CN106785912A - Semiconductor laser and preparation method thereof - Google Patents
Semiconductor laser and preparation method thereof Download PDFInfo
- Publication number
- CN106785912A CN106785912A CN201610363086.3A CN201610363086A CN106785912A CN 106785912 A CN106785912 A CN 106785912A CN 201610363086 A CN201610363086 A CN 201610363086A CN 106785912 A CN106785912 A CN 106785912A
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor laser
- quantum well
- gallium nitride
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 64
- 238000002360 preparation method Methods 0.000 title claims description 3
- 230000000903 blocking effect Effects 0.000 claims abstract description 54
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 229910002601 GaN Inorganic materials 0.000 claims description 62
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 48
- 230000004888 barrier function Effects 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 40
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 238000003475 lamination Methods 0.000 claims 3
- 239000000956 alloy Substances 0.000 claims 2
- 229910045601 alloy Inorganic materials 0.000 claims 2
- 229910052782 aluminium Inorganic materials 0.000 claims 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 2
- 239000004020 conductor Substances 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- 238000002347 injection Methods 0.000 abstract description 9
- 239000007924 injection Substances 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 174
- 239000002356 single layer Substances 0.000 description 40
- 238000000034 method Methods 0.000 description 17
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052738 indium Inorganic materials 0.000 description 11
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 11
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007648 laser printing Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- PNHVEGMHOXTHMW-UHFFFAOYSA-N magnesium;zinc;oxygen(2-) Chemical compound [O-2].[O-2].[Mg+2].[Zn+2] PNHVEGMHOXTHMW-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/3013—AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3407—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
本发明公开了一种半导体激光器,其包括衬底以及在所述衬底上依次叠层设置的下限制层、下波导层、量子阱有源区、上波导层以及上限制层;该半导体激光器还包括夹设于所述下波导层与所述量子阱有源区之间的空穴阻挡层。根据本发明的半导体激光器通过在下波导层与量子阱有源区之间制备空穴阻挡层,从而有效阻挡了空穴从量子阱有源区向下波导层、下限制层的N型区一侧泄露,提高了载流子的注入效率,从而提升了该半导体激光器的性能。本发明还公开了上述半导体激光器的制作方法。
The invention discloses a semiconductor laser, which comprises a substrate and a lower confinement layer, a lower waveguide layer, a quantum well active region, an upper waveguide layer and an upper confinement layer sequentially stacked on the substrate; the semiconductor laser It also includes a hole blocking layer interposed between the lower waveguide layer and the quantum well active region. According to the semiconductor laser of the present invention, the hole blocking layer is prepared between the lower waveguide layer and the quantum well active region, thereby effectively blocking holes from the quantum well active region to the lower waveguide layer and the N-type region side of the lower confinement layer The leakage improves the carrier injection efficiency, thereby improving the performance of the semiconductor laser. The invention also discloses a manufacturing method of the semiconductor laser.
Description
技术领域technical field
本发明属于半导体光电子器件技术领域,具体地讲,涉及一种半导体激光器及其制作方法。The invention belongs to the technical field of semiconductor optoelectronic devices, and in particular relates to a semiconductor laser and a manufacturing method thereof.
背景技术Background technique
氮化镓(GaN)及其系列材料(包括氮化铝、铝镓氮、铟镓氮、氮化铟)以其禁带宽度大、光谱范围宽(覆盖了从紫外到红外全波段)、耐高温性和耐腐蚀性好,在光电子学和微电子学领域内有巨大的应用价值。氮化镓基激光器是一种非常重要的氮化镓基光电子器件,由于其发射的光波在可见光波段,因此,氮化镓基激光器在高密度光信息存储、投影显示、激光打印、水下通信、生物化学试剂的感应和激活以及医疗方面具有重要的应用价值。Gallium nitride (GaN) and its series of materials (including aluminum nitride, aluminum gallium nitride, indium gallium nitride, and indium nitride) are characterized by their large band gap, wide spectral range (covering the entire range from ultraviolet to infrared), and resistance to It has good high temperature and corrosion resistance, and has great application value in the fields of optoelectronics and microelectronics. Gallium nitride-based lasers are a very important gallium nitride-based optoelectronic device. Since the light waves emitted by them are in the visible light band, gallium nitride-based lasers are widely used in high-density optical information storage, projection display, laser printing, and underwater communication. , Sensing and activation of biochemical reagents and medical treatment have important application value.
在氮化镓基激光器中,其主要分为三部分:由单量子阱或多量子阱形成的有源区、有源区一侧的为有源区提供电子的N型区、以及有源区另一侧的为有源区提供空穴的P型区。通过施加外加偏压驱动电子和空穴在垂直于结平面的方向上注入到有源区进行复合并产生光。通过侧面两端的解理镜面形成反馈腔,使得电子和空穴复合产生的光在腔内不断谐振并且形成波前平行于镜面的驻波。然而,在氮化镓基半导体激光器中,在N型区一侧易出现空穴泄露的问题,从而引起载流子的注入效率以及激光器的斜率效率降低的问题。In GaN-based lasers, it is mainly divided into three parts: the active region formed by single quantum well or multiple quantum wells, the N-type region on one side of the active region that provides electrons for the active region, and the active region The P-type region on the other side provides holes for the active region. By applying an external bias voltage, electrons and holes are injected into the active region in a direction perpendicular to the junction plane to recombine and generate light. The feedback cavity is formed by the cleavage mirror at both ends of the side, so that the light generated by the recombination of electrons and holes resonates continuously in the cavity and forms a standing wave whose wavefront is parallel to the mirror. However, in GaN-based semiconductor lasers, hole leakage is prone to occur on the side of the N-type region, which causes the problem of lower carrier injection efficiency and slope efficiency of the laser.
发明内容Contents of the invention
为解决上述现有技术存在的问题,本发明提供了一种半导体激光器及其制作方法,该半导体激光器内所具有的空穴阻挡层可以有效地阻挡空穴泄露,从而提高了载流子的注入效率。In order to solve the above-mentioned problems in the prior art, the present invention provides a semiconductor laser and its manufacturing method. The hole blocking layer in the semiconductor laser can effectively block hole leakage, thereby improving the injection of carriers. efficiency.
为了达到上述发明目的,本发明采用了如下的技术方案:In order to achieve the above-mentioned purpose of the invention, the present invention has adopted following technical scheme:
一种半导体激光器,包括衬底以及在所述衬底上依次叠层设置的下限制层、下波导层、量子阱有源区、上波导层以及上限制层;所述半导体激光器还包括夹设于所述下波导层与所述量子阱有源区之间的空穴阻挡层。A semiconductor laser, comprising a substrate and a lower confinement layer, a lower waveguide layer, a quantum well active region, an upper waveguide layer and an upper confinement layer sequentially stacked on the substrate; the semiconductor laser also includes an interposed A hole blocking layer between the lower waveguide layer and the quantum well active region.
进一步地,还包括夹设于所述空穴阻挡层与所述量子阱有源区之间的量子垒层。Further, it also includes a quantum barrier layer interposed between the hole blocking layer and the quantum well active region.
进一步地,还包括电子阻挡层;其中,所述电子阻挡层夹设于所述量子阱有源区与所述上波导层之间或所述上波导层与所述上限制层之间。Further, an electron blocking layer is also included; wherein, the electron blocking layer is interposed between the quantum well active region and the upper waveguide layer or between the upper waveguide layer and the upper confinement layer.
进一步地,所述空穴阻挡层的材料为经非故意掺杂或经N型掺杂的N型氮化镓、N型氮化铟镓、N型氮化铝镓中的任意一种。Further, the material of the hole blocking layer is any one of N-type gallium nitride, N-type indium gallium nitride, and N-type aluminum gallium nitride that has been unintentionally doped or N-type doped.
进一步地,当所述空穴阻挡层的材料为经N型掺杂的N型氮化镓、N型氮化铟镓、N型氮化铝镓中的任意一种时,掺杂浓度为1×1017cm-3~1×1020cm-3,施主杂质选自硅、锗中的至少一种。Further, when the material of the hole blocking layer is any one of N-type doped N-type gallium nitride, N-type indium gallium nitride, and N-type aluminum gallium nitride, the doping concentration is 1 ×10 17 cm -3 to 1×10 20 cm -3 , the donor impurity is at least one selected from silicon and germanium.
进一步地,所述施主杂质的掺杂方式选自均匀掺杂或渐变掺杂中的任意一种;其中,所述渐变掺杂包括线性变化掺杂、台阶状变化掺杂。Further, the doping method of the donor impurity is selected from any one of uniform doping or gradient doping; wherein, the gradient doping includes linear change doping and step change doping.
进一步地,所述上限制层的形状呈平面状或脊型。Further, the shape of the upper restriction layer is planar or ridge-shaped.
进一步地,所述量子阱有源区包括n个量子阱结构,1≤n≤12;其中,所述量子阱结构包括按照远离所述衬底的方向叠层设置的一量子阱单层和一量子垒单层。Further, the quantum well active region includes n quantum well structures, 1≤n≤12; wherein, the quantum well structure includes a quantum well single layer and a quantum well layer stacked in a direction away from the substrate Quantum barrier monolayer.
进一步地,所述半导体激光器还包括夹设于所述衬底与所述下限制层之间的N型氮化镓材料层。Further, the semiconductor laser further includes an N-type gallium nitride material layer interposed between the substrate and the lower confinement layer.
本发明的另一目的还在于提供一种如上任一项所述的半导体激光器的制作方法,包括:提供一衬底;在所述衬底上依次叠层制备下限制层、下波导层、空穴阻挡层、量子阱有源区、上波导层以及上限制层。Another object of the present invention is to provide a semiconductor laser manufacturing method according to any one of the above, including: providing a substrate; sequentially stacking layers on the substrate to prepare a lower confinement layer, a lower waveguide layer, a spacer Hole barrier layer, quantum well active region, upper waveguide layer and upper confinement layer.
本发明通过在下波导层与量子阱有源区之间制备空穴阻挡层,从而有效阻挡了空穴从量子阱有源区向下波导层、下限制层的N型区一侧泄露;由此制备获得的半导体激光器,相比现有技术中的不具备空穴阻挡层的半导体激光器,提高了载流子的注入效率,从而提升了该半导体激光器的性能。The present invention prepares a hole blocking layer between the lower waveguide layer and the quantum well active region, thereby effectively preventing holes from leaking from the quantum well active region to the lower waveguide layer and the N-type region side of the lower confinement layer; thus Compared with the semiconductor laser without the hole blocking layer in the prior art, the prepared semiconductor laser has improved carrier injection efficiency, thereby improving the performance of the semiconductor laser.
附图说明Description of drawings
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:The above and other aspects, features and advantages of embodiments of the present invention will become more apparent through the following description in conjunction with the accompanying drawings, in which:
图1是根据本发明的实施例1的半导体激光器的结构示意图;Fig. 1 is a schematic structural view of a semiconductor laser according to Embodiment 1 of the present invention;
图2是根据本发明的实施例1的量子阱有源区的结构示意图;Fig. 2 is a schematic structural view of the quantum well active region according to Embodiment 1 of the present invention;
图3是根据本发明的实施例1的半导体激光器在电流密度为1000A/cm2的条件下,其内部的空穴浓度分布的模拟图;3 is a simulation diagram of the hole concentration distribution inside the semiconductor laser according to Embodiment 1 of the present invention under the condition that the current density is 1000A/cm 2 ;
图4是根据本发明的对比例1的半导体激光器在电流密度为1000A/cm2的条件下,其内部的空穴浓度分布的模拟图;Fig. 4 is the semiconductor laser according to comparative example 1 of the present invention under the condition that the current density is 1000A/cm 2 , the simulation diagram of the hole concentration distribution inside it;
图5是根据本发明的对比例2的样品A的电致发光光谱图;Fig. 5 is the electroluminescent spectrogram according to the sample A of comparative example 2 of the present invention;
图6是根据本发明的对比例2的样品B的电致发光光谱图;Fig. 6 is the electroluminescence spectrogram of sample B according to comparative example 2 of the present invention;
图7是根据本发明的实施例2的半导体激光器的结构示意图;FIG. 7 is a schematic structural view of a semiconductor laser according to Embodiment 2 of the present invention;
图8是根据本发明的实施例3的半导体激光器的结构示意图。Fig. 8 is a schematic structural view of a semiconductor laser according to Embodiment 3 of the present invention.
具体实施方式detailed description
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。在附图中,为了清楚起见,可以夸大元件的形状和尺寸,并且相同的标号将始终被用于表示相同或相似的元件。Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the specific embodiments set forth herein. Rather, the embodiments are provided to explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to particular intended uses. In the drawings, the shapes and dimensions of elements may be exaggerated for clarity, and the same reference numerals will be used throughout to designate the same or like elements.
将理解的是,尽管在这里可使用术语“第一”、“第二”等来描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于将一个元件与另一个元件区分开来。It will be understood that, although the terms "first", "second", etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another.
实施例1Example 1
图1是根据本实施例的半导体激光器的结构示意图。FIG. 1 is a schematic configuration diagram of a semiconductor laser according to this embodiment.
具体参照图1,根据本实施例的半导体激光器包括衬底1,以及在所述衬底1依次叠层设置的N型GaN材料层2、下限制层31、下波导层32、空穴阻挡层33、量子垒层34、量子阱有源区4、电子阻挡层51、上波导层52以及上限制层53。Specifically referring to FIG. 1 , the semiconductor laser according to this embodiment includes a substrate 1, and an N-type GaN material layer 2, a lower confinement layer 31, a lower waveguide layer 32, and a hole blocking layer that are sequentially stacked on the substrate 1. 33 . Quantum barrier layer 34 , quantum well active region 4 , electron blocking layer 51 , upper waveguide layer 52 and upper confinement layer 53 .
具体地,参照图2所示,量子阱有源区4包括交替叠层设置的至少一个量子阱单层41和至少一个量子垒单层42,且所述量子阱单层41与量子垒层34相邻,而量子垒单层42与电子阻挡层51相邻;在该量子阱有源区4内,量子阱单层41和量子垒单层42的个数相同,且二者的个数n均控制在1≤n≤12的范围内;在本实施例中,n的取值为3。也就是说,在所述量子阱有源区4内,包括有至少一个量子阱结构,而在每个量子阱结构中,均包括按照远离衬底1的方向叠层设置的一个量子阱单层41和一个量子垒单层42。Specifically, as shown in FIG. 2 , the quantum well active region 4 includes at least one quantum well single layer 41 and at least one quantum barrier single layer 42 alternately stacked, and the quantum well single layer 41 and the quantum barrier layer 34 adjacent, and the quantum barrier single layer 42 is adjacent to the electron blocking layer 51; in the quantum well active region 4, the number of the quantum well single layer 41 and the quantum barrier single layer 42 are the same, and the number n of the two All are controlled within the range of 1≤n≤12; in this embodiment, the value of n is 3. That is to say, in the quantum well active region 4, at least one quantum well structure is included, and each quantum well structure includes a quantum well single layer stacked in a direction away from the substrate 1 41 and a quantum barrier monolayer 42 .
更为具体地,在本实施例中,所述三个量子阱单层41分别记作第一量子阱单层411、第二量子阱单层412和第三量子阱单层413,对应地,三个量子垒单层42分别记作第一量子垒单层421、第二量子垒单层422和第三量子垒单层423,而三个量子阱单层41和三个量子垒单层42交替设置于量子垒层34上,形成如图2所示的结构。More specifically, in this embodiment, the three quantum well single layers 41 are respectively recorded as the first quantum well single layer 411, the second quantum well single layer 412 and the third quantum well single layer 413, correspondingly, The three quantum barrier single layers 42 are respectively referred to as the first quantum barrier single layer 421, the second quantum barrier single layer 422 and the third quantum barrier single layer 423, and the three quantum well single layers 41 and the three quantum barrier single layers 42 Alternately arranged on the quantum barrier layers 34 to form a structure as shown in FIG. 2 .
在本实施例中,衬底1的材料为氮化镓;所述N型氮化镓材料层2的厚度为2000nm,且其中掺杂有浓度为3×1018cm-3的硅;下限制层31的材料为N型氮化铝镓,厚度为1300nm,且其中掺杂有浓度为3×1018cm-3的硅;下波导层32的材料为N型氮化铟镓,厚度为100nm左右,且其经过了非故意掺杂;空穴阻挡层33的材料为N型氮化镓,厚度为15nm,且其中掺杂有浓度为2×1019cm-3的硅;量子垒层34的材料为氮化镓,厚度为15nm左右,且其经过了非故意掺杂。In this embodiment, the material of the substrate 1 is gallium nitride; the thickness of the N-type gallium nitride material layer 2 is 2000 nm, and it is doped with silicon at a concentration of 3×10 18 cm −3 ; the lower limit The material of layer 31 is N-type aluminum gallium nitride with a thickness of 1300nm, and it is doped with silicon at a concentration of 3×10 18 cm -3 ; the material of lower waveguide layer 32 is N-type indium gallium nitride with a thickness of 100nm left and right, and it has been unintentionally doped; the hole blocking layer 33 is made of N-type gallium nitride with a thickness of 15nm, and it is doped with silicon at a concentration of 2×10 19 cm -3 ; the quantum barrier layer 34 The material is gallium nitride, the thickness is about 15nm, and it has been unintentionally doped.
在量子阱有源区4中,量子阱单层41的材料为氮化铟镓,量子垒单层42的材料为氮化镓,且每一量子阱单层41和每一量子垒单层42均经过了非故意掺杂;每一量子阱单层41的厚度均为2.5nm左右,而每一量子垒单层42的厚度均为15nm左右。In the quantum well active region 4, the material of the quantum well single layer 41 is indium gallium nitride, the material of the quantum barrier single layer 42 is gallium nitride, and each quantum well single layer 41 and each quantum barrier single layer 42 They are all unintentionally doped; the thickness of each single quantum well layer 41 is about 2.5nm, and the thickness of each single quantum barrier layer 42 is about 15nm.
电子阻挡层51的材料为P型氮化铝镓,厚度为20nm,且其中掺杂有浓度为5×1019cm-3的镁;上波导层52的材料为氮化铟镓,厚度为100nm,且其中掺杂有浓度为1×1018cm-3的镁;上限制层53的材料为P型氮化铝镓,厚度为500nm,且其中掺杂有浓度为1×1019cm-3的镁。The material of the electron blocking layer 51 is P-type aluminum gallium nitride with a thickness of 20nm, and it is doped with magnesium at a concentration of 5×10 19 cm -3 ; the material of the upper waveguide layer 52 is indium gallium nitride with a thickness of 100nm , and it is doped with magnesium at a concentration of 1×10 18 cm -3 ; the material of the upper confinement layer 53 is P-type aluminum gallium nitride with a thickness of 500 nm, and it is doped with magnesium at a concentration of 1×10 19 cm -3 of magnesium.
值得说明的是,在本实施例中,所述上限制层53的形状为平面状,如此,即使所述半导体激光器具有了增益波导结构。It is worth noting that, in this embodiment, the shape of the upper confinement layer 53 is planar, so that even the semiconductor laser has a gain waveguide structure.
根据本实施例的半导体激光器所具备的空穴阻挡层33有效地阻挡了空穴从量子阱有源区4向下波导层32、下限制层31等结构的一侧泄露,提高了载流子的注入效率;而该半导体激光器所具备的电子阻挡层51也有效地阻挡了电子从量子阱有源区4向上波导层52、上限制层53等结构的一侧泄露,从而进一步地提高了载流子的注入效率,提升了该半导体激光器的性能。According to the hole blocking layer 33 that the semiconductor laser of the present embodiment possesses effectively blocked holes from leaking to one side of structures such as the downward waveguide layer 32 and the lower confinement layer 31 from the quantum well active region 4, improved the carrier The injection efficiency; and the electron blocking layer 51 that this semiconductor laser possesses also effectively blocks electrons from leaking to one side of structures such as the upper waveguide layer 52 and the upper confinement layer 53 from the quantum well active region 4, thereby further improving the carrying capacity. The injection efficiency of flow electrons improves the performance of the semiconductor laser.
以下,将对本实施例的半导体激光器的制作方法进行详细的描述。Hereinafter, the method of manufacturing the semiconductor laser of this embodiment will be described in detail.
根据本实施例的半导体激光器的制作方法包括如下步骤:The manufacturing method of the semiconductor laser according to the present embodiment includes the following steps:
在步骤一中,提供一衬底1。In step one, a substrate 1 is provided.
在本实施例中,衬底1具体选用氮化镓衬底,当然,其他如蓝宝石、碳化硅、硅或尖晶石等材料的均可,此处不再一一赘述。In this embodiment, the substrate 1 is specifically a gallium nitride substrate. Of course, other materials such as sapphire, silicon carbide, silicon, or spinel can be used, and details will not be repeated here.
在步骤二中,在衬底1上逐层制备N型氮化镓材料层2、下限制层31、下波导层32以及空穴阻挡层33。In step 2, an N-type gallium nitride material layer 2 , a lower confinement layer 31 , a lower waveguide layer 32 and a hole blocking layer 33 are prepared layer by layer on the substrate 1 .
具体地,首先,采用金属有机化合物化学气相沉淀工艺(简称MOCVD工艺)在衬底1上生长一层2000nm厚的N型氮化镓,且其中掺杂有浓度为3×1018cm-3的硅;具体的生长温度控制在900℃~1100℃之间,生长压力控制为200Mbar~500Mbar之间,制备得到N型氮化镓材料层2。Specifically, first, a layer of N-type gallium nitride with a thickness of 2000 nm is grown on the substrate 1 by metal-organic compound chemical vapor deposition process (abbreviated as MOCVD process), and it is doped with a concentration of 3×10 18 cm -3 Silicon; the specific growth temperature is controlled between 900° C. and 1100° C., and the growth pressure is controlled between 200 Mbar and 500 Mbar to prepare the N-type gallium nitride material layer 2 .
其中,所述N型氮化镓材料层2能够保证后续生长的其他结构与衬底1之间的良好结合;当然,在工艺条件允许的情况下,去除所述N型氮化镓材料层2而直接在衬底1生长其他结构也可。Wherein, the N-type gallium nitride material layer 2 can ensure good bonding between other structures grown subsequently and the substrate 1; of course, the N-type gallium nitride material layer 2 can be removed if the process conditions permit. It is also possible to directly grow other structures on the substrate 1 .
然后,采用MOCVD工艺在N型氮化镓材料层2上生长一层1300nm厚的N型氮化铝镓作为下限制层31,且其中掺杂有浓度为3×1018cm-3的硅;具体的生长温度控制为1000℃~1200℃之间,生长压力控制为100Mbar~300Mbar之间。Then, a layer of 1300 nm thick N-type aluminum gallium nitride is grown on the N-type gallium nitride material layer 2 as the lower confinement layer 31 by MOCVD process, and silicon is doped therein at a concentration of 3×10 18 cm −3 ; The specific growth temperature is controlled between 1000° C. and 1200° C., and the growth pressure is controlled between 100 Mbar and 300 Mbar.
第三,采用MOCVD工艺在下限制层31上生长一层100nm左右厚的N型氮化铟镓作为下波导层32,其中,N型氮化铟镓采用非故意掺杂;具体的生长温度控制为700℃~900℃之间,生长压力控制为200Mbar~500Mbar之间。Third, grow a layer of N-type InGaN with a thickness of about 100 nm on the lower confinement layer 31 as the lower waveguide layer 32 by MOCVD process, wherein the N-type InGaN is unintentionally doped; the specific growth temperature is controlled as Between 700°C and 900°C, the growth pressure is controlled between 200Mbar and 500Mbar.
最后,采用MOCVD工艺在下波导层32上生长一层15nm左右厚的N型氮化镓作为空穴阻挡层33,且其中掺杂有浓度为2×1019cm-3的硅;具体的生长温度控制为600℃~900℃之间,生长压力控制为200Mbar~500Mbar之间。Finally, a layer of N-type gallium nitride with a thickness of about 15 nm is grown on the lower waveguide layer 32 as the hole blocking layer 33 by MOCVD process, and it is doped with silicon at a concentration of 2×10 19 cm -3 ; the specific growth temperature The control is between 600°C and 900°C, and the growth pressure is controlled between 200Mbar and 500Mbar.
如此,即制备形成了位于量子阱有源区4一侧的N型区,而所制备的空穴阻挡层33即可有效地阻止空穴从量子阱有源区4向所述N型区的一侧泄露,提高了载流子的注入效率,从而提升了该半导体激光器的性能。In this way, the N-type region positioned at one side of the quantum well active region 4 has been prepared, and the prepared hole blocking layer 33 can effectively prevent holes from passing from the quantum well active region 4 to the N-type region. Leakage on one side improves the carrier injection efficiency, thereby improving the performance of the semiconductor laser.
在步骤三中,在空穴阻挡层33上逐层制备量子垒层34和量子阱有源区4。In step three, the quantum barrier layer 34 and the quantum well active region 4 are prepared layer by layer on the hole blocking layer 33 .
具体地,首先采用MOCVD工艺在空穴阻挡层33上生长一层15nm左右厚的氮化镓作为量子垒层34,其中,氮化镓采用非故意掺杂;具体的生长温度控制为600℃~900℃之间,生长压力控制为200Mbar~500Mbar之间。Specifically, first, a layer of gallium nitride with a thickness of about 15 nm is grown on the hole blocking layer 33 as the quantum barrier layer 34 by using the MOCVD process, wherein the gallium nitride is unintentionally doped; the specific growth temperature is controlled at 600° C. Between 900°C, the growth pressure is controlled between 200Mbar and 500Mbar.
然后采用MOCVD工艺在量子垒层34上生长三层氮化铟镓和三层氮化镓分别作为量子阱单层41和量子垒单层42;其中,第一量子阱单层411、第一量子垒单层421、第二量子阱单层412、第二量子垒单层422、第三量子阱单层413和第三量子垒单层423依次叠层排列以形成量子阱有源区4;第一量子阱单层411、第二量子阱单层412、第三量子阱单层413的厚度均为2.5nm,第一量子垒单层421、第二量子垒单层422、第三量子垒单层423的厚度均为15nm,且上述各层中的氮化镓均采用非故意掺杂;具体的生长温度控制为600℃~900℃之间,生长压力控制为200Mbar~500Mbar之间。Then, three layers of indium gallium nitride and three layers of gallium nitride are grown on the quantum barrier layer 34 by MOCVD process as the quantum well single layer 41 and the quantum barrier single layer 42 respectively; wherein, the first quantum well single layer 411, the first quantum well The barrier single layer 421, the second quantum well single layer 412, the second quantum barrier single layer 422, the third quantum well single layer 413 and the third quantum barrier single layer 423 are sequentially stacked to form the quantum well active region 4; The first quantum well single layer 411, the second quantum well single layer 412, and the third quantum well single layer 413 have a thickness of 2.5nm, and the first quantum barrier single layer 421, the second quantum barrier single layer 422, and the third quantum barrier single layer The thickness of the layer 423 is 15nm, and the gallium nitride in the above layers is unintentionally doped; the specific growth temperature is controlled between 600°C-900°C, and the growth pressure is controlled between 200Mbar-500Mbar.
在步骤四中,在量子阱有源区4上逐层制备电子阻挡层51、上波导层52以及上限制层53。In step four, an electron blocking layer 51 , an upper waveguide layer 52 and an upper confinement layer 53 are prepared layer by layer on the quantum well active region 4 .
具体地,首先采用MOCVD工艺在量子阱有源区4、即第三量子垒单层423上生长一层20nm左右厚的P型氮化铝镓作为电子阻挡层51,且其中掺杂有浓度为5×1019cm-3的镁;具体的生长温度控制为800℃~1000℃之间,生长压力控制为100Mbar~300Mbar之间。Specifically, a layer of P-type aluminum gallium nitride with a thickness of about 20 nm is grown as the electron blocking layer 51 on the quantum well active region 4, that is, the third quantum barrier single layer 423 by MOCVD process, and doped with a concentration of 5×10 19 cm -3 of magnesium; the specific growth temperature is controlled between 800°C and 1000°C, and the growth pressure is controlled between 100Mbar and 300Mbar.
然后采用MOCVD工艺在电子阻挡层51上生长一层100nm厚的氮化铟镓作为上波导层52,且其中掺杂有浓度为1×1018cm-3的镁;具体的生长温度控制为700℃~900℃之间,生长压力控制为200Mbar~500Mbar之间。Then grow a layer of 100nm-thick InGaN on the electron blocking layer 51 as the upper waveguide layer 52 by MOCVD process, and it is doped with magnesium at a concentration of 1×10 18 cm −3 ; the specific growth temperature is controlled at 700 ℃~900℃, and the growth pressure is controlled between 200Mbar~500Mbar.
最后采用MOCVD工艺在上波导层52上生长一层500nm厚的P型氮化铝镓作为上限制层53,且其中掺杂有浓度为1×1019cm-3的镁;具体的生长温度控制为700℃~900℃之间,生长压力控制为200Mbar~400Mbar之间。Finally, a layer of 500nm-thick P-type aluminum gallium nitride is grown on the upper waveguide layer 52 by MOCVD process as the upper confinement layer 53, and it is doped with magnesium at a concentration of 1×10 19 cm -3 ; the specific growth temperature is controlled between 700°C and 900°C, and the growth pressure is controlled between 200Mbar and 400Mbar.
如此,即制备形成了位于量子阱有源区4另一侧的与所述N型区相对的P型区,而所制备的电子阻挡层51即可有效地阻止电子从量子阱有源区4向所述P型区的一侧泄露,进一步提高了载流子的注入效率,从而进一步提升了该半导体激光器的性能。In this way, the P-type region opposite to the N-type region located on the other side of the quantum well active region 4 is prepared, and the prepared electron blocking layer 51 can effectively prevent electrons from entering the quantum well active region 4. The leakage to one side of the P-type region further improves the carrier injection efficiency, thereby further improving the performance of the semiconductor laser.
为验证本实施例的半导体激光器中的空穴阻挡层33的作用,设计了如下对比例1和对比例2。In order to verify the effect of the hole blocking layer 33 in the semiconductor laser of this embodiment, the following comparative examples 1 and 2 were designed.
对比例1Comparative example 1
在对比例1的半导体激光器中,不包括实施例1中所述的空穴阻挡层,其余结构与实施例1中所述的半导体激光器相同。In the semiconductor laser of Comparative Example 1, the hole blocking layer described in Example 1 is not included, and the rest of the structure is the same as that of the semiconductor laser described in Example 1.
分别对实施例1的半导体激光器以及对比例1的半导体激光器在电流密度为1000A/cm2的条件下其内部的空穴浓度分布进行了测试,结果分别如图3、图4所示;其中,在图3和图4中,c均表示空穴浓度,即纵坐标均是以10为底时,空穴浓度的对数。The semiconductor laser of Example 1 and the semiconductor laser of Comparative Example 1 were respectively tested for their internal hole concentration distribution under the condition that the current density was 1000A/cm 2 , and the results are shown in Fig. 3 and Fig. 4 respectively; wherein, In FIG. 3 and FIG. 4 , c both represent the hole concentration, that is, the logarithm of the hole concentration when the ordinates both take 10 as the base.
对比图3和图4中的曲线,可以明显地看出,实施例1中所述的半导体激光器的下限制层与下波导层中的空穴浓度更低,即说明实施例1中的半导体激光器中的空穴阻挡层确实有效地阻止了空穴从量子阱有源区向下限制层、下波导层等结构的N型区的一侧泄露,从而提高了载流子的注入效率,该半导体激光器的性能得以提升。Comparing the curves in Figure 3 and Figure 4, it can be clearly seen that the hole concentration in the lower confinement layer and the lower waveguide layer of the semiconductor laser described in Example 1 is lower, that is to say that the semiconductor laser in Example 1 The hole blocking layer does effectively prevent holes from leaking from the side of the N-type region of the quantum well active region to the lower confinement layer, lower waveguide layer and other structures, thereby improving the injection efficiency of carriers. The semiconductor The performance of the laser is improved.
对比例2Comparative example 2
本对比例中包括如下两组结构:The following two groups of structures are included in this comparative example:
第一组:在实施例1的半导体激光器的基础上,在所述下波导层与空穴阻挡层之间设置了一蓝光量子阱有源区;将此时的蓝光量子阱有源区称作第一蓝光量子阱有源区,如此获得样品A(为区分两个不同颜色光的量子阱有源区,将实施例1中所述的量子阱有源区称作第一绿光量子阱有源区);也就是说,所述样品A的结构为依次叠层设置的衬底、N型GaN材料层、下限制层、下波导层、第一蓝光量子阱有源区、空穴阻挡层、量子垒层、第一绿光量子阱有源区、电子阻挡层、上波导层以及上限制层。The first group: on the basis of the semiconductor laser of embodiment 1, a blue light quantum well active region is set between the lower waveguide layer and the hole blocking layer; the blue light quantum well active region at this time is called The first blue light quantum well active region, so obtain sample A (in order to distinguish the quantum well active region of two different color lights, the quantum well active region described in embodiment 1 is called the first green light quantum well active region area); that is to say, the structure of the sample A is a substrate, an N-type GaN material layer, a lower confinement layer, a lower waveguide layer, a first blue light quantum well active region, a hole blocking layer, Quantum barrier layer, first green light quantum well active region, electron blocking layer, upper waveguide layer and upper confinement layer.
第二组:在对比例1的半导体激光器的基础上,在所述下波导层与量子垒层之间同样设置了一蓝光量子阱有源区;将此时的蓝光量子阱有源区称作第二蓝光量子阱有源区,如此获得样品B(为区分两个不同颜色光的量子阱有源区,将对比例1中所述的量子阱有源区称作第二绿光量子阱有源区);也就是说,所述样品B的结构为依次叠层设置的衬底、N型GaN材料层、下限制层、下波导层、第二蓝光量子阱有源区、量子垒层、第二绿光量子阱有源区、电子阻挡层、上波导层以及上限制层。The second group: on the basis of the semiconductor laser of comparative example 1, a blue light quantum well active region is also set between the lower waveguide layer and the quantum barrier layer; the blue light quantum well active region at this time is called The second blue light quantum well active region, so obtain sample B (in order to distinguish the quantum well active region of two different color lights, the quantum well active region described in Comparative Example 1 is called the second green light quantum well active region area); that is to say, the structure of the sample B is a substrate, an N-type GaN material layer, a lower confinement layer, a lower waveguide layer, a second blue light quantum well active region, a quantum barrier layer, a second Two green light quantum well active regions, an electron blocking layer, an upper waveguide layer and an upper confinement layer.
分别对样品A和样品B进行了电致发光光谱的测试,测试结果分别如图5、图6所示。Electroluminescence spectra were tested for sample A and sample B respectively, and the test results are shown in Fig. 5 and Fig. 6 respectively.
对比图5和图6,可以明显地看出,在同等电流密度的条件下,样品A中的第一蓝光量子阱有源区的发光强度明显低于样品B中的第二蓝光量子阱有源区的发光强度,说明样品A中在增加了空穴阻挡层后,从第一绿光量子阱有源区泄露到第一蓝光量子阱有源区的空穴数量下降,即所述空穴阻挡层起到了阻止空穴由量子阱有源区(即样品A中的第一绿光量子阱有源区)向下波导层、下限制层等N型区一侧的泄露的作用。Comparing Figure 5 and Figure 6, it can be clearly seen that under the condition of the same current density, the luminous intensity of the first blue quantum well active region in sample A is significantly lower than that of the second blue quantum well active region in sample B. The luminous intensity of the region shows that after the hole blocking layer is added in sample A, the number of holes leaked from the first green quantum well active region to the first blue quantum well active region decreases, that is, the hole blocking layer It plays a role in preventing holes from leaking from the quantum well active region (that is, the first green light quantum well active region in sample A) to the side of the N-type region such as the downward waveguide layer and the lower confinement layer.
实施例2Example 2
在实施例2的描述中,与实施例1的相同之处在此不再赘述,只描述与实施例1的不同之处。实施例2与实施例1的不同之处在于,参照图7所示,本实施例的半导体激光器中的电子阻挡层51和上波导层52的位置较实施例1中的半导体激光器中的位置进行了互换,即在本实施例的半导体激光器中,电子阻挡层51夹设于上波导层52和上限制层53之间。In the description of Embodiment 2, the similarities with Embodiment 1 will not be repeated here, and only the differences with Embodiment 1 will be described. The difference between Embodiment 2 and Embodiment 1 is that, referring to FIG. 7 , the positions of the electron blocking layer 51 and the upper waveguide layer 52 in the semiconductor laser of this embodiment are higher than those of the semiconductor laser in Embodiment 1. In other words, in the semiconductor laser of this embodiment, the electron blocking layer 51 is interposed between the upper waveguide layer 52 and the upper confinement layer 53 .
与之相对应地,在本实施例的半导体激光器的制作过程中,与实施例1中的半导体激光器的制作过程的区别之处在于,在步骤四中,在量子阱有源区4上逐层制备上波导层52、电子阻挡层51以及上限制层53。Correspondingly, in the manufacturing process of the semiconductor laser in this embodiment, the difference from the manufacturing process of the semiconductor laser in Embodiment 1 is that in step 4, on the quantum well active region 4 layer by layer The upper waveguide layer 52 , the electron blocking layer 51 and the upper confinement layer 53 are prepared.
实施例3Example 3
在实施例3的描述中,与实施例1的相同之处在此不再赘述,只描述与实施例1的不同之处。实施例3与实施例1的不同之处在于,参照图8所示,本实施例的半导体激光器具有脊型波导结构,即在本实施例的半导体激光器中,上限制层53的形状呈脊型。In the description of Embodiment 3, the similarities with Embodiment 1 will not be repeated here, and only the differences with Embodiment 1 will be described. The difference between Embodiment 3 and Embodiment 1 is that, referring to FIG. 8, the semiconductor laser of this embodiment has a ridge waveguide structure, that is, in the semiconductor laser of this embodiment, the shape of the upper confinement layer 53 is a ridge. .
具体地,本实施例的半导体激光器的制作方法与实施例1中的半导体激光器的制作方法的不同之处在于,在实施例1的半导体激光器的制作方法的基础上,还包括如下步骤:Specifically, the difference between the manufacturing method of the semiconductor laser of this embodiment and the manufacturing method of the semiconductor laser in Embodiment 1 is that, on the basis of the manufacturing method of the semiconductor laser of Embodiment 1, the following steps are also included:
在步骤五中,刻蚀上限制层53,使所述上限制层53的形状呈脊型。In step five, the upper confinement layer 53 is etched to make the upper confinement layer 53 in a ridge shape.
当然,本实施例中所述的呈脊型的上限制层53并不仅限于实施例1中所述的上波导层52夹设于电子阻挡层51与上限制层53之间的结构,还是适用于如实施例2中所述的电子阻挡层51夹设于上波导层52与上限制层53之间的结构。Of course, the ridge-shaped upper confinement layer 53 described in this embodiment is not limited to the structure in which the upper waveguide layer 52 is interposed between the electron blocking layer 51 and the upper confinement layer 53 described in Embodiment 1, and it is also applicable As described in Embodiment 2, the electron blocking layer 51 is interposed between the upper waveguide layer 52 and the upper confinement layer 53 .
值得说明的是,在上述实施例1-3中,当所述空穴阻挡层33的材料与量子垒层34的材料相同,区别仅在于空穴阻挡层33进行了掺杂、而量子垒层34未进行掺杂时,也可省略该量子垒层34,或可认为是通过对量子垒层34的材料进行掺杂而实现了空穴阻挡的作用,而无需设置单独的空穴阻挡层33。另一方面,当所述空穴阻挡层33的材料与下波导层32的材料相同时,也可通过将下波导层32的上半部分进行掺杂实现空穴阻挡的作用,而无需设置单独的空穴阻挡层33。当然,上述两种情况的组合使用也可,以达到能够实现空穴阻挡效果为准。It should be noted that, in the foregoing embodiments 1-3, when the material of the hole blocking layer 33 is the same as that of the quantum barrier layer 34, the difference is only that the hole blocking layer 33 is doped, and the quantum barrier layer When 34 is not doped, the quantum barrier layer 34 can also be omitted, or it can be considered that the hole blocking effect is realized by doping the material of the quantum barrier layer 34, without the need to set a separate hole blocking layer 33 . On the other hand, when the material of the hole blocking layer 33 is the same as that of the lower waveguide layer 32, the effect of hole blocking can also be realized by doping the upper half of the lower waveguide layer 32 without setting a separate The hole blocking layer 33. Of course, a combination of the above two situations is also possible, subject to achieving the hole blocking effect.
当然,根据本发明的半导体激光器中各结构的材料并不限于上述实施例中所述,下限制层31的材料还可以是N型氮化铝镓/氮化镓超晶格;下波导层32的材料还可以是N型氮化镓或N型氮化铝镓;空穴阻挡层33的材料还可以是N型氮化铟镓或氮化铝镓;量子垒层34的材料还可以是N型氮化铟镓或N型氮化铝镓;在量子阱有源区4中,量子垒单层42的材料还可以是氮化铟镓或氮化铝镓;上波导层52的材料还可以是P型氮化镓或P型氮化铝镓;上限制层53的材料还可以是P型氮化铝镓/氮化镓超晶格或透明导电氧化物,包括氧化锌、氧化镁、氧化锡、氧化镉、氧化铟等二元金属氧化物,或氧化铟锡、氧化铝锌、氧化镓锌、氧化铟锌、氧化镁锌等三元金属氧化物,或铟镓锌三元金属氧化物。Certainly, the material of each structure in the semiconductor laser according to the present invention is not limited to the above-mentioned embodiment, the material of the lower confinement layer 31 can also be N-type AlGaN/GaN superlattice; the lower waveguide layer 32 The material of the N-type gallium nitride or N-type aluminum gallium nitride can also be used; the material of the hole blocking layer 33 can also be N-type indium gallium nitride or aluminum gallium nitride; the material of the quantum barrier layer 34 can also be N Indium gallium nitride or N-type aluminum gallium nitride; In the quantum well active region 4, the material of the quantum barrier single layer 42 can also be indium gallium nitride or aluminum gallium nitride; the material of the upper waveguide layer 52 can also be It is P-type gallium nitride or P-type aluminum gallium nitride; the material of the upper confinement layer 53 can also be P-type aluminum gallium nitride/gallium nitride superlattice or transparent conductive oxide, including zinc oxide, magnesium oxide, oxide Binary metal oxides such as tin, cadmium oxide, and indium oxide, or ternary metal oxides such as indium tin oxide, aluminum zinc oxide, gallium zinc oxide, indium zinc oxide, and magnesium zinc oxide, or ternary metal oxides such as indium gallium zinc oxide .
与上述材料相对应地,在本发明的制作方法中,各结构层的制备工艺也不限于上述实施例中所述的MOCVD工艺,当各结构层的材料为上述透明导电氧化物时,还可以采用磁控溅射沉积工艺、电子束蒸发沉积工艺、脉冲激光沉积工艺来制备,而当材料不属于上述透明导电氧化物时,则还可以采用分子束外延生长工艺、原子层沉积工艺来制备。Corresponding to the above-mentioned materials, in the manufacturing method of the present invention, the preparation process of each structural layer is not limited to the MOCVD process described in the above-mentioned embodiment. When the material of each structural layer is the above-mentioned transparent conductive oxide, it can also be It is prepared by magnetron sputtering deposition process, electron beam evaporation deposition process, and pulsed laser deposition process. When the material does not belong to the above-mentioned transparent conductive oxide, it can also be prepared by molecular beam epitaxy growth process and atomic layer deposition process.
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。While the invention has been shown and described with reference to particular embodiments, it will be understood by those skilled in the art that changes may be made in the form and scope thereof without departing from the spirit and scope of the invention as defined by the claims and their equivalents. Various changes in details.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610363086.3A CN106785912B (en) | 2016-05-26 | 2016-05-26 | Semiconductor laser and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610363086.3A CN106785912B (en) | 2016-05-26 | 2016-05-26 | Semiconductor laser and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106785912A true CN106785912A (en) | 2017-05-31 |
CN106785912B CN106785912B (en) | 2020-04-10 |
Family
ID=58972158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610363086.3A Active CN106785912B (en) | 2016-05-26 | 2016-05-26 | Semiconductor laser and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106785912B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107069433A (en) * | 2017-06-20 | 2017-08-18 | 中国科学院半导体研究所 | GaN base ultraviolet laser wafer, chip of laser and laser and preparation method thereof |
CN111370997A (en) * | 2020-03-13 | 2020-07-03 | 华慧科锐(天津)科技有限公司 | Novel current blocking layer structure of distributed feedback laser |
WO2021232443A1 (en) * | 2020-05-22 | 2021-11-25 | 重庆康佳光电技术研究院有限公司 | Superlattice layer, led epitaxial structure, display device and manufacturing method therefor |
CN114400506A (en) * | 2022-01-17 | 2022-04-26 | 光为科技(广州)有限公司 | Semiconductor laser and preparation method thereof |
US12057521B2 (en) | 2020-05-22 | 2024-08-06 | Chongqing Konka Photoelectric Technology Research Institute Co., Ltd. | Superlattice layer, LED epitaxial structure, display device, and method for manufacturing LED epitaxial structure |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064471A (en) * | 2010-11-26 | 2011-05-18 | 北京化工大学 | GaN-based semiconductor laser and manufacturing method thereof |
CN102545058A (en) * | 2012-01-16 | 2012-07-04 | 苏州纳睿光电有限公司 | Epitaxial structure of gallium nitride based laser device and manufacturing method of epitaxial structure |
CN103259193A (en) * | 2013-05-14 | 2013-08-21 | 中国科学院苏州纳米技术与纳米仿生研究所 | 1300nm-1550nm semiconductor laser unit containing bismuthide and preparation method thereof |
CN103326242A (en) * | 2013-07-04 | 2013-09-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | Active area of laser unit, semiconductor laser unit and manufacturing method of laser unit |
CN101626058B (en) * | 2008-07-09 | 2014-03-26 | 住友电气工业株式会社 | Group III nitride based semiconductor light emitting element and epitaxial wafer |
CN103765707A (en) * | 2011-08-16 | 2014-04-30 | 康宁股份有限公司 | Hole blocking layers in non-polar and semi-polar green light emitting devices |
-
2016
- 2016-05-26 CN CN201610363086.3A patent/CN106785912B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101626058B (en) * | 2008-07-09 | 2014-03-26 | 住友电气工业株式会社 | Group III nitride based semiconductor light emitting element and epitaxial wafer |
CN102064471A (en) * | 2010-11-26 | 2011-05-18 | 北京化工大学 | GaN-based semiconductor laser and manufacturing method thereof |
CN103765707A (en) * | 2011-08-16 | 2014-04-30 | 康宁股份有限公司 | Hole blocking layers in non-polar and semi-polar green light emitting devices |
CN102545058A (en) * | 2012-01-16 | 2012-07-04 | 苏州纳睿光电有限公司 | Epitaxial structure of gallium nitride based laser device and manufacturing method of epitaxial structure |
CN103259193A (en) * | 2013-05-14 | 2013-08-21 | 中国科学院苏州纳米技术与纳米仿生研究所 | 1300nm-1550nm semiconductor laser unit containing bismuthide and preparation method thereof |
CN103326242A (en) * | 2013-07-04 | 2013-09-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | Active area of laser unit, semiconductor laser unit and manufacturing method of laser unit |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107069433A (en) * | 2017-06-20 | 2017-08-18 | 中国科学院半导体研究所 | GaN base ultraviolet laser wafer, chip of laser and laser and preparation method thereof |
CN111370997A (en) * | 2020-03-13 | 2020-07-03 | 华慧科锐(天津)科技有限公司 | Novel current blocking layer structure of distributed feedback laser |
WO2021232443A1 (en) * | 2020-05-22 | 2021-11-25 | 重庆康佳光电技术研究院有限公司 | Superlattice layer, led epitaxial structure, display device and manufacturing method therefor |
US12057521B2 (en) | 2020-05-22 | 2024-08-06 | Chongqing Konka Photoelectric Technology Research Institute Co., Ltd. | Superlattice layer, LED epitaxial structure, display device, and method for manufacturing LED epitaxial structure |
CN114400506A (en) * | 2022-01-17 | 2022-04-26 | 光为科技(广州)有限公司 | Semiconductor laser and preparation method thereof |
CN114400506B (en) * | 2022-01-17 | 2024-01-12 | 光为科技(广州)有限公司 | Semiconductor laser and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN106785912B (en) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI403002B (en) | Semiconductor light-emitting element | |
US8124990B2 (en) | Semiconductor light emitting device having an electron barrier layer between a plurality of active layers | |
US5247533A (en) | Gallium nitride group compound semiconductor laser diode | |
US8643044B2 (en) | Semiconductor light emitting device | |
US10158043B2 (en) | Light-emitting diode and method for manufacturing the same | |
KR101737981B1 (en) | GAlIUM-NITRIDE LIGHT EMITTING DEVICE OF MICROARRAY TYPE STRUCTURE AND MANUFACTURING THEREOF | |
CN106785912A (en) | Semiconductor laser and preparation method thereof | |
KR20010114232A (en) | Chirped multi-well active region led | |
US10381804B2 (en) | Vertical cavity light emitting element | |
KR102358403B1 (en) | A light emitting diode comprising at least one wider bandgap interlayer located within at least one barrier layer of the light emitting region. | |
TWI671919B (en) | Light-emitting diode epitaxial wafer and method of making the same | |
US11158666B2 (en) | Multiple wavelength light-emitting diode epitaxial structure with asymmetric multiple quantum wells | |
CN108604622B (en) | Light emitting device and light emitting device package including the same | |
DE102017108435A1 (en) | Semiconductor laser diode and method for producing a semiconductor laser diode | |
US8390002B2 (en) | Light emitting device and method of manufacturing the same | |
KR101067474B1 (en) | Semiconductor light emitting device | |
KR20000024945A (en) | Method for manufacturing gan-based light-emitting device with double cladding-double hetero structure | |
US20230307579A1 (en) | Activation of p-type layers of tunnel junctions | |
CN107645121B (en) | Ridge array semiconductor laser and its making method | |
KR102426781B1 (en) | Semiconductor device and light emitting module having thereof | |
RU2426197C1 (en) | Nitride semiconductor device | |
JP7413599B1 (en) | III-V group compound semiconductor light emitting device and method for manufacturing the III-V group compound semiconductor light emitting device | |
US20230040400A1 (en) | Light-emitting diode epitaxial structure and manufacturing method thereof, and light-emitting diode device | |
JP2001189491A (en) | AlGaInP LIGHT-EMITTING DIODE | |
Hattori et al. | Optimization of the Al Composition of the p‐AlGaN Electron Blocking Layer in GaInN/GaN Multiquantum‐Shell Nanowire LEDs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20180823 Address after: 310026 Hangzhou, Zhejiang economic and Technological Development Zone Baiyang street, 21 Avenue 600, 2, 110 rooms. Applicant after: Hangzhou gain Photoelectric Technology Co., Ltd. Address before: 215123 No. 398 Shui Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu Applicant before: Suzhou Institute of Nano-Tech and Bionics (SINANO), Chinese Academy of Sciences |
|
GR01 | Patent grant | ||
GR01 | Patent grant |