CN106654237A - Nickel-cobalt-aluminum-lithium ion battery positive material as well as preparation method and application thereof - Google Patents
Nickel-cobalt-aluminum-lithium ion battery positive material as well as preparation method and application thereof Download PDFInfo
- Publication number
- CN106654237A CN106654237A CN201710088357.3A CN201710088357A CN106654237A CN 106654237 A CN106654237 A CN 106654237A CN 201710088357 A CN201710088357 A CN 201710088357A CN 106654237 A CN106654237 A CN 106654237A
- Authority
- CN
- China
- Prior art keywords
- lithium
- source
- nickel
- lanthanum
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 64
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- -1 Nickel-cobalt-aluminum-lithium Chemical compound 0.000 title abstract description 58
- 239000002243 precursor Substances 0.000 claims abstract description 52
- 239000011162 core material Substances 0.000 claims abstract description 41
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims abstract description 37
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 35
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 35
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000011258 core-shell material Substances 0.000 claims abstract description 32
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 32
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 32
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 25
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 22
- 239000011257 shell material Substances 0.000 claims abstract description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000001694 spray drying Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 61
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 30
- 238000001354 calcination Methods 0.000 claims description 30
- 229910052751 metal Inorganic materials 0.000 claims description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 24
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 claims description 24
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- 239000000725 suspension Substances 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 18
- 239000012266 salt solution Substances 0.000 claims description 18
- 229910021645 metal ion Inorganic materials 0.000 claims description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 14
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 12
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 12
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical group [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 12
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 claims description 12
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 claims description 12
- 229910017052 cobalt Inorganic materials 0.000 claims description 12
- 239000010941 cobalt Substances 0.000 claims description 12
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 12
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 claims description 12
- VQEHIYWBGOJJDM-UHFFFAOYSA-H lanthanum(3+);trisulfate Chemical compound [La+3].[La+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VQEHIYWBGOJJDM-UHFFFAOYSA-H 0.000 claims description 12
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 claims description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 12
- 230000001376 precipitating effect Effects 0.000 claims description 12
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 12
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 claims description 12
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 11
- 239000001099 ammonium carbonate Substances 0.000 claims description 11
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 11
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 10
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 10
- 239000008139 complexing agent Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000011824 nuclear material Substances 0.000 claims description 10
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 8
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 claims description 7
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical group [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 7
- 238000001556 precipitation Methods 0.000 claims description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 6
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 6
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 6
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 6
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 6
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 6
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 6
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 6
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 6
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 6
- 230000032683 aging Effects 0.000 claims description 5
- XKPJKVVZOOEMPK-UHFFFAOYSA-M lithium;formate Chemical compound [Li+].[O-]C=O XKPJKVVZOOEMPK-UHFFFAOYSA-M 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 4
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 4
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 229940071264 lithium citrate Drugs 0.000 claims description 4
- WJSIUCDMWSDDCE-UHFFFAOYSA-K lithium citrate (anhydrous) Chemical compound [Li+].[Li+].[Li+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WJSIUCDMWSDDCE-UHFFFAOYSA-K 0.000 claims description 4
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 4
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 claims description 4
- SNKMVYBWZDHJHE-UHFFFAOYSA-M lithium;dihydrogen phosphate Chemical group [Li+].OP(O)([O-])=O SNKMVYBWZDHJHE-UHFFFAOYSA-M 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 claims description 4
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 125000005587 carbonate group Chemical group 0.000 claims description 3
- 229940031993 lithium benzoate Drugs 0.000 claims description 3
- LDJNSLOKTFFLSL-UHFFFAOYSA-M lithium;benzoate Chemical compound [Li+].[O-]C(=O)C1=CC=CC=C1 LDJNSLOKTFFLSL-UHFFFAOYSA-M 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 10
- 239000003153 chemical reaction reagent Substances 0.000 claims 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 4
- 239000010405 anode material Substances 0.000 claims 4
- 229910052710 silicon Inorganic materials 0.000 claims 4
- 239000010703 silicon Substances 0.000 claims 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 229910000333 cerium(III) sulfate Inorganic materials 0.000 claims 2
- 238000003786 synthesis reaction Methods 0.000 claims 2
- 229910001148 Al-Li alloy Inorganic materials 0.000 claims 1
- 229910013172 LiNixCoy Inorganic materials 0.000 claims 1
- FCVHBUFELUXTLR-UHFFFAOYSA-N [Li].[AlH3] Chemical compound [Li].[AlH3] FCVHBUFELUXTLR-UHFFFAOYSA-N 0.000 claims 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000000052 vinegar Substances 0.000 claims 1
- 235000021419 vinegar Nutrition 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 239000007774 positive electrode material Substances 0.000 abstract description 14
- 238000000576 coating method Methods 0.000 abstract description 9
- 238000000975 co-precipitation Methods 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000010406 cathode material Substances 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 8
- 239000007921 spray Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 241000080590 Niso Species 0.000 description 6
- 235000017550 sodium carbonate Nutrition 0.000 description 6
- 229940044175 cobalt sulfate Drugs 0.000 description 5
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 5
- 238000003834 hydroxide co-precipitation Methods 0.000 description 5
- 235000011181 potassium carbonates Nutrition 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229910007926 ZrCl Inorganic materials 0.000 description 3
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 3
- REKWWOFUJAJBCL-UHFFFAOYSA-L dilithium;hydrogen phosphate Chemical compound [Li+].[Li+].OP([O-])([O-])=O REKWWOFUJAJBCL-UHFFFAOYSA-L 0.000 description 3
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 3
- LZWQNOHZMQIFBX-UHFFFAOYSA-N lithium;2-methylpropan-2-olate Chemical compound [Li+].CC(C)(C)[O-] LZWQNOHZMQIFBX-UHFFFAOYSA-N 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 239000011736 potassium bicarbonate Substances 0.000 description 3
- 235000015497 potassium bicarbonate Nutrition 0.000 description 3
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910013100 LiNix Inorganic materials 0.000 description 1
- ADVAFVCNOHMBDT-UHFFFAOYSA-L [Cl+].[Li+].[Cl-].[Cl-] Chemical compound [Cl+].[Li+].[Cl-].[Cl-] ADVAFVCNOHMBDT-UHFFFAOYSA-L 0.000 description 1
- OQPHEVHDBFEJRQ-UHFFFAOYSA-N [Li].P(O)(O)(O)=O Chemical compound [Li].P(O)(O)(O)=O OQPHEVHDBFEJRQ-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003835 carbonate co-precipitation Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种镍钴铝锂离子电池正极材料,该材料具有核壳结构,其核材料为掺杂铈、镧或锆中至少一种元素的镍钴铝锂材料,其壳材料为氧化铈、氧化镧或氧化锆中的至少一种和氧化铝组成的复合材料。采用共沉淀法合成镍钴铝材料前驱体;然后利用喷雾干燥包覆方法制得核壳结构材料;将核壳结构材料与锂源混合后煅烧,冷却后得到具有核壳结构的锂离子电池正极材料。该材料能够有效地改善镍钴铝材料的耐压性能、热稳定性、循环性能和倍率性,提高了镍钴铝锂离子电池材料的安全性和电化学性能,在锂离子电池制备领域有着良好的应用前景。
The invention relates to a positive electrode material of a nickel-cobalt-aluminum-lithium ion battery. The material has a core-shell structure. The core material is a nickel-cobalt-aluminum-lithium material doped with at least one element among cerium, lanthanum or zirconium, and the shell material is cerium oxide. A composite material composed of at least one of lanthanum oxide or zirconia and alumina. The precursor of nickel-cobalt-aluminum material was synthesized by co-precipitation method; then the core-shell structure material was prepared by spray drying coating method; the core-shell structure material was mixed with lithium source and then calcined, and the lithium-ion battery positive electrode with core-shell structure was obtained after cooling Material. The material can effectively improve the pressure resistance, thermal stability, cycle performance and rate performance of nickel-cobalt-aluminum materials, improve the safety and electrochemical performance of nickel-cobalt-aluminum lithium-ion battery materials, and has a good reputation in the field of lithium-ion battery preparation. application prospects.
Description
技术领域technical field
本发明涉及锂离子电池技术领域,具体涉及一种镍钴铝锂离子电池正极材料及其制备方法和应用。The invention relates to the technical field of lithium-ion batteries, in particular to a nickel-cobalt-aluminum lithium-ion battery cathode material and a preparation method and application thereof.
背景技术Background technique
随着电动汽车的快速发展,锂离子电池材料获得越来越来广泛的应用,锂离子电池的安全问题也受到更广泛的关注。电动车更长的续航里程要求锂离子电池具有更高的能量密度。三元材料因为比容量高、循环性能好、价格低廉等特点,吸引了广泛关注,其中镍钴铝三元材料更因具有更高的比容量而被认为是最有前途的锂离子电池正极材料之一。With the rapid development of electric vehicles, lithium-ion battery materials have been widely used, and the safety of lithium-ion batteries has also received more attention. The longer cruising range of electric vehicles requires lithium-ion batteries to have higher energy density. Ternary materials have attracted widespread attention because of their high specific capacity, good cycle performance, and low price. Among them, nickel-cobalt-aluminum ternary materials are considered to be the most promising cathode materials for lithium-ion batteries due to their higher specific capacity. one.
镍钴铝三元材料在实际应用过程中存在安全隐患问题,同时大倍率三元正极材料稳定性较差,易释放出氧气,有机溶剂易和氧气发生反应放出大量热和气体,产生的热量会进一步加剧正极的分解,造成恶性循环。当温度达到电解液燃点时,电解液就会燃烧。由于电池处于封闭状态,生成的大量气体会使电池内部压力迅速升高导致爆炸。为了提高锂离子电池容量,同时兼顾电池安全性能,通常对镍钴铝三元材料进行掺杂和包覆来改善电化学性能,达到提高整体效益的目的。There are potential safety hazards in the practical application of nickel-cobalt-aluminum ternary materials. At the same time, the stability of high-magnification ternary cathode materials is poor, and oxygen is easy to be released. Organic solvents are easy to react with oxygen and release a lot of heat and gas. The heat generated will be Further aggravate the decomposition of the positive electrode, resulting in a vicious circle. When the temperature reaches the electrolyte ignition point, the electrolyte will burn. Since the battery is in a closed state, a large amount of gas generated will rapidly increase the internal pressure of the battery and cause an explosion. In order to improve the capacity of lithium-ion batteries while taking into account the safety performance of the battery, nickel-cobalt-aluminum ternary materials are usually doped and coated to improve the electrochemical performance and achieve the purpose of improving the overall benefit.
CN104037404B中公开了一种包覆掺杂型锰酸锂(LiMn2-xMxO4,0.1≤x≤0.5,M为Mg、Co、Al、Cr、Zn、Ti)的镍钴铝三元正极材料制备方法,该方法将镍钴铝锂与水混合配制成悬浮液,再利用沉淀法制备掺杂型锰酸锂前驱体,使制备的前驱体均匀地沉淀在镍钴铝锂的表面,再经过焙烧、破碎、筛分后得到掺杂型锰酸锂包覆镍钴铝锂的复合材料。但是该方法没有对镍钴铝材料的结构进行改进,仍存在热稳定性差,容易释放氧的问题,存在安全隐患。CN104037404B discloses a nickel-cobalt-aluminum ternary coating doped lithium manganate (LiMn 2-x M x O 4 , 0.1≤x≤0.5, M is Mg, Co, Al, Cr, Zn, Ti) A positive electrode material preparation method, the method mixes nickel-cobalt-aluminum-lithium with water to prepare a suspension, and then uses a precipitation method to prepare a doped lithium manganate precursor, so that the prepared precursor is uniformly precipitated on the surface of nickel-cobalt-aluminum-lithium, After roasting, crushing and sieving, the composite material of nickel-cobalt-aluminium-lithium coated with lithium manganate is obtained. However, this method does not improve the structure of the nickel-cobalt-aluminum material, and there are still problems of poor thermal stability, easy release of oxygen, and potential safety hazards.
发明内容Contents of the invention
针对现有技术中存在的不足,本发明提供一种镍钴铝锂离子电池正极材料及其制备方法和应用,该材料该材料具有核壳结构,且核材料和壳材料均掺杂铈、镧、锆等具有储存释放氧能力的氧化物,能够提高镍钴铝锂离子电池材料的耐压性、热稳定性、循环性能和倍率性,在锂离子电池制备领域具有良好的应用前景。Aiming at the deficiencies in the prior art, the present invention provides a nickel-cobalt-aluminum lithium-ion battery cathode material and its preparation method and application. The material has a core-shell structure, and both the core material and the shell material are doped with cerium and lanthanum. , zirconium and other oxides with the ability to store and release oxygen can improve the pressure resistance, thermal stability, cycle performance and rate performance of nickel-cobalt-aluminum lithium-ion battery materials, and have good application prospects in the field of lithium-ion battery preparation.
为达此目的,本发明采用以下技术方案:For reaching this purpose, the present invention adopts following technical scheme:
第一方面,本发明提供一种镍钴铝锂离子电池正极材料,其特征在于,所述正极材料具有核壳结构,其核材料为掺杂铈、镧或锆中至少一种元素的镍钴铝锂材料,其壳材料为氧化铈、氧化镧或氧化锆中的至少一种和氧化铝组成的复合材料。In the first aspect, the present invention provides a positive electrode material for a nickel-cobalt-aluminum-lithium-ion battery, which is characterized in that the positive electrode material has a core-shell structure, and its core material is nickel-cobalt doped with at least one element in cerium, lanthanum or zirconium Aluminum lithium material, the shell material is a composite material composed of at least one of cerium oxide, lanthanum oxide or zirconium oxide and aluminum oxide.
本发明制备的镍钴铝锂离子电池正极材料具有核壳结构,其核材料和壳材料均掺杂有氧化铈、氧化镧、氧化锆等具有储存释放氧能力的氧化物,因而减小核材料的由于氧释放而产生的不可逆相转变和容量衰退。同时,铈、镧、锆等元素与氧化铝材料具有共生共存效应,对氧原子具有更强的结合能力,抑制了由于高价镍不稳地性导致的氧释放,增强了材料在高温高压条件下的结构稳定性,因而能有效地改善镍钴铝材料的耐压性(高压循环稳定性能)、热稳定性(热分解温度)、循环性能和倍率性,提高了镍钴铝锂离子电池材料的安全性和电化学性能。The nickel-cobalt-aluminum lithium-ion battery positive electrode material prepared by the present invention has a core-shell structure, and its core material and shell material are all doped with oxides such as cerium oxide, lanthanum oxide, and zirconia that have the ability to store and release oxygen, thereby reducing the number of core materials. irreversible phase transition and capacity fading due to oxygen release. At the same time, cerium, lanthanum, zirconium and other elements have a symbiotic coexistence effect with alumina materials, and have a stronger binding ability to oxygen atoms, which inhibits the release of oxygen caused by the instability of high-valent nickel, and enhances the material's durability under high temperature and high pressure conditions. The structural stability of the nickel-cobalt-aluminum material can effectively improve the pressure resistance (high-voltage cycle stability), thermal stability (thermal decomposition temperature), cycle performance and rate performance of the nickel-cobalt-aluminum lithium-ion battery material. safety and electrochemical performance.
根据本发明,所述核材料为掺杂铈、镧或锆中至少一种元素的镍钴铝锂材料,例如可以掺杂铈、镧或锆中的任意一种,或者同时掺杂铈和镧;铈和锆;镧和锆;铈、镧和锆。According to the present invention, the core material is a nickel-cobalt-aluminium-lithium material doped with at least one element among cerium, lanthanum or zirconium, for example, any one of cerium, lanthanum or zirconium can be doped, or both cerium and lanthanum can be doped ; cerium and zirconium; lanthanum and zirconium; cerium, lanthanum and zirconium.
根据本发明,所述壳材料为氧化铈、氧化镧或氧化锆中的至少一种和氧化铝组成的复合材料,例如可以是氧化铈、氧化镧或氧化锆中的任意一种和氧化铝组成的复合材料,或者可以是氧化铈、氧化镧与氧化铝组成的复合材料,氧化铈、氧化锆与氧化铝组成的复合材料,氧化镧、氧化锆与氧化铝组成的复合材料,氧化铈、氧化镧、氧化锆与氧化铝组成的复合材料。According to the present invention, the shell material is a composite material composed of at least one of ceria, lanthanum oxide or zirconia and alumina, for example, it may be any one of ceria, lanthanum oxide or zirconia and alumina. Composite materials, or composite materials composed of ceria, lanthanum oxide and alumina, composite materials composed of ceria, zirconia and alumina, composite materials composed of lanthanum oxide, zirconia and alumina, ceria, zirconia A composite material composed of lanthanum, zirconia and alumina.
根据本发明,所述核材料的结构式为LiNixCoyAlzMO2,其中0.5≤x<1,0<y≤0.3,0<z≤0.2,0.5<x+y+z<1;M=CeαLaβZrγ,0≤α≤0.2,0≤β≤0.2,0≤γ≤0.2,且0<α+β+γ≤0.2,x+y+z+α+β+γ=1。According to the present invention, the structural formula of the core material is LiNix Co y Al z MO 2 , wherein 0.5≤x<1, 0<y≤0.3, 0<z≤0.2, 0.5<x+y+z<1; M =Ce α La β Zr γ , 0≤α≤0.2, 0≤β≤0.2, 0≤γ≤0.2, and 0<α+β+γ≤0.2, x+y+z+α+β+γ=1 .
上述x的取值范围为0.5-1,但不包括1,例如可以是0.5、0.6、0.7、0.8、0.9或0.99,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The value range of the above-mentioned x is 0.5-1, but 1 is not included, for example, it can be 0.5, 0.6, 0.7, 0.8, 0.9 or 0.99, and specific point values between the above values are limited by space and for the sake of simplicity, The invention is not intended to be exhaustive of the specific point values included in the stated ranges.
上述y的取值范围为0-0.3,但不包括0,例如可以是0.01、0.05、0.1、0.15、0.2、0.25或0.3,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The value range of the above y is 0-0.3, but 0 is not included, for example, it can be 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 or 0.3, and the specific point values between the above values are limited by space and for the sake of brevity It is contemplated that the invention is not intended to be an exhaustive recitation of the specific point values encompassed by the stated ranges.
上述z的取值范围为0-0.2,但不包括0,例如可以是0.01、0.05、0.1、0.15或0.2,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The value range of the above-mentioned z is 0-0.2, but does not include 0, for example, it can be 0.01, 0.05, 0.1, 0.15 or 0.2, and specific point values between the above-mentioned values, limited by space and for the sake of simplicity, the present invention The specific point values encompassed by the stated ranges are not intended to be exhaustive.
上述x、y、z之和的范围为0.5-1,但不包括0.5和1,例如可以是0.51、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95或0.99,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The sum of the above x, y, and z ranges from 0.5 to 1, but excluding 0.5 and 1, for example, it can be 0.51, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 or 0.99, and the above values The specific point values between are limited to space and for the sake of brevity, the present invention will not exhaustively list the specific point values included in the range.
上述α、β、γ的取值范围均为0-0.2,例如可以是0、0.05、0.1、0.15或0.2,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The value ranges of the above-mentioned α, β, and γ are all 0-0.2, for example, it can be 0, 0.05, 0.1, 0.15 or 0.2, and the specific point values between the above-mentioned values are limited to the space and for the sake of simplicity, the present invention The specific point values encompassed by the stated ranges are not intended to be exhaustive.
上述α、β和γ之和的取值范围为0-0.2,但不包括0,例如可以是0.01、0.05、0.1、0.15或0.2,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The value range of the sum of the above-mentioned α, β and γ is 0-0.2, but 0 is not included, for example, it can be 0.01, 0.05, 0.1, 0.15 or 0.2, and the specific points between the above values are limited by space and due to For the sake of brevity, the present invention is not intended to be an exhaustive list of the specific point values included in the stated ranges.
上述x、y、z、α、β和γ的总和为1。The sum of the above x, y, z, α, β and γ is 1.
根据本发明,所述壳材料的结构式为(Al2O3)1-ε-ζ-η-(CeO2)ε-(La2O3)ζ-(ZrO2)η,其中0≤ε<1,0≤ζ<1,0≤η<1,且0<ε+ζ+η<1。According to the present invention, the structural formula of the shell material is (Al 2 O 3 ) 1-ε-ζ-η -(CeO 2 ) ε -(La 2 O 3 ) ζ -(ZrO 2 ) η , where 0≤ε< 1, 0≤ζ<1, 0≤η<1, and 0<ε+ζ+η<1.
上述ε、ζ、η的取值范围均为0-1,但不包括1,例如可以是0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9或0.99,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The value ranges of the above ε, ζ, η are all 0-1, but 1 is not included, for example, it can be 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 0.99, and any of the above values The specific points between the values are limited in space and for the sake of brevity, the present invention does not exhaustively list the specific point values included in the range.
上述ε、ζ、η之和的取值范围为0-1,但不包括0和1,例如可以是0.01、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9或0.99,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The value range of the sum of ε, ζ, and η above is 0-1, but excluding 0 and 1, for example, it can be 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 0.99, and The specific points between the above numerical values are limited in space and for the sake of simplicity, the present invention does not exhaustively list the specific point values included in the range.
根据本发明,所述核材料的粒径为5-15μm,例如可以是5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm或15μm,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the particle size of the core material is 5-15 μm, such as 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 11 μm, 12 μm, 13 μm, 14 μm or 15 μm, and specific point values between the above values , due to space limitations and for the sake of brevity, the present invention does not exhaustively enumerate the specific point values included in the range.
根据本发明,所述壳材料的厚度为1-5μm,例如可以是1μm、2μm、3μm、4μm或5μm,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the thickness of the shell material is 1-5 μm, for example, it can be 1 μm, 2 μm, 3 μm, 4 μm or 5 μm, and the specific point values between the above values are limited by the space and for the sake of simplicity, the present invention does not An exhaustive enumeration of the specific point values included in the range is then made.
第二方面,本发明提供一种如第一方面所述的镍钴铝锂离子电池正极材料的制备方法,所述方法包括以下步骤:In a second aspect, the present invention provides a method for preparing a positive electrode material for a nickel-cobalt-aluminum-lithium-ion battery as described in the first aspect, the method comprising the following steps:
(1)采用共沉淀法合成掺杂铈、镧或锆中至少一种元素的镍钴铝核材料前驱体;(1) A nickel-cobalt-aluminum core material precursor doped with at least one element of cerium, lanthanum or zirconium is synthesized by coprecipitation;
(2)将铈源、镧源以及锆源中的至少一种与铝源配制成金属盐溶液B,向其中加入步骤(1)得到的镍钴铝核材料前驱体后得到悬浊液,将悬浊液喷雾干燥后得到核壳结构材料;(2) At least one of the cerium source, the lanthanum source and the zirconium source and the aluminum source are formulated into a metal salt solution B, and the nickel-cobalt-aluminum core material precursor obtained in step (1) is added thereto to obtain a suspension, and the The suspension is spray-dried to obtain a core-shell structure material;
(3)将步骤(2)得到的核壳结构材料与锂源混合后研磨,然后进行煅烧,冷却后得到具有核壳结构的镍钴铝锂离子电池正极材料。(3) The core-shell structure material obtained in step (2) is mixed with a lithium source, ground, then calcined, and cooled to obtain a nickel-cobalt-aluminum lithium-ion battery positive electrode material with a core-shell structure.
根据本发明,步骤(1)所述共沉淀法合成镍钴铝材料前驱体包括以下步骤:According to the present invention, the co-precipitation method described in step (1) synthesizes the nickel-cobalt-aluminum material precursor comprising the following steps:
(a)将铈源、镧源、锆源中的至少一种和铝源、镍源以及钴源混合,配制成金属盐溶液A,将金属盐溶液A、沉淀剂和络合剂混合后进行搅拌,生成沉淀;(a) mix at least one of cerium source, lanthanum source, zirconium source and aluminum source, nickel source and cobalt source, prepare metal salt solution A, carry out after metal salt solution A, precipitation agent and complexing agent are mixed Stir to form a precipitate;
(b)将步骤(a)得到的沉淀进行陈化,过滤,洗涤,干燥后得到镍钴铝材料核前驱体。(b) Aging the precipitate obtained in step (a), filtering, washing, and drying to obtain a nuclear precursor of nickel-cobalt-aluminum material.
根据本发明,步骤(a)所述铝源为硫酸铝、氯化铝或硝酸铝中的任意一种或至少两种的组合,例如可以是硫酸铝、氯化铝或硝酸铝中的任意一种,典型但非限定性的组合为:硫酸铝和氯化铝,硫酸铝和硝酸铝,氯化铝和硝酸铝,硫酸铝、氯化铝和硝酸铝。According to the present invention, the aluminum source in step (a) is any one or a combination of at least two of aluminum sulfate, aluminum chloride or aluminum nitrate, such as any one of aluminum sulfate, aluminum chloride or aluminum nitrate Typical but non-limiting combinations are: aluminum sulfate and aluminum chloride, aluminum sulfate and aluminum nitrate, aluminum chloride and aluminum nitrate, aluminum sulfate, aluminum chloride and aluminum nitrate.
根据本发明,步骤(a)所述镍源为硫酸镍、氯化镍或硝酸镍中的任意一种或至少两种的组合,例如可以是硫酸镍、氯化镍或硝酸镍中的任意一种,典型但非限定性的组合为:硫酸镍和氯化镍,硫酸镍和硝酸镍,氯化镍和硝酸镍,硫酸镍、氯化镍和硝酸镍。According to the present invention, the nickel source described in step (a) is any one or a combination of at least two of nickel sulfate, nickel chloride or nickel nitrate, such as any one of nickel sulfate, nickel chloride or nickel nitrate Typical but non-limiting combinations are: nickel sulfate and nickel chloride, nickel sulfate and nickel nitrate, nickel chloride and nickel nitrate, nickel sulfate, nickel chloride and nickel nitrate.
根据本发明,步骤(a)所述钴源为硫酸钴、氯化钴或硝酸钴中的任意一种或至少两种的组合,例如可以是硫酸钴、氯化钴或硝酸钴中的任意一种,典型但非限定性的组合为:硫酸钴和氯化钴,硫酸钴和硝酸钴,氯化钴和硝酸钴,硫酸钴、氯化钴和硝酸钴。According to the present invention, the cobalt source described in step (a) is any one or a combination of at least two of cobalt sulfate, cobalt chloride or cobalt nitrate, such as any one of cobalt sulfate, cobalt chloride or cobalt nitrate A typical but non-limiting combination is: cobalt sulfate and cobalt chloride, cobalt sulfate and cobalt nitrate, cobalt chloride and cobalt nitrate, cobalt sulfate, cobalt chloride and cobalt nitrate.
根据本发明,步骤(a)所述铈源为硫酸铈、氯化铈或硝酸铈中的任意一种或至少两种的组合,例如可以是硫酸铈、氯化铈或硝酸铈中的任意一种,典型但非限定性的组合为:硫酸铈和氯化铈,硫酸铈和硝酸铈,氯化铈和硝酸铈,硫酸铈、氯化铈和硝酸铈。According to the present invention, the cerium source in step (a) is any one or a combination of at least two of cerium sulfate, cerium chloride or cerium nitrate, such as any one of cerium sulfate, cerium chloride or cerium nitrate A typical but non-limiting combination is: cerium sulfate and cerium chloride, cerium sulfate and cerium nitrate, cerium chloride and cerium nitrate, cerium sulfate, cerium chloride and cerium nitrate.
根据本发明,步骤(a)所述镧源为硫酸镧、氯化镧或硝酸镧中的任意一种或至少两种的组合,例如可以是硫酸镧、氯化镧或硝酸镧中的任意一种,典型但非限定性的组合为:硫酸镧和氯化镧,硫酸镧和硝酸镧,氯化镧和硝酸镧,硫酸镧、氯化镧和硝酸镧。According to the present invention, the lanthanum source in step (a) is any one or a combination of at least two of lanthanum sulfate, lanthanum chloride or lanthanum nitrate, such as any one of lanthanum sulfate, lanthanum chloride or lanthanum nitrate Species, typical but non-limiting combinations are: lanthanum sulfate and lanthanum chloride, lanthanum sulfate and lanthanum nitrate, lanthanum chloride and lanthanum nitrate, lanthanum sulfate, lanthanum chloride and lanthanum nitrate.
根据本发明,步骤(a)所述锆源为硫酸锆、氯化锆或硝酸锆中的任意一种或至少两种的组合,例如可以是硫酸锆、氯化锆或硝酸锆中的任意一种,典型但非限定性的组合为:硫酸锆和氯化锆,硫酸锆和硝酸锆,氯化锆和硝酸锆,硫酸锆、氯化锆和硝酸锆。According to the present invention, the zirconium source in step (a) is any one or a combination of at least two of zirconium sulfate, zirconium chloride or zirconium nitrate, such as any one of zirconium sulfate, zirconium chloride or zirconium nitrate Typical but non-limiting combinations are: zirconium sulfate and zirconium chloride, zirconium sulfate and zirconium nitrate, zirconium chloride and zirconium nitrate, zirconium sulfate, zirconium chloride and zirconium nitrate.
根据本发明,将步骤(a)中所述铝源、镍源、钴源、铈源、镧源和锆源中的金属元素的总摩尔数计为1,则步骤(a)所述铝源中铝元素的摩尔数为0-0.2,但不包括0,例如可以是0.05、0.1、0.15或0.2等;步骤(a)所述镍源中镍元素的摩尔数为0.5-1,但不包括1,例如可以是0.5、0.6、0.7、0.8或0.9等;步骤(a)所述钴源中钴元素的摩尔数为0-0.3,但不包括0,例如可以是0.05、0.1、0.15、0.2、0.25或0.3等;铝元素、镍元素和钴元素摩尔数之和大于0.5且小于1,例如可以是0.51、0.55、0.6、0.7、0.8、0.9或0.99等;步骤(a)所述铈源中铈元素、镧源中镧元素和锆源中锆元素的摩尔数之和大于0,小于等于0.2,例如可以是0.01、0.05、0.1、0.15或0.19等。According to the present invention, the total moles of metal elements in the aluminum source, nickel source, cobalt source, cerium source, lanthanum source and zirconium source described in step (a) are counted as 1, then the aluminum source described in step (a) The molar number of the aluminum element in the middle is 0-0.2, but does not include 0, for example can be 0.05, 0.1, 0.15 or 0.2 etc.; The molar number of the nickel element in the nickel source described in step (a) is 0.5-1, but does not include 1, for example, can be 0.5, 0.6, 0.7, 0.8 or 0.9, etc.; the molar number of cobalt element in the cobalt source described in step (a) is 0-0.3, but excluding 0, for example, it can be 0.05, 0.1, 0.15, 0.2 , 0.25 or 0.3, etc.; the sum of the moles of aluminum, nickel, and cobalt is greater than 0.5 and less than 1, such as 0.51, 0.55, 0.6, 0.7, 0.8, 0.9, or 0.99; the cerium source described in step (a) The sum of the moles of cerium in the medium, lanthanum in the lanthanum source, and zirconium in the zirconium source is greater than 0 and less than or equal to 0.2, for example, it can be 0.01, 0.05, 0.1, 0.15 or 0.19.
根据本发明,步骤(a)所述金属盐溶液A的浓度为0.05-5mol/L,例如可以是0.05mol/L、0.1mol/L、0.5mol/L、1mol/L、2mol/L、3mol/L、4mol/L或5mol/L,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the concentration of the metal salt solution A in step (a) is 0.05-5mol/L, such as 0.05mol/L, 0.1mol/L, 0.5mol/L, 1mol/L, 2mol/L, 3mol /L, 4mol/L or 5mol/L, and the specific point values between the above values, due to space limitations and for the sake of simplicity, the present invention will not exhaustively list the specific point values included in the range.
根据本发明,步骤(a)所述沉淀剂为氢氧化物或碳酸盐。沉淀剂在溶液中与金属离子生成晶体颗粒,同时起着调节体系中pH值的作用。According to the present invention, the precipitation agent in step (a) is hydroxide or carbonate. The precipitating agent forms crystal particles with metal ions in the solution, and at the same time plays a role in adjusting the pH value in the system.
根据本发明,所述氢氧化物为氢氧化钠和/或氢氧化钾。According to the present invention, the hydroxide is sodium hydroxide and/or potassium hydroxide.
根据本发明,当沉淀剂为氢氧化物时,金属盐溶液A、沉淀剂和络合剂混合后溶液的pH为9-12,例如可以是9、9.5、10、10.5、11、11.5或12,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, when the precipitation agent is a hydroxide, the pH of the solution after the metal salt solution A, the precipitation agent and the complexing agent are mixed is 9-12, such as 9, 9.5, 10, 10.5, 11, 11.5 or 12 , and the specific point values between the above numerical values, due to space limitations and for the sake of brevity, the present invention does not exhaustively list the specific point values included in the range.
根据本发明,所述碳酸盐为碳酸钠、碳酸钾、碳酸铵、碳酸氢钠、碳酸氢钾或碳酸氢铵中的任意一种或至少两种的组合,例如可以是碳酸钠、碳酸钾、碳酸铵、碳酸氢钠、碳酸氢钾或碳酸氢铵中的任意一种,典型但非限定性的组合为:碳酸钠和碳酸钾,碳酸钾和碳酸铵,碳酸氢钾和碳酸氢铵,碳酸钠、碳酸钾和碳酸铵等,限于篇幅及出于简明的考虑,本发明不再穷尽列举。According to the present invention, the carbonate is any one or a combination of at least two of sodium carbonate, potassium carbonate, ammonium carbonate, sodium bicarbonate, potassium bicarbonate or ammonium bicarbonate, such as sodium carbonate, potassium carbonate , ammonium carbonate, sodium bicarbonate, potassium bicarbonate or ammonium bicarbonate, typical but non-limiting combinations are: sodium carbonate and potassium carbonate, potassium carbonate and ammonium carbonate, potassium bicarbonate and ammonium bicarbonate, Sodium carbonate, potassium carbonate and ammonium carbonate etc., are limited in length and for the consideration of brevity, the present invention no longer enumerates exhaustively.
根据本发明,当沉淀剂为碳酸盐时,金属盐溶液A、沉淀剂和络合剂混合后溶液的pH为7.5-9.5,例如可以是7.5、8、8.5、9或9.5,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, when the precipitating agent is carbonate, the pH of the solution after the metal salt solution A, the precipitating agent and the complexing agent are mixed is 7.5-9.5, such as 7.5, 8, 8.5, 9 or 9.5, and the above-mentioned values The specific point values between are limited to space and for the sake of brevity, the present invention will not exhaustively list the specific point values included in the range.
本发明所述沉淀剂是以溶液的形式加入并进行反应的,当沉淀剂为氢氧化物时,加入的是氢氧化钠和/或氢氧化钾溶液,当沉淀剂为碳酸盐时,加入的是碳酸盐溶液。The precipitating agent of the present invention is added and reacted in the form of a solution. When the precipitating agent is a hydroxide, it is sodium hydroxide and/or potassium hydroxide solution. When the precipitating agent is a carbonate, add is a carbonate solution.
根据本发明,所述氢氧化钠和/或氢氧化钾溶液的浓度为1-10mol/L,例如可以是1mol/L、2mol/L、3mol/L、4mol/L、5mol/L、6mol/L、7mol/L、8mol/L、9mol/L或10mol/L,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the concentration of the sodium hydroxide and/or potassium hydroxide solution is 1-10mol/L, such as 1mol/L, 2mol/L, 3mol/L, 4mol/L, 5mol/L, 6mol/L L, 7mol/L, 8mol/L, 9mol/L or 10mol/L, and the specific point values between the above-mentioned values are limited to space and for the sake of brevity, the present invention no longer exhaustively lists the specific points included in the range value.
根据本发明,所述碳酸盐溶液的浓度为1-10mol/L,例如可以是1mol/L、2mol/L、3mol/L、4mol/L、5mol/L、6mol/L、7mol/L、8mol/L、9mol/L或10mol/L,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the concentration of the carbonate solution is 1-10mol/L, such as 1mol/L, 2mol/L, 3mol/L, 4mol/L, 5mol/L, 6mol/L, 7mol/L, 8mol/L, 9mol/L or 10mol/L, and specific point values between the above-mentioned numerical values, due to space limitation and for the sake of brevity, the present invention will not exhaustively list the specific point values included in the range.
根据本发明,步骤(a)所述络合剂为氨水。According to the present invention, the complexing agent described in step (a) is ammonia water.
根据本发明,所述氨水的浓度为0.1-5mol/L,例如可以是0.1mol/L、0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L、3mol/L、3.5mol/L、4mol/L、4.5mol/L或5mol/L,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the concentration of the ammonia water is 0.1-5mol/L, such as 0.1mol/L, 0.5mol/L, 1mol/L, 1.5mol/L, 2mol/L, 2.5mol/L, 3mol/L , 3.5mol/L, 4mol/L, 4.5mol/L or 5mol/L, and the specific point values between the above-mentioned numerical values, limited by space and for the sake of simplicity, the present invention no longer exhaustively lists the specific values included in the range. pip value.
优选地,步骤(a)所述金属盐溶液A中金属离子的总量和络合剂中NH3·H2O分子的摩尔比为1:(0.2-4),例如可以是1:0.2、1:0.3、1:0.4、1:0.5、1:1、1:1.5、1:2、1:2.5、1:3、1:3.5或1:4,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。Preferably, the molar ratio of the total amount of metal ions in the metal salt solution A in step (a) to the NH 3 ·H 2 O molecules in the complexing agent is 1:(0.2-4), for example, it can be 1:0.2, 1:0.3, 1:0.4, 1:0.5, 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1:3.5 or 1:4, and specific point values between the above values, Due to space limitations and for the sake of brevity, the present invention does not exhaustively list the specific point values included in the range.
根据本发明,步骤(a)所述搅拌的速度为200-1200r/min,例如可以是200r/min、300r/min、400r/min、500r/min、600r/min、700r/min、800r/min、900r/min、1000r/min、1100r/min或1200r/min,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the stirring speed in step (a) is 200-1200r/min, such as 200r/min, 300r/min, 400r/min, 500r/min, 600r/min, 700r/min, 800r/min , 900r/min, 1000r/min, 1100r/min or 1200r/min, and the specific point values between the above-mentioned numerical values, limited by space and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range .
根据本发明,步骤(a)所述搅拌时溶液的温度为30-60℃,例如可以是30℃、40℃、50℃或60℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the temperature of the solution during the stirring in step (a) is 30-60°C, for example, it can be 30°C, 40°C, 50°C or 60°C, and the specific point values between the above values are limited by the length and publication For the sake of brevity, the present invention does not recite exhaustively the specific points included in the stated ranges.
根据本发明,步骤(b)所述陈化的时间为1-24h,例如可以是1h、4h、8h、12h、16h、20h或24h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the aging time in step (b) is 1-24h, for example, it can be 1h, 4h, 8h, 12h, 16h, 20h or 24h, and the specific points between the above values are limited by the length and publication For the sake of brevity, the present invention does not recite exhaustively the specific points included in the stated ranges.
根据本发明,步骤(b)所述干燥的温度为60-140℃,例如可以是60℃、80℃、100℃、120℃或140℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the drying temperature in step (b) is 60-140°C, for example, it can be 60°C, 80°C, 100°C, 120°C or 140°C, and the specific points between the above values are limited to the length and For the sake of brevity, the present invention does not exhaustively list specific point values included in the stated ranges.
根据本发明,步骤(2)所述铝源为硫酸铝、氯化铝或硝酸铝中的任意一种或至少两种的组合,例如可以是硫酸铝、氯化铝或硝酸铝中的任意一种,典型但非限定性的组合为:硫酸铝和氯化铝,硫酸铝和硝酸铝,氯化铝和硝酸铝,硫酸铝、氯化铝和硝酸铝。According to the present invention, the aluminum source in step (2) is any one or a combination of at least two of aluminum sulfate, aluminum chloride or aluminum nitrate, such as any one of aluminum sulfate, aluminum chloride or aluminum nitrate Typical but non-limiting combinations are: aluminum sulfate and aluminum chloride, aluminum sulfate and aluminum nitrate, aluminum chloride and aluminum nitrate, aluminum sulfate, aluminum chloride and aluminum nitrate.
根据本发明,步骤(2)所述铈源为硫酸铈、氯化铈或硝酸铈中的任意一种或至少两种的组合,例如可以是硫酸铈、氯化铈或硝酸铈中的任意一种,典型但非限定性的组合为:硫酸铈和氯化铈,硫酸铈和硝酸铈,氯化铈和硝酸铈,硫酸铈、氯化铈和硝酸铈。According to the present invention, the cerium source described in step (2) is any one or a combination of at least two of cerium sulfate, cerium chloride or cerium nitrate, such as any one of cerium sulfate, cerium chloride or cerium nitrate A typical but non-limiting combination is: cerium sulfate and cerium chloride, cerium sulfate and cerium nitrate, cerium chloride and cerium nitrate, cerium sulfate, cerium chloride and cerium nitrate.
根据本发明,步骤(2)所述镧源为硫酸镧、氯化镧或硝酸镧中的任意一种或至少两种的组合,例如可以是硫酸镧、氯化镧或硝酸镧中的任意一种,典型但非限定性的组合为:硫酸镧和氯化镧,硫酸镧和硝酸镧,氯化镧和硝酸镧,硫酸镧、氯化镧和硝酸镧。According to the present invention, the lanthanum source in step (2) is any one or a combination of at least two of lanthanum sulfate, lanthanum chloride or lanthanum nitrate, such as any one of lanthanum sulfate, lanthanum chloride or lanthanum nitrate Species, typical but non-limiting combinations are: lanthanum sulfate and lanthanum chloride, lanthanum sulfate and lanthanum nitrate, lanthanum chloride and lanthanum nitrate, lanthanum sulfate, lanthanum chloride and lanthanum nitrate.
根据本发明,步骤(2)所述锆源为硫酸锆、氯化锆或硝酸锆中的任意一种或至少两种的组合,例如可以是硫酸锆、氯化锆或硝酸锆中的任意一种,典型但非限定性的组合为:硫酸锆和氯化锆,硫酸锆和硝酸锆,氯化锆和硝酸锆,硫酸锆、氯化锆和硝酸锆。According to the present invention, the zirconium source in step (2) is any one or a combination of at least two of zirconium sulfate, zirconium chloride or zirconium nitrate, such as any one of zirconium sulfate, zirconium chloride or zirconium nitrate Typical but non-limiting combinations are: zirconium sulfate and zirconium chloride, zirconium sulfate and zirconium nitrate, zirconium chloride and zirconium nitrate, zirconium sulfate, zirconium chloride and zirconium nitrate.
优选地,将步骤(b)中所述核壳结构材料中壳材料中的氧化铝、氧化铈、氧化镧以及氧化锆的总摩尔数计为1,则步骤(b)中所述铝源中铝元素的摩尔数为0-2,但不包括0和2,例如可以是0.5、1或1.5等;步骤(b)所述铈源中铈元素的摩尔数为0-1,但不包括1,例如可以是0、0.3、0.6或0.9等;步骤(b)所述镧源中镧元素的摩尔数为0-2,但不包括2,例如可以是0、0.4、0.8、1.2、1.6或1.9等;步骤(b)所述锆源中锆元素的摩尔数为0-1,但不包括1,例如可以是0、0.3、0.6或0.9等;且铈元素、镧元素以及锆元素的摩尔数不能同时为0。Preferably, the total molar number of aluminum oxide, cerium oxide, lanthanum oxide and zirconium oxide in the shell material in the core-shell structure material described in step (b) is counted as 1, then in the aluminum source described in step (b) The molar number of aluminum element is 0-2, but does not include 0 and 2, for example can be 0.5, 1 or 1.5 etc.; The molar number of cerium element in the cerium source described in step (b) is 0-1, but does not include 1 , for example can be 0, 0.3, 0.6 or 0.9 etc.; the molar number of lanthanum element in the lanthanum source described in step (b) is 0-2, but does not include 2, for example can be 0, 0.4, 0.8, 1.2, 1.6 or 1.9 etc.; the molar number of zirconium element in the zirconium source described in step (b) is 0-1, but does not include 1, for example can be 0, 0.3, 0.6 or 0.9 etc.; And the molar number of cerium element, lanthanum element and zirconium element Number cannot be 0 at the same time.
根据本发明,步骤(2)所述金属盐溶液B的浓度为0.01-0.2mol/L,例如可以是0.01mol/L、0.04mol/L、0.08mol/L、0.12mol/L、0.16mol/L或0.2mol/L,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the concentration of the metal salt solution B in step (2) is 0.01-0.2mol/L, such as 0.01mol/L, 0.04mol/L, 0.08mol/L, 0.12mol/L, 0.16mol/L L or 0.2mol/L, as well as specific point values between the above values, are limited in space and for the sake of simplicity, the present invention will not exhaustively list the specific point values included in the range.
根据本发明,步骤(2)所述镍钴铝核材料前驱体与所述金属盐溶液B中金属离子的质量比为(5-15):1,例如可以是5:1、6:1、7:1、8:1、9:1、10:1、11:1、12:1、13:1、14:1或15:1,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the mass ratio of the nickel-cobalt-aluminum core material precursor described in step (2) to the metal ion in the metal salt solution B is (5-15):1, such as 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1 or 15:1, and specific point values between the above values, limited by the length and For the sake of brevity, the present invention does not recite exhaustively the specific points included in the stated ranges.
根据本发明,步骤(2)所述喷雾干燥时的温度为120-160℃,例如可以是120℃、130℃、140℃、150℃或160℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the temperature during the spray drying in step (2) is 120-160°C, for example, it can be 120°C, 130°C, 140°C, 150°C or 160°C, and the specific points between the above values are limited to For the sake of space and brevity, the present invention does not exhaustively enumerate the specific points included in the range.
根据本发明,步骤(3)所述锂源为磷酸二氢锂、碳酸锂、醋酸锂、甲酸锂、柠檬酸锂、氯化锂、硝酸锂、溴化锂、氢氧化锂、叔丁醇锂、苯甲酸锂、磷酸锂、磷酸氢二锂、草酸锂或硫酸锂中的任意一种或至少两种的组合,例如可以是磷酸二氢锂、碳酸锂、醋酸锂、甲酸锂、柠檬酸锂、氯化锂、硝酸锂、溴化锂、氢氧化锂、叔丁醇锂、苯甲酸锂、磷酸锂、磷酸氢二锂、草酸锂或硫酸锂中的任意一种,典型但非限定性的组合为:磷酸二氢锂和碳酸锂,醋酸锂和甲酸锂,柠檬酸锂和氯化锂,硝酸锂和溴化锂,氢氧化锂和叔丁醇锂,苯甲酸锂和磷酸锂,磷酸氢二锂和草酸锂,磷酸二氢锂、碳酸锂和硫酸锂等,限于篇幅及出于简明的考虑,本发明不再穷尽列举。According to the present invention, the lithium source described in step (3) is lithium dihydrogen phosphate, lithium carbonate, lithium acetate, lithium formate, lithium citrate, lithium chloride, lithium nitrate, lithium bromide, lithium hydroxide, lithium tert-butoxide, benzene Any one or a combination of at least two of lithium formate, lithium phosphate, dilithium hydrogen phosphate, lithium oxalate or lithium sulfate, such as lithium dihydrogen phosphate, lithium carbonate, lithium acetate, lithium formate, lithium citrate, chlorine Lithium chloride, lithium nitrate, lithium bromide, lithium hydroxide, lithium tert-butoxide, lithium benzoate, lithium phosphate, dilithium hydrogen phosphate, lithium oxalate or lithium sulfate, a typical but non-limiting combination is: phosphoric acid Lithium dihydrogen and lithium carbonate, lithium acetate and lithium formate, lithium citrate and lithium chloride, lithium nitrate and lithium bromide, lithium hydroxide and lithium tert-butoxide, lithium benzoate and lithium phosphate, dilithium phosphate and lithium oxalate, Lithium dihydrogen phosphate, lithium carbonate and lithium sulfate, etc., are limited in space and for the sake of brevity, the present invention is no longer exhaustive.
根据本发明,步骤(3)所述锂源中的锂元素与步骤(1)所述镍钴铝核材料前驱体中金属元素总量的摩尔比为(0.9-1.4):1,例如可以是0.9:1、1:1、1.1:1、1.2:1、1.3:1或1.4:1,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the molar ratio of the lithium element in the lithium source described in step (3) to the total amount of metal elements in the nickel-cobalt-aluminum core material precursor described in step (1) is (0.9-1.4): 1, for example can be 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1 or 1.4:1, and the specific point values between the above values, due to space limitations and for the sake of simplicity, the present invention will not exhaustively list all Specific point values covered by the stated ranges.
本发明中步骤(3)所述锂源中的锂元素与步骤(1)所述镍钴铝核材料前驱体中金属元素总量的摩尔比优选为(1-1.2):1,进一步优选为1.05:1。In the present invention, the molar ratio of the lithium element in the lithium source described in step (3) to the total amount of metal elements in the nickel-cobalt-aluminum core material precursor described in step (1) is preferably (1-1.2): 1, more preferably 1.05:1.
由于在煅烧过程中锂源会有所挥发损失,因而需要添加稍过量的锂源。Since the lithium source will be volatilized and lost during the calcination process, a slightly excess lithium source needs to be added.
根据本发明,步骤(3)所述研磨的时间为3-24h,例如可以是3h、6h、9h、12h、15h、18h、21h或24h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the grinding time in step (3) is 3-24h, for example, it can be 3h, 6h, 9h, 12h, 15h, 18h, 21h or 24h, and the specific points between the above-mentioned values are limited to the length and For the sake of brevity, the present invention does not exhaustively list specific point values included in the stated ranges.
本发明对研磨方式并不进行限定,只要能到达使核壳结构材料与锂源充分混合的目的即可,示例性的,所述研磨方式可以为球磨,但非仅限于此。The present invention does not limit the grinding method, as long as the purpose of fully mixing the core-shell structure material and the lithium source can be achieved. Exemplarily, the grinding method may be ball milling, but it is not limited thereto.
本发明所述煅烧是在富氧气氛中进行的,例如可以为纯氧气或空气等,出于提高材料的性能的考虑,优选为在纯氧气中进行,但非仅限于此。The calcination in the present invention is carried out in an oxygen-enriched atmosphere, such as pure oxygen or air. In consideration of improving the performance of the material, it is preferably carried out in pure oxygen, but not limited thereto.
根据本发明,步骤(3)所述煅烧分为第一段煅烧和第二段煅烧。第一步煅烧使前驱体和锂源充分反应,放出部分水,初步形成层状结构;第二段煅烧使得物料更加均匀,反应进行的更加充分,煅烧后生成均匀的层状结构料。According to the present invention, the calcination in step (3) is divided into the first-stage calcination and the second-stage calcination. The first stage of calcination makes the precursor fully react with the lithium source, releases part of the water, and initially forms a layered structure; the second stage of calcination makes the material more uniform, the reaction is more complete, and a uniform layered structure material is formed after calcination.
根据本发明,所述第一段煅烧的温度为400-650℃,例如可以是400℃、450℃、500℃、550℃、600℃或650℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the temperature of the first stage of calcination is 400-650°C, for example, it can be 400°C, 450°C, 500°C, 550°C, 600°C or 650°C, and the specific points between the above values are limited to For the sake of space and brevity, the present invention does not exhaustively enumerate the specific points included in the range.
根据本发明,所述第一段煅烧的升温速率为1-10℃/min,例如可以是1℃/min、2℃/min、3℃/min、4℃/min、5℃/min、6℃/min、7℃/min、8℃/min、9℃/min或10℃/min,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the heating rate of the first stage of calcination is 1-10°C/min, such as 1°C/min, 2°C/min, 3°C/min, 4°C/min, 5°C/min, 6°C/min, °C/min, 7 °C/min, 8 °C/min, 9 °C/min or 10 °C/min, and the specific point values between the above values, due to space limitations and for the sake of simplicity, the present invention will not exhaustively list all Specific point values covered by the stated ranges.
根据本发明,所述第一段煅烧的时间为3-20h,例如可以是3h、5h、7h、10h、12h、15h、17h或20h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the time for the first stage of calcination is 3-20h, for example, it can be 3h, 5h, 7h, 10h, 12h, 15h, 17h or 20h, and the specific point values between the above values are limited by the length and publication For the sake of brevity, the present invention does not recite exhaustively the specific points included in the stated ranges.
本发明中所述第一段煅烧的时间优选为4-6h,进一步优选为5h。The time for the first stage of calcination in the present invention is preferably 4-6 hours, more preferably 5 hours.
根据本发明,所述第二段煅烧的温度为660-950℃,例如可以是660℃、700℃、750℃、800℃、850℃、900℃或950℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the temperature of the second stage of calcination is 660-950°C, such as 660°C, 700°C, 750°C, 800°C, 850°C, 900°C or 950°C, and specific points between the above values Values, due to space limitations and for the sake of brevity, the present invention does not exhaustively enumerate the specific point values included in the range.
根据本发明,所述第二段煅烧的升温速率为1-5℃/min,例如可以是1℃/min、2℃/min、3℃/min、4℃/min或5℃/min,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the heating rate of the second-stage calcination is 1-5°C/min, for example, 1°C/min, 2°C/min, 3°C/min, 4°C/min or 5°C/min, and The specific points between the above numerical values are limited in space and for the sake of simplicity, the present invention does not exhaustively list the specific point values included in the range.
根据本发明,所述第二段煅烧的时间为8-24h,例如可以是8h、12h、16h、20h或24h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。According to the present invention, the time for the second stage of calcination is 8-24h, for example, it can be 8h, 12h, 16h, 20h or 24h, and the specific point values between the above-mentioned values are limited to the space and for the sake of simplicity. The invention is not intended to be exhaustive of the specific point values encompassed by the stated ranges.
本发明中所述第二段煅烧的时间优选为10-20h,进一步优选为15h。The time for the second stage of calcination in the present invention is preferably 10-20 hours, more preferably 15 hours.
第三方面,本发明提供如第一方面所述的镍钴铝锂离子电池正极材料在锂离子电池制备中的应用。In a third aspect, the present invention provides the application of the nickel-cobalt-aluminum-aluminum lithium-ion battery positive electrode material as described in the first aspect in the preparation of lithium-ion batteries.
与现有技术方案相比,本发明至少具有以下有益效果:Compared with the prior art solutions, the present invention has at least the following beneficial effects:
(1)壳材料为氧化铝与氧化铈、氧化镧或氧化锆等组成的复合氧化物材料,相比于传统三氧化二铝包覆层,其具有更低的电阻,能有效提高材料的循环性能和倍率性能。(1) The shell material is a composite oxide material composed of alumina and ceria, lanthanum oxide or zirconia. Compared with the traditional aluminum oxide coating, it has lower resistance and can effectively improve the material cycle. performance and rate performance.
(2)氧化铝与氧化铈、氧化镧或氧化锆等氧化物组成的复合材料作为壳材料能够吸收镍钴铝锂材料在高温高压条件下释放出的自由氧,并在低压条件下重新将氧释放,氧化低价镍钴离子,提高材料耐压性能。(2) The composite material composed of alumina and oxides such as ceria, lanthanum oxide or zirconia, as the shell material, can absorb the free oxygen released by the nickel-cobalt-aluminum-lithium material under high temperature and high pressure conditions, and regenerate the oxygen under low pressure conditions. Release and oxidize low-priced nickel-cobalt ions to improve the pressure resistance of the material.
(3)核材料掺杂有氧化铈、氧化镧、氧化锆等具有储存释放氧能力的氧化物,因而减小核材料的由于氧释放而产生的不可逆相转变和容量衰退。壳材料中铈、镧、锆等元素与氧化铝材料具有共生共存效应,对氧原子具有更强的结合能力,抑制了由于高价镍不稳地性导致的氧释放,增强了材料在高温高压条件下的结构稳定性。(3) The nuclear material is doped with oxides such as ceria, lanthanum oxide, and zirconia that have the ability to store and release oxygen, thereby reducing the irreversible phase transition and capacity fading of the nuclear material due to oxygen release. The cerium, lanthanum, zirconium and other elements in the shell material have a symbiotic coexistence effect with the alumina material, and have a stronger binding ability to oxygen atoms, which inhibits the release of oxygen caused by the instability of high-valent nickel, and enhances the material's high temperature and high pressure conditions. under the structural stability.
(4)本发明所用的喷雾干燥包覆方法设备简单,操作方便,相比于气固相沉积方法和水热法具有更低成本,更易实现工业化。(4) The spray drying coating method used in the present invention has simple equipment and convenient operation. Compared with the gas-solid phase deposition method and the hydrothermal method, it has lower cost and is easier to realize industrialization.
附图说明Description of drawings
图1为本发明实施例1步骤(1)制备的掺杂铈的镍钴铝核材料前驱体的扫描电镜图。Fig. 1 is a scanning electron microscope image of a precursor of a cerium-doped nickel-cobalt-aluminum core material prepared in step (1) of Example 1 of the present invention.
图2为本发明实施例1步骤(2)制备的具有核壳结构的前驱体材料的扫描电镜图。Fig. 2 is a scanning electron microscope image of a precursor material with a core-shell structure prepared in step (2) of Example 1 of the present invention.
图3为本发明实施例1制备的具有核壳结构的镍钴铝锂电池正极材料的扫描电镜图。Fig. 3 is a scanning electron microscope image of the positive electrode material for a nickel-cobalt-aluminum-lithium battery with a core-shell structure prepared in Example 1 of the present invention.
图4为本发明实施例1制备的具有核壳结构的镍钴铝锂离子电池正极材料的循环容量图。Fig. 4 is a diagram of the cycle capacity of the positive electrode material for a nickel-cobalt-aluminum-lithium-ion battery with a core-shell structure prepared in Example 1 of the present invention.
具体实施方式detailed description
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:For better illustrating the present invention, facilitate understanding technical scheme of the present invention, typical but non-limiting embodiment of the present invention is as follows:
实施例1Example 1
(1)采用氢氧化物共沉淀法制备掺杂的镍钴铝核材料前驱体,将NiSO4、CoSO4、Al2(SO4)3、Ce2(SO4)3按照金属离子摩尔比0.8:0.1:0.05:0.05的比例配成浓度为2M的800ml溶液A,将NaOH配成浓度为2M的800ml溶液,配制3M的800ml的NH3·H2O溶液,将A溶液、NaOH溶液和氨水并流加入至反应釜中,控制反应釜中的pH为11,温度50℃,搅拌速率800r/min,滴加完后继续陈化12h,洗涤三次,100℃下干燥4h,制备得到掺杂铈的镍钴铝核材料前驱体。如图1所示,所得前驱体的粒径在6μm左右,前驱体的球形度较高,这有利于提高材料的振实密度。(1) Prepare the doped nickel-cobalt-aluminum core material precursor by hydroxide co-precipitation method, NiSO 4 , CoSO 4 , Al 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 according to the metal ion molar ratio of 0.8 : The ratio of 0.1:0.05:0.05 is made into 800ml solution A with a concentration of 2M, NaOH is made into an 800ml solution with a concentration of 2M, and 800ml of 3M NH 3 ·H 2 O solution is prepared, and A solution, NaOH solution and ammonia water are mixed Add it into the reaction kettle in parallel flow, control the pH in the reaction kettle to 11, the temperature is 50°C, and the stirring rate is 800r/min. After the dropwise addition, continue to age for 12h, wash three times, and dry at 100°C for 4h to prepare the doped cerium The nickel cobalt aluminum core material precursor. As shown in Figure 1, the particle size of the obtained precursor is about 6 μm, and the sphericity of the precursor is high, which is conducive to improving the tap density of the material.
(2)将Al2(SO4)3、Ce2(SO4)3按照金属离子摩尔比0.5:0.5的比例配成浓度为0.1M的400ml溶液,命名为溶液B,称量40g步骤(1)制备的镍钴铝核材料前驱体加入B溶液配成悬浊液,将制备的悬浊液进行喷雾干燥,调整喷雾干燥机温度为150℃,并调整风速造粒制备得到核壳结构的前驱体材料。如图2所示,纳米尺度氧化铝-氧化铈所组成的氧化物颗粒均匀覆盖在掺杂的镍钴铝核材料前驱体表面。(2) Al 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 were made into a 400ml solution with a concentration of 0.1M according to the metal ion molar ratio of 0.5:0.5, named solution B, and weighed 40g. Step (1 ) to the nickel-cobalt-aluminum core material precursor prepared by adding B solution to form a suspension, spray-dry the prepared suspension, adjust the temperature of the spray dryer to 150°C, and adjust the wind speed to granulate to prepare the precursor of the core-shell structure body material. As shown in Figure 2, oxide particles composed of nanoscale alumina-ceria evenly cover the surface of the doped nickel-cobalt-aluminum core material precursor.
(3)将步骤(2)得到的前驱体与碳酸锂按照锂元素与核材料金属元素总量的摩尔比为1.03:1的比例混合后球磨10h,然后在氧气气氛下按照2℃/min的升温速率,由室温升到450℃预煅烧4h,然后以2℃/min的速率升温到800℃煅烧10h,自然冷却后得到具有核壳结构的镍钴铝锂离子电池正极材料。如图3所示,包覆结构的前驱体材料经煅烧后,熔融形成均一,光滑的包覆层。颗粒保持较高球形度,无破碎。(3) Mix the precursor obtained in step (2) with lithium carbonate according to the molar ratio of lithium element to the total amount of nuclear material metal elements as 1.03:1, ball mill for 10 h, and then in an oxygen atmosphere at a rate of 2 °C/min. The heating rate is from room temperature to 450°C for pre-calcination for 4 hours, then at a rate of 2°C/min to 800°C for 10 hours, and after natural cooling, a nickel-cobalt-aluminum-aluminum lithium-ion battery positive electrode material with a core-shell structure is obtained. As shown in Figure 3, the precursor material of the cladding structure is melted to form a uniform and smooth cladding layer after being calcined. The particles maintain a high degree of sphericity without breaking.
(4)将所得材料进行涂膜,组装成纽扣电池进行电化学测试。如图4所示,所得材料在0.1C下比容量达到162mAh/g,比能量达到530Wh/kg;0.5C电流密度下循环100次容量保持在94.0%,是一种电化学性能优异的锂电池正极材料。(4) The obtained material is coated with a film and assembled into a button cell for electrochemical testing. As shown in Figure 4, the specific capacity of the obtained material reaches 162mAh/g at 0.1C, and the specific energy reaches 530Wh/kg; the capacity remains at 94.0% after 100 cycles at a current density of 0.5C, which is a lithium battery with excellent electrochemical performance. Cathode material.
实施例2Example 2
(1)采用氢氧化物共沉淀法制备掺杂的镍钴铝核材料前驱体,将NiSO4、CoSO4、Al2(SO4)3、Ce2(SO4)3、LaCl3按照金属离子摩尔比0.8:0.1:0.05:0.025:0.025的比例配成浓度为1M的800ml溶液A,将NaOH配成浓度为2M的800ml溶液,配制2M的800ml的NH3·H2O溶液,将A溶液、NaOH溶液和氨水并流加入至反应釜中,控制反应釜中的pH为11.2,温度40℃,搅拌速率850r/min,滴加完后继续陈化10h,洗涤三次,80℃下干燥6h,制备得到掺杂铈和镧的镍钴铝核材料前驱体。(1) The doped nickel-cobalt-aluminum core material precursor was prepared by the hydroxide co-precipitation method, and NiSO 4 , CoSO 4 , Al 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 , and LaCl 3 were prepared according to the metal ion The ratio of molar ratio 0.8:0.1:0.05:0.025:0.025 is made into 800ml solution A with a concentration of 1M, NaOH is made into an 800ml solution with a concentration of 2M, and 800ml of 2M NH 3 ·H 2 O solution is prepared, and A solution , NaOH solution and ammonia water were added to the reaction kettle in parallel, the pH in the reaction kettle was controlled to be 11.2, the temperature was 40°C, and the stirring rate was 850r/min. After the dropwise addition, the aging was continued for 10h, washed three times, and dried at 80°C for 6h. A precursor of nickel-cobalt-aluminum core material doped with cerium and lanthanum is prepared.
(2)将Al2(SO4)3、CeCl3、Zr(SO4)2按照金属离子摩尔比0.3:0.3:0.4的比例配成浓度为0.2M的450ml溶液,命名为溶液B,称量40g步骤(1)制备的镍钴铝核材料前驱体加入B溶液配成悬浊液,将制备的悬浊液进行喷雾干燥,调整喷雾干燥机温度为155℃,并调整风速造粒制备得到核壳结构的前驱体材料。(2) Al 2 (SO 4 ) 3 , CeCl 3 , Zr(SO 4 ) 2 were made into a 450ml solution with a concentration of 0.2M according to the metal ion molar ratio of 0.3:0.3:0.4, named solution B, and weighed 40g of the nickel-cobalt-aluminum core material precursor prepared in step (1) was added to B solution to make a suspension, and the prepared suspension was spray-dried, and the temperature of the spray dryer was adjusted to 155°C, and the wind speed was adjusted to granulate to prepare the core Precursor materials for shell structures.
(3)将步骤(2)得到的前驱体与碳酸锂按照锂元素与核材料金属元素总量的摩尔比为1.03:1的比例混合后球磨8h,然后在氧气气氛下按照2℃/min的升温速率,由室温升到500℃预煅烧10h,然后以3℃/min的速率升温到660℃煅烧12h,自然冷却得到具有核壳结构的镍钴铝锂离子电池正极材料。(3) Mix the precursor obtained in step (2) with lithium carbonate according to the molar ratio of the lithium element to the total amount of nuclear material metal elements as 1.03:1, ball mill for 8 hours, and then in an oxygen atmosphere at a rate of 2°C/min. The heating rate is from room temperature to 500°C for 10 hours of pre-calcination, then at a rate of 3°C/min to 660°C for 12 hours of calcination, and natural cooling to obtain a nickel-cobalt-aluminum-aluminum lithium-ion battery positive electrode material with a core-shell structure.
(4)将所得材料进行涂膜,组装成纽扣电池进行电化学测试,所得材料在0.1C下比容量达到185mAh/g,比能量达到703Wh/kg,0.5C电流密度下循环100次容量保持在95%以上,是一种电化学性能优异的锂电池正极材料。(4) Coating the obtained material and assembling it into a button cell for electrochemical testing. The specific capacity of the obtained material reaches 185mAh/g at 0.1C, the specific energy reaches 703Wh/kg, and the capacity remains at 100 cycles at a current density of 0.5C. More than 95%, it is a lithium battery cathode material with excellent electrochemical performance.
实施例3Example 3
(1)采用氢氧化物共沉淀法制备掺杂的镍钴铝核材料前驱体,将NiSO4、CoSO4、Al2(SO4)3、La(NO3)3、Zr(NO3)4按照金属离子摩尔比0.7:0.1:0.1:0.05:0.05的比例配成浓度为0.2M的800ml溶液A,将KOH配成浓度为2M的800ml溶液,配制0.2M的800ml的NH3·H2O溶液,将A溶液、KOH溶液和氨水并流加入至反应釜中,控制反应釜中的pH为9,温度45℃,搅拌速率900r/min,滴加完后继续陈化8h,洗涤三次,60℃下干燥8h,制备得到掺杂镧和锆的镍钴铝核材料前驱体。(1) The precursor of doped nickel-cobalt-aluminum core material was prepared by hydroxide co-precipitation method, and NiSO 4 , CoSO 4 , Al 2 (SO 4 ) 3 , La(NO 3 ) 3 , Zr(NO 3 ) 4 According to the metal ion molar ratio of 0.7:0.1:0.1:0.05:0.05, prepare 800ml solution A with a concentration of 0.2M, make KOH into an 800ml solution with a concentration of 2M, and prepare 800ml of 0.2M NH 3 ·H 2 O solution, A solution, KOH solution and ammonia water were added to the reaction kettle in parallel, the pH in the reaction kettle was controlled to be 9, the temperature was 45°C, and the stirring rate was 900r/min. Dry at ℃ for 8 hours to prepare a precursor of nickel-cobalt-aluminum core material doped with lanthanum and zirconium.
(2)将Al2(SO4)3、Ce(NO3)3、La(NO3)3按照金属离子摩尔比0.9:0.05:0.05的比例配成浓度为0.15M的800ml溶液,命名为溶液B,称量40g步骤(1)制备的镍钴铝核材料前驱体加入B溶液配成悬浊液,将制备的悬浊液进行喷雾干燥,调整喷雾干燥机温度为120℃,并调整风速造粒制备得到核壳结构的前驱体材料。(2) Al 2 (SO 4 ) 3 , Ce(NO 3 ) 3 , and La(NO 3 ) 3 are formulated into an 800ml solution with a concentration of 0.15M according to the metal ion molar ratio of 0.9:0.05:0.05, and named as solution B, weigh 40g of the nickel-cobalt-aluminum core material precursor prepared in step (1) and add B solution to form a suspension, spray dry the prepared suspension, adjust the temperature of the spray dryer to 120°C, and adjust the wind speed to make a suspension. Precursor materials with a core-shell structure were prepared from the particles.
(3)将步骤(2)得到的前驱体与碳酸锂按照锂元素与核材料金属元素总量的摩尔比为1.05:1的比例混合后球磨20h,然后在氧气气氛下按照3℃/min的升温速率,由室温升到600℃预煅烧8h,然后以5℃/min的速率升温到700℃煅烧14h,自然冷却后得到具有核壳结构的镍钴铝锂离子电池正极材料。(3) Mix the precursor obtained in step (2) with lithium carbonate according to the molar ratio of lithium element to the total amount of metal elements in the nuclear material as 1.05:1, ball mill for 20 hours, and then in an oxygen atmosphere at a rate of 3°C/min. The heating rate is from room temperature to 600°C for 8 hours, then at a rate of 5°C/min to 700°C for 14 hours, and after natural cooling, a nickel-cobalt-aluminum lithium-ion battery cathode material with a core-shell structure is obtained.
(4)将所得材料进行涂膜,组装成纽扣电池进行电化学测试,所得材料在0.1C下比容量达到176mAh/g,比能量达到669Wh/kg,0.5C电流密度下循环100次容量保持在90%以上,是一种电化学性能优异的锂电池正极材料。(4) Coating the obtained material and assembling it into a button cell for electrochemical testing. The specific capacity of the obtained material reaches 176mAh/g at 0.1C, the specific energy reaches 669Wh/kg, and the capacity remains at 100 cycles at a current density of 0.5C. More than 90%, it is a lithium battery cathode material with excellent electrochemical performance.
实施例4Example 4
(1)采用氢氧化物共沉淀法制备掺杂的镍钴铝核材料前驱体,将NiSO4、CoSO4、Al2(SO4)3、CeCl3、Zr(SO4)2按照金属离子摩尔比0.9:0.05:0.025:0.015:0.01的比例配成浓度为0.5M的800ml溶液A,将NaOH配成浓度为2M的800ml溶液,配制1M的800ml的NH3·H2O溶液,将A溶液、NaOH溶液和氨水并流加入至反应釜中,控制反应釜中的pH为10.5,温度55℃,搅拌速率950r/min,滴加完后继续陈化16h,洗涤三次,140℃下干燥10h,制备得到掺杂铈和锆的镍钴铝核材料前驱体。(1) The doped nickel-cobalt-aluminum core material precursor was prepared by hydroxide co-precipitation method, and NiSO 4 , CoSO 4 , Al 2 (SO 4 ) 3 , CeCl 3 , Zr(SO 4 ) 2 were Ratio of 0.9:0.05:0.025:0.015:0.01 was made into 800ml solution A with a concentration of 0.5M, NaOH was made into an 800ml solution with a concentration of 2M, and 800ml of 1M NH 3 ·H 2 O solution was prepared, and A solution , NaOH solution and ammonia water were added to the reaction kettle in parallel, the pH in the reaction kettle was controlled to be 10.5, the temperature was 55°C, and the stirring rate was 950r/min. After the dropwise addition, the aging was continued for 16h, washed three times, and dried at 140°C for 10h. A precursor of nickel-cobalt-aluminum core material doped with cerium and zirconium is prepared.
(2)将Al2(SO4)3、La(NO3)3、Zr(NO3)4按照金属离子摩尔比0.7:0.1:0.2的比例配成浓度为0.05M的1200ml溶液,命名为溶液B,称量40g步骤(1)制备的镍钴铝核材料前驱体加入B溶液配成悬浊液,将制备的悬浊液进行喷雾干燥,调整喷雾干燥机温度为145℃,并调整风速造粒制备得到核壳结构的前驱体材料。(2) Al 2 (SO 4 ) 3 , La(NO 3 ) 3 , and Zr(NO 3 ) 4 are formulated into a 1200ml solution with a concentration of 0.05M according to the metal ion molar ratio of 0.7:0.1:0.2, and named as solution B, weigh 40g of the nickel-cobalt-aluminum core material precursor prepared in step (1) and add B solution to form a suspension, spray dry the prepared suspension, adjust the temperature of the spray dryer to 145°C, and adjust the wind speed to make a suspension. Precursor materials with a core-shell structure were prepared from the particles.
(3)将步骤(2)得到的前驱体与碳酸锂按照锂元素与核材料金属元素总量的摩尔比为1.1:1的比例混合后球磨5h,然后在氧气气氛下按照4℃/min的升温速率,由室温升到400℃预煅烧6h,然后以2℃/min的速率升温到800℃煅烧16h,自然冷却后得到具有核壳结构的镍钴铝锂离子电池正极材料。(3) Mix the precursor obtained in step (2) with lithium carbonate according to the molar ratio of the lithium element to the total amount of nuclear material metal elements as 1.1:1, ball mill for 5 hours, and then in an oxygen atmosphere at a rate of 4°C/min. The heating rate is from room temperature to 400°C for 6 hours, and then at a rate of 2°C/min to 800°C for 16 hours. After natural cooling, a nickel-cobalt-aluminum lithium-ion battery cathode material with a core-shell structure is obtained.
(4)将所得材料进行涂膜,组装成纽扣电池进行电化学测试,所得材料在0.1C下比容量达到190mAh/g,比能量达到722Wh/kg,0.5C电流密度下循环100次容量保持在95%以上,是一种电化学性能优异的锂电池正极材料。(4) Coating the obtained material and assembling it into a button battery for electrochemical testing. The specific capacity of the obtained material reaches 190mAh/g at 0.1C, the specific energy reaches 722Wh/kg, and the capacity remains at 100 cycles at a current density of 0.5C. More than 95%, it is a lithium battery cathode material with excellent electrochemical performance.
实施例5Example 5
(1)采用氢氧化物共沉淀法制备掺杂的镍钴铝核材料前驱体,将NiSO4、CoSO4、Al2(SO4)3、Ce(NO3)3、La2(SO4)3按照金属离子摩尔比0.7:0.15:0.05:0.08:0.02的比例配成浓度为4M的800ml溶液A,将碳酸钠配成浓度为4M的800ml溶液,配制2M的800ml的NH3·H2O溶液,将A溶液、碳酸钠溶液和氨水并流加入至反应釜中,控制反应釜中的pH为8.5,温度60℃,搅拌速率1000r/min,滴加完后继续陈化20h,洗涤三次,90℃下干燥12h,制备得到掺杂铈和镧的镍钴铝核材料前驱体。(1) The precursor of doped nickel-cobalt-aluminum core material was prepared by hydroxide co-precipitation method. NiSO 4 , CoSO 4 , Al 2 (SO 4 ) 3 , Ce(NO 3 ) 3 , La 2 (SO 4 ) 3 According to the metal ion molar ratio of 0.7:0.15:0.05:0.08:0.02, prepare 800ml solution A with a concentration of 4M, make 800ml solution with a concentration of 4M with sodium carbonate, and prepare 800ml of 2M NH 3 ·H 2 O Solution, add A solution, sodium carbonate solution and ammonia water into the reaction kettle in parallel, control the pH in the reaction kettle to 8.5, the temperature is 60°C, and the stirring rate is 1000r/min. After the dropwise addition, continue to age for 20h, wash three times, Dry at 90° C. for 12 hours to prepare a precursor of nickel-cobalt-aluminum core material doped with cerium and lanthanum.
(2)将Al2(SO4)3、Ce2(SO4)3、LaCl3、ZrCl4按照金属离子摩尔比0.4:0.2:0.2:0.2的比例配成浓度为0.03M的2000ml溶液,命名为溶液B,称量40g步骤(1)制备的镍钴铝核材料前驱体加入B溶液配成悬浊液,将制备的悬浊液进行喷雾干燥,调整喷雾干燥机温度为140℃,并调整风速造粒制备得到核壳结构的前驱体材料。(2) Prepare Al 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 , LaCl 3 , and ZrCl 4 in accordance with the metal ion molar ratio of 0.4:0.2:0.2:0.2 to make a 2000ml solution with a concentration of 0.03M, and name it For solution B, weigh 40g of the nickel-cobalt-aluminum core material precursor prepared in step (1) and add B solution to form a suspension, spray-dry the prepared suspension, adjust the temperature of the spray dryer to 140°C, and adjust The precursor material with core-shell structure was prepared by wind speed granulation.
(3)将步骤(2)得到的前驱体与碳酸锂按照锂元素与核材料金属元素总量的摩尔比为1.15:1的比例混合后球磨3h,然后在氧气气氛下按照5℃/min的升温速率,由室温升到500℃预煅烧10h,然后以4℃/min的速率升温到850℃,煅烧18h,自然冷却后得到具有核壳结构的镍钴铝锂离子电池正极材料。(3) Mix the precursor obtained in step (2) with lithium carbonate according to the molar ratio of the lithium element to the total amount of nuclear material metal elements as 1.15:1, then ball mill for 3 hours, and then in an oxygen atmosphere at a rate of 5°C/min. The heating rate is from room temperature to 500°C for pre-calcination for 10 hours, then at a rate of 4°C/min to 850°C, calcined for 18 hours, and naturally cooled to obtain a nickel-cobalt-aluminum-aluminum lithium-ion battery positive electrode material with a core-shell structure.
(4)将所得材料进行涂膜,组装成纽扣电池进行电化学测试,所得材料在0.1C下比容量达到180mAh/g,比能量达到684Wh/kg,0.5C电流密度下循环100次容量保持在90%以上,是一种电化学性能优异的锂电池正极材料。(4) Coating the obtained material and assembling it into a button cell for electrochemical testing. The specific capacity of the obtained material reaches 180mAh/g at 0.1C, the specific energy reaches 684Wh/kg, and the capacity remains at 100 cycles at a current density of 0.5C. More than 90%, it is a lithium battery cathode material with excellent electrochemical performance.
实施例6Example 6
(1)采用碳酸盐共沉淀法制备掺杂的镍钴铝核材料前驱体,将NiSO4、CoSO4、Al2(SO4)3、Ce2(SO4)3、La(NO3)3、ZrCl4按照金属离子摩尔比0.5:0.2:0.1:0.1:0.04:0.06的比例配成浓度为1M的800ml溶液A,将碳酸铵配成浓度为2M的800ml溶液,配制1.5M的800ml的NH3·H2O溶液,将A溶液、碳酸铵溶液和氨水并流加入至反应釜中,控制反应釜中的pH为9,温度50℃,搅拌速率1200r/min,滴加完后继续陈化24h,洗涤三次,120℃下干燥24h,制备得到掺杂铈的镍钴铝核材料前驱体。(1) Preparation of doped nickel-cobalt-aluminum core material precursor by carbonate co-precipitation method, NiSO 4 , CoSO 4 , Al 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 , La(NO 3 ) 3. ZrCl 4 is formulated into 800ml solution A with a concentration of 1M according to the molar ratio of metal ions of 0.5:0.2:0.1:0.1:0.04:0.06, ammonium carbonate is formulated into 800ml solution with a concentration of 2M, and 800ml solution A with a concentration of 1.5M is prepared. NH 3 ·H 2 O solution, add A solution, ammonium carbonate solution and ammonia water into the reaction kettle in parallel, control the pH in the reaction kettle to 9, the temperature is 50°C, the stirring speed is 1200r/min, continue to age after the dropwise addition After washing for 24h, washing three times, and drying at 120°C for 24h, the precursor of nickel-cobalt-aluminum core material doped with cerium was prepared.
(2)将Al2(SO4)3、Ce(NO3)3、La2(SO4)3、ZrCl4按照金属离子摩尔比0.2:0.4:0.3:0.1的比例配成浓度为0.1M的400ml溶液,命名为溶液B,称量40g步骤(1)制备的镍钴铝核材料前驱体加入B溶液配成悬浊液,将制备的悬浊液进行喷雾干燥,调整喷雾干燥机温度为160℃,并调整风速造粒制备得到核壳结构的前驱体材料。(2) Prepare Al 2 (SO 4 ) 3 , Ce(NO 3 ) 3 , La 2 (SO 4 ) 3 , and ZrCl 4 in a ratio of 0.2:0.4:0.3:0.1 molar ratio of metal ions to a concentration of 0.1M 400ml solution, named solution B, weigh 40g of the nickel-cobalt-aluminum core material precursor prepared in step (1) and add B solution to make a suspension, spray-dry the prepared suspension, adjust the temperature of the spray dryer to 160 ℃, and adjust the wind speed to prepare the precursor material with core-shell structure.
(3)将步骤(2)得到的前驱体与碳酸锂按照锂元素与核材料金属元素总量的摩尔比为1.2:1的比例混合后球磨24h,然后在氧气气氛下按照10℃/min的升温速率,由室温升到600℃预煅烧20h,然后以4℃/min的速率升温到900℃煅烧20h,自然冷却后得到具有核壳结构的镍钴铝锂离子电池正极材料。(3) Mix the precursor obtained in step (2) with lithium carbonate according to the molar ratio of lithium element to the total amount of metal elements in the nuclear material as 1.2:1, then ball mill for 24 hours, and then in an oxygen atmosphere at a rate of 10°C/min. The heating rate is from room temperature to 600°C for pre-calcination for 20h, then at a rate of 4°C/min to 900°C for 20h, and after natural cooling, a nickel-cobalt-aluminum-lithium-ion battery positive electrode material with a core-shell structure is obtained.
(4)将所得材料进行涂膜,组装成纽扣电池进行电化学测试,所得材料在0.1C下比容量达到172mAh/g,比能量达到654Wh/kg,0.5C电流密度下循环100次容量保持在90%以上,是一种电化学性能优异的锂电池正极材料。(4) Coating the obtained material and assembling it into a button battery for electrochemical testing. The specific capacity of the obtained material reaches 172mAh/g at 0.1C, the specific energy reaches 654Wh/kg, and the capacity remains at 100 cycles at a current density of 0.5C. More than 90%, it is a lithium battery cathode material with excellent electrochemical performance.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the specific details in the above embodiments. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention. These simple modifications All belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific embodiments can be combined in any suitable way if there is no contradiction. The combination method will not be described separately.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, various combinations of different embodiments of the present invention can also be combined arbitrarily, as long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710088357.3A CN106654237B (en) | 2017-02-17 | 2017-02-17 | A kind of nickel-cobalt-aluminum lithium ion battery cathode material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710088357.3A CN106654237B (en) | 2017-02-17 | 2017-02-17 | A kind of nickel-cobalt-aluminum lithium ion battery cathode material and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106654237A true CN106654237A (en) | 2017-05-10 |
CN106654237B CN106654237B (en) | 2019-06-21 |
Family
ID=58845472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710088357.3A Active CN106654237B (en) | 2017-02-17 | 2017-02-17 | A kind of nickel-cobalt-aluminum lithium ion battery cathode material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106654237B (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107369826A (en) * | 2017-08-04 | 2017-11-21 | 长沙理工大学 | Doping and coating double-modified lithium/sodium layered metal oxide positive electrode material and one-step synthesis method thereof |
CN107768619A (en) * | 2017-09-26 | 2018-03-06 | 格林美(无锡)能源材料有限公司 | A kind of nickelic anode material of lithium battery of high power capacity monocrystalline and preparation method thereof |
CN108123123A (en) * | 2017-12-19 | 2018-06-05 | 宁波高新区锦众信息科技有限公司 | A kind of preparation method of lithium ion battery trielement composite material |
CN108428862A (en) * | 2018-02-06 | 2018-08-21 | 中南大学 | Aluminium cladding ternary mixes zirconium composite material, composite positive pole and its preparation and the application in lithium ion battery |
CN108767231A (en) * | 2018-06-01 | 2018-11-06 | 合肥国轩高科动力能源有限公司 | L iNixCoyMnl-x-yO2/Li2O·B2O3Preparation method of composite positive electrode material |
CN108878825A (en) * | 2018-06-26 | 2018-11-23 | 格林美(无锡)能源材料有限公司 | A kind of surface coated positive electrode and preparation method thereof |
CN108987728A (en) * | 2018-08-27 | 2018-12-11 | 桑顿新能源科技有限公司 | Nickelic anode material for lithium-ion batteries and preparation method thereof and lithium ion battery |
WO2019041788A1 (en) * | 2017-08-28 | 2019-03-07 | 中国科学院宁波材料技术与工程研究所 | Core-shell material |
CN109473672A (en) * | 2018-12-13 | 2019-03-15 | 海安常州大学高新技术研发中心 | A kind of lithium-rich manganese-based anode material and preparation method thereof |
CN109599540A (en) * | 2018-11-15 | 2019-04-09 | 北方奥钛纳米技术有限公司 | Active material and preparation method thereof, lithium ion battery |
CN111095619A (en) * | 2018-08-06 | 2020-05-01 | 中天新兴材料有限公司 | Preparation method of anode material, anode material and lithium ion battery |
CN113258059A (en) * | 2021-04-27 | 2021-08-13 | 浙江帕瓦新能源股份有限公司 | Multi-modified lithium ion battery positive electrode material and preparation method thereof |
CN114420935A (en) * | 2022-03-29 | 2022-04-29 | 浙江帕瓦新能源股份有限公司 | Modified positive electrode material and modification method thereof |
CN114497473A (en) * | 2021-12-17 | 2022-05-13 | 安徽师范大学 | N-doped porous carbon-coated Mn-Co-Ni oxide core-shell structure electrode material and preparation method and application thereof |
CN115043442A (en) * | 2022-07-28 | 2022-09-13 | 中南大学 | Aluminum-doped lanthanum-nickel-lithium oxide-coated positive electrode material, precursor and preparation method thereof |
CN115626667A (en) * | 2022-10-26 | 2023-01-20 | 荆门市格林美新材料有限公司 | Modified quaternary precursor and preparation method and application thereof |
WO2023123942A1 (en) * | 2021-12-29 | 2023-07-06 | 中国科学院过程工程研究所 | Lithium-rich manganese-based positive electrode material, preparation method therefor and application thereof |
CN117732420A (en) * | 2023-12-20 | 2024-03-22 | 蔚孚科技(丽水)有限公司 | Flaky porous defluorination adsorbent, and preparation method and application thereof |
CN119812302A (en) * | 2025-03-13 | 2025-04-11 | 株洲升华科技有限公司 | A lithium ion battery positive electrode material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103050686A (en) * | 2013-01-24 | 2013-04-17 | 湖南桑顿新能源有限公司 | High-density lithium ion battery anode material nickel-cobalt lithium aluminate and preparation method thereof |
CN103715423A (en) * | 2014-01-06 | 2014-04-09 | 深圳市贝特瑞新能源材料股份有限公司 | LiNiCoAlO2 composite cathode material and preparation method thereof, and lithium ion battery |
CN103811765A (en) * | 2014-02-27 | 2014-05-21 | 广西师范大学 | Two-dimensional nanocrystalline metal oxide composite coating lithium manganate positive electrode material and preparation method thereof |
-
2017
- 2017-02-17 CN CN201710088357.3A patent/CN106654237B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103050686A (en) * | 2013-01-24 | 2013-04-17 | 湖南桑顿新能源有限公司 | High-density lithium ion battery anode material nickel-cobalt lithium aluminate and preparation method thereof |
CN103715423A (en) * | 2014-01-06 | 2014-04-09 | 深圳市贝特瑞新能源材料股份有限公司 | LiNiCoAlO2 composite cathode material and preparation method thereof, and lithium ion battery |
CN103811765A (en) * | 2014-02-27 | 2014-05-21 | 广西师范大学 | Two-dimensional nanocrystalline metal oxide composite coating lithium manganate positive electrode material and preparation method thereof |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107369826A (en) * | 2017-08-04 | 2017-11-21 | 长沙理工大学 | Doping and coating double-modified lithium/sodium layered metal oxide positive electrode material and one-step synthesis method thereof |
CN107369826B (en) * | 2017-08-04 | 2019-08-02 | 长沙理工大学 | Doping and coating double-modified lithium/sodium layered metal oxide positive electrode material and one-step synthesis method thereof |
WO2019041788A1 (en) * | 2017-08-28 | 2019-03-07 | 中国科学院宁波材料技术与工程研究所 | Core-shell material |
CN107768619B (en) * | 2017-09-26 | 2020-04-28 | 格林美(无锡)能源材料有限公司 | High-capacity single-crystal high-nickel lithium battery positive electrode material and preparation method thereof |
CN107768619A (en) * | 2017-09-26 | 2018-03-06 | 格林美(无锡)能源材料有限公司 | A kind of nickelic anode material of lithium battery of high power capacity monocrystalline and preparation method thereof |
CN108123123A (en) * | 2017-12-19 | 2018-06-05 | 宁波高新区锦众信息科技有限公司 | A kind of preparation method of lithium ion battery trielement composite material |
CN108428862A (en) * | 2018-02-06 | 2018-08-21 | 中南大学 | Aluminium cladding ternary mixes zirconium composite material, composite positive pole and its preparation and the application in lithium ion battery |
CN108767231A (en) * | 2018-06-01 | 2018-11-06 | 合肥国轩高科动力能源有限公司 | L iNixCoyMnl-x-yO2/Li2O·B2O3Preparation method of composite positive electrode material |
CN108878825A (en) * | 2018-06-26 | 2018-11-23 | 格林美(无锡)能源材料有限公司 | A kind of surface coated positive electrode and preparation method thereof |
CN108878825B (en) * | 2018-06-26 | 2021-05-25 | 格林美(无锡)能源材料有限公司 | A kind of surface-coated positive electrode material and preparation method thereof |
CN111095619A (en) * | 2018-08-06 | 2020-05-01 | 中天新兴材料有限公司 | Preparation method of anode material, anode material and lithium ion battery |
CN108987728A (en) * | 2018-08-27 | 2018-12-11 | 桑顿新能源科技有限公司 | Nickelic anode material for lithium-ion batteries and preparation method thereof and lithium ion battery |
CN109599540A (en) * | 2018-11-15 | 2019-04-09 | 北方奥钛纳米技术有限公司 | Active material and preparation method thereof, lithium ion battery |
CN109473672A (en) * | 2018-12-13 | 2019-03-15 | 海安常州大学高新技术研发中心 | A kind of lithium-rich manganese-based anode material and preparation method thereof |
CN113258059A (en) * | 2021-04-27 | 2021-08-13 | 浙江帕瓦新能源股份有限公司 | Multi-modified lithium ion battery positive electrode material and preparation method thereof |
CN114497473A (en) * | 2021-12-17 | 2022-05-13 | 安徽师范大学 | N-doped porous carbon-coated Mn-Co-Ni oxide core-shell structure electrode material and preparation method and application thereof |
WO2023123942A1 (en) * | 2021-12-29 | 2023-07-06 | 中国科学院过程工程研究所 | Lithium-rich manganese-based positive electrode material, preparation method therefor and application thereof |
CN114420935A (en) * | 2022-03-29 | 2022-04-29 | 浙江帕瓦新能源股份有限公司 | Modified positive electrode material and modification method thereof |
CN115043442A (en) * | 2022-07-28 | 2022-09-13 | 中南大学 | Aluminum-doped lanthanum-nickel-lithium oxide-coated positive electrode material, precursor and preparation method thereof |
CN115626667A (en) * | 2022-10-26 | 2023-01-20 | 荆门市格林美新材料有限公司 | Modified quaternary precursor and preparation method and application thereof |
WO2024087363A1 (en) * | 2022-10-26 | 2024-05-02 | 荆门市格林美新材料有限公司 | Modified quaternary precursor, and preparation method therefor and use thereof |
CN115626667B (en) * | 2022-10-26 | 2024-05-31 | 荆门市格林美新材料有限公司 | A modified quaternary precursor and its preparation method and application |
CN117732420A (en) * | 2023-12-20 | 2024-03-22 | 蔚孚科技(丽水)有限公司 | Flaky porous defluorination adsorbent, and preparation method and application thereof |
CN119812302A (en) * | 2025-03-13 | 2025-04-11 | 株洲升华科技有限公司 | A lithium ion battery positive electrode material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106654237B (en) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106654237A (en) | Nickel-cobalt-aluminum-lithium ion battery positive material as well as preparation method and application thereof | |
CN114188529B (en) | Composite positive electrode material and preparation method thereof, positive electrode sheet and sodium ion battery | |
CN108091843B (en) | A core-shell structure lithium-rich manganese-based composite cathode material and preparation method thereof | |
CN112968153B (en) | Core-shell structure cathode material and preparation method thereof | |
CN108847477B (en) | Nickel cobalt lithium manganate ternary positive electrode material and preparation method thereof | |
CN103515606B (en) | Lithium ion battery with high energy density oxide anode material and preparation method thereof | |
CN104300135B (en) | A kind of rich nickel concentration gradient type nickel cobalt lithium aluminate cathode material, its preparation method and lithium ion battery | |
CN111509214B (en) | High-nickel layered composite material and lithium ion battery anode material prepared from same | |
CN106910882B (en) | A kind of preparation method of large single crystal layered positive electrode material for lithium ion battery | |
WO2024031913A1 (en) | Layered oxide positive electrode material and preparation method therefor, and sodium-ion battery | |
CN108428862B (en) | Aluminum-coated ternary zirconium-doped composite materials, composite cathode materials, and their preparation and application in lithium-ion batteries | |
CN115566186B (en) | A medium-high entropy layered lithium-rich cathode oxide and preparation method thereof | |
CN107946579B (en) | A kind of lithium manganate coated nickel cobalt lithium aluminate cathode material and preparation method thereof | |
CN115295787A (en) | Sodium-ion battery positive electrode material and preparation method and application thereof | |
CN103236537A (en) | Lithium ion battery gradient core shell cathode material and synthetic method thereof | |
CN102386394B (en) | Preparation method for lithium manganese nickel oxide served as high voltage lithium ion anode material | |
CN106450282A (en) | Large single-crystal lithium nickel manganese oxide positive electrode material and preparation method thereof | |
CN102201573A (en) | Rich-lithium positive electrode material of lithium ion battery having coreshell structure and preparation method of rich-lithium positive electrode material | |
CN104953172A (en) | Sodium-ion battery cathode materials, preparation method of sodium-ion battery cathode materials, and sodium-ion batteries | |
CN102683645A (en) | Preparation method of layered lithium-rich manganese base oxide of positive material of lithium ion battery | |
WO2022089205A1 (en) | Doped high-nickel ternary material and preparation method therefor | |
CN103606675B (en) | A kind of preparation method of lithium-nickel-cobalt-oxygen positive electrode of metal ion mixing | |
WO2019113870A1 (en) | Lithium-rich manganese-based material and preparation and application thereof | |
CN104241640A (en) | Lithium nickel-cobalt-aluminum positive electrode material, preparation method thereof and lithium ion battery | |
CN114566632A (en) | Positive electrode material for sodium ion battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |