane model of the guided surface waveguide probe 200 . This can be achieved, for example, by adjusting θ y , θ c and/or CT . For example, the probe control system 230 may adjust the self - capacitance of the charge terminal T1 and/or the phase delay ( θy , θc ) applied to the charge terminal T1 to maintain the electric start - up efficiency of the guided surface wave at or near a maximum . For example, the self - capacitance of charging terminal T1 can be changed by changing the size of the terminal. Charge distribution can also be improved by increasing the size of charge terminal T1, which reduces the chance of discharge from charge terminal T1. In other embodiments, charging terminal T 1 may include a variable inductance that may be adjusted to vary load impedance ZL. The phase applied to charging terminal T1 may be adjusted by changing the tap position on coil 215 (FIG. 7), and/or by including a plurality of predefined taps along coil 215 and switching between different predefined tap positions, to maximize startup efficiency.
场或者场强(FS)计也可以围绕引导表面波导探头200分布,以测量与引导表面波相关联的场的场强。场或者FS计可以配置为检测场强和/或场强(例如,电场强)的改变,并将该信息传递到探头控制系统230。该信息可以通过网络传递到探头控制系统230,网络比如但是不限于LAN、WLAN、蜂窝网络、或者其它适当的通信网络。当负载和/或环境条件在操作期间改变或者变化时,可以调整引导表面波导探头200以维持在FS计位置的特定场强,以保证到接收器的适当的功率传输、和它们提供的负载。Field or field strength (FS) meters may also be distributed around the guided surface waveguide probe 200 to measure the field strength of the field associated with the guided surface wave. The field or FS meter may be configured to detect field strength and/or changes in field strength (eg, electric field strength) and communicate this information to probe control system 230 . This information may be communicated to probe control system 230 over a network such as, but not limited to, a LAN, WLAN, cellular network, or other suitable communication network. As the load and/or environmental conditions change or change during operation, the guided surface waveguide probes 200 can be adjusted to maintain a specific field strength at the FS meter location to ensure proper power transfer to the receiver, and the load they provide.
例如,可以调整应用于充电端子T1的相位延迟(Φ=θy+θc)以匹配波倾斜角(Ψ)。通过调整一个或两个相位延迟,可以调整引导表面波导探头200,以保证波倾斜对应于复数布鲁斯特角。这可以通过调整线圈215(图7)上的抽头位置、以改变供应到充电端子T1的相位延迟来实现。供应到充电端子T1的电压电平还可以增加或者减少,以调整电场强。这可以通过调整激励源212的输出电压或者通过调整或者重新配置馈送网络209来实现。例如,可以调整AC源212的抽头227(图7)的位置,以增加由充电端子T1看到的电压。在预定义范围内维持场强级别可以改进接收器的耦合,减小地电流损耗,和避免与来自其它引导表面波导探头200的传输的干扰。For example, the phase delay (Φ = θ y + θ c ) applied to the charge terminal T 1 can be adjusted to match the wave tilt angle (Ψ). By adjusting one or two phase delays, the guided surface waveguide probe 200 can be tuned to ensure that the wave tilt corresponds to a complex Brewster angle. This can be accomplished by adjusting the tap position on coil 215 (FIG. 7 ) to vary the phase delay of the supply to charge terminal T1. The voltage level supplied to the charging terminal T1 can also be increased or decreased to adjust the electric field strength. This can be achieved by adjusting the output voltage of the excitation source 212 or by adjusting or reconfiguring the feed network 209 . For example, the position of tap 227 (FIG. 7 ) of AC source 212 may be adjusted to increase the voltage seen by charging terminal T1. Maintaining field strength levels within a predefined range can improve receiver coupling, reduce ground current losses, and avoid interference with transmissions from other guided surface waveguide probes 200 .
探头控制系统230可以以硬件、固件、由硬件执行的软件、或者其组合实现。例如,探头控制系统230可以包括处理电路,其包括处理器和存储器,处理器和存储器两者可以耦合到本地接口,例如具有附带的控制/地址总线的数据总线,如本领域技术人员认识到的那样。探头控制应用可以由处理器执行,以基于监控的条件调整引导表面波导探头200的操作。探头控制系统230还可以包括用于与各种监控装置通信的一个或多个网络接口。通信可以通过网络,比如但是不限于LAN、WLAN、蜂窝网络、或者其它适当的通信网络。探头控制系统230例如可以包括比如服务器、桌面计算机、膝上型计算机之类的计算机系统,或者具有类似性能的其他系统。The probe control system 230 may be implemented in hardware, firmware, software executed by hardware, or a combination thereof. For example, probe control system 230 may include processing circuitry including a processor and memory, both of which may be coupled to a local interface, such as a data bus with an accompanying control/address bus, as will be appreciated by those skilled in the art like that. A probe control application may be executed by the processor to adjust the operation of the guided surface waveguide probe 200 based on the monitored conditions. Probe control system 230 may also include one or more network interfaces for communicating with various monitoring devices. Communications may be over a network such as, but not limited to, a LAN, WLAN, cellular network, or other suitable communication network. Probe control system 230 may include, for example, a computer system such as a server, desktop computer, laptop computer, or other systems with similar capabilities.
回头参考图5A的实例,示出复数角三角学用于具有在汉克尔相交距离(Rx)处的复数布鲁斯特角(θi,B)的充电端子T1的入射电场(E)的射线光学解释。回想,对于损耗传导介质,布鲁斯特角是复数且由等式(38)指定。电气地,几何参数通过等式(39)由充电端子T1的电有效高度(heff)相关。因为物理高度(hp)和汉克尔相交距离(Rx)两者都是实数量,所以在汉克尔相交距离处的所需的引导表面波倾斜的角度(WRx)等于复数有效高度(heff)的相位(Φ)。对于位于物理高度hp处且以具有适当相位Φ的电荷激励的充电端子T1,产生的电场在汉克尔相交距离Rx处,并以布鲁斯特角入射该损耗传导介质边界界面。在这些条件下,可以激励引导表面波导模式,而没有反射或者实质上可忽略的反射。Referring back to the example of FIG. 5A , the complex angle trigonometry is shown for the incident electric field (E) of the charging terminal T 1 with a complex Brewster angle (θ i,B ) at the Hankel intersection distance (R x ). Ray Optics Explained. Recall that for lossy conducting media, the Brewster's angle is complex and is specified by equation (38). Electrically, the geometric parameter is related by the electrical effective height (h eff ) of the charging terminal T 1 by equation (39). Since both the physical height (h p ) and the Hankel intersection distance (R x ) are real quantities, the angle of the required guided surface wave tilt (W Rx ) at the Hankel intersection distance is equal to the complex effective height Phase (Φ) of (h eff ). For a charging terminal T1 located at physical height hp and excited with a charge of appropriate phase Φ, the resulting electric field is at the Hankel intersection distance Rx and incident on the lossy conductive medium boundary interface at Brewster's angle. Under these conditions, guided surface waveguide modes can be excited with no or substantially negligible reflections.
但是,等式(39)指的是引导表面波导探头200的物理高度可以相对小。虽然这将激励引导表面波导模式,但是这可能导致具有很小自由改变的过大的绑定电荷。为了补偿,可以将充电端子T1升高到适当标高,以增加自由电荷量。作为一个示例经验法则,充电端子T1可以位于充电端子T1的有效直径的大约4-5倍(或者更大)的标高处。图6图示将充电端子T1升高到如图5A所示的物理高度(hp)以上的效果。增加的标高导致波倾斜入射该损耗传导介质的距离移动超出汉克尔相交点121(图5A)。为了改进引导表面波导模式中的耦合,且因此提供引导表面波的更大的启动效率,可使用下部补偿端子T2,以调整充电端子T1的总有效高度(hTE),使得在汉克尔相交距离处的波倾斜在布鲁斯特角。However, equation (39) implies that the physical height of the guided surface waveguide probe 200 may be relatively small. While this will excite guided surface waveguide modes, this may result in excessively large bound charges with little free variation. To compensate, the charge terminal T1 can be raised to an appropriate level to increase the amount of free charge. As an example rule of thumb, charging terminal T 1 may be located at an elevation of about 4-5 times (or more) the effective diameter of charging terminal T 1 . Figure 6 illustrates the effect of raising charging terminal T1 above the physical height ( hp ) shown in Figure 5A. The increased elevation causes the distance of waves incident obliquely on the lossy conducting medium to shift beyond the Hankel intersection 121 (FIG. 5A). In order to improve the coupling in guided surface waveguide modes, and thus provide greater startup efficiency of guided surface waves, the lower compensation terminal T 2 can be used to adjust the total effective height (h TE ) of the charging terminal T 1 such that at Hank Waves at the intersection distance are inclined at Brewster's angle.
参考图12,示出了引导表面波导探头200c的实例,其包括沿着与由损耗传导介质203表示的平面垂直的垂直轴z布置的升高的充电端子T1和下部补偿端子T2。在这方面,充电端子T1直接位于补偿端子T2以上,虽然可能使用两个或者更多充电和/或补偿端子TN的一些其他布置。根据本公开的实施例,引导表面波导探头200c设置在损耗传导介质203以上。损耗传导介质203组成区域1,同时第二介质206组成区域2,第二介质206与损耗传导介质203共享边界界面。Referring to FIG. 12 , there is shown an example of a guided surface waveguide probe 200c comprising a raised charging terminal T 1 and a lower compensation terminal T 2 arranged along a vertical axis z perpendicular to the plane represented by the lossy conducting medium 203 . In this respect, the charging terminal T1 is directly above the compensation terminal T2, although some other arrangement of two or more charging and/or compensation terminals TN might be used. According to an embodiment of the present disclosure, the guided surface waveguide probe 200c is disposed above the lossy conducting medium 203 . The lossy conducting medium 203 constitutes region 1 , while the second dielectric 206 constitutes region 2 , and the second medium 206 shares a boundary interface with the lossy conducting medium 203 .
引导表面波导探头200c包括馈送网络209,该馈送网络209将激励源212耦合到充电端子T1和补偿端子T2。根据各种实施例,取决于在任何给定时刻施加到端子T1和T2的电压,电荷Q1和Q2能施加于相应充电和补偿端子T1和T2上。I1是经由端子引线在充电端子T1上馈送电荷Q1的传导电流,且I2是经由端子引线在补偿端子T2上馈送电荷Q2的传导电流。The guided surface waveguide probe 200c includes a feed network 209 that couples an excitation source 212 to a charging terminal T 1 and a compensation terminal T 2 . According to various embodiments, charges Q1 and Q2 can be applied to respective charge and compensation terminals T1 and T2 depending on the voltage applied to terminals T1 and T2 at any given moment. I1 is the conduction current feeding the charge Q1 on the charging terminal T1 via the terminal lead, and I2 is the conduction current feeding the charge Q2 on the compensation terminal T2 via the terminal lead.
根据图12的实施例,充电端子T1位于损耗传导介质203以上物理高度H1处,且补偿端子T2沿着垂直轴z直接位于T1以下物理高度H2处,其中H2小于H1。传输结构的高度h可以计算为h=H1-H2。充电端子T1具有隔离的(或者自)电容C1,且补偿端子T2具有隔离的(或者自)电容C2。互电容CM可取决于其间的距离而存在于端子T1和T2之间。在操作期间,取决于在任何给定时刻施加到充电端子T1和补偿端子T2的电压,电荷Q1和Q2分别施加在充电端子T1和补偿端子T2上。According to the embodiment of Fig. 12, the charging terminal T1 is located at a physical height H1 above the lossy conductive medium 203, and the compensation terminal T2 is located at a physical height H2 directly below T1 along the vertical axis z, where H2 is smaller than H1 . The height h of the transport structure can be calculated as h=H 1 −H 2 . The charging terminal T 1 has an isolated (or self) capacitance C 1 , and the compensation terminal T 2 has an isolated (or self) capacitance C 2 . A mutual capacitance CM may exist between terminals T1 and T2 depending on the distance therebetween. During operation, depending on the voltages applied to charging terminal T1 and compensating terminal T2 at any given moment, charges Q1 and Q2 are applied to charging terminal T1 and compensating terminal T2 , respectively .
接下来参考图13,示出了由图12的充电端子T1和补偿端子T2上的升高的电荷产生的效果的射线光学解释。利用升高到射线在大于如由线163图示的汉克尔相交点121的距离处以布鲁斯特角与损耗传导介质相交的高度的充电端子T1,补偿端子T2可以用于通过补偿增加的高度而调整hTE。补偿端子T2的效果是减小引导表面波导探头的电有效高度(或者有效地提升损耗介质界面),使得在汉克尔相交距离处的波倾斜在布鲁斯特角,如线166图示的。Referring next to FIG. 13 , there is shown a radiation optics interpretation of the effect produced by the elevated charge on the charging terminal T 1 and compensating terminal T 2 of FIG. 12 . With charging terminal T1 raised to a height at which the ray intersects the lossy conducting medium at Brewster's angle at a distance greater than the Hankel intersection point 121 as illustrated by line 163, compensation terminal T2 can be used to compensate for the increased Adjust h TE for altitude. The effect of the compensation terminal T2 is to reduce the electrical effective height of the guided surface waveguide probe (or effectively lift the lossy dielectric interface) so that the wave at the Hankel intersection distance is tilted at the Brewster angle, as illustrated by line 166.
总有效高度可以写为与充电端子T1相关联的上部有效高度(hUE)和与补偿端子T2相关联的下部有效高度(hLE)的叠加,使得:The total effective height can be written as the superposition of the upper effective height (h UE ) associated with the charging terminal T 1 and the lower effective height (h LE ) associated with the compensation terminal T 2 such that:
其中ΦU是施加到上部充电端子T1的相位延迟,ΦL是施加到下部补偿端子T2的相位延迟,β=2π/λp是来自等式(35)的传播因数,hp是充电端子T1的物理高度且hd是补偿端子T2的物理高度。如果考虑额外的引线长度,则可以通过将充电端子引线长度z加到充电端子T1的物理高度hp和将补偿端子引线长度y加到补偿端子T2的物理高度hd来说明它们,如下所示:where Φ U is the phase delay applied to the upper charging terminal T1, Φ L is the phase delay applied to the lower compensation terminal T2, β = 2π/λ p is the propagation factor from equation (35), and h p is the charging The physical height of terminal T1 and hd is the physical height of compensating terminal T2 . If the additional lead lengths are considered, they can be accounted for by adding the charging terminal lead length z to the physical height h p of the charging terminal T1 and the compensation terminal lead length y to the physical height h d of the compensation terminal T2 as follows Shown:
下部有效高度可以用于调整总有效高度(hTE)以等于图5A的复数有效高度(heff)。The lower effective height can be used to adjust the total effective height (h TE ) to equal the complex effective height (h eff ) of FIG. 5A .
等式(85)或者(86)可以用于确定补偿端子T2的下部盘的物理高度和馈送端子的相位角,以获得在汉克尔相交距离处的所需波倾斜。例如,等式(86)可以重写为作为补偿端子高度(hd)的函数施加到充电端子T1的相移,以给出:Equation (85) or (86 ) can be used to determine the physical height of the lower plate of the compensation terminal T2 and the phase angle of the feed terminal to obtain the desired wave tilt at the Hankel intersection distance. For example, equation (86) can be rewritten as a phase shift applied to charging terminal T1 as a function of compensation terminal height ( hd ) to give:
为了确定补偿端子T2的定位,可以使用上述关系。首先,总有效高度(hTE)是上部充电端子T1的复数有效高度(hUE)和下部补偿端子T2的复数有效高度(hLE)的叠加,如等式(86)表示的。之后,入射角的正切可以几何地表示为: In order to determine the positioning of the compensation terminal T2, the relationship described above can be used. First, the total effective height (h TE ) is the superposition of the complex effective height (h UE ) of the upper charging terminal T 1 and the complex effective height (h LE ) of the lower compensation terminal T 2 , as expressed in equation (86). Afterwards, the tangent of the incident angle can be expressed geometrically as:
其等于波倾斜的定义,W。最终,给定所需汉克尔相交距离Rx,可以调整hTE以使得入射射线的波倾斜匹配在汉克尔相交点121处的复数布鲁斯特角。这可以通过调整hp、ΦU和/或hd实现。It is equal to the definition of wave tilt, W. Finally, given the desired Hankel intersection distance R x , h TE can be adjusted such that the wave tilt of the incident ray matches the complex Brewster angle at the Hankel intersection point 121 . This can be achieved by adjusting h p , Φ U and/or h d .
当在引导表面波导探头的实例的上下文中讨论时,这些概念可以更好地理解。参考图14,示出了包括沿着实质上与由损耗传导介质203表示的平面正交的垂直轴z定位的上部充电端子T1(例如,在高度hT的球)和下部补偿端子T2(例如,在高度hd的盘)的引导表面波导探头200d的实例的图形表示。在操作期间,取决于在任何给定时刻施加到端子T1和T2的电压,电荷Q1和Q2分别施加在充电端子T1和补偿端子T2上。These concepts are better understood when discussed in the context of the example of guided surface waveguide probes. Referring to FIG. 14 , there is shown an upper charging terminal T 1 (e.g., a ball at height h T ) and a lower compensation terminal T 2 positioned along a vertical axis z substantially orthogonal to the plane represented by the lossy conductive medium 203. A graphical representation of an example of a guided surface waveguide probe 200d (eg, a disk at height hd). During operation, charges Q1 and Q2 are applied to charging terminal T1 and compensation terminal T2 , respectively, depending on the voltage applied to terminals T1 and T2 at any given moment.
AC源212用作充电端子T1的激励源,其通过包括比如螺旋线圈的线圈215的馈送网络209耦合到引导表面波导探头200d。AC源212可以通过抽头227连接在线圈215的下部两端,如图14所示,或者可以通过主线圈的方式电感地耦合到线圈215。线圈215可以在第一端耦合到地桩218并在第二段耦合到充电端子T1。在一些实现中,可以使用在线圈215的第二端处的抽头224调整到充电端子T1的连接。补偿端子T2位于损耗传导介质203(例如,地或者大地)以上并实质上与其平行,且通过耦合到线圈215的抽头致能。位于线圈215和地桩218之间的电流计236可以用于提供在引导表面波导探头的基底处的电流(I0)的幅值的指示。替代地,可以在耦合到地桩218的导体周围使用电流钳以获得电流(I0)的幅值的指示。An AC source 212 is used as an excitation source for the charging terminal T1, which is coupled to the guided surface waveguide probe 200d through a feed network 209 comprising a coil 215, such as a helical coil. The AC source 212 may be connected across the lower ends of the coil 215 via taps 227, as shown in Figure 14, or may be inductively coupled to the coil 215 by way of the main coil. Coil 215 may be coupled at a first end to ground stake 218 and at a second end to charging terminal T 1 . In some implementations, the connection to charging terminal T 1 can be adjusted using tap 224 at the second end of coil 215 . Compensation terminal T 2 is located above and substantially parallel to lossy conductive medium 203 (eg, ground or earth) and is enabled by a tap coupled to coil 215 . A current meter 236 located between the coil 215 and the ground pile 218 may be used to provide an indication of the magnitude of the current (I 0 ) at the base of the guiding surface waveguide probe. Alternatively, a current clamp may be used around the conductor coupled to ground stake 218 to obtain an indication of the magnitude of the current (I 0 ).
在图14的实例中,线圈215在第一端耦合到地桩218,并经由垂直馈线导体221在第二端耦合到充电端子T1。在一些实现中,可以使用在线圈215的第二端处的抽头224调整到充电端子T1的连接,如图14所示。线圈215可以通过在线圈215的下部的抽头227由AC源212以操作频率致能。在其它实现中,AC源212可以通过主线圈电感地耦合到线圈215。补偿端子T2通过耦合到线圈215的抽头233致能。位于线圈215和地桩218之间的电流计236可以用于提供在引导表面波导探头200d的基底处的电流的幅值的指示。替代的,可以在耦合到地桩218的导体周围使用电流钳,以获得电流的幅值的指示。补偿端子T2位于损耗传导介质203(例如,地)以上并实质上与其平行。In the example of FIG. 14 , coil 215 is coupled at a first end to ground stake 218 and is coupled at a second end to charging terminal T 1 via vertical feeder conductor 221 . In some implementations, the connection to charging terminal T 1 can be adjusted using tap 224 at the second end of coil 215 , as shown in FIG. 14 . The coil 215 may be energized by the AC source 212 at the operating frequency through a tap 227 on the lower portion of the coil 215 . In other implementations, AC source 212 may be inductively coupled to coil 215 through a primary coil. Compensation terminal T 2 is enabled by tap 233 coupled to coil 215 . A current meter 236 located between the coil 215 and the ground stake 218 may be used to provide an indication of the magnitude of the current at the base of the guided surface waveguide probe 200d. Alternatively, a current clamp may be used around the conductor coupled to ground stake 218 to obtain an indication of the magnitude of the current. Compensation terminal T2 is located above and substantially parallel to lossy conductive medium 203 (eg, ground ) .
在图14的实例中,位于线圈215上的到充电端子T1的连接在用于补偿端子T2的抽头223的连接点以上。这种调整允许增大的电压(且因此更高的电荷Q1)施加到上部充电端子T1。在其它实施例中,充电端子T1和补偿端子T2的连接点可以反向。可以调整引导表面波导探头220d的总有效高度(hTE)以激励具有在汉克尔相交距离Rx处的引导表面波倾斜的电场。汉克尔相交距离也可以通过对于-jγρ令等式(20b)和(21)的幅值相等,并求解如图4所示的Rx而求出。折射率(n)、复数布鲁斯特角(θi,B和ψi,B)、波倾斜(|W|ejΨ)和复数有效高度(heff=hpejΦ)可以相对于上面的等式(41)-(44)确定。In the example of FIG. 14 , the connection to the charge terminal T 1 on the coil 215 is above the connection point of the tap 223 for the compensation terminal T 2 . This adjustment allows an increased voltage (and thus a higher charge Q 1 ) to be applied to the upper charging terminal T 1 . In other embodiments, the connection points of the charging terminal T1 and the compensation terminal T2 may be reversed. The overall effective height (h TE ) of the guided surface waveguide probe 220d can be adjusted to excite an electric field with a guided surface wave tilt at the Hankel intersection distance Rx. The Hankel intersection distance can also be found by equating the magnitudes of equations (20b) and (21) for -jγρ and solving for R x as shown in FIG. 4 . Refractive index (n), complex Brewster angles (θ i,B and ψ i,B ), wave tilt (|W|e jΨ ) and complex effective height (h eff = h p e jΦ ) can be compared to the above equal Formulas (41)-(44) are determined.
利用所选的充电端子T1配置,可以确定球面直径(或者有效球面直径)。例如,如果充电端子T1不配置为球面,则端子配置可以建模为具有有效球面直径的球面电容。可以选择充电端子T1的大小以提供用于施加在端子上的电荷Q1的足够大的表面。总的来说,期望使得充电端子T1尽可能大。充电端子T1的大小应该足够大以避免周围空气的电离,这可能导致充电端子周围的放电或者火花。为了减小充电端子T1上的绑定电荷的量,提供用于启动引导表面波的充电端子T1上的自由电荷的期望提升应该是损耗传导介质(例如,大地)以上的有效球面直径的至少4-5倍。补偿端子T2可以用于调整引导表面波导探头200d的总有效高度(hTE),以激励具有在Rx处的引导表面波倾斜的电场。补偿端子T2可以在hd=hT-hp处位于充电端子T1以下,其中hT是充电端子T1的总物理高度。对于固定的补偿端子T2的位置和施加到上部充电端子T1的相位延迟ΦU,施加到下部补偿端子T2的相位延迟ΦL可以使用等式(86)的关系来确定,以使得:With the selected charging terminal T1 configuration, the spherical diameter (or effective spherical diameter ) can be determined. For example, if the charging terminal T1 is not configured as a sphere, the terminal configuration can be modeled as a spherical capacitance with an effective sphere diameter. The size of charging terminal T1 may be chosen to provide a sufficiently large surface area for charge Q1 to be applied on the terminal. In general, it is desirable to make the charging terminal T1 as large as possible. The size of the charging terminal T1 should be large enough to avoid ionization of the surrounding air, which could lead to discharge or sparks around the charging terminal. In order to reduce the amount of bound charge on charge terminal T1, the desired increase in free charge on charge terminal T1 that is used to initiate guided surface waves should be the effective spherical diameter above the lossy conducting medium (e.g., the earth) At least 4-5 times. The compensation terminal T 2 can be used to adjust the overall effective height (h TE ) of the guided surface waveguide probe 200d to excite an electric field with a guided surface wave tilt at Rx. The compensation terminal T2 may be located below the charging terminal T1 at hd = hT - hp, where hT is the total physical height of the charging terminal T1 . For a fixed position of the compensation terminal T2 and a phase delay ΦU applied to the upper charging terminal T1, the phase delay ΦL applied to the lower compensation terminal T2 can be determined using the relationship of equation (86 ) such that:
在替代实施例中,补偿端子T2可以位于高度hd处,其中Im{ΦL}=0。这在图15A中图形地示出,图15A分别示出ΦU的虚数和实数部分的绘图172和175。补偿端子T2位于高度hd处,其中Im{ΦU}=0,如绘图172图形地图示的。在该固定高度,可以从Re{ΦU}确定线圈相位ΦU,如绘图175图形地图示的。In an alternative embodiment, the compensation terminal T 2 may be located at a height h d where Im{Φ L }=0. This is shown graphically in Fig. 15A, which shows plots 172 and 175 of the imaginary and real parts of Φ U , respectively. Compensation terminal T 2 is located at height h d where Im{Φ U }=0, as graphically illustrated by plot 172 . At this fixed height, the coil phase Φ U can be determined from Re{Φ U }, as graphically illustrated by plot 175 .
对于耦合到线圈215的AC源212(例如,在50Ω点以最大化耦合),可以调整抽头233的位置以用于补偿端子T2与在操作频率的线圈的至少一部分的并行谐振。图15B示出了图14的总的电气关联(hookup)的示意性图,其中V1是通过抽头227从AC源212施加到线圈215的下部部分的电压,V2是供应到上部充电端子T1的抽头224处的电压,且V3是通过抽头233施加到下部补偿端子T2的电压。电阻Rp和Rd分别表示充电端子T1和补偿端子T2的地返回电阻。充电端子T1和补偿端子T2可以配置为球面、圆柱、环面、环、罩或者电容结构的任何其他组合。可以选择充电端子T1和补偿端子T2的大小以提供在端子上施加的电荷Q1和Q2的足够大的表面。总的来说,需要使得充电端子T1尽可能大。充电端子T1的大小应该足够大以避免周围空气的电离,这可导致充电端子周围的放电或者火花。充电端子T1和补偿端子T2的自电容Cp和Cd例如可以分别使用等式(24)确定。For AC source 212 coupled to coil 215 (eg, at the 50Ω point to maximize coupling), the position of tap 233 may be adjusted for compensation of parallel resonance of terminal T2 with at least a portion of the coil at the operating frequency. 15B shows a schematic diagram of the general electrical hookup of FIG. 14 , where V is the voltage applied from the AC source 212 to the lower portion of the coil 215 via the tap 227, and V is the voltage supplied to the upper charging terminal T 1 , and V3 is the voltage applied to the lower compensation terminal T2 through tap 233. Resistors Rp and Rd represent the ground return resistances of charging terminal T1 and compensation terminal T2 , respectively. The charging terminal T1 and the compensation terminal T2 can be configured as a sphere, cylinder, torus, ring, cap, or any other combination of capacitive structures. The size of charge terminal T1 and compensation terminal T2 may be chosen to provide a sufficiently large surface area for charges Q1 and Q2 to be applied on the terminals. In general, it is desirable to make the charging terminal T1 as large as possible. The size of the charging terminal T1 should be large enough to avoid ionization of the surrounding air, which could lead to discharges or sparks around the charging terminal. The self-capacitances C p and C d of the charging terminal T 1 and the compensation terminal T 2 can be determined, for example, using equation (24), respectively.
如在图15B中看到的,由线圈215的电感的至少一部分、补偿端子T2的自电容Cd和与补偿端子T2相关联的地返回电阻Rd形成谐振电路。可以通过调整施加到补偿端子T2的电压V3(例如,通过调整线圈215上的抽头233位置)或者通过调整补偿端子T2的高度和/或大小以调整Cd,来建立并行谐振。可以调整线圈抽头233的位置以用于并行谐振,这将导致通过地桩218和通过电流计236的地电流达到最大点。在已经建立补偿端子T2的并行谐振之后,可以调整AC源212的抽头227的位置到线圈215上的50Ω点。As seen in FIG. 15B , a resonant circuit is formed by at least a portion of the inductance of coil 215 , the self-capacitance C d of compensation terminal T 2 , and the ground return resistance R d associated with compensation terminal T 2 . Parallel resonance may be established by adjusting the voltage V 3 applied to compensation terminal T 2 (eg, by adjusting the position of tap 233 on coil 215 ) or by adjusting the height and/or size of compensation terminal T 2 to adjust C d . The position of the coil tap 233 can be adjusted for parallel resonance, which will cause the ground current through the ground pile 218 and through the ammeter 236 to reach a point of maximum. After the parallel resonance of the compensation terminal T2 has been established, the position of the tap 227 of the AC source 212 can be adjusted to the 50Ω point on the coil 215 .
来自线圈215的电压V2可以施加到充电端子T1,且可以调整抽头224的位置以使得总有效高度(hTE)的相位(Φ)近似地等于在汉克尔相交距离(Rx)处的引导表面波倾斜(WRx)的角度。可以调整线圈抽头224的位置直到到达该操作点为止,这导致通过电流计236的地电流增大到最大。在这点,由引导表面波导探头200d激励的产生的场实质上模式匹配到损耗传导介质203的表面上的引导表面波导模式,导致沿着损耗传导介质203的表面的引导表面波的启动。这可以通过测量沿着从引导表面波导探头200延伸的径向的场强来确认。Voltage V2 from coil 215 can be applied to charging terminal T1, and the position of tap 224 can be adjusted so that the phase (Φ) of the total effective height ( hTE ) is approximately equal to that at the Hankel intersection distance (Rx) The angle of the guided surface wave tilt (W Rx ). The position of the coil tap 224 can be adjusted until this operating point is reached, which causes the ground current through the ammeter 236 to increase to a maximum. In this regard, the resulting field excited by the guided surface waveguide probe 200d is substantially mode matched to the guided surface waveguide mode on the surface of the lossy conducting medium 203 , resulting in the initiation of guided surface waves along the surface of the lossy conducting medium 203 . This can be confirmed by measuring the field strength along the radial direction extending from the guided surface waveguide probe 200 .
可以通过充电端子T1的附加和/或通过抽头224施加到充电端子T1的电压的调整,来改变包括补偿端子T2的电路的谐振。虽然调整补偿端子电路用于谐振帮助充电端子连接的后续调整,但是不必建立在汉克尔相交距离(Rx)处的引导表面波倾斜(WRx)。可以进一步调整该系统,以通过迭代地调整AC源212的抽头227的位置以在线圈215上的50Ω点、和调整抽头233的位置以最大化通过电流计236的地电流,来改进耦合。当调整抽头227和233的位置时,或者当其他组件附加到线圈215时,包括补偿端子T2的电路的谐振可以漂移。 The resonance of the circuit including the compensation terminal T2 can be changed by addition of the charging terminal T1 and/or adjustment of the voltage applied to the charging terminal T1 by the tap 224 . While tuning the compensation terminal circuit for resonance aids subsequent adjustment of the charging terminal connection, it is not necessary to establish the guided surface wave tilt (W Rx ) at the Hankel crossing distance (R x ). The system can be further tuned to improve coupling by iteratively adjusting the position of tap 227 of AC source 212 to be at the 50Ω point on coil 215 , and adjusting the position of tap 233 to maximize ground current through ammeter 236 . When the position of taps 227 and 233 is adjusted, or when other components are added to coil 215, the resonance of the circuit including compensation terminal T2 may shift.
在其它实现中,来自线圈215的电压V2可以施加到充电端子T1,且可以调整抽头233的位置,以使得总有效高度(hTE)的相位(Φ)近似地等于在Rx处的引导表面波倾斜的角度(Ψ)。可以调整线圈抽头224的位置,直到达到操作点为止,这导致通过电流计236的地电流实质上达到最大。产生的场实质上模式匹配到损耗传导介质203上的引导表面波导模式,且沿着损耗传导介质203的表面启动引导表面波。这可以通过测量沿着从引导表面波导探头200延伸的径向的场强来确认。可以进一步调整该系统,以通过迭代地调整AC源212的抽头227的位置在线圈215上的50Ω点,并调整抽头224和/或223的位置以最大化通过电流计236的地电流,来改进耦合。 In other implementations, voltage V2 from coil 215 can be applied to charging terminal T1, and the position of tap 233 can be adjusted such that the phase (Φ) of the total effective height ( hTE ) is approximately equal to that at Rx The angle (Ψ) at which the guided surface wave is tilted. The position of the coil tap 224 can be adjusted until an operating point is reached, which results in a substantially maximum ground current through the ammeter 236 . The resulting field is substantially mode matched to the guided surface waveguide mode on the lossy conducting medium 203 and the guided surface wave is launched along the surface of the lossy conducting medium 203 . This can be confirmed by measuring the field strength along the radial direction extending from the guided surface waveguide probe 200 . The system can be further tuned to improve by iteratively adjusting the position of tap 227 of AC source 212 at the 50Ω point on coil 215, and adjusting the position of taps 224 and/or 223 to maximize the ground current through ammeter 236 coupling.
回头参考图12,可以控制引导表面波导探头200的操作,以调整用于与引导表面波导探头200相关联的操作条件的变化。例如,探头控制系统230可以用于控制馈送网络209和/或充电端子T1和/或补偿端子T2的定位,以控制引导表面波导探头200的操作。操作条件可以包括,但是不限于损耗传导介质203的特性(例如,电导率σ和相对介电常数εr)的变化、场强的变化和/或引导表面波导探头20的负载的变化。如可以从等式(41)-(44)看到的,可以通过例如由天气条件导致的土壤电导率和介电常数的改变,影响折射率(n)、复数布鲁斯特角(θi,B和ψi,B)、波倾斜(|W|ejΨ)和复数有效高度(heff=hpejΦ)。Referring back to FIG. 12 , the operation of the guided surface waveguide probe 200 may be controlled to adjust for changes in operating conditions associated with the guided surface waveguide probe 200 . For example, the probe control system 230 may be used to control the positioning of the feed network 209 and/or the charging terminal T 1 and/or the compensation terminal T 2 to control the operation of the guided surface waveguide probe 200 . Operating conditions may include, but are not limited to, changes in the properties of the lossy conducting medium 203 (eg, conductivity σ and relative permittivity ε r ), changes in field strength, and/or changes in the load guiding the surface waveguide probe 20 . As can be seen from equations (41)-(44), the refractive index (n), complex Brewster angle (θi ,B and ψ i,B ), wave tilt (|W|e jΨ ) and complex effective height (h eff = h p e jΦ ).
例如电导率测量探头、介电常数传感器、地参数计、场计、电流监视器和/或负载接收器之类的仪器可以用于监控操作条件的改变,并将关于当前操作条件的信息提供给探头控制系统230。探头控制系统230然后可以对引导表面波导探头200做出一个或多个调整,以维持引导表面波导探头200的特定操作条件。例如,当湿度和温度改变时,土壤的电导率也将改变。电导率测量探头和/或介电常数传感器可以位于引导表面波导探头200周围的多个位置。通常,期望对于该操作频率在汉克尔相交距离Rx处或其周围监控电导率和/或介电常数。电导率测量探头和/或介电常数传感器可以位于引导表面波导探头200周围的多个位置(例如,每个象限中)。Instruments such as conductivity measurement probes, permittivity sensors, geometers, field meters, current monitors, and/or load receivers can be used to monitor changes in operating conditions and provide information about current operating conditions to the Probe control system 230 . Probe control system 230 may then make one or more adjustments to guided surface waveguide probe 200 to maintain specific operating conditions for guided surface waveguide probe 200 . For example, when the humidity and temperature change, the electrical conductivity of the soil will also change. Conductivity measurement probes and/or permittivity sensors may be located at various locations around guided surface waveguide probe 200 . In general, it is desirable to monitor conductivity and/or permittivity at or around the Hankel intersection distance Rx for this frequency of operation. Conductivity measurement probes and/or permittivity sensors may be located at multiple locations around guided surface waveguide probe 200 (eg, in each quadrant).
然后参考图16,示出了包括沿着垂直轴z布置的充电端子T1和充电端子T2的引导表面波导探头200e的实例。引导表面波导探头200e设置在组成区域1的损耗传导介质203以上。另外,第二介质206共享与损耗传导介质203的边界界面,并组成区域2。充电端子T1和T2位于损耗传导介质203以上。充电端子T1位于高度H1处,且充电端子T2沿着垂直轴z直接位于T1以下高度H2处,其中H2小于H1。由引导表面波导探头200e表示的传输结构的高度h是h=H1–H2。引导表面波导探头200e包括将激励源212耦合到充电端子T1和T2的馈送网络209。Referring then to FIG. 16 , there is shown an example of a guided surface waveguide probe 200 e comprising charging terminals T 1 and T 2 arranged along a vertical axis z. The guided surface waveguide probe 200e is disposed above the lossy conducting medium 203 constituting the region 1 . In addition, the second medium 206 shares a boundary interface with the lossy conducting medium 203 and constitutes a region 2 . The charging terminals T 1 and T 2 are located above the lossy conducting medium 203 . The charging terminal T1 is located at a height H1, and the charging terminal T2 is located directly below T1 along the vertical axis z at a height H2 , where H2 is smaller than H1 . The height h of the transmission structure represented by the guided surface waveguide probe 200e is h=H 1 −H 2 . Guided surface waveguide probe 200e includes a feed network 209 that couples an excitation source 212 to charging terminals T1 and T2.
充电端子T1和/或T2包括可以保持电荷的导电物质(mass),该导电物质可以被调整大小以保持尽可能多的电荷。充电端子T1具有自电容C1,且充电端子T2具有自电容C2,其可以使用例如等式(24)确定。由于将充电端子T1直接放置在充电端子T2以上,所以在充电端子T1和T2之间创建互电容CM。注意到充电端子T1和T2不需要是相同的,而是每个可以具有单独的大小和形状,且可以包括不同导电物质。最终,由引导表面波导探头200e启动的引导表面波的场强与端子T1上的电荷量成正比。电荷Q1又与和充电端子T1相关联的自电容C1成比例,因为Q1=C1V,其中V是在充电端子T1上施加的电压。Charging terminals T 1 and/or T 2 include a conductive mass that can hold charge, which can be sized to hold as much charge as possible. Charging terminal T 1 has a self-capacitance C 1 and charging terminal T 2 has a self-capacitance C 2 , which can be determined using, for example, equation (24). Due to the placement of charging terminal T1 directly above charging terminal T2, a mutual capacitance C M is created between charging terminals T1 and T2 . Note that charging terminals T1 and T2 need not be identical, but each can be of a separate size and shape, and can comprise different conductive substances. Ultimately, the field strength of the guided surface wave initiated by the guided surface waveguide probe 200e is proportional to the amount of charge on the terminal T1. The charge Q 1 is in turn proportional to the self-capacitance C 1 associated with the charging terminal T 1 , since Q 1 =C 1 V, where V is the voltage applied at the charging terminal T 1 .
当适当地调整以在预定义操作频率操作时,引导表面波导探头200e生成沿着损耗传导介质203的表面的引导表面波。激励源212可以以施加到引导表面波导探头200e以激励该结构的预定义频率生成电能。当由引导表面波导探头200e生成的电磁场实质上与损耗传导介质203模式匹配时,该电磁场实质上合成在复数布鲁斯特角入射的波前,导致很少或者没有反射。因此,表面波导探头200e不产生辐射波,但是沿着损耗传导介质203的表面启动引导表面行波。来自激励源的能量可以作为Zenneck表面电流传送到位于引导表面波导探头200e的有效传输范围内的一个或多个接收器。The guided surface waveguide probe 200 e generates guided surface waves along the surface of the lossy conducting medium 203 when properly tuned to operate at a predefined operating frequency. The excitation source 212 may generate electrical energy at a predefined frequency that is applied to the guided surface waveguide probe 20Oe to excite the structure. When the electromagnetic field generated by the guided surface waveguide probe 20Oe is substantially mode matched to the lossy conducting medium 203, the electromagnetic field substantially synthesizes a wavefront incident at complex Brewster angles, resulting in little or no reflections. Therefore, the surface waveguide probe 200e does not generate radiated waves, but initiates guided surface traveling waves along the surface of the lossy conducting medium 203 . Energy from the excitation source may be delivered as a Zenneck surface current to one or more receivers located within the effective transmission range of the guided surface waveguide probe 20Oe.
人们可以确定损耗传导介质203的表面上的径向Zenneck表面电流Jρ(ρ)的渐近线是J1(ρ)趋近和J2(ρ)远离,其中:One can determine the asymptotes of the radial Zenneck surface current J ρ (ρ) on the surface of the lossy conducting medium 203 as J 1 (ρ) approaching and J 2 (ρ) moving away, where:
趋近(ρ<λ/8): Approaching (ρ<λ/8):
远离(ρ>>λ/8):其中I1是在第一充电端子T1上馈送电荷Q1的传导电流,且I2是在第二充电端子T2上馈送电荷Q2的传导电流。上部充电端子T1上的电荷Q1由Q1=C1V1确定,其中C1是充电端子T1的隔离电容。注意到,对于由给出的上述J1存在第三分量,其符合Leontovich边界条件且是由第一充电端子Q1上的提升的振荡电荷的准静态场泵送的损耗传导介质203中的径向电流贡献。量Zρ=jωμo/γe是损耗传导介质的径向阻抗,其中γe=(jωμ1σ1-ω2μ1ε1)1/2。away from (ρ>>λ/8): where I1 is the conduction current feeding charge Q1 on the first charging terminal T1 and I2 is the conduction current feeding charge Q2 on the second charging terminal T2. The charge Q 1 on the upper charging terminal T 1 is determined by Q 1 =C 1 V 1 , where C 1 is the isolation capacitance of the charging terminal T 1 . Note that for the Given above J 1 there is a third component which complies with the Leontovich boundary condition and is contributed by the radial current in the lossy conducting medium 203 pumped by the quasi-static field of raised oscillating charge on the first charging terminal Q 1 . The quantity Z ρ = jωμ o /γ e is the radial impedance of the lossy conducting medium, where γ e = (jωμ 1 σ 1 −ω 2 μ 1 ε 1 ) 1/2 .
表示由等式(90)和(91)提出的径向电流趋近和远离的渐近线是复数量。根据各种实施例,合成物理表面电流J(ρ))以在幅值和相位上尽可能接近地匹配电流渐近线。就是说,趋近|J(ρ)|是对|J1|的正切,且远离|J(ρ)|是对|J2|的正切。此外,根据各种实施例,J(ρ)的相位应该从J1趋近的相位变换为J2远离的相位。The asymptotes representing the approach and divergence of the radial currents given by equations (90) and (91) are complex quantities. According to various embodiments, the physical surface current J(p)) is synthesized to match the current asymptote as closely as possible in magnitude and phase. That is, approaching |J(ρ)| is the tangent to |J 1 | and moving away from |J(ρ)| is the tangent to |J 2 |. Furthermore, according to various embodiments, the phase of J(ρ) should shift from a phase with J 1 approaching to a phase with J 2 moving away.
为了在传输的地点匹配引导表面波模式以启动引导表面波,表面电流|J2|远离的相位应该不同于表面电流|J1|趋近的相位,该不同是与对应的传播相位加上大约45度或者225度的常数。这是因为对于存在两个根,一个在π/4附近且一个在5π/4附近。适当调整的合成径向表面电流是:In order to match the guided surface wave mode at the point of transmission to initiate the guided surface wave, the phase of the surface current |J 2 | moving away should be different from the phase of the surface current |J 1 | The corresponding propagation phase plus a constant of about 45 degrees or 225 degrees. This is because for There are two roots, one near π/4 and one near 5π/4. The properly adjusted resultant radial surface current is:
注意到这与等式(17)一致。通过麦克斯韦方程,这种J(ρ)表面电流自动创建符合以下的场:Note that this is consistent with equation (17). Through Maxwell's equations, this J(ρ) surface current automatically creates a field according to:
因此,对于要匹配的引导表面波模式的表面电流|J2|远离和表面电流|J1|趋近之间的相位差是由于与等式(1)-(3)一致的、等式(93)-(95)中的汉克尔函数的特性。认识到以下方面是重要的:由等式(1)-(6)和(17)以及等式(92)-(95)表示的场具有绑定到有损界面的传输线模式的性质,而不是与地波传播相关联的辐射场。Therefore, the phase difference between the surface current |J 2 | moving away and the surface current |J 1 | approaching for the guided surface wave mode to be matched is due to the fact that consistent with equations (1)-(3), the equation ( 93) - Properties of the Hankel function in (95). It is important to realize that the fields represented by equations (1)-(6) and (17) and equations (92)-(95) have the property of transmission line modes bound to lossy interfaces, rather than Radiation field associated with ground wave propagation.
为了获得在给定位置处的引导表面波导探头200e的给定设计的适当的电压幅值和相位,可以使用迭代方案。特别地,可以考虑到端子T1和T2的馈送电流、充电端子T1和T2上的电荷以及损耗传导介质203中的它们的镜像,来执行引导表面波导探头200e的给定激励和配置的分析,以便确定生成的径向表面电流密度。可以迭代地执行该处理,直到基于所需参数确定给定引导表面波导探头200e的最优配置和激励为止。为了帮助确定给定引导表面波导探头200e是否以最优级别操作,可以基于在引导表面波导探头200e的位置处的区域1的电导率(σ1)和区域1的介电常数(ε1)的值,使用等式(1)-(12),来生成引导场强曲线103(图1)。这种引导场强曲线103可以提供操作的基准,以使得测量的场强可以与由引导场强曲线103指示的幅值比较,以确定是否已经达成最优传输。To obtain the proper voltage magnitude and phase for a given design of guided surface waveguide probe 200e at a given location, an iterative scheme may be used. In particular, a given excitation and configuration of the guided surface waveguide probe 200e can be performed taking into account the feed currents of the terminals T1 and T2, the charges on the charging terminals T1 and T2 and their mirror images in the lossy conducting medium 203 analysis in order to determine the resulting radial surface current density. This process may be performed iteratively until an optimal configuration and excitation for a given guided surface waveguide probe 20Oe is determined based on the desired parameters. To help determine whether a given guided surface waveguide probe 200e is operating at an optimal level, one can base on the region 1 conductivity (σ 1 ) and region 1 permittivity (ε 1 ) at the location of the guided surface waveguide probe 200e values, using equations (1)-(12), to generate the guided field strength curve 103 (FIG. 1). Such a guided field strength curve 103 may provide a basis of operation such that the measured field strength may be compared with the magnitude indicated by the guided field strength curve 103 to determine whether optimal transmission has been achieved.
为了达成最优条件,可以调整与引导表面波导探头200e相关联的各种参数。可以改变以调整引导表面波导探头200e的一个参数是充电端子T1和/或T2之一或两者相对于损耗传导介质203的表面的高度。另外,还可以调整充电端子T1和T2之间的距离或者间距。这样做时,如可以理解的,人们可以最小化或者按照别的方式更改充电端子T1和T2与损耗传导介质203之间的互电容CM或者任何绑定电容。还可以调整各个充电端子T1和/或T2的大小。通过改变充电端子T1和/或T2的大小,如可以理解的,人们将改变各个自电容C1和/或C2和互电容CM。Various parameters associated with guided surface waveguide probe 200e may be adjusted in order to achieve optimal conditions. One parameter that may be changed to tune the guiding surface waveguide probe 200e is the height of one or both of the charging terminals T 1 and/or T 2 relative to the surface of the lossy conducting medium 203 . In addition, the distance or spacing between the charging terminals T1 and T2 can also be adjusted. In doing so, one can minimize or otherwise modify the mutual capacitance CM or any bonded capacitance between charging terminals T 1 and T 2 and lossy conductive medium 203 , as can be appreciated. It is also possible to adjust the size of the respective charging terminals T1 and/or T2 . By varying the size of the charging terminals T1 and/or T2, as can be appreciated, one will vary the respective self capacitance C1 and/or C2 and mutual capacitance C M .
此外,可以调整的另一参数是与引导表面波导探头200e相关联的馈送网络209。这可以通过调整组成馈送网络209的电感和/或电容性电抗的大小来实现。例如,在这种电感性电抗包括线圈时,可以调整这种线圈上的匝数。最终,可以做出馈送网络209的调整以更改馈送网络209的电长度,由此影响充电端子T1和T2上的电压幅值和相位。Furthermore, another parameter that may be adjusted is the feed network 209 associated with the guided surface waveguide probe 20Oe. This can be achieved by adjusting the size of the inductive and/or capacitive reactances that make up the feed network 209 . For example, where such an inductive reactance comprises a coil, the number of turns on such a coil may be adjusted. Ultimately, adjustments to the feed network 209 may be made to alter the electrical length of the feed network 209, thereby affecting the voltage magnitude and phase on the charging terminals T1 and T2 .
注意到,如可以理解的,通过做出各种调整所执行的传输的迭代可以通过使用计算机模型或者通过调整物理结构来实现。通过做出上述调整,人们可以创建近似在上述等式(90)和(91)中指定的引导表面波模式的相同电流J(ρ)的对应的“趋近”表面电流J1和“远离”表面电流J2。这样做时,产生的电磁场将实质上或者近似地模式匹配到损耗传导介质203的表面上的引导表面波模式。Note that iterations of transmissions performed by making various adjustments may be accomplished through the use of computer models or by adjustments to physical structures, as can be appreciated. By making the above adjustments, one can create corresponding "approaching" surface currents J and "away" approximating the same current J(ρ) of the guided surface wave mode specified in equations (90) and (91) above. Surface current J 2 . In doing so, the resulting electromagnetic field will substantially or approximately mode match to the guided surface wave modes on the surface of the lossy conducting medium 203 .
虽然在图16的实例中没有示出,但是可以控制引导表面波导探头200e的操作,以对于与引导表面波导探头200相关联的操作条件的变化进行调整。例如,图12中示出的探头控制系统230可以用于控制馈送网络290和/或充电端子T1和/或T2的定位和/或大小,以控制引导表面波导探头200e的操作。操作条件可以包括,但是不限于损耗传导介质203的特性变化(例如,电导率σ和相对介电常数εr)、场强的变化和/或引导表面波导探头200e的负载的变化。Although not shown in the example of FIG. 16 , the operation of guided surface waveguide probe 200 e may be controlled to adjust for changes in operating conditions associated with guided surface waveguide probe 200 . For example, the probe control system 230 shown in FIG. 12 may be used to control the positioning and/or size of the feed network 290 and/or charging terminals T1 and/or T2 to control the operation of the guided surface waveguide probe 200e. Operating conditions may include, but are not limited to, changes in properties of the lossy conducting medium 203 (eg, conductivity σ and relative permittivity ε r ), changes in field strength, and/or changes in the loading of the guiding surface waveguide probe 200e.
现在参考图17,示出了图16的引导表面波导探头200e的实例,在这里表示为引导表面波导探头200f。引导表面波导探头200f包括沿着实质上与由损耗传导介质203(例如,大地)表示的平面正交的垂直轴z定位的充电端子T1和T2。第二介质206在损耗传导介质203以上。充电端子T1具有自电容C1,且充电端子T2具有自电容C2。在操作期间,取决于在任何给定时刻施加到充电端子T1和T2的电压,电荷Q1和Q2分别施加在充电端子T1和T2上。取决于其间的距离,充电端子T1和T2之间可存在互电容CM。另外,取决于各个充电端子T1和T2相对于损耗传导介质203的高度,在各个充电端子T1和T2与损耗传导介质203之间可存在绑定电容。Referring now to FIG. 17, there is shown an example of the guided surface waveguide probe 20Oe of FIG. 16, here indicated as guided surface waveguide probe 20Of. Guided surface waveguide probe 200f includes charging terminals T 1 and T 2 positioned along a vertical axis z substantially normal to the plane represented by lossy conducting medium 203 (eg, earth). The second medium 206 is above the lossy conducting medium 203 . The charging terminal T 1 has a self-capacitance C 1 , and the charging terminal T 2 has a self-capacitance C 2 . During operation, charges Q1 and Q2 are applied across charge terminals T1 and T2 , respectively, depending on the voltage applied to charge terminals T1 and T2 at any given moment. Depending on the distance therebetween, there may be a mutual capacitance C M between charging terminals T 1 and T 2 . Additionally, depending on the height of the respective charging terminals T 1 and T 2 relative to the lossy conductive medium 203 , there may be a bonded capacitance between the respective charging terminals T 1 and T 2 and the lossy conductive medium 203 .
引导表面波导探头200f包括馈送网络209,该馈送网络209包括电感性阻抗,该电感性阻抗包括具有耦合到充电端子T1和T2中相应的一个的一对引线的线圈L1a。在一个实施例中,指定线圈L1a具有引导表面波导探头200f的操作频率处的波长一半(1/2)的电长度。Guided surface waveguide probe 200f includes a feed network 209 that includes an inductive impedance including a coil L 1a having a pair of leads coupled to a respective one of charging terminals T 1 and T 2 . In one embodiment, the designated coil L 1a has an electrical length of half (1/2) the wavelength at the operating frequency of the guided surface waveguide probe 200f.
虽然将线圈L1a的电长度指定为在操作频率的波长的近似二分之一(1/2),但是可以理解可以指定线圈L1a具有在其他值的电长度。根据一个实施例,线圈L1a具有近似在操作频率的波长的二分之一的电长度的事实提供在充电端子T1和T2上创建最大电压差分的优势。但是,当调整引导表面波导探头200f以获得引导表面波模式的最优激励时,线圈L1a的长度或者直径可以增大或者减小。线圈长度的调整可以通过位于线圈的一端或者两端的抽头提供。在其它实施例中,这可以是指定电感性阻抗以具有显著小于或者大于在引导表面波导探头200f的操作频率的波长的1/2的电长度的情况。Although the electrical length of coil L 1a is specified to be approximately one-half (1/2) of the wavelength at the frequency of operation, it is understood that coil L 1a may be specified to have an electrical length at other values. According to one embodiment, the fact that the coil L 1a has an electrical length of approximately half the wavelength at the operating frequency provides the advantage of creating a maximum voltage differential across the charging terminals T 1 and T 2 . However, when adjusting the guided surface waveguide probe 200f to obtain optimal excitation of the guided surface wave mode, the length or diameter of the coil L 1a can be increased or decreased. Coil length adjustment can be provided by taps located at one or both ends of the coil. In other embodiments, this may be the case where the inductive impedance is specified to have an electrical length significantly less than or greater than 1/2 the wavelength at the operating frequency of the guided surface waveguide probe 200f.
激励源212可以通过磁耦合的方式耦合到馈送网络209。特别地,激励源212耦合到线圈LP,线圈LP电感地耦合到线圈L1a的线圈LP。这可以通过链路耦合、分接线圈、可变电抗或者可以理解的其它耦合方法达成。为此,线圈LP用作初级线圈,且线圈L1a用作次级线圈,如可以理解的。The excitation source 212 may be magnetically coupled to the feed network 209 . In particular, excitation source 212 is coupled to coil L P that is inductively coupled to coil L P of coil L 1a . This can be achieved by link coupling, tapped coils, variable reactance, or other coupling methods as will be appreciated. To this end, the coil L P is used as the primary coil, and the coil L 1a is used as the secondary coil, as can be understood.
为了对于所需引导表面波的传输调整引导表面波导探头200f,可以相对于损耗传导介质203和相对于彼此更改各个充电端子T1和T2的高度。此外,可以更改充电端子T1和T2的大小。另外,可以通过添加或者去除匝、或者通过改变线圈L1a的一些其他维度,来更改线圈L1a的大小。线圈L1a还可以包括用于调整如图17所示的电长度的一个或多个抽头。也可以调整连接到充电端子T1或者T2的抽头的位置。 In order to tune the guided surface waveguide probe 200f for the desired guided surface wave transmission, the height of the respective charging terminals T1 and T2 can be altered relative to the lossy conducting medium 203 and relative to each other. In addition, the size of the charging terminals T1 and T2 can be changed. Additionally, the size of coil L 1a may be altered by adding or removing turns, or by changing some other dimension of coil L 1a . Coil L 1a may also include one or more taps for adjusting the electrical length as shown in FIG. 17 . It is also possible to adjust the position of the tap connected to the charging terminal T1 or T2 .
接下来参考图18A、图18B、图18C和图19,示出了用于使用无线功率传送系统中的表面引导波的一般接收电路的实例。图18A和图18B-图18C分别包括线性探头303和调谐的谐振器306。图19是根据本公开的各种实施例的磁线圈309。根据各种实施例,可以采用线性探头303、调谐的谐振器306和磁线圈309中的每一个,以接收根据各种实施例以损耗传导介质203的表面上的引导表面波的形式发送的功率。如上所述,在一个实施例中,损耗传导介质203包括陆地介质(或者大地)。Referring next to Figures 18A, 18B, 18C and 19, examples of general receive circuits for using surface guided waves in a wireless power transfer system are shown. 18A and 18B-18C include a linear probe 303 and a tuned resonator 306, respectively. FIG. 19 is a magnetic coil 309 according to various embodiments of the present disclosure. According to various embodiments, each of linear probe 303, tuned resonator 306, and magnetic coil 309 may be employed to receive power transmitted in the form of guided surface waves on the surface of lossy conducting medium 203 according to various embodiments. . As noted above, in one embodiment, lossy conducting medium 203 comprises terrestrial medium (or the earth).
通过特别参考图18A,在线性探头303的输出端312处的开路端子电压取决于线性探头303的有效高度。为此,端子点电压可以计算为:With particular reference to FIG. 18A , the open circuit terminal voltage at the output 312 of the linear probe 303 depends on the effective height of the linear probe 303 . For this purpose, the terminal point voltage can be calculated as:
其中Einc是以伏特每米为单位的在线性探头303上感应的入射电场的强度,dl是沿着线性探头303的方向上的积分元素,且he是线性探头303的有效高度。电气负载315通过阻抗匹配网络318耦合到输出端312。where E inc is the intensity of the incident electric field induced on the linear probe 303 in volts per meter, dl is the integral element along the direction of the linear probe 303 , and he is the effective height of the linear probe 303 . Electrical load 315 is coupled to output 312 through impedance matching network 318 .
当线性探头303经历如上所述的引导表面波时,在输出端312两端生成电压,该电压可以通过共轭阻抗匹配网络318施加到电气负载315,如情况可能的。为了促进功率到电气负载315的流动,电气负载315应该实质上与线性探头303阻抗匹配,如以下将要描述的。When linear probe 303 is subjected to guided surface waves as described above, a voltage is generated across output 312 which may be applied to electrical load 315 through conjugate impedance matching network 318, as the case may be. To facilitate the flow of power to electrical load 315, electrical load 315 should be substantially impedance matched to linear probe 303, as will be described below.
参考图18B,拥有等于引导表面波的波倾斜的相移的地电流激励线圈306a包括在损耗传导介质203上方升高(或者悬挂)的充电端子TR。充电端子TR具有自电容CR。另外,取决于充电端子TR在损耗传导介质203以上的高度,还可能在充电端子TR和损耗传导介质203之间存在绑定电容(未示出)。绑定电容应该优选地尽可能最小化,尽管这不是在每个情况下完全必要的。Referring to FIG. 18B , a ground current excitation coil 306 a possessing a phase shift equal to the wave tilt of the guided surface wave includes a charge terminal TR raised (or suspended) above the lossy conductive medium 203 . The charging terminal T R has a self-capacitance CR . In addition, depending on the height of the charging terminal TR above the lossy conducting medium 203 , there may also be a bonding capacitance (not shown) between the charging terminal TR and the lossy conducting medium 203 . Bond capacitance should preferably be minimized as much as possible, although this is not entirely necessary in every case.
调谐的谐振器306a还包括包含具有相移Φ的线圈LR的接收器网络。线圈LR的一端耦合到充电端子TR,且线圈LR的另一端耦合到损耗传导介质203。接收器网络可以包括将线圈LR耦合到充电端子TR的垂直供应线导体。为此,线圈LR(其也可以被称为调谐的谐振器LR-CR)包括串行调整的谐振器,因为充电端子CR和线圈LR串行设置。可以通过改变充电端子TR的大小和/或高度、和/或调整线圈LR的大小,来调整线圈LR的相位延迟,以使得该结构的相位Φ实质上等于波倾斜的角度Ψ的角度。还可以例如通过改变导体的长度,来调整垂直供应线的相位延迟。The tuned resonator 306a also includes a receiver network comprising a coil LR with a phase shift Φ. One end of the coil LR is coupled to the charging terminal T R , and the other end of the coil LR is coupled to the lossy conductive medium 203 . The receiver network may comprise vertical supply line conductors coupling the coil LR to the charging terminal TR . To this end, the coil LR (which may also be referred to as tuned resonator LR - CR ) comprises a serially tuned resonator, since the charging terminal CR and the coil LR are arranged in series. The phase delay of the coil LR can be adjusted by changing the size and/or height of the charging terminal TR , and/or adjusting the size of the coil LR so that the phase of the structure Φ is substantially equal to the angle Ψ of the wave tilt . It is also possible to adjust the phase delay of the vertical supply lines, eg by changing the length of the conductors.
例如,由自电容CR表示的电抗被计算为1/jωCR。注意到,该结构306a的总电容还可以包括充电端子TR和损耗传导介质203之间的电容,其中该结构306a的总电容可以从自电容CR和任何绑定电容两者计算,如可以理解的那样。根据一个实施例,充电端子TR可以被升高到一高度,从而实质上减小或者消除任何绑定电容。可以从充电端子TR和损耗传导介质203之间的电容测量来确定绑定电容的存在,如先前讨论的。For example, the reactance represented by the self-capacitance C R is calculated as 1/jωC R . Note that the total capacitance of the structure 306a may also include the capacitance between the charging terminal TR and the lossy conductive medium 203, wherein the total capacitance of the structure 306a may be calculated from both the self capacitance CR and any bonded capacitance, as can be understand that. According to one embodiment, the charging terminal TR may be raised to a height such that any tie capacitance is substantially reduced or eliminated. The presence of bonded capacitance may be determined from capacitance measurements between the charging terminal TR and the lossy conductive medium 203, as previously discussed.
由分立元件线圈LR表示的电感性电抗可以计算为jωL,其中L是线圈LR的集中元件电感。如果线圈LR是分布元件,则其等效端点电感性电抗可以通过传统方案确定。为调谐该结构306a,人们可以做出调整以使得为了模式匹配到操作频率的表面波导的目的,相位延迟等于波倾斜。在该情况下,可以认为接收结构与表面波导“模式匹配”。该结构周围的变压器链路和/或阻抗匹配网络324可以插入在探头和电气负载327之间,以将功率耦合到负载。在探头端子321和电气负载327之间插入阻抗匹配网络324可以影响用于到电气负载327的最大功率传送的共轭匹配条件。The inductive reactance represented by the discrete element coil LR can be calculated as jωL, where L is the lumped element inductance of the coil LR . If the coil LR is a distributed element, its equivalent end-point inductive reactance can be determined by traditional schemes. To tune the structure 306a, one can make adjustments such that the phase delay is equal to the wave tilt for the purpose of mode matching to the surface waveguide at the frequency of operation. In this case, the receiving structure can be said to be "mode matched" to the surface waveguide. A transformer link and/or impedance matching network 324 around the structure may be inserted between the probe and electrical load 327 to couple power to the load. Inserting an impedance matching network 324 between the probe terminals 321 and the electrical load 327 can affect the conjugate matching condition for maximum power transfer to the electrical load 327 .
当在操作频率的表面电流的存在下放置时,功率将从表面引导波传递到电气负载327。为此,电气负载327可以通过磁耦合、电容耦合或者导电(直接分接)耦合的方式,耦合到该结构306a。耦合网络的元件可以是集中组件或者分布元件,如可以理解的那样。Power will be delivered from the surface guided wave to the electrical load 327 when placed in the presence of surface currents at the operating frequency. To this end, the electrical load 327 may be coupled to the structure 306a by means of magnetic coupling, capacitive coupling or conductive (direct tap) coupling. The elements of the coupling network may be centralized components or distributed elements, as will be appreciated.
在图18B所示的实施例中,采用磁耦合,其中线圈LS相对于用作变压器初级的线圈LR位于次级。如可以理解的,线圈LS可以通过在同一铁芯结构周围几何地缠绕它并调整耦合的磁通量,来链路耦合到线圈LR。另外,虽然接收结构306a包括串行调谐的谐振器,但是还可以使用适当相位延迟的并行调谐的谐振器或者甚至分布元件谐振器。In the embodiment shown in Fig. 18B, a magnetic coupling is employed wherein the coil LS is located on the secondary side with respect to the coil LR used as the primary of the transformer. As can be appreciated, the coil LS can be link coupled to the coil LR by geometrically winding it around the same core structure and adjusting the coupled magnetic flux. Additionally, while the receiving structure 306a includes serially tuned resonators, appropriately phase delayed parallel tuned resonators or even distributed element resonators may also be used.
虽然浸入电磁场中的接收结构可以耦合来自场的能量,但是可以理解的是通过最大化耦合,极化匹配的结构最好地工作,且应该遵守用于到波导模式的探头耦合的现有规则。例如,TE20(横向电气模式)波导探头对于从以TE20模式激励的传统波导提取能量可能是最优的。类似地,在这些情况下,可以对于耦合来自表面引导波的功率优化模式匹配和相位匹配的接收结构。由引导表面波导探头200在损耗传导介质203的表面上激励的引导表面波可以考虑为开波导的波导模式。排除波导损耗,可以完全恢复源能量。有用的接收结构可以是耦合的E场、耦合的H场或者激励的表面电流。Although a receiving structure immersed in an electromagnetic field can couple energy from the field, it is understood that polarization-matched structures work best by maximizing coupling, and should obey existing rules for probe coupling to waveguide modes. For example, a TE 20 (transverse electrical mode) waveguide probe may be optimal for extracting energy from a conventional waveguide excited in the TE 20 mode. Similarly, in these cases, mode-matched and phase-matched receive structures can be optimized for coupling power from surface-guided waves. The guided surface wave excited by the guided surface waveguide probe 200 on the surface of the lossy conducting medium 203 can be considered as a waveguide mode of an open waveguide. Excluding waveguide losses, the source energy can be fully recovered. Useful receiving structures may be coupled E-fields, coupled H-fields, or excited surface currents.
可以调整接收结构以基于在接收结构附近的损耗传导介质203的局部特性增大或者最大化与引导表面波的耦合。为实现此,可以调整接收结构的相位延迟(Φ)以匹配在接收结构处的表面行波的波倾斜的角度(Ψ)。如果适当地配置,则可以调谐该接收结构以用于相对于在复数深度z=-d/2处的完美导电镜像地平面的谐振。The receiving structure may be tuned to increase or maximize coupling to the guided surface waves based on the local properties of the lossy conducting medium 203 in the vicinity of the receiving structure. To achieve this, the phase delay (Φ) of the receiving structure can be adjusted to match the angle (Ψ) of the wave tilt of the surface traveling wave at the receiving structure. If properly configured, the receiving structure can be tuned for resonance with respect to a perfectly conductive mirror ground plane at complex depth z=-d/2.
例如,考虑包括图18B的调谐的谐振器306a的接收结构,包括线圈LR和在线圈LR和充电端子TR之间连接的垂直供应线。对于位于损耗传导介质203以上定义高度的充电端子TR,线圈LR和垂直供应线的总相移Φ可以与在调谐的谐振器306a处的波倾斜的角度(Ψ)匹配。从等式(22),可以看到波倾斜渐进地通过:For example, consider a receive structure comprising the tuned resonator 306a of Figure 18B, comprising a coil LR and a vertical supply line connected between the coil LR and the charging terminal TR . For a charging terminal T R located at a defined height above the lossy conducting medium 203, the total phase shift Φ of the coil LR and the vertical supply line can be matched to the angle (Ψ) of the wave tilt at the tuned resonator 306a. From equation (22), it can be seen that the wave passes obliquely and asymptotically:
其中εr包括相对介电常数,且σ1是在接收结构的位置处的损耗传导介质203的电导率,εo是自由空间的介电常数,且ω=2πf,其中f是激励的频率。因此,可以从等式(97)确定波倾斜角度(Ψ)。where εr includes the relative permittivity, and σ1 is the conductivity of the lossy conducting medium 203 at the location of the receiving structure, εo is the permittivity of free space, and ω=2πf, where f is the frequency of the excitation. Therefore, the wave tilt angle (Ψ) can be determined from equation (97).
调谐的谐振器306a的总相移(Φ=θc+θy)包括通过线圈LR的相位延迟(θc)和垂直供应线的相位延迟(θy)两者。沿着垂直供应线的导体长度lw的空间相位延迟可以由θy=βwlw给出,其中βw是垂直供应线导体的传播相位常数。由于线圈(或者螺旋延迟线)的相位延迟是θc=βplC,其中lC是物理常数且传播因数是:The total phase shift (Φ = θ c + θ y ) of the tuned resonator 306a includes both the phase delay (θ c ) through the coil LR and the phase delay (θ y ) of the vertical supply line. The spatial phase delay along the conductor length lw of the vertical supply line can be given by θy = βw lw , where βw is the propagation phase constant of the vertical supply line conductor. Since the phase delay of the coil (or helical delay line) is θ c = β p l C , where l C is a physical constant and the propagation factor is:
其中Vf是该结构上的速率因数,λ0是在供应频率的波长,且λp是从速率因数Vf产生的传播波长。可以调整一个或两个相位延迟(θc+θy)以将相移Φ与波倾斜的角度(Ψ)匹配。例如,可以在图18B的线圈LR上调整抽头位置以调整线圈相位延迟(θc)以将总相移与波倾斜角匹配(Φ=Ψ)。例如,线圈的位置可以通过抽头连接旁路,如图18B所示。垂直供应线导体也可以经由抽头连接到线圈LR,可以调整其在线圈上的位置以将总相移与波倾斜角度匹配。where Vf is the velocity factor on the structure, λ0 is the wavelength at the supply frequency, and λp is the propagation wavelength resulting from the velocity factor Vf. One or two phase delays (θ c +θ y ) can be adjusted to match the phase shift Φ to the angle (Ψ) of wave tilt. For example, the tap position can be adjusted on the coil LR of FIG. 18B to adjust the coil phase delay (θ c ) to match the total phase shift to the wave tilt angle (Φ=Ψ). For example, the coil locations can be bypassed by tap connections, as shown in Figure 18B. The vertical supply line conductor can also be connected to the coil LR via a tap, its position on the coil can be adjusted to match the total phase shift to the wave tilt angle.
一旦已经调整调谐的谐振器306a的相位延迟(Φ),就可以调整充电端子TR的阻抗以调谐为相对于在复数深度z=-d/2处的完美导电镜像地平面谐振。这可以通过调整充电端子T1的电容实现,而不改变线圈LR和垂直供应线的行波相位延迟。该调整类似于相对于图9A和图9B描述的调整。Once the phase delay (Φ) of the tuned resonator 306a has been adjusted, the impedance of the charging terminal TR can be adjusted to tune to resonate with respect to a perfectly conductive mirror ground plane at complex depth z=-d/2. This can be achieved by adjusting the capacitance of the charging terminal T without changing the phase delay of the traveling wave of the coil LR and the vertical supply line. This adjustment is similar to the adjustment described with respect to Figures 9A and 9B.
“向下看”到损耗传导介质203中到复数镜像平面的阻抗由下式给定:The impedance "looking down" into the lossy conducting medium 203 to the complex mirror plane is given by:
Zin=Rin+jXin=Zotanh(jβo(d/2)), (99)Z in = R in + jX in = Z o tanh(jβ o (d/2)), (99)
其中对于大地以上的垂直极化源,复数镜像平面的深度可以由下式给出:in For vertically polarized sources above the earth, the depth of the complex mirror plane can be given by:
其中μ1是损耗传导介质203的介电常数,且ε1=εrεo。Where μ 1 is the dielectric constant of the lossy conducting medium 203, and ε 1 =ε r ε o .
在调谐的谐振器306a的基底,“向上看”到接收结构中的阻抗是Z↑=Zbase,如图9A所示。其中端子阻抗是:At the base of the tuned resonator 306a, the impedance "looking up" into the receiving structure is Z ↑ = Z base , as shown in FIG. 9A . where the terminal impedance is:
其中CR是充电端子TR的自电容,“向上看”到调谐的谐振器306a的垂直供应线导体中的阻抗由下式给定:where CR is the self-capacitance of the charge terminal TR , the impedance in the vertical supply line conductor "looking up" into the tuned resonator 306a is given by:
且“向上看”到调谐的谐振器306a的线圈LR中的阻抗由下式给定:And the impedance in the coil LR "looking up" into the tuned resonator 306a is given by:
通过匹配“向下看”到损耗传导介质203中的电抗分量(Xin)与“向上看”到调谐的谐振器306a中的电抗分量(Xbase),可以最大化到引导表面波导模式中的耦合。By matching the reactive component (X in ) "looking down" into the lossy conducting medium 203 with the reactive component (X base ) "looking up" into the tuned resonator 306a, it is possible to maximize the coupling.
接下来参考图18C,示出了不在接收结构的顶部包括充电端子TR的调谐的谐振器306b的实例。在该实施例中,调谐的谐振器306b不包括在线圈LR和充电端子TR之间耦合的垂直供应线。因此,调谐的谐振器306b的总相移(Φ)仅包括通过线圈LR的相位延迟(θc)。如对于图18B的调谐的谐振器306a那样,可以调整线圈相位延迟θc以匹配从等式(97)确定的波倾斜的角度(Ψ),这导致Φ=Ψ。虽然对于耦合到表面波导模式中的接收结构功率提取是可能的,但是难以调整接收结构以最大化与引导表面波的耦合而没有由充电端子TR提供的可变电抗性负载。Referring next to Figure 18C, an example of a tuned resonator 306b that does not include a charge terminal TR on top of the receiving structure is shown. In this embodiment, tuned resonator 306b does not include a vertical supply line coupled between coil LR and charge terminal TR . Therefore, the total phase shift (Φ) of the tuned resonator 306b includes only the phase delay (θ c ) through the coil LR . As for the tuned resonator 306a of FIG. 18B, the coil phase delay θc can be adjusted to match the angle of wave tilt (Ψ) determined from equation (97), which results in Φ=Ψ. While power extraction is possible for the receiving structure coupled into surface waveguide modes, it is difficult to tune the receiving structure to maximize the coupling to guided surface waves without the variable reactive load provided by the charging terminal TR .
参考图18D,示出了图示调整接收结构以实质上模式匹配损耗传导介质203的表面上的引导表面波导模式的实例的流程图180。在181开始,如果接收结构包括充电端子TR(例如,图18B的调谐的谐振器306a的充电端子),则在184,充电端子TR位于损耗传导介质203以上的定义高度处。因为已经由引导表面波导探头200建立了表面引导波,所以充电端子TR的物理高度(hp)可以低于有效高度。可以选择物理高度以减小或者最小化充电端子TR上的绑定电荷(例如,充电端子的球面直径的四倍)。如果接收结构不包括充电端子TR(例如,图18C的调谐的谐振器306b的充电端子),则流程进行到187。Referring to FIG. 18D , a flowchart 180 illustrating an example of tuning a receiving structure to substantially mode match a guided surface waveguide mode on the surface of a lossy conducting medium 203 is shown. Beginning at 181, if the receiving structure includes a charging terminal TR (eg, the charging terminal of the tuned resonator 306a of FIG . The physical height (h p ) of the charging terminal T R may be lower than the effective height because the surface guided wave has already been established by the guided surface waveguide probe 200 . The physical height may be chosen to reduce or minimize bonded charge on the charging terminal TR (eg, four times the spherical diameter of the charging terminal). If the receiving structure does not include a charge terminal TR (eg, the charge terminal of the tuned resonator 306b of FIG. 18C ), flow proceeds to 187 .
在187,接收结构的电相位延迟Φ匹配由损耗传导介质203的局部特性定义的复数波倾斜角Ψ。可以调整螺旋线圈的相位延迟(θc)和/或垂直供应线的相位延迟(θy)以使得Φ等于波倾斜(W)的角度(Ψ)。可以从等式(86)确定波倾斜的角度(Ψ)。然后电相位Φ可以匹配波倾斜的角度。例如,可以通过改变线圈LR的几何参数和/或垂直供应线导体的长度(或者高度)来调整电相位延迟Φ=θc+θy。At 187 , the electrical phase delay Φ of the receiving structure matches the complex wave tilt angle Ψ defined by the local properties of the lossy conducting medium 203 . The phase delay of the helical coil (θ c ) and/or the phase delay of the vertical supply line (θ y ) can be adjusted such that Φ is equal to the angle (Ψ) of the wave tilt (W). The angle (Ψ) of wave tilt can be determined from equation (86). The electrical phase Φ can then match the angle at which the waves are tilted. For example, the electrical phase delay Φ = θ c + θ y can be adjusted by changing the geometrical parameters of the coil LR and/or the length (or height) of the vertical supply line conductor.
接下来在190,可以调谐充电端子TR的负载阻抗以谐振调谐的谐振器306a的等效镜像平面模式。接收结构以下的导电镜像地平面139(图9A)的深度(d/2)可以使用等式(100)和可以本地测量的在接收结构处的损耗传导介质203(例如,大地)的值确定。使用复数深度,在镜像地平面139和损耗传导介质203的物理边界136(图9A)之间的相移(θd)可以使用θd=βod/2确定。然后可以使用等式(99)确定“向下看”到损耗传导介质203中的阻抗(Zin)。可以考虑该谐振关系以最大化与引导表面波的耦合。Next at 190, the load impedance of the charge terminal TR may be tuned to resonate the equivalent mirror plane mode of the tuned resonator 306a. The depth (d/2) of the conductive mirrored ground plane 139 (FIG. 9A) below the receiving structure can be determined using equation (100) and values of the lossy conductive medium 203 (eg, earth) at the receiving structure that can be measured locally. Using complex depths, the phase shift (θ d ) between the mirrored ground plane 139 and the physical boundary 136 ( FIG. 9A ) of the lossy conducting medium 203 can be determined using θ d =β o d/2. The impedance "looking down" into the lossy conducting medium 203 (Z in ) can then be determined using equation (99). This resonance relationship can be taken into account to maximize the coupling to the guided surface waves.
基于线圈LR的调整的参数和垂直供应线导体的长度,可以确定速率因数、相位延迟、以及线圈LR和垂直供应线的阻抗。另外,可以例如使用等式(24)确定充电端子TR的自电容(CR)。可以使用等式(98)确定线圈LR的传播因数(βp),且可以使用等式(49)确定垂直供应线的传播相位常数(βw)。使用自电容、以及线圈LR和垂直供应线的确定的值,可以使用等式(101)、(102)和(103)确定“向上看”到线圈LR中的调谐的谐振器306a的阻抗(Zbase)。Based on the adjusted parameters of coil LR and the length of the vertical supply line conductor, the rate factor, phase delay, and impedance of coil LR and vertical supply line can be determined. In addition, the self-capacitance (C R ) of the charging terminal T R can be determined, for example, using equation (24). The propagation factor (β p ) of the coil LR can be determined using equation (98), and the propagation phase constant (β w ) of the vertical supply line can be determined using equation (49). Using the self-capacitance, and determined values of the coil LR and the vertical supply line, the impedance of the tuned resonator 306a "looking up" into the coil LR can be determined using equations (101), (102) and (103) (Z base ).
图9A的等效镜像平面模型应用于图9B的调谐的谐振器306a。可以通过调整充电端子TR的负载阻抗ZR以使得Zbase的电抗分量Xbase抵消Zin的电抗分量Xin,或者Xbase+Xin=0,来调谐调谐的谐振器306a。因此,“向上看”到调谐的谐振器306a的线圈中的在物理边界136(图9A)处的阻抗是“向下看”到损耗传导介质203中的在物理边界136处的阻抗的共轭。可以通过改变充电端子TR的电容(CR)来调整负载阻抗ZR,而不改变由充电端子TR看到的电相位延迟Φ=θc+θy。可以采用迭代方案来调谐负载阻抗ZR,以用于等效镜像平面模型相对于导电镜像地平面139的谐振。以该方式,可以改进和/或最大化沿着损耗传导介质203(例如,大地)的表面的电场到引导表面波导模式的耦合。The equivalent mirror plane model of FIG. 9A is applied to the tuned resonator 306a of FIG. 9B. The tuned resonator 306a can be tuned by adjusting the load impedance Z R of the charging terminal T R such that the reactive component X base of Z base cancels the reactive component X in of Z in , or X base +X in =0. Thus, the impedance at the physical boundary 136 ( FIG. 9A ) “looking up” into the coil of tuned resonator 306a is the conjugate of the impedance at the physical boundary 136 “looking down” into the lossy conducting medium 203 . The load impedance Z R can be adjusted by changing the capacitance ( CR ) of the charging terminal T R without changing the electrical phase delay Φ = θ c + θ y seen by the charging terminal T R . An iterative scheme may be employed to tune the load impedance Z R for the resonance of the equivalent mirror plane model with respect to the conductive mirror ground plane 139 . In this way, the coupling of the electric field along the surface of the lossy conducting medium 203 (eg, the ground) to the guided surface waveguide modes may be improved and/or maximized.
参考图19,磁线圈309包括通过阻抗匹配网络333耦合到电气负载336的接收电路。为了促进来自引导表面波的电能的接收和/或提取,磁线圈309可以定位以使得引导表面波的磁通量通过穿过磁线圈309,由此在磁线圈309中感应电流,并在其输出端330产生端点电压。耦合到单匝线圈的引导表面波的磁通量由下式表示:Referring to FIG. 19 , the magnetic coil 309 includes a receive circuit coupled to an electrical load 336 through an impedance matching network 333 . To facilitate the reception and/or extraction of electrical energy from the guided surface waves, the magnetic coil 309 may be positioned such that the magnetic flux of the guided surface waves By passing through the magnetic coil 309 , a current is thereby induced in the magnetic coil 309 and a terminal voltage is generated at its output 330 . The magnetic flux of a guided surface wave coupled to a single-turn coil is expressed by:
其中是耦合的磁通量,μr是磁线圈309的铁芯的有效相对介电常数,μo是自由空间的介电常数,是入射磁场强矢量,是与匝的横截面正交的单位矢量,且ACS是每个环路围绕的区域。对于用于到在磁线圈309的横截面上均匀的入射磁场的最大耦合而定向的N匝磁线圈309,在磁线圈309的输出端330处出现的开路感应电压是:in is the coupled magnetic flux, μ r is the effective relative permittivity of the iron core of the magnetic coil 309, μ o is the permittivity of free space, is the incident magnetic field intensity vector, is a unit vector orthogonal to the cross-section of the turns, and A CS is the area enclosed by each loop. For an N-turn magnetic coil 309 oriented for maximum coupling to an incident magnetic field uniform across the cross-section of the magnetic coil 309, the open-circuit induced voltage appearing at the output 330 of the magnetic coil 309 is:
其中变量如上定义。磁线圈309可以被调谐到引导表面波频率,作为分布谐振器或者外部电容器跨接其输出端330,如可能的情况,且然后通过共轭阻抗匹配网络333阻抗匹配到外部电气负载336。where variables are defined as above. The magnetic coil 309 can be tuned to the guided surface wave frequency, connected across its output 330 as a distributed resonator or an external capacitor, as possible, and then impedance matched to an external electrical load 336 by a conjugate impedance matching network 333 .
假定由磁线圈309和电气负载336表示的产生的电路被适当地调整和经由阻抗匹配网络333共轭阻抗匹配,则可以采用磁线圈309中感应的电流以最优地对电气负载336供电。由磁线圈309表示的接收电路提供的优点在于它不必须物理地连接到地。Assuming that the resulting circuit represented by magnetic coil 309 and electrical load 336 is properly tuned and conjugate impedance matched via impedance matching network 333 , the current induced in magnetic coil 309 can be employed to optimally power electrical load 336 . The receiving circuit represented by the magnetic coil 309 offers the advantage that it does not have to be physically connected to ground.
参考图18A、图18B、图18C和图19,由线性探头303、模式匹配结构306和磁线圈309表示的接收电路的每个促进接收从上面描述的引导表面波导探头200的任何一个实施例发送的电能。为此,接收的能量可以用于经由共轭匹配网络向电气负载315/327/336供应功率,如可以理解的。这与可以在接收器中接收的以辐射电磁场的形式发送的信号形成对比。这种信号具有非常低的可用功率,且这种信号的接收器不加载发射器。Referring to Figures 18A, 18B, 18C, and 19, each of the receive circuits represented by linear probe 303, mode matching structure 306, and magnetic coil 309 facilitate receiving transmissions from any of the embodiments of guided surface waveguide probe 200 described above. of electric energy. To this end, the received energy may be used to supply power to electrical loads 315/327/336 via a conjugate matching network, as can be appreciated. This is in contrast to a signal sent in the form of a radiated electromagnetic field that can be received in a receiver. Such signals have very low power available, and receivers of such signals do not load the transmitter.
使用上面描述的引导表面波导探头200生成的当前引导表面波的特性还在于由线性探头303、模式匹配结构306和磁线圈309表示的接收电路将加载应用于引导表面波导探头200的激励源212(例如,图3、图12和16),由此生成这种接收电路经历的引导表面波。这反映由上面描述的给定引导表面波导探头200生成的引导表面波包括传输线模式的事实。通过对比的方式,驱动生成辐射电磁波的辐射天线的功率源未由接收器加载,而无论采用的接收器的数目如何。The current guided surface wave generated using the guided surface waveguide probe 200 described above is also characterized in that the receiving circuit, represented by the linear probe 303, the mode matching structure 306 and the magnetic coil 309, applies a load to the excitation source 212 of the guided surface waveguide probe 200 ( For example, Figs. 3, 12 and 16), thereby generating a guided surface wave experienced by such a receiving circuit. This reflects the fact that the guided surface waves generated by a given guided surface waveguide probe 200 described above include transmission line modes. By way of contrast, the power source driving the radiating antenna generating the radiated electromagnetic waves is not loaded by the receivers, regardless of the number of receivers employed.
因此,与一个或多个引导表面波导探头200和以线性探头303、调谐的模式匹配结构306和/或磁线圈309的形式的一个或多个接收电路一起,可以组成无线分布系统。给定使用如以上提出的引导表面波导探头200的引导表面波的传输距离取决于频率,则可能在宽区域上甚至全球地实现无线功率分布。Thus, together with one or more guided surface waveguide probes 200 and one or more receive circuits in the form of linear probes 303 , tuned mode-matching structures 306 and/or magnetic coils 309 , a wireless distribution system can be formed. Given that the transmission distance of a guided surface wave using a guided surface waveguide probe 200 as proposed above is frequency dependent, it is possible to achieve wireless power distribution over a wide area or even globally.
现在广泛地研究的传统的无线功率传输/分布系统包括来自辐射场的“能量收获”以及耦合到电感或者电抗近场的传感器。相反地,该无线功率系统不浪费以辐射的形式的功率,辐射如果不截取则永远丢失。本公开的无线功率系统也不限于传统的互电抗耦合近场系统那样的极短距离。在这里公开的无线功率系统探头耦合到新颖的表面引导传输线模式,其等效于通过波导传递功率到负载、或者传递功率到直接连线到远程功率发生器的负载。不考虑维持传输场强需要的功率加上在表面波导中耗散的功率(这在极低频率相对于传统的在60Hz的高压电源线的传输损失是无关紧要的),所有发生器功率仅到达期望的电气负载。当电气负载需要终止时,源功率生成相对空闲。Traditional wireless power transfer/distribution systems that are now widely studied include "energy harvesting" from radiated fields and sensors coupled to inductive or reactive near-fields. In contrast, the wireless power system wastes no power in the form of radiation, which is lost forever if not intercepted. The wireless power systems of the present disclosure are also not limited to extremely short distances like conventional mutual reactance coupled near-field systems. The wireless power system probes disclosed herein are coupled to novel surface-guided transmission line modes that are equivalent to delivering power to a load through a waveguide, or to a load directly wired to a remote power generator. Disregarding the power required to maintain the transmitted field strength plus the power dissipated in the surface waveguide (which is insignificant at very low frequencies relative to the transmission losses of conventional high voltage power lines at 60 Hz), all generator power reaches only expected electrical load. When the electrical load needs to be terminated, the source power generation is relatively idle.
接下来参考图20A-E,其示出了参考下面的讨论使用的各种示意符号的示例。具体参考图20A,其示出了表示任一引导表面波导探头200a、200b、200c、200e、200d或200f或其任何变形的符号。在下面的附图和讨论中,将该符号的描述称为引导表面波导探头P。为了在下面的讨论中简单起见,对于引导表面波导探头P的任何引用是对下述中的任何一个的引用:引导表面波导探头200a、200b、200c、200e、200d或200f或其变形。Reference is next made to Figures 20A-E, which illustrate examples of various schematic symbols used with reference to the discussion below. Referring specifically to Figure 20A, there is shown a symbol representing any one of the guided surface waveguide probes 200a, 200b, 200c, 200e, 200d or 200f or any variation thereof. In the figures and discussions that follow, the description of this symbol is referred to as a guided surface waveguide probe P. For simplicity in the discussion below, any reference to a guided surface waveguide probe P is a reference to any of the following: guided surface waveguide probes 200a, 200b, 200c, 200e, 200d or 200f or variations thereof.
类似地,参考图20B,其示出了表示引导表面波接收结构的符号,其可以包括线性探头303(图18A)、调谐谐振器306(图18B-18C)或磁线圈309(图19)中的任一个。在下面的附图和讨论中,对该符号的描述将被称为引导表面波接收结构R。为了简化起见,在下面的讨论中,对于引导表面波接收结构R的任何引用是对线性探头303、调谐谐振器306或磁线圈309中的任何一个;或其变形的引用。Similarly, reference is made to FIG. 20B, which shows a symbol representing a guided surface wave receiving structure, which may include a linear probe 303 (FIG. 18A), a tuned resonator 306 (FIGS. 18B-18C), or a magnetic coil 309 (FIG. 19). any of . In the following figures and discussions, the description of this symbol will be referred to as a guided surface wave receiving structure R. For simplicity, in the following discussion, any reference to the guided surface wave receiving structure R is a reference to any one of the linear probe 303, tuned resonator 306, or magnetic coil 309; or variations thereof.
此外,参考图20C,其示出了具体表示线性探头303(图18A)的符号。在以下附图和讨论中,将该符号的描述称为引导表面波接收结构RP。为了在下面的讨论中简单起见,对引导表面波接收结构RP的任何引用是对线性探头303或其变形的引用。In addition, referring to FIG. 20C, there is shown a symbol specifically representing the linear probe 303 (FIG. 18A). In the following figures and discussions, the description of this symbol is referred to as the guided surface wave receiving structure Rp . For simplicity in the following discussion, any reference to the guided surface wave receiving structure R P is a reference to the linear probe 303 or variations thereof.
此外,参考图20D,其示出了具体表示调谐谐振器306(图18B-18C)的符号。在以下附图和讨论中,将该符号的描述称为引导表面波接收结构RR。为了在下面的讨论中简单起见,对引导表面波接收结构RR的任何引用是对调谐谐振器306或其变形的引用。In addition, referring to FIG. 20D, there is shown notation specifically representing the tuned resonator 306 (FIGS. 18B-18C). In the following figures and discussions, the description of this symbol is referred to as the guided surface wave receiving structure R R . For simplicity in the discussion below, any reference to the guided surface wave receiving structure RR is a reference to the tuned resonator 306 or variations thereof.
此外,参考图20E,其示出了具体表示磁线圈309(图19)的符号。在以下附图和讨论中,将该符号的描述称为引导表面波接收结构RM。为了在下面的讨论中简单起见,对引导表面波接收结构RM的任何引用是对磁线圈309或其变形的引用。In addition, referring to FIG. 20E, there is shown a symbol specifically representing the magnetic coil 309 (FIG. 19). In the following figures and discussions, the description of this symbol is referred to as the guided surface wave receiving structure R M . For simplicity in the discussion below, any reference to the guided surface wave receiving structure R M is a reference to the magnetic coil 309 or variations thereof.
参考图21-27,其公开了使用从引导表面波波导探头P发射的引导表面波来定位位置的各种实施例。导航设备检测从多个引导表面波波导探头P发射的多个引导表面波。通过分析关于引导表面波的到达的时间差、每个引导表面波从相应的引导表面波波导探头P行进到导航装置的位置所花费的时间、与引导表面波的原始强度相比导航设备的位置处的引导表面波的强度的差、在导航设备的位置处测量的引导表面波之间的相移、或者这些方法的某种组合,可以确定导航设备在地球上的位置。此外,在一些实施例中,导航装置可由一个或多个引导表面波供电。此外,引导表面波可以用于时间同步,以提高导航设备和/或其他设备的精度。Referring to Figures 21-27, various embodiments of using guided surface waves emitted from a guided surface wave waveguide probe P to locate a position are disclosed. The navigation device detects a plurality of guided surface waves emitted from a plurality of guided surface wave waveguide probes P. By analyzing the time difference regarding the arrival of the guided surface waves, the time it takes for each guided surface wave to travel from the corresponding guided surface wave waveguide probe P to the position of the navigation device, compared with the original intensity of the guided surface wave at the position of the navigation device The difference in the intensity of the guided surface waves of , the phase shift between the guided surface waves measured at the position of the navigator, or some combination of these methods, can determine the position of the navigator on the earth. Additionally, in some embodiments, the navigation device may be powered by one or more guided surface waves. Additionally, guided surface waves could be used for time synchronization to improve the accuracy of navigation aids and/or other devices.
引导表面波的范围取决于引导表面波的频率。例如,具有约20kHz或更小的频率的引导表面波能够绕地球行进。在这些频率下,本公开的各种实施例可以用于全球定位和导航。较高的频率将进行较短的距离,例如几百或几十英里,将各种实施例限制于用于位置和导航的区域使用。The range of the guided surface wave depends on the frequency of the guided surface wave. For example, guided surface waves having a frequency of about 20 kHz or less can travel around the Earth. At these frequencies, various embodiments of the present disclosure can be used for global positioning and navigation. Higher frequencies will travel shorter distances, such as hundreds or tens of miles, limiting various embodiments to area use for location and navigation.
具体参考图21,其示出了根据各种实施例的导航单元400。导航单元400包括接收器403、天线支架406和计算设备409。接收器403连接到天线支架406,天线支架406又连接到计算设备409。在一些实施例中,导航单元400可以包括显示器。在这样的实施例中,显示器可以包括例如一个或多个设备,例如液晶显示(LCD)显示器、基于气体等离子体的平板显示器、有机发光二极管(OLED)显示器、电子墨水(E墨水)显示器、LCD投影仪或其他类型的显示设备等。Referring specifically to FIG. 21 , a navigation unit 400 is shown in accordance with various embodiments. The navigation unit 400 includes a receiver 403 , an antenna mount 406 and a computing device 409 . Receiver 403 is connected to antenna mount 406 , which in turn is connected to computing device 409 . In some embodiments, the navigation unit 400 may include a display. In such embodiments, the display may include, for example, one or more devices such as a liquid crystal display (LCD) display, a gas plasma-based flat panel display, an organic light emitting diode (OLED) display, an electronic ink (E Ink) display, an LCD Projectors or other types of display devices, etc.
在一些实施例中,导航单元400的全部或部分可以封装在保护导航单元400的各种组件的外部壳体中。例如,在一些实施例中,导航单元400可以是便携式或手持式单元,其中接收器403、天线支架406和计算设备409封装在单个壳体内。这样的实施例可以包括移动计算设备,诸如平板计算机、蜂窝电话、智能电话、个人数字助理(PDA)和/或类似的移动计算设备。这样的实施例还可以包括专用导航单元,例如可以安装到公共汽车、汽车、摩托艇或类似车辆的仪表板上的个人导航设备、手持导航设备或导航设备。在其它实施例中,接收器403可以在计算设备409的远程或外部,并且经由天线支架406连接到计算设备。这样的实施例可以包括例如车辆导航单元400,例如在船上或在飞机上找到的那些。In some embodiments, all or part of the navigation unit 400 may be enclosed in an external housing that protects the various components of the navigation unit 400 . For example, in some embodiments, navigation unit 400 may be a portable or handheld unit in which receiver 403, antenna mount 406, and computing device 409 are housed within a single housing. Such embodiments may include mobile computing devices, such as tablet computers, cellular phones, smart phones, personal digital assistants (PDAs), and/or similar mobile computing devices. Such embodiments may also include a dedicated navigation unit, such as a personal navigation device, handheld navigation device or navigation device that may be mounted to the dashboard of a bus, car, jet ski or similar vehicle. In other embodiments, receiver 403 may be remote or external to computing device 409 and connected to the computing device via antenna bracket 406 . Such embodiments may include, for example, a vehicle navigation unit 400 such as those found on ships or on airplanes.
接收器403可以对应于能够接收引导表面波的一个或多个结构。接收器403可以包括例如线性探头、调谐谐振器、磁线圈和/或用于接收引导表面波的类似结构,如上所述。在一些实施例中,接收器403可以表示多个接收器403,其中每个接收器被调谐以在与其他接收器403不同的频率上接收引导表面波。在各种实施例中,接收器403可以被配置为调谐到同时接收不同频率上的多个引导表面波。在一些实施例中,接收器403可以被配置为交替频率,以便在第一频率上检测、接收和/或测量引导表面波,然后切换到第二频率以在第二频率上检测第二引导表面波。天线支架406可以对应于能够将接收器403连接到计算设备409的任何物理结构。Receiver 403 may correspond to one or more structures capable of receiving guided surface waves. Receiver 403 may include, for example, a linear probe, a tuned resonator, a magnetic coil, and/or similar structures for receiving guided surface waves, as described above. In some embodiments, receiver 403 may represent a plurality of receivers 403 , where each receiver is tuned to receive guided surface waves at a different frequency than the other receivers 403 . In various embodiments, receiver 403 may be configured to be tuned to simultaneously receive multiple guided surface waves at different frequencies. In some embodiments, receiver 403 may be configured to alternate frequencies to detect, receive and/or measure guided surface waves at a first frequency, then switch to a second frequency to detect a second guided surface wave at a second frequency Wave. Antenna bracket 406 may correspond to any physical structure capable of connecting receiver 403 to computing device 409 .
计算设备409包括至少一个处理器电路,例如具有处理器413和存储器416,它们都耦合到本地接口419。本地接口419可以包括例如具有伴随的地址/控制总线或其他总线结构的数据总线,如可以理解的。Computing device 409 includes at least one processor circuit, eg, with a processor 413 and memory 416 , both coupled to a local interface 419 . Local interface 419 may include, for example, a data bus with an accompanying address/control bus or other bus structure, as will be appreciated.
存储在存储器416中的是可由处理器413执行的数据和几个组件。具体地,存储在存储器416中并且可由处理器413执行的是多点定位应用423以及潜在的其他应用。还存储在存储器416中的可以是数据存储426,其可以存储地图数据429、惯性数据431、相移曲线433和/或潜在的其他数据。另外,操作系统可以存储在存储器416中并且可由处理器413执行。Stored in memory 416 are data and several components executable by processor 413 . Specifically, stored in the memory 416 and executable by the processor 413 is a multilateration application 423 and potentially other applications. Also stored in memory 416 may be data store 426, which may store map data 429, inertial data 431, phase shift curves 433, and/or potentially other data. Additionally, an operating system may be stored in the memory 416 and executable by the processor 413 .
地图数据429表示导航单元400可能正在导航或其中可能发生地理定位的一个或多个地理位置。地图数据429可以包括全局数据或与诸如半球、大陆、洋、大海、湖泊、国家、州/省、城市和/或其部分的特定区域或地域相关的数据。地图数据429还可以包括用于标识球体上或特定区域或场所内的位置的一个或多个坐标系。这样的坐标系可以包括纬度和经度线、通用横轴墨卡托(UTM)坐标系、通用极球面投影(UPS)坐标系、网格系统和/或其它坐标系。Map data 429 represents one or more geographic locations where navigation unit 400 may be navigating or where geolocation may occur. Map data 429 may include global data or data related to a particular area or territory such as a hemisphere, continent, ocean, sea, lake, country, state/province, city, and/or portion thereof. Map data 429 may also include one or more coordinate systems for identifying locations on a sphere or within a particular area or venue. Such coordinate systems may include lines of latitude and longitude, a Universal Transverse Mercator (UTM) coordinate system, a Universal Polar Spherical Projection (UPS) coordinate system, a grid system, and/or other coordinate systems.
惯性数据431表示描述导航单元400的当前和历史轨迹的导航数据。惯性数据431可以表示例如导航单元400的当前速度、当前高度和/或当前航向或导航单元400所附着的对象,以及其他导航数据。惯性数据431还可以包括历史数据,诸如初始或开始位置、过去速度和相应的标题、过去的高度和/或其他导航数据。Inertial data 431 represents navigation data describing the current and historical trajectory of navigation unit 400 . Inertial data 431 may represent, for example, the current velocity, current altitude, and/or current heading of navigation unit 400 or an object to which navigation unit 400 is attached, among other navigation data. Inertial data 431 may also include historical data, such as initial or starting positions, past speeds and corresponding headings, past altitudes, and/or other navigational data.
相移曲线数据433表示两个引导表面波波导探头P之间的一个或多个存储的双曲线曲线组。相移曲线数据433表示在相应的两个引导表面波波导探头P之间并围绕相应两个引导表面波波导探头P的那些点,其中由两个引导波表面波波导探头P发射的两个引导表面波之间的相位差等于特定值。根据两个引导表面波波导探头P之间的距离,对于特定相位差,可存在多个相移曲线数据433,因为引导表面波经过等于其相应波长的某几倍的距离。Phase shift curve data 433 represents one or more stored sets of hyperbolic curves between two guided surface wave waveguide probes P. The phase shift curve data 433 represents those points between and around the corresponding two guided surface wave waveguide probes P, where the two guided waves emitted by the two guided surface wave waveguide probes P The phase difference between surface waves is equal to a certain value. Depending on the distance between two guided surface wave waveguide probes P, there may be multiple phase shift curve data 433 for a certain phase difference, since the guided surface waves traverse a distance equal to some multiple of their corresponding wavelength.
执行多点定位应用423以基于由导航单元400接收的一个或多个引导表面波来识别导航单元400的位置。在一些实施例中,多点定位应用423可以例如基于一个或多个引导表面波从一个或多个相应的引导表面波波导探头P传播所花费的时间的长度,计算导航单元400的位置,如本文将进一步讨论的。在各种实施例中,多点定位应用423可以例如基于在导航单元400的位置处测量的一个或多个引导表面波的信号强度与在一个或多个相应的引导表面波波导探头P处的一个或多个引导表面波的相应信号强度之间的差来计算导航单元400的位置,如本文将进一步讨论的。在各种实施例中,多点定位应用423还可以例如基于在导航单元400的位置处测量的两个或更多个引导表面波之间的相移来计算导航单元400的位置,如这里将进一步讨论的。在这些各种实施例中的一个或多个中,多点定位应用423可以利用附加数据,例如地图数据429、相移曲线433、惯性数据431和/或其他导航数据。The multilateration application 423 is executed to identify the location of the navigation unit 400 based on one or more guided surface waves received by the navigation unit 400 . In some embodiments, the multilateration application 423 may calculate the position of the navigation unit 400 based, for example, on the length of time it takes for one or more guided surface waves to propagate from one or more corresponding guided surface wave waveguide probes P, as This article will discuss further. In various embodiments, the multilateration application 423 may, for example, be based on the signal strength of one or more guided surface waves measured at the location of the navigation unit 400 relative to the signal strength at one or more corresponding guided surface wave waveguide probes P. The difference between the respective signal strengths of one or more guided surface waves is used to calculate the position of the navigation unit 400, as will be discussed further herein. In various embodiments, the multilateration application 423 may also calculate the position of the navigation unit 400, for example, based on the phase shift between two or more guided surface waves measured at the position of the navigation unit 400, as will be described herein for further discussion. In one or more of these various embodiments, the multilateration application 423 may utilize additional data, such as map data 429, phase shift curves 433, inertial data 431, and/or other navigation data.
应当理解,可以存在存储在存储器416中并且可以被处理器430执行的其它应用,如可以理解的。这些其它应用可以例如被执行以确定由具有接收器403的导航单元400检测到的引导表面波的强度。在这里讨论的任何组件以软件的形式实现的情况下,多种编程语言可以采用诸如例如C、C++、C#、Objective C、Perl、PHP、VisualRuby、或其他编程语言。It should be understood that there may be other applications stored in the memory 416 and executable by the processor 430, as can be appreciated. These other applications may eg be performed to determine the strength of guided surface waves detected by the navigation unit 400 with the receiver 403 . Where any of the components discussed herein are implemented in software, a variety of programming languages can be employed such as, for example, C, C++, C#, Objective C, Perl, PHP, Visual Ruby, or other programming languages.
多个软件组件存储在存储器416中并且可由处理器413执行。在这方面,术语“可执行的”是指处于最终可由处理器413运行的形式的程序文件。可执行程序的示例可以是例如编译的程序,其可以被转换为可以被加载到存储器416的随机存取部分中并由处理器413运行的格式的机器代码;可以表示为适当的格式的源代码,诸如能够被加载到存储器416的随机存取部分中并由处理器413执行的目标代码;或者可以由另一可执行程序解释以在存储器416的随机存取部分中产生指令以由处理器413执行的源代码,等。可执行程序可以存储在存储器416的任何部分或组件中,包括例如随机存取存储器(RAM)、只读存储器(ROM)、硬盘驱动器、固态驱动器、USB闪存驱动器、存储卡、诸如压缩盘(CD)或数字通用盘(DVD)的光盘、软盘、磁带或其它存储器组件。A number of software components are stored in memory 416 and are executable by processor 413 . In this regard, the term "executable" refers to a program file in a form that is ultimately executable by the processor 413 . An example of an executable program may be, for example, a compiled program that may be converted into machine code in a format that may be loaded into a random-access portion of memory 416 and executed by processor 413; may be represented as source code in a suitable format , such as object code that can be loaded into a random access portion of memory 416 and executed by processor 413; or may be interpreted by another executable program to generate instructions in a random access portion of memory 416 to be executed by processor 413 Executed source code, etc. The executable program may be stored in any portion or component of memory 416 including, for example, random access memory (RAM), read only memory (ROM), hard drive, solid state drive, USB flash drive, memory card, such as a compact disk (CD ) or a digital versatile disc (DVD) optical disc, floppy disc, magnetic tape or other memory component.
存储器416在本文中被定义为包括易失性和非易失性存储器和数据存储组件。易失性组件是在失去电力时不保留数据值的组件。非易失性组件是在失去电力时保留数据的组件。因此,存储器416可以包括例如随机存取存储器(RAM)、只读存储器(ROM)、硬盘驱动器、固态驱动器、USB闪存驱动器、通过存储卡读取器访问的存储卡、经由相关联的软盘驱动器访问的软盘、经由光盘驱动器访问的光盘、经由适当的磁带驱动器访问的磁带和/或其它存储器组件、或这些存储器组件中的任何两个或更多个的组合。此外,RAM可以包括例如静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)或磁随机存取存储器(MRAM)和其它这样的设备。ROM可以包括例如可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)或其它类似的存储器设备。Memory 416 is defined herein to include both volatile and non-volatile memory and data storage components. Volatile components are components that do not retain data values when power is lost. Nonvolatile components are components that retain data when power is lost. Thus, memory 416 may include, for example, random access memory (RAM), read only memory (ROM), hard drives, solid state drives, USB flash drives, memory cards accessed through a memory card reader, accessed via an associated floppy disk drive, floppy disks, optical disks accessed via an optical drive, magnetic tapes accessed via an appropriate tape drive, and/or other storage components, or a combination of any two or more of these storage components. Additionally, RAM may include, for example, static random access memory (SRAM), dynamic random access memory (DRAM), or magnetic random access memory (MRAM), among other such devices. ROM may include, for example, Programmable Read Only Memory (PROM), Erasable Programmable Read Only Memory (EPROM), Electrically Erasable Programmable Read Only Memory (EEPROM), or other similar memory devices.
此外,处理器413可以表示多个处理器413和/或多个处理器核,并且存储器416可以表示分别在并行处理电路中操作的多个存储器416。在这种情况下,本地接口419可以是便于多个处理器413中的任何两个之间、任何处理器413和任何存储器416之间或任何两个存储器416等之间的通信的适当网络。本地接口419可以包括被设计为协调该通信的附加系统,包括例如执行负载平衡。处理器413可以是电的或一些其他可用的结构。Furthermore, the processor 413 may represent a plurality of processors 413 and/or a plurality of processor cores, and the memory 416 may represent a plurality of memories 416 respectively operating in parallel processing circuits. In such a case, local interface 419 may be a suitable network that facilitates communication between any two of number of processors 413, between any processor 413 and any memory 416, or between any two memories 416, and so on. Local interface 419 may include additional systems designed to coordinate this communication, including, for example, performing load balancing. Processor 413 may be electrical or some other available structure.
虽然多点定位应用423以及本文描述的其他各种系统可以以由如上所述的通用硬件执行的软件或代码来实现,但作为替代,同样可以在专用硬件或软件/通用硬件和专用硬件的组合来实现。如果体现在专用硬件中,则每个可以被实现为采用多种技术中的任何一种或其组合的电路或状态机。这些技术可以包括但不限于具有用于在应用一个或多个数据信号时实现各种逻辑功能的逻辑门的离散逻辑电路、具有适当逻辑门的专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它组件等。这样的技术通常是本领域技术人员公知的,因此在本文中不进行详细描述。While the multilateration application 423, as well as the various other systems described herein, may be implemented in software or code executed by general-purpose hardware as described above, it may alternatively be implemented on dedicated hardware or a combination of software/general-purpose and dedicated hardware. to fulfill. If embodied in dedicated hardware, each may be implemented as a circuit or a state machine employing any one or combination of various technologies. These techniques may include, but are not limited to, discrete logic circuits with logic gates for implementing various logic functions upon application of one or more data signals, application specific integrated circuits (ASICs) with appropriate logic gates, field programmable gate arrays ( FPGA) or other components, etc. Such techniques are generally known to those skilled in the art and thus are not described in detail herein.
继续参考图22,其示出了由多点定位应用423(图21)确定导航单元400(图21)的位置的图形表示。这里,三个地面站500使用各自的引导表面波波导探头P发射引导表面波。导航单元400接收每个引导表面波,然后多点定位应用423识别距每个地面站500的距离,例如通过确定来自地面站500的引导表面波的行进时间或者测量导航单元400和地面站500之间的引导表面波的信号强度的变化。多点定位应用423然后可以计算每个地面站500周围的圆周503。在其他实施例中,可以预先计算适当的圆周503,并且多点定位应用423可以改为引用存储在导航单元400的存储器416(图21)中的圆周503。例如,圆周503可以被包括在导航单元400的数据存储426(图21)中的地图数据429(图21)中。由于地面站500发射的引导表面波的传播速度可以基于引导表面波经过的地面介质的性质而改变,多点定位应用423可能需要相应地调整每个地面站周围的圆周503。例如,当引导表面波行进时,圆周可能变得畸形。然后,多点定位应用423可以识别位置506,其中每个地面站500周围的圆周503与每隔一个地面站500周围的每隔一个圆周503相交。该位置506对应于导航单元400的位置506。With continued reference to FIG. 22 , a graphical representation of the location of the navigation unit 400 ( FIG. 21 ) determined by the multilateration application 423 ( FIG. 21 ) is shown. Here, the three ground stations 500 use their respective guided surface wave waveguide probes P to transmit guided surface waves. The navigation unit 400 receives each guided surface wave, and then the multilateration application 423 identifies the distance to each ground station 500, for example by determining the travel time of the guided surface wave from the ground station 500 or measuring the distance between the navigation unit 400 and the ground station 500. The variation of the signal strength of the guided surface wave between. The multilateration application 423 can then calculate a circle 503 around each ground station 500 . In other embodiments, the appropriate circumference 503 may be pre-calculated, and the multilateration application 423 may instead refer to the circumference 503 stored in the memory 416 of the navigation unit 400 (FIG. 21). For example, circumference 503 may be included in map data 429 ( FIG. 21 ) in data store 426 ( FIG. 21 ) of navigation unit 400 . Since the propagation velocity of guided surface waves emitted by ground stations 500 may vary based on the properties of the ground medium through which the guided surface waves pass, multilateration application 423 may need to adjust circumference 503 around each ground station accordingly. For example, a circle can become misshapen when surface waves are guided to travel. The multilateration application 423 may then identify locations 506 where a circle 503 around each ground station 500 intersects every other circle 503 around every other ground station 500 . This location 506 corresponds to the location 506 of the navigation unit 400 .
一些实施例可以使用多于三个地面站500来实现更高的精度。例如,由于地面站500处的时间保持机制的精度的微小差异或者与从地面站500发射的引导表面波的干扰,引导表面波或由引导表面波传输的数据的测量可能是不准确的。附加地面站500的使用允许错误的识别和校正以及多点定位应用423的更准确的计算。其他实施例可以使用两个地面站500来识别导航单元400的两个可能的位置,并使用附加数据和/或技术,例如惯性数据431(图21)和航位推算或其他惯性导航技术,以消除导航单元400的两个潜在位置506中的一个。Some embodiments may use more than three ground stations 500 to achieve greater accuracy. For example, measurements of guided surface waves or data transmitted by guided surface waves may be inaccurate due to small differences in the accuracy of the time keeping mechanism at ground station 500 or interference with guided surface waves emitted from ground station 500 . The use of additional ground stations 500 allows identification and correction of errors and more accurate calculations of the multilateration application 423 . Other embodiments may use two ground stations 500 to identify two possible positions of the navigation unit 400, and use additional data and/or techniques, such as inertial data 431 (FIG. 21 ) and dead reckoning or other inertial navigation techniques, to One of the two potential locations 506 for the navigation unit 400 is eliminated.
此外,根据本公开的各种实施例,地面站500可以被设置为主从配置。在这样的实施例中,第一地面站500发射第一引导表面波。其他地面站500接收第一引导表面波并且响应地发射引导表面波。其它地面站500还可以在响应于从第一地面站500接收到第一引导表面波而发射引导表面波之前等待预定时间段。在这样的配置中,导航单元400能够基于每个引导表面波的到达的时间延迟,识别导航单元400和每个地面站500之间的距离,如本文将进一步详细讨论的。此外,这种配置具有自同步的优点。代替必须保持位于每个地面站500的时钟保持同步时间以可靠地发射引导表面波,仅必须保持第一地面站500处的时钟,因为由剩余地面站500发射引导表面波的定时是当第一引导表面波被每个其余地面站500接收时的函数。Additionally, according to various embodiments of the present disclosure, ground station 500 may be configured in a master-slave configuration. In such an embodiment, the first ground station 500 transmits a first guided surface wave. Other ground stations 500 receive the first guided surface wave and transmit the guided surface wave in response. The other ground stations 500 may also wait for a predetermined period of time before transmitting the guided surface wave in response to receiving the first guided surface wave from the first ground station 500 . In such a configuration, the navigation unit 400 is able to identify the distance between the navigation unit 400 and each ground station 500 based on the time delay of arrival of each guided surface wave, as will be discussed in further detail herein. Furthermore, this configuration has the advantage of being self-synchronizing. Instead of having to keep the clocks at each ground station 500 synchronized in time to reliably transmit guided surface waves, only the clock at the first ground station 500 must be maintained because the timing of the transmission of guided surface waves by the remaining ground stations 500 is when the first A function of when the guided surface wave is received by each of the remaining ground stations 500 .
申请人还注意到,在依赖于引导表面波的强度的测量的实施例中,可以使用驻波或连续波,因为在这些实施例中,引导表面波的到达时间不是必需的,以识别导航单位400的位置506。在这样的实施例中,使用驻立或连续引导表面波允许在任何时间确定导航单元400的位置506。相反,依赖于计算从导航单元400到地面站500的距离的实施例需要导航单元400等待接收由位于地面站的引导表面波波导探头P发射的引导表面波。Applicant also notes that in embodiments relying on measurements of the strength of guided surface waves, standing or continuous waves may be used, since in these embodiments the time of arrival of guided surface waves is not necessary to identify navigational units 400's position 506. In such an embodiment, the use of standing or continuously guided surface waves allows the position 506 of the navigation unit 400 to be determined at any time. In contrast, embodiments that rely on calculating the distance from the navigation unit 400 to the ground station 500 require the navigation unit 400 to wait to receive guided surface waves emitted by a guided surface wave waveguide probe P located at the ground station.
继续参考图23,其示出了用于由多点定位应用423(图21)使用由导航单元400测量的引导表面波的相位差确定导航单元400(图21)的位置的相移曲线数据433的图形表示。在这样的实施例中,一对地面站500(图22)各自发射一对锁相引导表面波。因此,在给定位置处每个引导表面波的相位是在地面站500和该位置之间穿过的引导表面波的波长数的函数。对于任何单独的相移曲线603,由两个地面站500发射的引导表面波之间的相位差在沿着相移曲线603的任何点处是恒定的。Continuing reference to FIG. 23 , which shows phase shift curve data 433 used by the multilateration application 423 ( FIG. 21 ) to determine the position of the navigation unit 400 ( FIG. 21 ) using the phase difference of the guided surface waves measured by the navigation unit 400 graphical representation of . In such an embodiment, a pair of ground stations 500 (FIG. 22) each transmit a pair of phase-locked guided surface waves. Thus, the phase of each guided surface wave at a given location is a function of the number of wavelengths of the guided surface wave that traverse between ground station 500 and that location. For any individual phase shift curve 603 , the phase difference between the guided surface waves emitted by the two ground stations 500 is constant at any point along the phase shift curve 603 .
因为引导表面波的相位在其行进时循环,所以可能存在与由两个地面站500发射的两个引导表面波之间的给定相位差相对应的多个相移曲线603。例如,对于在两个地面站500之间的相位差π/2,可能存在多个相移曲线603。为了识别导航单元400的位置606,可以测量由第二组地面站500发射的引导表面波的相移的差。其中每组地面站500的测量的相移的相移曲线603相交表示导航单元400的潜在位置606。附加的地面站500对和相应的相移曲线603可以用于进一步消除可能的位置606以便识别导航单元400的实际位置606。在一些实施例中,诸如惯性数据431(图21)和航位推算或其他惯性导航技术的附加数据和/或技术可以用于消除导航单元400的一个或更多的潜在位置606,以便精确地识别导航单元400的实际位置606。Because the phase of a guided surface wave cycles as it travels, there may be multiple phase shift curves 603 corresponding to a given phase difference between two guided surface waves emitted by two ground stations 500 . For example, for a phase difference of π/2 between two ground stations 500 , there may be multiple phase shift curves 603 . In order to identify the position 606 of the navigation unit 400, the difference in phase shift of the guided surface waves emitted by the second set of ground stations 500 may be measured. A phase shift curve 603 where the measured phase shifts of each set of ground stations 500 intersect represents a potential position 606 of the navigation unit 400 . Additional pairs of ground stations 500 and corresponding phase shift curves 603 may be used to further eliminate possible positions 606 in order to identify the actual position 606 of the navigation unit 400 . In some embodiments, additional data and/or techniques such as inertial data 431 ( FIG. 21 ) and dead reckoning or other inertial navigation techniques may be used to eliminate one or more potential locations 606 of navigation unit 400 in order to accurately The actual location of the navigation unit 400 is identified 606 .
申请人还注意到,测量导航单元400的位置处的两个或更多个引导表面波之间的相位差允许使用驻立或连续的引导表面波,因为测量引导表面波的到达时间是不必要的。在这样的实施例中,可以涉及多个地面站500,其中每个地面站以对地面站500唯一的对应预定频率发射驻立或连续的引导表面波。这可以被实现,因为如果两个地面站500以相同的锁相频率发射引导表面波,当由导航单元400检测时,引导表面波可能是不可区分的。在一些实施例中,地面站500中的每一个可以以某个预定义基线的谐波频率或主频率发射其相应的驻立或连续引导表面波。The applicant also notes that measuring the phase difference between two or more guided surface waves at the location of the navigation unit 400 allows the use of standing or continuous guided surface waves, since measuring the arrival time of guided surface waves is not necessary of. In such an embodiment, multiple ground stations 500 may be involved, with each ground station transmitting a standing or continuous guided surface wave at a corresponding predetermined frequency unique to the ground station 500 . This can be achieved because if two ground stations 500 transmit guided surface waves at the same phase-locked frequency, the guided surface waves may be indistinguishable when detected by the navigation unit 400 . In some embodiments, each of ground stations 500 may transmit its respective standing or continuous guided surface wave at a harmonic or dominant frequency of some predefined baseline.
参照图24,其示出了根据本公开的各种实施例的可以经由引导表面波传输的传输分组700的描绘。传输分组700可以包括时间戳703、站位置706,初始信号强度709和/或初始相位偏移713。传输分组700可以用于将信息发送到导航单元400(图21),使得多点定位应用423(图21)可以精确地识别导航单元400的位置。通过在传输分组700中发送信息,导航单元400不必将信息本地存储在存储器416中(图21)或导航单元400的数据存储426(图21)。此外,导航单元400的任何内部时钟或计时设备可以与发射引导表面波的地面站的时钟保持同步。此外,在测量引导表面波到达时的时间延迟或者测量从地面站500(图22)行进到导航单元400的位置506(图22)的引导表面波所花费的时间的那些实施例中,使用传输分组允许使用驻立或连续引导表面波。在这样的实施例中,可以使用由引导表面波携带的传输分组700的到达时间来代替引导表面波本身。然而,可以使用幅度调制、频率调制和/或其他技术通过本文描述的任何实施例来发送传输分组700。Referring to FIG. 24 , a depiction of a transport packet 700 that may be transmitted via guided surface waves is shown, according to various embodiments of the present disclosure. Transmission packet 700 may include timestamp 703 , station location 706 , initial signal strength 709 and/or initial phase offset 713 . Transport packet 700 can be used to send information to navigation unit 400 ( FIG. 21 ) so that multilateration application 423 ( FIG. 21 ) can accurately identify the location of navigation unit 400 . By sending the information in transport packets 700, the navigation unit 400 does not have to store the information locally in the memory 416 (FIG. 21) or in the data store 426 of the navigation unit 400 (FIG. 21). Additionally, any internal clocks or timing devices of the navigation unit 400 may be kept synchronized with the clocks of the ground stations emitting the guided surface waves. Furthermore, in those embodiments that measure the time delay in arrival of the guided surface wave or measure the time it takes for the guided surface wave to travel from the ground station 500 ( FIG. 22 ) to the location 506 of the navigation unit 400 ( FIG. 22 ), the transmission Grouping allows the use of standing or continuously guided surface waves. In such an embodiment, the time of arrival of the transport packet 700 carried by the guided surface waves may be used instead of the guided surface waves themselves. However, transport packet 700 may be sent with any of the embodiments described herein using amplitude modulation, frequency modulation, and/or other techniques.
时间戳703标识创建传输分组700的时间或者当经由引导表面波发送传输分组时的时间。在时间戳703表示创建传输分组700的时间的实施例中,先前定义的延迟可以存在于传输分组700的创建和传输分组700的发送之间,使得传输分组700与引导表面波一起发送的时间可以通过根据时间戳703如何被格式化从时间戳703中加上或减去延迟来确定。导航单元400可以基于时间戳703,使用以下公式确定导航单元400和发送传输分组的地面站500之间的距离:Timestamp 703 identifies the time when transport packet 700 was created or when the transport packet was sent via guided surface waves. In embodiments where the timestamp 703 represents the time at which the transport packet 700 was created, a previously defined delay may exist between the creation of the transport packet 700 and the sending of the transport packet 700 such that the time at which the transport packet 700 is sent with the guided surface waves may Determined by adding or subtracting a delay from the timestamp 703 depending on how the timestamp 703 is formatted. The navigation unit 400 may determine the distance between the navigation unit 400 and the ground station 500 that sent the transmission packet based on the timestamp 703 using the following formula:
Distance=SpeedWave(TimeReceived–TimeSend)Distance=Speed Wave (Time Received -Time Send )
其中变量SpeedWave是引导表面波行进通过地球表面的已知速度,变量TimeReceived是导航单元400接收到传输分组700的时间,变量TimeSend表示传输分组700的时间戳记703的值。The variable Speed Wave is the known speed at which surface waves are guided to travel across the Earth's surface, the variable Time Received is the time when the transmission packet 700 was received by the navigation unit 400, and the variable Time Send represents the value of the time stamp 703 of the transmission packet 700.
站位置706表示发送传输分组700的地面站500(图22)的地理坐标。基于站位置706和基于时间戳703计算的与站位置706的距离,如上所述,导航单元400可以识别地面站500周围的圆,其中该圆具有等于站位置706的中心和等于所计算的距离的半径,如上所述。Station location 706 represents the geographic coordinates of ground station 500 (FIG. 22) from which transmission packet 700 was transmitted. Based on the station location 706 and the distance to the station location 706 calculated based on the time stamp 703, as described above, the navigation unit 400 can identify a circle around the ground station 500, wherein the circle has a center equal to the station location 706 and equal to the calculated distance The radius of , as described above.
初始信号强度709表示当由地面站500处的引导表面波波导探头P发射时引导表面波的信号强度。因为引导表面波失去作为在地面站500处的引导表面波波导探头P和导航单元400的位置506之间的距离的函数的强度,导航单元400可以通过计算初始信号强度709与由导航单元400测量的信号强度之间的差来计算导航单元400的位置506与地面站506之间的距离。The initial signal strength 709 represents the signal strength of the guided surface wave when transmitted by the guided surface wave waveguide probe P at the ground station 500 . Because guided surface waves lose strength as a function of the distance between the guided surface wave waveguide probe P at the ground station 500 and the position 506 of the navigation unit 400, the navigation unit 400 can compare the initial signal strength measured by the navigation unit 400 by calculating 709 The distance between the location 506 of the navigation unit 400 and the ground station 506 is calculated as the difference between the signal strengths of the navigation unit 400 and the ground station 506 .
然而,在具有有限数量的地面站500的实施例中,每个地面站处的每个引导表面波的强度可以是存储在导航单元400的存储器416中的已知量。在这样的实施例中,初始信号强度709可以从传输分组700中省略,或者可以用于使导航单元400与当前条件同步。However, in embodiments with a limited number of ground stations 500 , the strength of each guided surface wave at each ground station may be a known quantity stored in the memory 416 of the navigation unit 400 . In such embodiments, initial signal strength 709 may be omitted from transmission packet 700, or may be used to synchronize navigation unit 400 with current conditions.
相位偏移713表示携带传输分组700的引导表面波的初始相位。相位偏移713可以由那些实施例使用,这些实施例基于在导航单元400的位置606(图23)的多个引导表面波的相位差来识别导航单元400的位置。在这样的实施例中,发送相位偏移713允许导航单元400保持与地面站500同步。Phase offset 713 represents the initial phase of the guided surface wave carrying transport packet 700 . Phase offset 713 may be used by those embodiments that identify the location of navigation unit 400 based on the phase difference of a plurality of guided surface waves at location 606 ( FIG. 23 ) of navigation unit 400 . In such an embodiment, transmitting the phase offset 713 allows the navigation unit 400 to remain synchronized with the ground station 500 .
现在参考图25,其示出了提供根据各种实施例的多点定位应用423的一部分的操作的一个示例的流程图。可以理解,图25的流程图仅提供可以用于实现如本文所述的多点定位应用423的一部分的操作的许多不同类型的功能布置的示例。作为替代,图25的流程图可以被视为描绘根据一个或多个实施例的在计算设备409(图21)中实现的方法的元素的示例。Referring now to FIG. 25 , a flowchart providing one example of the operation of a portion of the multilateration application 423 according to various embodiments is shown. It will be appreciated that the flowchart of FIG. 25 merely provides an example of many different types of functional arrangements that may be used to effectuate the operation of a portion of the multilateration application 423 as described herein. Alternatively, the flowchart of FIG. 25 may be considered an example depicting elements of a method implemented in computing device 409 ( FIG. 21 ) in accordance with one or more embodiments.
从框803开始,多点定位应用423确定最小数量的引导表面波波导探头P是否可用于地理定位。多点定位应用423可以通过确定由导航单元400(图21)检测的引导表面波的数量来确定这一点。每个引导表面波可以例如对应于在地面站500(图22)处的引导表面波波导探头P。因此,多点定位应用423可以通过对导航单元400可检测的引导表面波的数量进行计数来确定最小数量的地面站500是否可用。如果引导表面波波导探头P的最小数量可用,则执行进行到框806。否则,执行结束。Beginning at block 803, the multilateration application 423 determines whether a minimum number of guided surface wave waveguide probes P are available for geolocation. The multilateration application 423 can determine this by determining the number of guided surface waves detected by the navigation unit 400 (FIG. 21). Each guided surface wave may eg correspond to a guided surface wave waveguide probe P at ground station 500 ( FIG. 22 ). Accordingly, the multilateration application 423 may determine whether a minimum number of ground stations 500 are available by counting the number of guided surface waves detectable by the navigation unit 400 . If a minimum number of guided surface wave waveguide probes P are available, execution proceeds to block 806 . Otherwise, execution ends.
继续到框806,多点定位应用423识别哪个传输对应于哪个地面站500。例如,每个地面站500可以与被调谐到特定频率的引导表面波相关联。通过识别引导表面波的频率,多点定位应用423可以确定哪个地面站500具有发射引导表面波的引导表面波波导探头P。Continuing to block 806 , the multilateration application 423 identifies which transmission corresponds to which ground station 500 . For example, each ground station 500 may be associated with a guided surface wave tuned to a particular frequency. By identifying the frequency of the guided surface wave, the multilateration application 423 can determine which ground station 500 has the guided surface wave waveguide probe P that emits the guided surface wave.
继续到框809,在各种实施例中,多点定位应用423可以解析由引导表面波携带的传输分组700(图24)中的数据。例如,多点定位应用423可以使用包含在传输分组700中的信息来确定引导表面波发射的时间、地面站500与发射引导表面波的引导表面波波导探头P的位置、以及/或潜在地包括在传输分组700中的其他数据。Continuing to block 809, in various embodiments, the multilateration application 423 may parse the data in the transport packet 700 (FIG. 24) carried by the guided surface waves. For example, the multilateration application 423 may use the information contained in the transmission packet 700 to determine the time of the guided surface wave transmission, the location of the ground station 500 and the guided surface wave waveguide probe P that emitted the guided surface wave, and/or potentially include Other data in transport packet 700.
接下来参考框813,多点定位应用423计算从导航单元400到每个地面站500的距离。导航单元400可以基于传输分组700的时间戳703(图24),使用以下公式确定导航单元400和发送传输分组的地面站500之间的距离:Referring next to block 813 , the multilateration application 423 calculates the distance from the navigation unit 400 to each ground station 500 . The navigation unit 400 can determine the distance between the navigation unit 400 and the ground station 500 that sent the transmission packet based on the time stamp 703 ( FIG. 24 ) of the transmission packet 700 using the following formula:
Distance=SpeedWave(TimeReceived–TimeSend)Distance=Speed Wave (Time Received -Time Send )
其中变量SpeedWave是引导表面波行进通过地球表面的已知速度,变量TimeReceived是导航单元400接收到传输分组700的时间,变量TimeSend表示传输分组700的时间戳703中的值。Where the variable Speed Wave is the known speed at which surface waves are guided to travel across the Earth's surface, the variable Time Received is the time when the transmission packet 700 was received by the navigation unit 400, and the variable Time Send represents the value in the timestamp 703 of the transmission packet 700.
接下来进行到框816,多点定位应用423计算、绘制或以其它方式生成围绕用于识别导航单元400的位置506(图22)的每个地面站500的圆周。例如可以通过创建具有等于地面站500的位置的中心并且具有等于到地面站的位置的计算距离的半径的圆来计算圆周,如上所述。地面站500的位置可以是预先已知的,并存储在导航装置400的存储器416(图21)中,或者可基于从传输分组700解析的站位置706(图24)来确定。Proceeding next to block 816 , the multilateration application 423 calculates, plots, or otherwise generates a circle around each ground station 500 used to identify the location 506 ( FIG. 22 ) of the navigation unit 400 . The circumference may be calculated, for example, by creating a circle with a center equal to the location of the ground station 500 and a radius equal to the calculated distance to the location of the ground station, as described above. The location of the ground station 500 may be known in advance and stored in the memory 416 of the navigation device 400 ( FIG. 21 ), or may be determined based on the station location 706 parsed from the transmission packet 700 ( FIG. 24 ).
移动到框819,多点定位应用423识别每个圆周与每隔一个圆周相交的位置506。该交叉点表示导航单元400相对于所涉及的每个地面站500的位置506。执行随后结束。Moving to block 819, the multilateration application 423 identifies locations 506 where each circle intersects every other circle. This intersection represents the position 506 of the navigation unit 400 relative to each ground station 500 involved. Execution then ends.
现在参考图26,其示出了根据各种实施例的提供多点定位应用423的一部分的操作的一个示例的流程图。可以理解,图26的流程图仅提供可用于实现如本文所描述的多点定位应用423的一部分的操作的许多不同类型的功能布置的示例。作为替代,图26的流程图可以被视为描绘根据一个或多个实施例的在计算设备409(图21)中实现的方法的元素的示例。Referring now to FIG. 26 , a flowchart illustrating one example of the operation of providing a portion of the multilateration application 423 is shown, in accordance with various embodiments. It will be appreciated that the flowchart of FIG. 26 provides only an example of many different types of functional arrangements that may be used to effectuate the operation of a portion of the multilateration application 423 as described herein. Alternatively, the flowchart of FIG. 26 may be considered an example depicting elements of a method implemented in computing device 409 ( FIG. 21 ) in accordance with one or more embodiments.
从框903开始,多点定位应用423确定最小数量的引导表面波波导探头P是否可用于地理定位。多点定位应用423可以通过确定由导航单元400(图21)检测的引导表面波的数量来确定这一点。每个引导表面波可以例如对应于在地面站500(图22)处的引导表面波波导探头P。因此,多点定位应用423可以通过对导航单元400可检测的引导表面波的数量进行计数来确定最小数量的地面站500是否可用。如果引导表面波波导探头P的最小数量可用,则执行进行到框906。否则,执行结束。Beginning at block 903, the multilateration application 423 determines whether a minimum number of guided surface wave waveguide probes P are available for geolocation. The multilateration application 423 can determine this by determining the number of guided surface waves detected by the navigation unit 400 (FIG. 21). Each guided surface wave may eg correspond to a guided surface wave waveguide probe P at ground station 500 ( FIG. 22 ). Accordingly, the multilateration application 423 may determine whether a minimum number of ground stations 500 are available by counting the number of guided surface waves detectable by the navigation unit 400 . If a minimum number of guided surface wave waveguide probes P are available, execution proceeds to block 906 . Otherwise, execution ends.
接下来进行到框906,多点定位应用423识别哪个传输对应于哪个地面站500。例如,每个地面站500可以与被调谐到特定频率的引导表面波相关联。通过识别引导表面波的频率,多点定位应用423可以确定哪个地面站500具有发射引导表面波的引导表面波波导探头P。Proceeding next to block 906 , the multilateration application 423 identifies which transmission corresponds to which ground station 500 . For example, each ground station 500 may be associated with a guided surface wave tuned to a particular frequency. By identifying the frequency of the guided surface wave, the multilateration application 423 can determine which ground station 500 has the guided surface wave waveguide probe P that emits the guided surface wave.
移动到框909,多点定位应用423确定由导航单元400在导航单元400的位置506处检测的每个引导表面波的强度。强度可由导航单元400使用导航单元400的接收器403(图21)和相应的电路、传感器或应用来测量。Moving to block 909 , the multilateration application 423 determines the strength of each guided surface wave detected by the navigation unit 400 at the location 506 of the navigation unit 400 . Intensity may be measured by the navigation unit 400 using the receiver 403 of the navigation unit 400 (FIG. 21) and corresponding circuitry, sensors or applications.
接下来参考框913,确定到每个地面站500的距离。在地面站500处从引导表面波导探头P发射的每个引导表面波将具有初始强度。当引导表面波从地面站500行进时,强度将以可预测的方式降低。在引导表面波穿过球体的情况下,当引导表面波相对于地面站500的位置行进朝向赤道时由于几何扩散强度将降低,然后当引导表面波继续行进朝向对映体从而会聚到点上时强度再次增加。多点定位应用423可以通过确定地面站500和导航单元400之间的引导表面波的强度的变化,确定导航单元400距离每个地面站的距离。在一些实施例中,当在地面站发射时的引导表面波的强度可以是先前已知的并且被存储在导航单元400的存储器416中。在其他实施例中,引导表面波可以用作传输分组700(图24)的载波,其包括表示发射时的引导表面波的强度的初始信号强度709。Referring next to block 913, the distance to each ground station 500 is determined. Each guided surface wave emitted from the guided surface waveguide probe P at the ground station 500 will have an initial intensity. As the guided surface wave travels from the ground station 500, the intensity will decrease in a predictable manner. In the case of a guided surface wave passing through a sphere, the intensity will decrease due to geometrical diffusion as the guided surface wave travels towards the equator relative to the position of the ground station 500, and then converges to a point as the guided surface wave continues to travel towards the antipodes The intensity increases again. The multilateration application 423 can determine the distance of the navigation unit 400 from each ground station by determining the change in the strength of the guided surface waves between the ground station 500 and the navigation unit 400 . In some embodiments, the strength of the guided surface wave when transmitted at the ground station may be previously known and stored in the memory 416 of the navigation unit 400 . In other embodiments, guided surface waves may be used as the carrier for transmission packet 700 (FIG. 24), which includes an initial signal strength 709 representing the strength of the guided surface waves at the time of transmission.
继续进行到框916,多点定位应用423计算、绘制或以其它方式产生围绕用于识别导航单元400的位置506(图22)的每个地面站500的圆周。圆周可以,例如通过创建具有等于地面站500的位置的中心并且具有等于到地面站的位置的计算距离的半径的圆来计算,如上所述。地面站500的位置可以是预先已知的,并存储在导航装置400的存储器416(图21)中,或者可基于从传输分组700解析的站位置706(图24)来确定。Proceeding to block 916 , the multilateration application 423 calculates, plots, or otherwise generates a circle around each ground station 500 used to identify the location 506 ( FIG. 22 ) of the navigation unit 400 . The circumference may be calculated, for example, by creating a circle with a center equal to the location of the ground station 500 and a radius equal to the calculated distance to the location of the ground station, as described above. The location of the ground station 500 may be known in advance and stored in the memory 416 of the navigation device 400 ( FIG. 21 ), or may be determined based on the station location 706 parsed from the transmission packet 700 ( FIG. 24 ).
移动到框919,多点定位应用423识别每个圆周与每隔一个圆周相交的位置506。该交叉点表示导航单元400相对于所涉及的每个地面站500的潜在位置506。在一些实施例中,在引导波传播短距离的情况下,可能只有一个对应于导航单元400的位置506的交叉点。在引导波传播较长距离的实施例中,例如引导表面波遍历整个球体,可以识别多个潜在位置506,因为每个引导表面波具有在以发端地面站500为中心的半球中的给定强度的第一组位置和在以地面站500的对映体为中心的半球中的相同强度的第二组位置上,由于前面讨论的原因。Moving to block 919, the multilateration application 423 identifies locations 506 where each circle intersects every other circle. This intersection represents the potential position 506 of the navigation unit 400 relative to each of the ground stations 500 involved. In some embodiments, there may be only one intersection corresponding to the position 506 of the navigation unit 400 where the guided wave travels a short distance. In embodiments where guided waves travel longer distances, such as guided surface waves traversing an entire sphere, multiple potential locations 506 can be identified because each guided surface wave has a given intensity in a hemisphere centered at originating ground station 500 and a second set of positions of the same intensity in the hemisphere centered on the antipode of the ground station 500, for reasons discussed earlier.
接下来参考框,923基于先前在框919中确定的交叉来识别当前位置。对于使用行进短距离或中距离的引导表面波的那些实施例,多点定位应用423将单个公共交叉确定为导航单元400的位置506。对于使用行进中到长距离的引导表面波(例如穿过整个地球的引导表面波)的那些实施例,多点定位应用423可利用附加数据来识别来自潜在位置506的组的实际位置506。例如,多点定位应用423可以使用由导航单元400存储的惯性数据431来确定导航单元400位于北半球或北美洲大陆,并且因此识别北半球或北美洲大陆上的位置506作为导航单元400的位置506。执行随后结束。Referring next to block 923 , the current location is identified based on intersections previously determined in block 919 . For those embodiments using guided surface waves traveling short or medium distances, the multilateration application 423 determines a single common intersection as the location 506 of the navigation unit 400 . For those embodiments using guided surface waves traveling medium to long distances, such as guided surface waves traversing the entire earth, the multilateration application 423 may utilize additional data to identify the actual location 506 from the set of potential locations 506 . For example, the multilateration application 423 may use the inertial data 431 stored by the navigation unit 400 to determine that the navigation unit 400 is located in the Northern Hemisphere or the North American continent, and thus identify a location 506 on the Northern Hemisphere or North American continent as the location 506 of the navigation unit 400. Execution then ends.
接下来参考图27,其示出了提供根据各种实施例的多点定位应用423的一部分的操作的一个示例的流程图。可以理解,图27的流程图仅提供可用于实现如本文所描述的多点定位应用423的一部分的操作的许多不同类型的功能布置的示例。作为替代,图27的流程图可以被视为描绘根据一个或多个实施例的在计算设备409(图21)中实现的方法的元素的示例。Reference is next made to FIG. 27 , which shows a flowchart providing one example of the operation of a portion of the multilateration application 423 in accordance with various embodiments. It will be appreciated that the flowchart of FIG. 27 provides only an example of many different types of functional arrangements that may be used to effectuate the operation of a portion of the multilateration application 423 as described herein. Alternatively, the flowchart of FIG. 27 may be considered an example depicting elements of a method implemented in computing device 409 ( FIG. 21 ) in accordance with one or more embodiments.
从框1003开始,多点定位应用423确定最小数量的引导表面波波导探头P是否可用于地理定位。多点定位应用423可以通过确定由导航单元400(图21)检测的引导表面波的数量来确定这一点。每个引导表面波可以例如对应于在地面站500(图22)处的引导表面波波导探头P。因此,多点定位应用423可以通过对导航单元400可检测的引导表面波的数量进行计数来确定最小数量的地面站500是否可用。如果引导表面波波导探头P的最小数量可用,则执行进行到框1006。否则,执行结束。Beginning at block 1003, the multilateration application 423 determines whether a minimum number of guided surface wave waveguide probes P are available for geolocation. The multilateration application 423 can determine this by determining the number of guided surface waves detected by the navigation unit 400 (FIG. 21). Each guided surface wave may eg correspond to a guided surface wave waveguide probe P at ground station 500 ( FIG. 22 ). Accordingly, the multilateration application 423 may determine whether a minimum number of ground stations 500 are available by counting the number of guided surface waves detectable by the navigation unit 400 . If a minimum number of guided surface wave waveguide probes P are available, execution proceeds to block 1006 . Otherwise, execution ends.
继续进行到框1006,多点定位应用423识别哪个传输对应于哪个地面站500。例如,每个地面站500可以与被调谐到特定频率的引导表面波相关联,所述特定频率诸如基频的谐波。通过识别引导表面波的频率,多点定位应用423可以确定哪个地面站500对应于发射引导表面波的引导表面波波导探头P。Proceeding to block 1006 , the multilateration application 423 identifies which transmission corresponds to which ground station 500 . For example, each ground station 500 may be associated with a guided surface wave tuned to a particular frequency, such as a harmonic of the fundamental frequency. By identifying the frequency of the guided surface wave, the multilateration application 423 can determine which ground station 500 corresponds to the guided surface wave waveguide probe P that emitted the guided surface wave.
移动到框1009,多点定位应用423确定由导航单元400在导航单元400的位置606(图23)处检测到的来自两个地面站500的两个引导表面波之间的相位差。可以由导航单元400使用导航单元400的接收器403(图21)和相应的电路、传感器或应用来测量相差。多点定位应用423针对用于固定导航单元400的位置的每对地面站500执行该功能。Moving to block 1009 , the multilateration application 423 determines the phase difference between the two guided surface waves from the two ground stations 500 detected by the navigation unit 400 at the location 606 of the navigation unit 400 ( FIG. 23 ). The phase difference may be measured by the navigation unit 400 using the receiver 403 of the navigation unit 400 (FIG. 21) and corresponding circuitry, sensors or applications. The multilateration application 423 performs this function for each pair of ground stations 500 used to fix the position of the navigation unit 400 .
接下来参考框1013,多点定位应用423识别一组相移曲线603(图23)。每个相移曲线表示两个地面站500之间的连续的一组点,其中来自地面站500的锁相引导表面波与检测到的相移不同。因为每个引导表面波的相位随着每个引导表面波穿过其波长而周期性地循环,所以对于给定相位差的多个相移曲线可以存在于该对地面站500之间。因此,该组相移曲线603可以包括多个相移曲线603。Referring next to block 1013, the multilateration application 423 identifies a set of phase shift curves 603 (FIG. 23). Each phase shift curve represents a continuous set of points between two ground stations 500 where the phase-locked guided surface waves from the ground stations 500 differ from the detected phase shift. Since the phase of each guided surface wave cycles periodically as each guided surface wave traverses its wavelength, multiple phase shift curves for a given phase difference may exist between the pair of ground stations 500 . Accordingly, the set of phase shift curves 603 may include a plurality of phase shift curves 603 .
接下来进行到框1016,多点定位应用423识别每组相移曲线433与每组其他相移曲线603相交的位置。相移曲线603的组相交的位置606对应于导航单元400的可能位置606。由于引导表面波的相位的周期性,每组相移曲线603可以与多个位置606处的每组其他相移曲线603相交。Proceeding next to block 1016 , the multilateration application 423 identifies where each set of phase shift curves 433 intersects each other set of phase shift curves 603 . The locations 606 where groups of phase shift curves 603 intersect correspond to possible locations 606 of the navigation unit 400 . Due to the periodicity of the phase of the guided surface waves, each set of phase shift curves 603 may intersect every other set of phase shift curves 603 at multiple locations 606 .
移动到框1019,多点定位应用423识别对应于导航单元400的位置的相移曲线组603的交集。多点定位应用423可利用附加数据,例如惯性数据431(图21),以进行识别。例如,如果多点定位应用423确定导航单元400位于美国,则多点定位应用423将仅选择与美国内的位置606相对应的相移曲线603的交叉点。图25、26和27的流程图示出了多点定位应用423的各部分的实现的功能和操作。如果实现为软件,每个框可以表示包括用于实现指定的逻辑功能的程序指令的模块、段或代码部分(s)。程序指令可以以源代码的形式实施,源代码包括以编程语言编写的人类可读语句或机器代码,该机器代码包括可由合适的执行系统(例如计算机系统中的处理器413(图21)或其他系统)识别的数字指令。机器代码可以从源代码等转换。如果体现为硬件,则每个块可以表示电路或多个互连电路以实现指定的逻辑功能。Moving to block 1019 , the multilateration application 423 identifies the intersection of the set of phase shift curves 603 corresponding to the position of the navigation unit 400 . The multilateration application 423 may utilize additional data, such as inertial data 431 (FIG. 21), for identification. For example, if the multilateration application 423 determines that the navigation unit 400 is located in the United States, the multilateration application 423 will only select the intersection of the phase shift curve 603 corresponding to a location 606 within the United States. The flowcharts of FIGS. 25 , 26 and 27 illustrate the functionality and operation of the implementation of portions of the multilateration application 423 . If implemented as software, each block may represent a module, segment or code portion(s) that includes program instructions for implementing the specified logical function. Program instructions may be implemented in the form of source code, which includes human readable statements written in a programming language, or machine code including instructions that can be executed by a suitable execution system, such as processor 413 (FIG. 21 ) in a computer system or other system) recognized digital commands. Machine code can be converted from source code etc. If embodied as hardware, each block may represent a circuit or multiple interconnected circuits to carry out the specified logical function.
图25、图26和图27的流程图示出了特定的执行顺序,但是应当理解,执行顺序可以不同于所示的顺序。例如,两个或更多个块的执行顺序可以相对于所示的顺序加扰。此外,图25、26和27连续示出的两个或更多个块可以同时或部分同时执行。此外,在一些实施例中,图25、26和27中所示的一个或多个框可以被跳过或省略。另外,为了增强实用性、计费、性能测量或提供故障排除辅助等的目的,可以将任何数量的计数器、状态变量、警告信号或消息添加到本文描述的逻辑流程。应当理解,所有这样的变形在本公开的范围内。The flowcharts of Figures 25, 26, and 27 show a particular order of execution, but it should be understood that the order of execution may differ from that shown. For example, the order of execution of two or more blocks may be scrambled relative to the order shown. Furthermore, two or more blocks shown in succession in Figures 25, 26 and 27 may be executed concurrently or with partial concurrence. Additionally, in some embodiments, one or more of the blocks shown in Figures 25, 26, and 27 may be skipped or omitted. Additionally, any number of counters, state variables, warning signals, or messages may be added to the logic flows described herein for purposes of enhancing usability, billing, performance measurement, or providing troubleshooting assistance, among others. It should be understood that all such variations are within the scope of this disclosure.
此外,本文描述的包括多点定位应用423的任何逻辑或应用,包括软件或代码可以体现在任何非临时性计算机可读介质中,用于通过或与诸如例如计算机系统或其他系统中的处理器413的指令执行系统来使用。在这个意义上,所述逻辑可以包括,例如,语句,包括可以从计算机可读介质被读取并且由指令执行系统执行的指令和声明。在本公开的上下文中,“计算机可读介质”可以是可以包含、存储或维持这里描述的由指令执行系统使用或与指令执行系统结合使用的逻辑或应用的任何介质。Additionally, any logic or applications described herein, including the multilateration application 423, including software or code, may be embodied on any non-transitory computer-readable medium for use by or with a processor such as, for example, a computer system or other system 413 instruction execution system to use. In this sense, logic may include, for example, statements, including instructions and statements, that may be read from a computer-readable medium and executed by an instruction execution system. In the context of this disclosure, a "computer-readable medium" may be any medium that can contain, store or maintain the logic or applications described herein for use by or in connection with the instruction execution system.
计算机可读介质可以包括许多物理介质中的任何一种,例如磁介质,光介质或半导体介质。合适的计算机可读介质的更具体的示例将包括但不限于磁带、磁软盘、磁硬盘驱动器、存储卡、固态驱动器、USB闪存驱动器或光盘。此外,计算机可读介质可以是包括例如静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)或磁随机存取存储器(MRAM)的随机存取存储器(RAM)。此外,计算机可读介质可以是只读存储器(ROM)、可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM))或其他类型的存储器设备。Computer readable media may include any of many physical media, such as magnetic media, optical media, or semiconductor media. More specific examples of suitable computer readable media would include, but are not limited to, magnetic tapes, magnetic floppy diskettes, magnetic hard drives, memory cards, solid state drives, USB flash drives, or optical disks. Also, the computer readable medium may be random access memory (RAM) including, for example, static random access memory (SRAM) and dynamic random access memory (DRAM), or magnetic random access memory (MRAM). Furthermore, the computer readable medium can be a read only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM)) or Other types of memory devices.
此外,本文描述的任何逻辑或应用,包括多点定位应用423,可以以各种方式实现和结构化。例如,所描述的一个或多个应用可以被实现为单个应用的模块或组件。此外,应该理解,术语例如“应用”、“服务”、“系统”、“引擎”、“模块”等可以是可互换的,并且不旨在进行限制。Furthermore, any of the logic or applications described herein, including the multilateration application 423, can be implemented and structured in various ways. For example, one or more applications described may be implemented as modules or components of a single application. Furthermore, it should be understood that terms such as "application," "service," "system," "engine," "module," etc. may be interchangeable and are not intended to be limiting.
诸如短语“X、Y或Z中的至少一个”的析取语言,如除非特别声明,否则以与通常使用的上下文来理解以表示一个项目、术语等,可以是X、Y或Z,或其任何组合(例如,X、Y和/或Z)。因此,这样的析取语言一般不意欲也不应暗示某些实施例需要的X的至少一个、Y的至少一个、或Z的至少一个到每个存在。Disjunctive language such as the phrase "at least one of X, Y, or Z", as understood in the context of its usual use unless otherwise stated, to denote an item, term, etc., may be X, Y, or Z, or Any combination (eg, X, Y, and/or Z). Thus, such disjunctive language generally does not intend and should not imply the presence of at least one of X, at least one of Y, or at least one of Z to each that certain embodiments require.
应当强调的是,本公开的上述实施例仅仅是为了清楚地理解本公开的原理而阐述的实现的可能示例。在不实质上偏离本公开的精神和原理的情况下,可以对上述实施例进行许多变化和修改。所有这些修改和变化旨在被包括在本公开的范围内并由所附权利要求保护。另外,所描述的实施例和从属权利要求的所有可选和优选特征和修改可用于本文教导的本公开的所有方面。此外,从属权利要求的各个特征以及所描述的实施例的所有可选的和优选的特征和修改是可组合的并且可以彼此互换。It should be emphasized that the above-described embodiments of the present disclosure are merely possible examples of implementations set forth for a clear understanding of the principles of the disclosure. Many variations and modifications can be made to the above-described embodiments without departing substantially from the spirit and principles of this disclosure. All such modifications and variations are intended to be included within the scope of this disclosure and protected by the appended claims. Furthermore, all optional and preferred features and modifications of the described embodiments and the dependent claims are applicable to all aspects of the disclosure taught herein. Furthermore, the individual features of the dependent claims as well as all optional and preferred features and modifications of the described embodiments are combinable and interchangeable with each other.
Claims (20)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462049039P | 2014-09-11 | 2014-09-11 | |
US62/049,039 | 2014-09-11 | ||
US14/839,175 US10001553B2 (en) | 2014-09-11 | 2015-08-28 | Geolocation with guided surface waves |
US14/839,175 | 2015-08-28 | ||
PCT/US2015/049236 WO2016040516A1 (en) | 2014-09-11 | 2015-09-09 | Geolocation with guided surface waves |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106796279A true CN106796279A (en) | 2017-05-31 |
Family
ID=55454548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580055447.1A Pending CN106796279A (en) | 2014-09-11 | 2015-09-09 | The geography of guiding surface ripple |
Country Status (15)
Country | Link |
---|---|
US (2) | US10001553B2 (en) |
EP (1) | EP3192122A1 (en) |
JP (1) | JP2017536790A (en) |
KR (1) | KR20170049528A (en) |
CN (1) | CN106796279A (en) |
AU (1) | AU2015315095B2 (en) |
BR (1) | BR112017005041A2 (en) |
CA (1) | CA2960013A1 (en) |
EA (1) | EA201790587A1 (en) |
IL (1) | IL250785A0 (en) |
MA (1) | MA40502A (en) |
MX (1) | MX362462B (en) |
SG (1) | SG11201701367TA (en) |
WO (1) | WO2016040516A1 (en) |
ZA (1) | ZA201701269B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108900258A (en) * | 2018-02-15 | 2018-11-27 | 中国信息通信研究院 | A method of analysis vibration influences radio signal propagation |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10498393B2 (en) * | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US20170063432A1 (en) * | 2015-08-24 | 2017-03-02 | Pabellon, Inc. | Wireless data transfer |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10498006B2 (en) * | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10396566B2 (en) * | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
CA2997620A1 (en) * | 2015-09-10 | 2017-03-16 | Cpg Technologies, Llc. | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
CN107343291B (en) * | 2016-04-28 | 2021-11-12 | 中兴通讯股份有限公司 | Antenna feeder system detection method, device and base station |
CN106959435B (en) * | 2017-03-27 | 2023-12-08 | 中特检验集团有限公司 | Acoustic navigation positioning method and device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3706046A (en) * | 1971-12-13 | 1972-12-12 | Bell Telephone Labor Inc | Phase-locked signal source |
US5835067A (en) * | 1994-04-28 | 1998-11-10 | Goodman; Edward A. | Short vertical 160 meter band antenna |
EP1081503A2 (en) * | 1999-08-30 | 2001-03-07 | Matsushita Electric Industrial Co., Ltd. | Position detecting method and apparatus |
CN101145810A (en) * | 2006-09-11 | 2008-03-19 | 索尼株式会社 | Communication system and communication apparatus |
CN101256235A (en) * | 2007-03-02 | 2008-09-03 | Saab公司 | Subsurface imaging radar |
CN102474841A (en) * | 2009-07-13 | 2012-05-23 | 三星电子株式会社 | Apparatus and method for estimating location of terminal using sequence transmitted from base station |
CN102576044A (en) * | 2009-08-14 | 2012-07-11 | 罗森伯格高频技术有限及两合公司 | Antenna characterisation in a waveguide |
US20130064311A1 (en) * | 2011-09-08 | 2013-03-14 | Roke Manor Research Limited | Apparatus for the Transmission of Electromagnetic Waves |
Family Cites Families (154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123767A (en) | 1964-03-03 | Uator | ||
GB189620981A (en) | 1896-09-22 | 1896-11-21 | Nikola Tesla | Improvements relating to the Production, Regulation, and Utilization of Electric Currents of High Frequency, and to Apparatus therefor. |
US645576A (en) | 1897-09-02 | 1900-03-20 | Nikola Tesla | System of transmission of electrical energy. |
GB189824421A (en) | 1898-11-19 | 1899-03-04 | George Frederick Baker | An Improved Curtain Rod. |
US685953A (en) | 1899-06-24 | 1901-11-05 | Nikola Tesla | Method of intensifying and utilizing effects transmitted through natural media. |
US685955A (en) | 1899-06-24 | 1901-11-05 | Nikola Tesla | Apparatus for utilizing effects transmitted from a distance to a receiving device through natural media. |
US685956A (en) | 1899-08-01 | 1901-11-05 | Nikola Tesla | Apparatus for utilizing effects transmitted through natural media. |
US685954A (en) | 1899-08-01 | 1901-11-05 | Nikola Tesla | Method of utilizing effects transmitted through natural media. |
US685012A (en) | 1900-03-21 | 1901-10-22 | Nikola Tesla | Means for increasing the intensity of electrical oscillations. |
US787412A (en) | 1900-05-16 | 1905-04-18 | Nikola Tesla | Art of transmitting electrical energy through the natural mediums. |
US725605A (en) | 1900-07-16 | 1903-04-14 | Nikola Tesla | System of signaling. |
GB190111293A (en) | 1901-06-01 | 1901-11-02 | Nikola Tesla | Improvements relating to the Utilization of Electromagnetic, Light, or other like Radiations Effects or Disturbances transmitted through the Natural Media and to Apparatus therefor. |
GB190113563A (en) | 1901-07-03 | 1901-11-09 | Nikola Tesla | Improvements in, and relating to, the Transmission of Electrical Energy. |
GB190214579A (en) | 1902-06-30 | 1902-12-18 | Joseph William Cunningham | Improvements in Mills for Grinding Grain |
GB190508200A (en) | 1905-04-17 | 1906-04-17 | Nikola Tesla | Improvements relating to the Transmission of Electrical Energy. |
US851336A (en) | 1905-06-27 | 1907-04-23 | Georg Von Arco | Transmitter for wireless telegraphy. |
US1119732A (en) | 1907-05-04 | 1914-12-01 | Nikola Tesla | Apparatus for transmitting electrical energy. |
US1452849A (en) | 1921-12-13 | 1923-04-24 | Rca Corp | Wireless transmitting station |
US1691338A (en) | 1923-10-05 | 1928-11-13 | Westinghouse Electric & Mfg Co | Aerial system |
US1652516A (en) | 1924-12-23 | 1927-12-13 | Westinghouse Electric & Mfg Co | Radio transmitting system |
US1947256A (en) | 1930-01-11 | 1934-02-13 | Bell Telephone Labor Inc | Antenna counterpoise system |
BE554252A (en) | 1950-03-21 | |||
US2921277A (en) | 1956-07-13 | 1960-01-12 | Surface Conduction Inc | Launching and receiving of surface waves |
US3219954A (en) | 1957-05-31 | 1965-11-23 | Giovanni P Rutelli | Surface wave transmission system for telecommunication and power transmission |
FR1604503A (en) | 1960-05-31 | 1971-11-29 | ||
US3582838A (en) | 1966-09-27 | 1971-06-01 | Zenith Radio Corp | Surface wave devices |
US3445844A (en) | 1968-01-11 | 1969-05-20 | Raytheon Co | Trapped electromagnetic radiation communications system |
US3742511A (en) | 1971-06-15 | 1973-06-26 | Smith Electronics Inc | Low-loss antenna system with counterpoise insulated from earth |
US3742509A (en) | 1971-11-11 | 1973-06-26 | Raytheon Co | Subsurface traveling wave antenna |
GB1471860A (en) | 1974-07-02 | 1977-04-27 | Plessey Co Ltd | Radio antenna incorporating low-loss high relative permittivity dielectric material |
US4751515A (en) | 1980-07-09 | 1988-06-14 | Corum James F | Electromagnetic structure and method |
US4808950A (en) | 1986-10-06 | 1989-02-28 | Sanders Associates, Inc. | Electromagnetic dispersive delay line |
GB8802204D0 (en) | 1988-02-02 | 1988-03-02 | Hately M C | Twin feeder crossed field antenna systems |
IL89468A (en) | 1989-03-03 | 1994-08-26 | Gamzon Eliyahu | Method and system for supporting an airborne vehicle in space |
US5173690A (en) | 1990-02-23 | 1992-12-22 | Viz Manufacturing Company | Passive ranging system utilizing range tone signals |
JP3145385B2 (en) | 1990-06-12 | 2001-03-12 | セイコーインスツルメンツ株式会社 | Wireless coordinate reader, coordinate indicator thereof, and switch state detecting method of the coordinate indicator |
US5045825A (en) | 1990-07-05 | 1991-09-03 | Hewlett-Packard Company | Coupling port for multiple capacitor, distributed inductor resonator |
US5293308A (en) | 1991-03-26 | 1994-03-08 | Auckland Uniservices Limited | Inductive power distribution system |
US5301096A (en) | 1991-09-27 | 1994-04-05 | Electric Power Research Institute | Submersible contactless power delivery system |
AU662196B2 (en) | 1992-01-03 | 1995-08-24 | Siemens Aktiengesellschaft | Passive surface wave sensor which can be wirelessly interrogated |
CA2135299C (en) | 1992-05-08 | 2000-01-18 | Stanislav Avramenko | Apparatus and method for single line electrical transmission |
US6075498A (en) | 1993-01-08 | 2000-06-13 | American Nucleonics Corp. | Surface wave directional detection system and method |
JPH06225481A (en) | 1993-01-21 | 1994-08-12 | Takeo Oe | Wireless type power supply apparatus for submerged electric machine |
GB2288914A (en) | 1994-04-26 | 1995-11-01 | Maurice Clifford Hately | Radio antenna |
US5714917A (en) | 1996-10-02 | 1998-02-03 | Nokia Mobile Phones Limited | Device incorporating a tunable thin film bulk acoustic resonator for performing amplitude and phase modulation |
US5920261A (en) | 1996-12-31 | 1999-07-06 | Design Vision Inc. | Methods and apparatus for tracking and displaying objects |
KR100216885B1 (en) | 1997-07-25 | 1999-09-01 | 윤덕용 | Electric field sensor |
US6515878B1 (en) | 1997-08-08 | 2003-02-04 | Meins Juergen G. | Method and apparatus for supplying contactless power |
GB9718311D0 (en) | 1997-08-30 | 1997-11-05 | Hately Maurice C | Dual loop radio antenna |
RU2143775C1 (en) | 1999-03-25 | 1999-12-27 | Стребков Дмитрий Семенович | Power transmission method and device |
RU2161850C1 (en) | 1999-07-14 | 2001-01-10 | Стребков Дмитрий Семенович | Technique and gear to transmit electric energy |
US6486846B1 (en) | 2000-05-23 | 2002-11-26 | Robert T. Hart | E H antenna |
US6864849B2 (en) | 2000-05-23 | 2005-03-08 | Robert T. Hart | Method and apparatus for creating an EH antenna |
RU2183376C2 (en) | 2000-07-03 | 2002-06-10 | Стребков Дмитрий Семенович | Procedure and gear to transmit electric energy ( alternatives ) |
US6650556B2 (en) | 2001-10-31 | 2003-11-18 | Intel Corporation | Multi-phase DC—DC converter |
GB2387053B (en) * | 2001-11-12 | 2006-02-01 | Telstra Corp Ltd | Surface wave radar |
CA2469652C (en) | 2001-12-12 | 2008-07-29 | Jervis B. Webb Company | Driverless vehicle guidance system and method |
GB2387969B (en) | 2002-04-13 | 2005-11-30 | Maurice Clifford Hately | Radio antennas |
RU2255406C2 (en) | 2003-02-21 | 2005-06-27 | Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) | Method and device for electrical energy transmission |
US7068234B2 (en) | 2003-05-12 | 2006-06-27 | Hrl Laboratories, Llc | Meta-element antenna and array |
JP3924263B2 (en) | 2003-06-09 | 2007-06-06 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Ultrasonic diagnostic equipment |
US6956535B2 (en) | 2003-06-30 | 2005-10-18 | Hart Robert T | Coaxial inductor and dipole EH antenna |
US7280033B2 (en) | 2003-10-15 | 2007-10-09 | Current Technologies, Llc | Surface wave power line communications system and method |
JP2004297817A (en) * | 2004-04-28 | 2004-10-21 | Matsushita Electric Ind Co Ltd | Distance detection method and location detection method |
US7834813B2 (en) | 2004-10-15 | 2010-11-16 | Skycross, Inc. | Methods and apparatuses for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness |
RU2273939C1 (en) | 2004-12-01 | 2006-04-10 | Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) | Method and device for transferring electric energy (variants) |
JP5185625B2 (en) | 2004-12-13 | 2013-04-17 | インテスト コーポレイション | Reflection reduction signal module |
US9118216B2 (en) | 2005-02-18 | 2015-08-25 | Cpg Technologies, Llc | Parametric power multiplication |
EP3138702B1 (en) | 2005-03-18 | 2019-11-13 | Gatekeeper Systems, Inc. | Two-way communication system for tracking locations and statuses of wheeled vehicles |
US7825543B2 (en) | 2005-07-12 | 2010-11-02 | Massachusetts Institute Of Technology | Wireless energy transfer |
JP4921466B2 (en) | 2005-07-12 | 2012-04-25 | マサチューセッツ インスティテュート オブ テクノロジー | Wireless non-radiative energy transfer |
US7586384B2 (en) | 2005-08-15 | 2009-09-08 | Nokia Corporation | Integrated load impedance sensing for tunable matching networks |
US7307589B1 (en) | 2005-12-29 | 2007-12-11 | Hrl Laboratories, Llc | Large-scale adaptive surface sensor arrays |
RU2310964C1 (en) | 2006-02-10 | 2007-11-20 | Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Electrical energy transmission method and device |
JP4278061B2 (en) | 2006-03-06 | 2009-06-10 | 国立大学法人京都大学 | In-building wireless power transmission system |
US7782264B1 (en) | 2006-03-28 | 2010-08-24 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Systems and methods for providing distributed load monopole antenna systems |
US20070298846A1 (en) | 2006-06-14 | 2007-12-27 | Powercast, Llc | Wireless power transmission |
RU2341860C2 (en) | 2006-07-04 | 2008-12-20 | Виктор Иванович Петрик | Method and device for transmission of electric power (versions) |
JP4893483B2 (en) * | 2006-09-11 | 2012-03-07 | ソニー株式会社 | Communications system |
JP4345850B2 (en) | 2006-09-11 | 2009-10-14 | ソニー株式会社 | Communication system and communication apparatus |
US7960870B2 (en) | 2006-11-27 | 2011-06-14 | Xslent Energy Technologies, Llc | Power extractor for impedance matching |
RU2340064C1 (en) | 2007-03-29 | 2008-11-27 | Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Method and device for electrical energy transmission (versions) |
RU2342761C1 (en) | 2007-09-07 | 2008-12-27 | Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Method and device for electric energy transmission (versions) |
US8890472B2 (en) | 2007-09-26 | 2014-11-18 | Alex Mashinsky | Self-charging electric vehicles and aircraft, and wireless energy distribution system |
WO2013093922A2 (en) | 2011-12-21 | 2013-06-27 | Powermat Technologies Ltd. | System and method for providing wireless power transfer functionality to an electrical device |
US8350769B1 (en) | 2008-03-20 | 2013-01-08 | United States Of America As Represented By Secretary Of The Navy | Frequency agile electrically small tactical AM broadcast band antenna system |
RU2366057C1 (en) | 2008-04-25 | 2009-08-27 | Российская Академия сельскохозяйственных наук Государственное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Electric power transmission method and device |
CA2724341C (en) | 2008-05-14 | 2016-07-05 | Massachusetts Institute Of Technology | Wireless energy transfer, including interference enhancement |
RU2366058C1 (en) | 2008-05-16 | 2009-08-27 | Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Electric power transmission method and device |
AU2009283967A1 (en) | 2008-08-20 | 2010-02-25 | Bae Systems Plc | High frequency surfacewave radar |
WO2010024895A1 (en) | 2008-08-25 | 2010-03-04 | Governing Dynamics, Llc | Wireless energy transfer system |
JP4911148B2 (en) | 2008-09-02 | 2012-04-04 | ソニー株式会社 | Contactless power supply |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US20100149029A1 (en) | 2008-12-15 | 2010-06-17 | Sony Ericsson Mobile Communications Ab | System and Method for Obtaining Location Assistance Data |
US8299936B2 (en) | 2008-12-18 | 2012-10-30 | Bae Systems Information And Electronic Systems Integration Inc. | Method and apparatus for establishing low frequency/ultra low frequency and very low frequency communications |
US9130394B2 (en) | 2009-02-05 | 2015-09-08 | Qualcomm Incorporated | Wireless power for charging devices |
JP4752931B2 (en) | 2009-02-18 | 2011-08-17 | ブラザー工業株式会社 | Wireless tag communication device |
US8338991B2 (en) | 2009-03-20 | 2012-12-25 | Qualcomm Incorporated | Adaptive impedance tuning in wireless power transmission |
US8803474B2 (en) | 2009-03-25 | 2014-08-12 | Qualcomm Incorporated | Optimization of wireless power devices |
US8237313B2 (en) | 2009-04-08 | 2012-08-07 | John Ruocco | Method and apparatus for wireless transmission and reception of electric power |
EP2419962B1 (en) | 2009-04-13 | 2020-12-23 | ViaSat, Inc. | Half-duplex phased array antenna system |
WO2010129369A2 (en) | 2009-04-28 | 2010-11-11 | Mojo Mobility, Inc. | System and methods for inductive charging, and improvements and uses thereof |
US8536738B2 (en) | 2009-05-07 | 2013-09-17 | Telecom Italia S.P.A. | System for transferring energy wirelessly |
US8274178B2 (en) | 2009-06-21 | 2012-09-25 | Christopher Allen Tucker | System of transmission of wireless energy |
US8587490B2 (en) | 2009-07-27 | 2013-11-19 | New Jersey Institute Of Technology | Localized wave generation via model decomposition of a pulse by a wave launcher |
US8063717B2 (en) | 2009-07-27 | 2011-11-22 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | Duplexer having resonator filters |
EP2293411B1 (en) | 2009-09-03 | 2021-12-15 | TDK Corporation | Wireless power feeder and wireless power transmission system |
RU2409883C1 (en) | 2009-09-11 | 2011-01-20 | Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Electric energy transmission method and device |
US8541974B2 (en) | 2009-09-17 | 2013-09-24 | Qualcomm Incorporated | Movable magnetically resonant antenna for wireless charging |
US20110080050A1 (en) | 2009-10-02 | 2011-04-07 | Ut-Battelle, Llc | Systems and Methods for Directional Reactive Power Ground Plane Transmission |
US20110133565A1 (en) | 2009-12-03 | 2011-06-09 | Koon Hoo Teo | Wireless Energy Transfer with Negative Index Material |
US9461505B2 (en) | 2009-12-03 | 2016-10-04 | Mitsubishi Electric Research Laboratories, Inc. | Wireless energy transfer with negative index material |
RU2473160C2 (en) | 2009-12-04 | 2013-01-20 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Method and device for electrical energy transmission |
US9030363B2 (en) | 2009-12-29 | 2015-05-12 | Kathrein-Werke Ag | Method and apparatus for tilting beams in a mobile communications network |
US8384247B2 (en) | 2010-01-13 | 2013-02-26 | Mitsubishi Electric Research Laboratories, Inc. | Wireless energy transfer to moving devices |
US8159385B2 (en) | 2010-02-04 | 2012-04-17 | Sensis Corporation | Conductive line communication apparatus and conductive line radar system and method |
RU2423772C1 (en) | 2010-03-23 | 2011-07-10 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Method and device of electric energy transfer (versions) |
US8428580B1 (en) | 2010-06-30 | 2013-04-23 | Rockwell Collins, Inc. | Aviation cellular communications system and method |
RU2459340C2 (en) | 2010-09-21 | 2012-08-20 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Method and device for transmission of power |
RU2474031C2 (en) | 2010-09-22 | 2013-01-27 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Method and device for electrical energy transmission (versions) |
EP2636236A4 (en) | 2010-11-03 | 2016-06-29 | Ericsson Telefon Ab L M | A radio base station and a method therein |
US20120169568A1 (en) | 2011-01-03 | 2012-07-05 | Palm, Inc. | Multiband antenna with ground resonator and tuning element |
JP2012147351A (en) | 2011-01-14 | 2012-08-02 | Sony Corp | Signal transmission device, electronic device, and signal transmission method |
JP5058350B1 (en) | 2011-03-30 | 2012-10-24 | 株式会社東芝 | Power transmission device and power transmission system |
US9030421B2 (en) | 2011-04-01 | 2015-05-12 | Qualcomm Incorporated | Touchscreen controller with adjustable parameters |
US20130029595A1 (en) | 2011-07-29 | 2013-01-31 | Qualcomm Incorporated | Communications related to electric vehicle wired and wireless charging |
US20130049674A1 (en) | 2011-08-24 | 2013-02-28 | Qualcomm Incorporated | Integrated photo voltaic solar plant and electric vehicle charging station and method of operation |
US8941448B2 (en) | 2011-10-13 | 2015-01-27 | Mediatek Singapore Pte. Ltd. | M-way coupler |
US9264108B2 (en) | 2011-10-21 | 2016-02-16 | Qualcomm Incorporated | Wireless power carrier-synchronous communication |
RU2488207C1 (en) | 2011-11-17 | 2013-07-20 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Method and device for transmission of power |
RU2488208C1 (en) | 2011-12-22 | 2013-07-20 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Method and device for transmission of electric power |
WO2013122703A1 (en) | 2012-02-14 | 2013-08-22 | Ut-Battelle, Llc | Wireless power charging using point of load controlled high frequency power converters |
US8315649B1 (en) | 2012-03-23 | 2012-11-20 | Google Inc. | Providing a geographic location of a device while maintaining geographic location anonymity of access points |
US20150280444A1 (en) | 2012-05-21 | 2015-10-01 | University Of Washington Through Its Center For Commercialization | Wireless power delivery in dynamic environments |
US9419476B2 (en) | 2012-07-10 | 2016-08-16 | Farrokh Mohamadi | Flat panel, stationary or mobile, spatially beam-formed wireless energy delivery system |
GB201215152D0 (en) | 2012-08-24 | 2012-10-10 | Imp Innovations Ltd | Maximising DC to load efficiency for inductive power transfer |
CN104838578B (en) | 2012-08-28 | 2018-11-02 | 奥克兰联合服务有限公司 | The individually polyphase induction electric energy transmission system of control phase |
US9252492B2 (en) | 2012-08-29 | 2016-02-02 | Intel Deutschland Gmbh | Antenna tuning via multi-feed transceiver architecture |
US9270248B2 (en) | 2012-10-12 | 2016-02-23 | Infineon Technologies Ag | Impedance matching network with improved quality factor and method for matching an impedance |
RU2544380C2 (en) | 2013-01-24 | 2015-03-20 | Дмитрий Семенович Стребков | Method and device for transmission of electric power |
RU2533060C2 (en) | 2013-02-01 | 2014-11-20 | Дмитрий Семенович Стребков | Method and device for transmission of electric power |
US9500486B2 (en) | 2013-02-28 | 2016-11-22 | Here Global B.V. | Method and apparatus for formulating a positioning extent for map matching |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9107057B2 (en) | 2013-03-15 | 2015-08-11 | Cornerturn Llc | Methods, apparatuses, systems and computer readable mediums for determining location of assets |
RU2548571C2 (en) | 2013-04-04 | 2015-04-20 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ФГБНУ ВИЭСХ) | System for wireless electric power supply to remote consumers of electrical energy via laser beam |
GB201306555D0 (en) | 2013-04-10 | 2013-05-22 | Roke Manor Research | System and Method for Sensing Signal Disruption |
JP6164914B2 (en) | 2013-04-30 | 2017-07-19 | キヤノン株式会社 | Power supply apparatus, control method, and program |
RU2554723C2 (en) | 2013-06-13 | 2015-06-27 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) | Aircraft power supply method and device (versions) |
US9647345B2 (en) | 2013-10-21 | 2017-05-09 | Elwha Llc | Antenna system facilitating reduction of interfering signals |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
JP5839020B2 (en) | 2013-11-28 | 2016-01-06 | Tdk株式会社 | Power transmission coil unit and wireless power transmission device |
GB201401014D0 (en) | 2014-01-21 | 2014-03-05 | Welding Inst | System and method for transmitting data or power across a structural component |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
-
2015
- 2015-08-28 US US14/839,175 patent/US10001553B2/en active Active
- 2015-09-09 BR BR112017005041A patent/BR112017005041A2/en not_active Application Discontinuation
- 2015-09-09 MA MA040502A patent/MA40502A/en unknown
- 2015-09-09 WO PCT/US2015/049236 patent/WO2016040516A1/en active Application Filing
- 2015-09-09 CN CN201580055447.1A patent/CN106796279A/en active Pending
- 2015-09-09 MX MX2017003031A patent/MX362462B/en active IP Right Grant
- 2015-09-09 JP JP2017514548A patent/JP2017536790A/en not_active Ceased
- 2015-09-09 EP EP15770706.8A patent/EP3192122A1/en not_active Withdrawn
- 2015-09-09 EA EA201790587A patent/EA201790587A1/en unknown
- 2015-09-09 SG SG11201701367TA patent/SG11201701367TA/en unknown
- 2015-09-09 KR KR1020177006648A patent/KR20170049528A/en not_active Withdrawn
- 2015-09-09 CA CA2960013A patent/CA2960013A1/en not_active Abandoned
- 2015-09-09 AU AU2015315095A patent/AU2015315095B2/en not_active Expired - Fee Related
-
2017
- 2017-02-20 ZA ZA2017/01269A patent/ZA201701269B/en unknown
- 2017-02-26 IL IL250785A patent/IL250785A0/en unknown
-
2018
- 2018-04-02 US US15/942,943 patent/US20180284252A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3706046A (en) * | 1971-12-13 | 1972-12-12 | Bell Telephone Labor Inc | Phase-locked signal source |
US5835067A (en) * | 1994-04-28 | 1998-11-10 | Goodman; Edward A. | Short vertical 160 meter band antenna |
EP1081503A2 (en) * | 1999-08-30 | 2001-03-07 | Matsushita Electric Industrial Co., Ltd. | Position detecting method and apparatus |
CN101145810A (en) * | 2006-09-11 | 2008-03-19 | 索尼株式会社 | Communication system and communication apparatus |
CN101256235A (en) * | 2007-03-02 | 2008-09-03 | Saab公司 | Subsurface imaging radar |
CN102474841A (en) * | 2009-07-13 | 2012-05-23 | 三星电子株式会社 | Apparatus and method for estimating location of terminal using sequence transmitted from base station |
CN102576044A (en) * | 2009-08-14 | 2012-07-11 | 罗森伯格高频技术有限及两合公司 | Antenna characterisation in a waveguide |
US20130064311A1 (en) * | 2011-09-08 | 2013-03-14 | Roke Manor Research Limited | Apparatus for the Transmission of Electromagnetic Waves |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108900258A (en) * | 2018-02-15 | 2018-11-27 | 中国信息通信研究院 | A method of analysis vibration influences radio signal propagation |
CN108900258B (en) * | 2018-02-15 | 2020-01-10 | 中国信息通信研究院 | Method for analyzing influence of vibration on wireless signal propagation |
Also Published As
Publication number | Publication date |
---|---|
EP3192122A1 (en) | 2017-07-19 |
MA40502A (en) | 2016-03-17 |
BR112017005041A2 (en) | 2018-01-23 |
SG11201701367TA (en) | 2017-03-30 |
AU2015315095B2 (en) | 2020-01-30 |
EA201790587A1 (en) | 2017-08-31 |
MX362462B (en) | 2019-01-18 |
AU2015315095A1 (en) | 2017-04-13 |
ZA201701269B (en) | 2018-11-28 |
KR20170049528A (en) | 2017-05-10 |
US10001553B2 (en) | 2018-06-19 |
WO2016040516A1 (en) | 2016-03-17 |
US20180284252A1 (en) | 2018-10-04 |
CA2960013A1 (en) | 2016-03-17 |
MX2017003031A (en) | 2017-05-30 |
JP2017536790A (en) | 2017-12-07 |
US20160077201A1 (en) | 2016-03-17 |
IL250785A0 (en) | 2017-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106796279A (en) | The geography of guiding surface ripple | |
CN106796278A (en) | The sensing device further that guiding surface ripple is powered | |
US20190025060A1 (en) | Geolocation using guided surface waves | |
CN108351211A (en) | Geo-location with lead schedule surface wave | |
CN108351212A (en) | Magnetic coils with magnetic cores of high magnetic permeability | |
US10324163B2 (en) | Geolocation using guided surface waves | |
CN108352727A (en) | Use the global time synchronization of guide surface wave | |
AU2016320715B2 (en) | Geolocation using guided surface waves | |
CN108352609A (en) | The magnetic coil of magnetic core with high magnetic permeability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1238720 Country of ref document: HK |
|
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170531 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1238720 Country of ref document: HK |