[go: up one dir, main page]

CN106710768A - 一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法 - Google Patents

一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法 Download PDF

Info

Publication number
CN106710768A
CN106710768A CN201611228974.0A CN201611228974A CN106710768A CN 106710768 A CN106710768 A CN 106710768A CN 201611228974 A CN201611228974 A CN 201611228974A CN 106710768 A CN106710768 A CN 106710768A
Authority
CN
China
Prior art keywords
neodymium
powder
main phase
alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611228974.0A
Other languages
English (en)
Inventor
吴凯云
马天宇
严密
金佳莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201611228974.0A priority Critical patent/CN106710768A/zh
Publication of CN106710768A publication Critical patent/CN106710768A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法。本发明基于双主相合金技术和晶界添加技术,两主相合金和晶界辅助合金分开设计成分、配料和制粉,按比例混粉后磁场压型、烧结和热处理制备磁体。本发明制成的烧结钕铈铁硼磁体矫顽力高,制备简便,易操作,且有效降低了磁体的原材料成本。

Description

一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法
技术领域
本发明涉及一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法。
背景技术
烧结钕铁硼磁体是目前磁性最强、应用最广、消耗稀土最多的永磁材料,广泛应用于信息、能源、医疗、交通和国防等高技术领域,是最重要的稀土功能材料和国民经济的关键基础材料。钕铁硼多年的快速增长导致高度依赖的Nd\Pr\Tb\Dy等元素过渡消耗,而丰度高的Ce、La等很少使用。目前,高效、合理、均衡利用稀土资源是我国的重大战略需求。实现Ce在钕铁硼中的应用,不仅可以显著降低钕铁硼的生产成本,而且将有效拓展高丰度稀土的应用范围,提高稀土下游产业的创新能力,促进我国稀土资源的高效和平衡应用。
为了把Ce应用到钕铁硼磁体中,前人已经做过不少研究。第一种方法是用直接熔炼法制备钕铈铁硼磁体。但是由于Ce2Fe14B的内禀磁性弱于Nd2Fe14B,直接合金化替代量有限而且恶化磁性能。有研究表明,当Ce的替代量从5wt.%提高到40wt.%,磁性能从40MGOe降低到27MGOe。相对直接熔炼法制备的低磁性能钕铈铁硼磁体磁体来说,李卫老师等课题组发展的双主相工艺能生产出较高性能的烧结钕铈铁硼磁体。当Ce占总稀土含量的30wt.%时,磁能积仍能达到43MGOe。但是矫顽力只有9.26kOe,依然达不到商业磁体的要求。
据研究表明,矫顽力不仅与内禀磁性有关,还与显微组织密切相关。通过晶界添加重稀土或重稀土晶界扩散,增强主相边界层的各向异性场,可以提高矫顽力。另外,通过形成较厚的晶界相,磁隔离相邻主相晶粒也可以提高矫顽力。考虑到Nd2Fe14B的剩磁和磁晶各向异性场都高于Ce2Fe14B,如果在Ce2Fe14B的表面形成富Nd层,不仅可以增强局域的磁晶各向异性场,提高矫顽力,还可以提高剩磁;同时,晶界引入比较多的Nd还可以增强富稀土相的体积分数,从而提高主相与晶界相的润湿性,优化晶界相分布,隔离开相邻主相晶粒。而选用氢化物的好处是,它易于制备,脱氢后还具有高活性,利于固态扩散。
综上所述,通过在双主相钕铈铁硼磁体中晶界添加钕氢化合物可以制备高矫顽力烧结钕铈铁硼磁体。
发明内容
本发明的目的是克服现有技术的不足,提供了一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法,其步骤为:
1.制备双主相合金粉末,步骤如下:
1)配料:A主相钕铁硼合金以质量百分比计,其成分为(Pr1-x,Ndx)a1Fe100-a1-b1- c1Mb1Bc1;B主相钕铈铁硼合金以质量百分比计,其成分为(Pr1-y,Ndy)a2Ceb2Fe100-a2-b2-c2- d2Mc2Bd2,其中M为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si元素中一种或几种,Pr为镨元素,Nd为钕元素,Ce为铈元素,B为硼元素,x、y、a1、b1、c1、a2、b2、c2、d2满足以下关系:0.7≤x≤1、0.7≤y≤1、28.5≤a1≤32.5、0≤b1≤1.5、0.9≤c1≤1.05、14.25≤a2≤16.25、14.25≤b2≤16.25、0≤c2≤1、0.9≤d2≤1.05。
2)熔炼与速凝鳞片铸锭:两主相合金分别采用真空中频感应熔炼并进行速凝鳞片铸锭制成厚带;
3)氢爆与气流磨:两主相合金分别采用氢爆再采用气流磨将氢爆粉制成平均粒度为1~10μm的磁粉。
2.制备钕氢化合物粉末,步骤如下:
1)氢爆:将金属纯度大于99.5%的纯钕采用氢爆法制备出钕氢化合物的小碎块;
2)气流磨:采用球磨的方法将钕氢化合物破碎成平均颗粒直径为0.1-3.0μm的颗粒粉末。
3.混粉,步骤如下:
1)将制备好的两主相合金粉末以质量百分比在混料机中均匀混合;
2)将钕氢化合物粉末以质量百分比含量为1%-10%的形式添加到双主相合金在手套箱中均匀混合。
4.磁场取向成型:将混合完成的合金粉末在1.5T-2.0T的磁场下进行取向成型,并经17MPa的冷等静压制成生坯。
5.真空烧结和热处理,步骤如下:
1)用高真空正压烧结炉将生坯在1020~1080℃烧结2~5h制成磁体;
2)再在860~920℃间进行一级回火和410~470℃间进行二级回火,制得最终磁体。
本发明与现有技术相比具有的有益效果:
1)高丰度稀土Ce的储量是Nd和Pr的2-5倍,市场价是Nd和Pr的1/3-1/5,这种应用Ce生产的稀土永磁体不仅能有效降低成本,还能促进稀土资源的综合利用;
2)利用双主相工艺生产的稀土永磁体,能保障较高的磁性能;
3)利用钕氢化合物粉末添加形成更多富Nd硬磁壳层主相,优化磁体的显微组织结构,改善晶界相分布,进一步提升磁体矫顽力;
4)制备钕氢化合物粉末过程简单,制成的粉末为微米级别,能够均匀的包裹在主相周围,烧结过程中氢化物的脱氢能有效抑制磁体的氧化,减少磁体氧含量,整个制备过程简便,成本低,非常适合工业中的批量生产。
具体实施方式
A主相钕铁硼合金以质量百分比计,其成分为(Pr1-x,Ndx)a1Fe100-a1-b1-c1Mb1Bc1;B主相钕铈铁硼合金以质量百分比计,其成分为(Pr1-y,Ndy)a2Ceb2Fe100-a2-b2-c2-d2Mc2Bd2,其中M为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si元素中一种或几种,Pr为镨元素,Nd为钕元素,Ce为铈元素,B为硼元素,x、y、a1、b1、c1、a2、b2、c2、d2满足以下关系:0.7≤x≤1、0.7≤y≤1、28.5≤a1≤32.5、0≤b1≤1.5、0.9≤c1≤1.05、14.25≤a2≤16.25、14.25≤b2≤16.25、0≤c2≤1、0.9≤d2≤1.05。晶界添加钕氢化合物以原子百分比计,其成分为NdHx,H为氢元素,x满足2≤x≤3。
添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法具体步骤为:
1)A主相钕铁硼和B主相钕铈铁硼合金分别采用速凝甩带工艺制成速凝薄带,晶界添加钕氢化合物采用氢爆法制备出钕氢化合物的小碎块;
2)通过氢爆与气流磨的方法将速凝薄带破碎制成平均颗粒直径为1-10μm的主相颗粒粉末,采用球磨法将晶界相氢化物破碎成平均颗粒直径为0.1-3.0μm的颗粒粉末;
3)将制备好的两主相合金粉末以质量百分比均匀混合,再将钕氢化合物粉末以质量百分比含量为1%-10%的形式添加到双主相合金中均匀混合;
4)将混合完成的合金粉末在1.5T-2.0T的磁场下进行取向成型,并经17MPa的冷等静压制成生坯;
5)将压型完成的磁块在1020~1080℃真空下烧结2~5h,再经过860~920℃一级回火和410~470℃二级回火,制得最终磁体。
下面结合具体实施例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例:
实施例1:
1)将两主相合金分别采用真空感应熔炼、速凝铸片、氢爆和气流磨的四种合金工艺制备主合金粉末,粉末颗粒直径大致在3.5μm左右,所述主合金以原子百分数计,其合金成分分别为Nd32.5FebalB1和Nd16.25Ce16.25FebalB1
2)将A主相和B主相合金粉末在高纯氮气保护下的手套箱中按质量百分比46:54进行均匀混料,得到混合粉末;将混合完成的合金粉末在1.5T-2.0T的磁场下进行取向成型,并经17MPa的冷等静压制成生坯;
3)采用高真空烧结炉将生坯在1045℃下烧结3h,在890℃下进行一级回火2h,在465℃下进行二级回火4h得到钕铈铁硼磁体;
4)测量制备好的钕铈铁硼磁体磁性能,结果如下:Br=12.7kGs,Hcj=8.1kOe,(BH)max=39.8MGOe。
实施例2:
1)将两主相合金分别采用真空感应熔炼、速凝铸片、氢爆和气流磨的四种合金工艺制备主合金粉末,粉末颗粒直径大致在3.5μm左右,所述主合金以原子百分数计,其合金成分分别为Nd32.5FebalB1和Nd16.25Ce16.25FebalB1
2)将金属钕氢爆,并用机械球磨法将其磨成颗粒直径大致为0.5-1.0μm的粉末,所述合金以原子百分数计,其成分为NdHx
3)将两主相合金粉末与钕氢化合物粉末在高纯氮气保护下的手套箱中按质进行均匀混料,得到混合粉末,其中两主相合金粉末中A主相和B主相质量百分比为46:54,钕氢化合物粉末重量占总粉末重量的1%;
4)将混合完成的合金粉末在1.5T-2.0T的磁场下进行取向成型,并经17MPa的冷等静压制成生坯;
5)采用高真空烧结炉将生坯在1045℃下烧结3h,在890℃下进行一级回火2h,在465℃下进行二级回火4h得到钕铈铁硼磁体;
6)测量制备好的钕铈铁硼磁体磁性能,结果如下:Br=12.6kGs,Hcj=9.9kOe,(BH)max=39.7MGOe。相比没有添加钕氢化合物的钕铈铁硼磁体,矫顽力提高了22.2%。
实施例3:
1)将两主相合金分别采用真空感应熔炼、速凝铸片、氢爆和气流磨的四种合金工艺制备主合金粉末,粉末颗粒直径大致在3.5μm左右,所述主合金以原子百分数计,其合金成分分别为Nd32.5FebalB1和Nd16.25Ce16.25FebalB1
2)将金属钕氢爆,并用机械球磨法将其磨成颗粒直径大致为0.5-1.0μm的粉末,所述合金以原子百分数计,其成分为NdHx
3)将两主相合金粉末与钕氢化合物粉末在高纯氮气保护下的手套箱中按质进行均匀混料,得到混合粉末,其中两主相合金粉末中A主相和B主相质量百分比为46:54,,钕氢化合物粉末重量占总粉末重量的2%;
4)将混合完成的合金粉末在1.5T-2.0T的磁场下进行取向成型,并经17MPa的冷等静压制成生坯;
5)采用高真空烧结炉将生坯在1045℃下烧结3h,在890℃下进行一级回火2h,在465℃下进行二级回火4h得到钕铈铁硼磁体;
6)测量制备好的钕铈铁硼磁体磁性能,结果如下:Br=12.6kGs,Hcj=10.9kOe,(BH)max=39.5MGOe。
实施例4:
1)将两主相合金分别采用真空感应熔炼、速凝铸片、氢爆和气流磨的四种合金工艺制备主合金粉末,粉末颗粒直径大致在3.5μm左右,所述主合金以原子百分数计,其合金成分分别为Nd32.5FebalB1和Nd16.25Ce16.25FebalB1
2)将金属钕氢爆,并用机械球磨法将其磨成颗粒直径大致为0.5-1.0μm的粉末,所述合金以原子百分数计,其成分为NdHx
3)将两主相合金粉末与钕氢化合物粉末在高纯氮气保护下的手套箱中按质进行均匀混料,得到混合粉末,其中两主相合金粉末中A主相和B主相质量百分比为46:54,,钕氢化合物粉末重量占总粉末重量的3%;
4)将混合完成的合金粉末在1.5T-2.0T的磁场下进行取向成型,并经17MPa的冷等静压制成生坯;
5)采用高真空烧结炉将生坯在1045℃下烧结3h,在890℃下进行一级回火2h,在465℃下进行二级回火4h得到钕铈铁硼磁体;
6)测量制备好的钕铈铁硼磁体磁性能,结果如下:Br=12.0kGs,Hcj=12.2kOe,(BH)max=34.9MGOe。
实施例5:
1)将两主相合金分别采用真空感应熔炼、速凝铸片、氢爆和气流磨的四种合金工艺制备主合金粉末,粉末颗粒直径大致在3.5μm左右,所述主合金以原子百分数计,其合金成分分别为Nd32.5FebalB1和Nd16.25Ce16.25FebalB1
2)将金属钕氢爆,并用机械球磨法将其磨成颗粒直径大致为0.5-1.0μm的粉末,所述合金以原子百分数计,其成分为NdHx
3)将两主相合金粉末与钕氢化合物粉末在高纯氮气保护下的手套箱中按质进行均匀混料,得到混合粉末,其中两主相合金粉末中A主相和B主相质量百分比为46:54,,钕氢化合物粉末重量占总粉末重量的4%;
4)将混合完成的合金粉末在1.5T-2.0T的磁场下进行取向成型,并经17MPa的冷等静压制成生坯;
5)采用高真空烧结炉将生坯在1045℃下烧结3h,在890℃下进行一级回火2h,在465℃下进行二级回火4h得到钕铈铁硼磁体;
6)测量制备好的钕铈铁硼磁体磁性能,结果如下:Br=11.8kGs,Hcj=13.0kOe,(BH)max=33.7MGOe。

Claims (6)

1.一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法,其特征在于,包括:
1)A主相钕铁硼和B主相钕铈铁硼合金分别采用速凝甩带工艺制成速凝薄带,金属纯度大于99.5%的纯钕采用氢爆法制备出晶界添加钕氢化合物的小碎块;
2)通过氢爆与气流磨的方法将速凝薄带破碎制成平均颗粒直径为1-10μm的主相颗粒粉末,采用球磨法将晶界添加钕氢化合物破碎成平均颗粒直径为0.1-3.0μm的颗粒粉末;
3)将制备好的两主相合金粉末均匀混合,再将钕氢化合物粉末添加到双主相合金在无氧氛为中均匀混合;钕氢化合物粉末相对于两主相合金粉末的质量百分比为1%-10%;
4)将混合完成的合金粉末在1.5T-2.0T的磁场下进行取向成型,并经冷等静压制成生坯;
5)将压型完成的磁块在1020~1080℃真空下烧结2~5h,再在860~920℃间进行一级回火和410~470℃间进行二级回火,制得最终磁体。
2.根据权利要求1所述的一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法,其特征在于,步骤(1)中,所述A主相钕铁硼合金以质量百分比计,其成分为(Pr1-x,Ndx)a1Fe100-a1-b1-c1Mb1Bc1,B主相钕铈铁硼合金以质量百分比计,其成分为(Pr1-y,Ndy)a2Ceb2Fe100-a2-b2-c2-d2Mc2Bd2,其中M为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si元素中一种或几种,Pr为镨元素,Nd为钕元素,Ce为铈元素,B为硼元素,x、y、a1、b1、c1、a2、b2、c2、d2满足以下关系:0.7≤x≤1、0.7≤y≤1、28.5≤a1≤32.5、0≤b1≤1.5、0.9≤c1≤1.05、14.25≤a2≤16.25、14.25≤b2≤16.25、0≤c2≤1、0.9≤d2≤1.05。
3.根据权利要求2所述的一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法,其特征在于,晶界添加钕氢化合物以原子百分比计,其成分为NdHx,H为氢元素,x满足2≤x≤3。
4.根据权利要求1所述的一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法,其特征在于所述冷等静压的压强为17MPa。
5.根据权利要求1所述的一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法,
其特征在于所述步骤3)中两主相合金粉末中A主相和B主相的质量比为:0.1-0.9。
6.一种如权利要求1所述方法制备得到的多主相钕铈铁硼烧结磁体。
CN201611228974.0A 2016-12-27 2016-12-27 一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法 Pending CN106710768A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611228974.0A CN106710768A (zh) 2016-12-27 2016-12-27 一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611228974.0A CN106710768A (zh) 2016-12-27 2016-12-27 一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法

Publications (1)

Publication Number Publication Date
CN106710768A true CN106710768A (zh) 2017-05-24

Family

ID=58896521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611228974.0A Pending CN106710768A (zh) 2016-12-27 2016-12-27 一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法

Country Status (1)

Country Link
CN (1) CN106710768A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183010A (zh) * 2017-12-14 2018-06-19 浙江大学 一种同时提高钕铈铁硼烧结磁体磁性能和抗腐蚀性能的方法
CN110911077A (zh) * 2019-11-18 2020-03-24 江苏大学 一种高矫顽力钕铈铁硼磁体的制备方法
CN112086255A (zh) * 2020-09-18 2020-12-15 湖南奔朗新材料科技有限公司 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法
US20210398718A1 (en) * 2019-09-26 2021-12-23 Lg Chem, Ltd. Method for Producing Sintered Magnet and Sintered Magnet
CN114267533A (zh) * 2022-01-20 2022-04-01 包头品高永磁材料有限公司 具有高韧性的烧结钕铁硼磁体及其制作方法
CN114823113A (zh) * 2022-04-14 2022-07-29 浙江大学 一种高矫顽力富铈稀土永磁材料的制备方法
EP4152349A1 (en) 2021-09-16 2023-03-22 Yantai Dongxing Magnetic Materials Inc. Method for preparing ndfeb magnets including lanthanum or cerium
US11657933B2 (en) 2017-11-28 2023-05-23 Lg Chem, Ltd. Manufacturing method of sintered magnet, and sintered magnet
US11721460B2 (en) 2016-11-08 2023-08-08 Lg Chem, Ltd. Method for preparing metal powder, and metal powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165601A (ja) * 1995-12-12 1997-06-24 Sumitomo Special Metals Co Ltd 永久磁石用異方性希土類合金粉末及び異方性ボンド磁石の製造方法
CN106252009A (zh) * 2016-07-26 2016-12-21 浙江大学 一种基于稀土氢化物添加的高性能富La/Ce/Y稀土永磁体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165601A (ja) * 1995-12-12 1997-06-24 Sumitomo Special Metals Co Ltd 永久磁石用異方性希土類合金粉末及び異方性ボンド磁石の製造方法
CN106252009A (zh) * 2016-07-26 2016-12-21 浙江大学 一种基于稀土氢化物添加的高性能富La/Ce/Y稀土永磁体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汪雪娇: "稀土氢化物重构烧结钕铁硼磁体晶界组织研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑 》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11721460B2 (en) 2016-11-08 2023-08-08 Lg Chem, Ltd. Method for preparing metal powder, and metal powder
US11657933B2 (en) 2017-11-28 2023-05-23 Lg Chem, Ltd. Manufacturing method of sintered magnet, and sintered magnet
CN108183010A (zh) * 2017-12-14 2018-06-19 浙江大学 一种同时提高钕铈铁硼烧结磁体磁性能和抗腐蚀性能的方法
US20210398718A1 (en) * 2019-09-26 2021-12-23 Lg Chem, Ltd. Method for Producing Sintered Magnet and Sintered Magnet
US12119150B2 (en) * 2019-09-26 2024-10-15 Lg Chem, Ltd. Method for producing sintered magnet and sintered magnet
CN110911077A (zh) * 2019-11-18 2020-03-24 江苏大学 一种高矫顽力钕铈铁硼磁体的制备方法
CN110911077B (zh) * 2019-11-18 2021-02-12 江苏大学 一种高矫顽力钕铈铁硼磁体的制备方法
CN112086255A (zh) * 2020-09-18 2020-12-15 湖南奔朗新材料科技有限公司 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法
EP4152349A1 (en) 2021-09-16 2023-03-22 Yantai Dongxing Magnetic Materials Inc. Method for preparing ndfeb magnets including lanthanum or cerium
CN114267533A (zh) * 2022-01-20 2022-04-01 包头品高永磁材料有限公司 具有高韧性的烧结钕铁硼磁体及其制作方法
CN114823113A (zh) * 2022-04-14 2022-07-29 浙江大学 一种高矫顽力富铈稀土永磁材料的制备方法

Similar Documents

Publication Publication Date Title
CN102220538B (zh) 一种提高内禀矫顽力和耐腐蚀性能的烧结钕铁硼制备方法
CN106710768A (zh) 一种添加氢化钕提高钕铈铁硼烧结磁体矫顽力的方法
CN104064346B (zh) 一种钕铁硼磁体及其制备方法
JP6366666B2 (ja) 重希土類元素を含まない焼結Nd−Fe−B磁性体の製造方法
CN103065787B (zh) 一种制备烧结钕铁硼磁体的方法
CN110047636B (zh) 一种高矫顽力富La/Ce烧结磁体的制备方法
CN106252009B (zh) 一种基于稀土氢化物添加的高性能富La/Ce/Y稀土永磁体及其制备方法
CN104700973B (zh) 一种由白云鄂博共伴生原矿混合稀土制成的稀土永磁体及其制备方法
WO2016086398A1 (zh) 一种高矫顽力烧结钕铁硼的制备方法及产品
CN107275027B (zh) 应用钇的富铈稀土永磁体及其制备方法
CN107195414A (zh) 一种(Nd,Y)‑Fe‑B稀土永磁体及其制备方法
CN103794323A (zh) 一种应用高丰度稀土生产的商用稀土永磁体及其制备方法
JP2023509225A (ja) 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
CN104637643B (zh) 白云鄂博共伴生原矿混合稀土永磁材料及其制备方法
CN113593873B (zh) 一种高矫顽力混合稀土永磁材料及其制备方法
CN107958760B (zh) 一种稀土永磁材料及其制备方法
CN114927302B (zh) 稀土磁体及其制备方法
CN107689279A (zh) 一种提高烧结钕铁硼复合磁体矫顽力的方法
CN107275026A (zh) 批量应用镧的富铈稀土永磁体及其制备方法
CN106298134B (zh) 一种双主相烧结永磁材料及制备方法和应用
CN103495733B (zh) 一种晶界富钕相被替换的烧结钕铁硼永磁材料的制备方法
CN108183010A (zh) 一种同时提高钕铈铁硼烧结磁体磁性能和抗腐蚀性能的方法
CN104275487B (zh) 一种添加mm合金的烧结钕铁硼的制备方法
CN105761925A (zh) 一种钬铁镓共晶掺杂制备高性能钕铁硼磁体的方法
CN108597707A (zh) 一种含Ce烧结磁体及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170524

WD01 Invention patent application deemed withdrawn after publication