CN107946579B - A kind of lithium manganate coated nickel cobalt lithium aluminate cathode material and preparation method thereof - Google Patents
A kind of lithium manganate coated nickel cobalt lithium aluminate cathode material and preparation method thereof Download PDFInfo
- Publication number
- CN107946579B CN107946579B CN201711200473.6A CN201711200473A CN107946579B CN 107946579 B CN107946579 B CN 107946579B CN 201711200473 A CN201711200473 A CN 201711200473A CN 107946579 B CN107946579 B CN 107946579B
- Authority
- CN
- China
- Prior art keywords
- lithium
- nickel
- coated
- cobalt
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 title claims abstract description 77
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 239000010406 cathode material Substances 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000011572 manganese Substances 0.000 claims abstract description 34
- 238000003756 stirring Methods 0.000 claims abstract description 34
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 33
- 239000007774 positive electrode material Substances 0.000 claims abstract description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 24
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 24
- 239000004094 surface-active agent Substances 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 17
- 238000005245 sintering Methods 0.000 claims abstract description 17
- 239000011247 coating layer Substances 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000001354 calcination Methods 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 239000012798 spherical particle Substances 0.000 claims abstract description 11
- 238000001704 evaporation Methods 0.000 claims abstract description 9
- 230000001590 oxidative effect Effects 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims abstract 6
- 229910017052 cobalt Inorganic materials 0.000 claims abstract 6
- 239000010941 cobalt Substances 0.000 claims abstract 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract 6
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 30
- IWTZGPIJFJBSBX-UHFFFAOYSA-G aluminum;cobalt(2+);nickel(2+);heptahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Al+3].[Co+2].[Ni+2] IWTZGPIJFJBSBX-UHFFFAOYSA-G 0.000 claims description 27
- 239000002243 precursor Substances 0.000 claims description 22
- 229910052744 lithium Inorganic materials 0.000 claims description 20
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 18
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 17
- -1 nickel-cobalt-aluminum Chemical compound 0.000 claims description 15
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 claims description 8
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 claims description 7
- 229910014689 LiMnO Inorganic materials 0.000 claims description 7
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 5
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical group [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 5
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 4
- 150000004677 hydrates Chemical class 0.000 claims description 4
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 3
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229940071125 manganese acetate Drugs 0.000 claims description 3
- 229940099607 manganese chloride Drugs 0.000 claims description 3
- 235000002867 manganese chloride Nutrition 0.000 claims description 3
- 239000011565 manganese chloride Substances 0.000 claims description 3
- 229940099596 manganese sulfate Drugs 0.000 claims description 3
- 235000007079 manganese sulphate Nutrition 0.000 claims description 3
- 239000011702 manganese sulphate Substances 0.000 claims description 3
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical group [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 3
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 3
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 3
- 229910015645 LiMn Inorganic materials 0.000 claims description 2
- 229910018058 Ni-Co-Al Inorganic materials 0.000 claims description 2
- 229910018144 Ni—Co—Al Inorganic materials 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 3
- 230000036571 hydration Effects 0.000 claims 1
- 238000006703 hydration reaction Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 13
- 239000003792 electrolyte Substances 0.000 abstract description 7
- 238000009776 industrial production Methods 0.000 abstract description 4
- 238000007086 side reaction Methods 0.000 abstract description 3
- 239000013543 active substance Substances 0.000 abstract 1
- 239000010405 anode material Substances 0.000 abstract 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 15
- 238000000576 coating method Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000006258 conductive agent Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 150000002696 manganese Chemical class 0.000 description 4
- ACKHWUITNXEGEP-UHFFFAOYSA-N aluminum cobalt(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Al+3].[Co+2].[Ni+2] ACKHWUITNXEGEP-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011149 active material Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 2
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 2
- 239000002061 nanopillar Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- 229910015515 LiNi0.8Co0.15 Inorganic materials 0.000 description 1
- 229910017238 Ni0.8Co0.15Al0.05(OH)2 Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- BEYCFZBNRLPHEP-UHFFFAOYSA-L manganese(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Mn+2] BEYCFZBNRLPHEP-UHFFFAOYSA-L 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种正极材料及其制备方法,具体涉及一种锰酸锂包覆的镍钴铝酸锂正极材料及其制备方法。The invention relates to a positive electrode material and a preparation method thereof, in particular to a nickel cobalt lithium aluminate positive electrode material coated with lithium manganate and a preparation method thereof.
背景技术Background technique
锂离子电池具有电压稳定、容量高、能量密度大、自放电少、循环寿命长、环境友好等优势,广泛应用于电动车、电动工具、手机、笔记本电脑等领域。从移动设备到电动车辆,随着储能系统应用的不断扩大,对高能量密度锂离子电池的需求也在增加,而锂离子电池中正极材料是决定锂离子电池性能的关键材料,高能密度、长循环寿命和高安全性正极材料已成为世界各国研发和关注的热点。Lithium-ion batteries have the advantages of stable voltage, high capacity, high energy density, less self-discharge, long cycle life, and environmental friendliness, and are widely used in electric vehicles, power tools, mobile phones, notebook computers and other fields. From mobile devices to electric vehicles, with the continuous expansion of the application of energy storage systems, the demand for high-energy density lithium-ion batteries is also increasing, and the cathode material in lithium-ion batteries is the key material that determines the performance of lithium-ion batteries. Cathode materials with long cycle life and high safety have become a hot spot of research and development and attention in countries around the world.
富镍高容量型正极材料,例如LiNi0.8Co0.15Al0.05O2,由于该类材料具有高容量和价格低廉等优点,其在锂离子电池中的应用受到了广泛关注。该材料的结构中较高的Ni含量虽然可获得较高的比容量,但是,随着Ni含量的增加,材料表现出由于阳离子混排和表面反应,从而加速引起的衰减和热不稳定性,特别是在升高的温度下,该不良作用更加明显。针对以上缺点,很多研究人员通过使用表面包覆(金属氧化物,金属磷酸盐等)以提高其循环稳定性。Nickel-rich high-capacity cathode materials, such as LiNi 0.8 Co 0.15 Al 0.05 O 2 , have attracted extensive attention for their applications in lithium-ion batteries due to their high capacity and low price. Although higher Ni content in the structure of the material can achieve higher specific capacity, however, with the increase of Ni content, the material exhibits accelerated decay and thermal instability due to cation mixing and surface reactions. This adverse effect is more pronounced especially at elevated temperatures. In view of the above shortcomings, many researchers have improved their cycling stability by using surface coatings (metal oxides, metal phosphates, etc.).
比如,CN106711444A公开了一种原位包覆改性的镍钴铝酸锂正极材料的制备方法,CN106910881A公开了一种偏钛酸锂包覆镍钴铝酸锂正极材料的制备方法,均采用了原位包覆镍钴铝酸锂,是将包覆材料与锂源同时与前驱体混合,并且干燥后直接煅烧。但是,这样操作可能会使得包覆层不均匀,影响电化学性能。For example, CN106711444A discloses a preparation method of an in-situ coating modified nickel-cobalt aluminate cathode material, and CN106910881A discloses a preparation method of a lithium metatitanate-coated nickel-cobalt aluminate cathode material, both of which use In-situ coating of nickel cobalt lithium aluminate is to mix the coating material and the lithium source with the precursor at the same time, and directly calcine after drying. However, doing so may make the coating non-uniform and affect the electrochemical performance.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种利用表面阳离子混排形成稳定的支柱层来抑制表面反应,比容量和循环性能优异的锰酸锂包覆的镍钴铝酸锂正极材料。The technical problem to be solved by the present invention is to overcome the above-mentioned defects in the prior art, and to provide a lithium manganate-coated nickel with excellent specific capacity and cycle performance by utilizing the surface cation mixing to form a stable pillar layer to suppress the surface reaction. Lithium cobalt aluminate cathode material.
本发明进一步要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种成本低,工艺简单,适宜于大工业生产的锰酸锂包覆的镍钴铝酸锂正极材料的制备方法。The further technical problem to be solved by the present invention is to overcome the above-mentioned defects in the prior art, and to provide a method for preparing a lithium manganate-coated lithium manganate lithium aluminate cathode material with low cost and simple process, which is suitable for large-scale industrial production. .
本发明解决其技术问题所采用的技术方案如下:一种锰酸锂包覆的镍钴铝酸锂正极材料,所述锰酸锂的质量百分含量为1~10wt%,锰酸锂形成厚度2~20nm的包覆层包覆在镍钴铝酸锂上;所述正极材料为粒径5~15μm的球形颗粒。The technical solution adopted by the present invention to solve the technical problem is as follows: a lithium manganate-coated nickel-cobalt-aluminate cathode material, the mass percentage of the lithium manganate is 1-10 wt%, and the lithium manganate forms a thickness of The coating layer of 2-20 nm is coated on the nickel-cobalt lithium aluminate; the positive electrode material is spherical particles with a particle size of 5-15 μm.
优选地,所述锰酸锂为LiMn2O4、LiMnO2、Li2MnO3或LiMn3O4等中的一种或几种。Preferably, the lithium manganate is one or more of LiMn 2 O 4 , LiMnO 2 , Li 2 MnO 3 or LiMn 3 O 4 .
本发明进一步解决其技术问题所采用的技术方案是:一种锰酸锂包覆的镍钴铝酸锂正极材料的制备方法,包括以下步骤:The technical solution adopted by the present invention to further solve the technical problem is: a preparation method of a lithium manganate-coated nickel cobalt lithium aluminate positive electrode material, comprising the following steps:
(1)将表面活性剂溶于水中,加热搅拌,得表面活性剂溶液;(1) Dissolve the surfactant in water, heat and stir to obtain a surfactant solution;
(2)在步骤(1)所得表面活性剂溶液中加入锰源,搅拌溶解后,再加入氢氧化镍钴铝,加热搅拌,在油浴条件下搅拌蒸干,得锰源包覆的氢氧化镍钴铝前驱体;(2) adding manganese source to the surfactant solution obtained in step (1), stirring and dissolving, then adding nickel cobalt aluminum hydroxide, heating and stirring, stirring and evaporating to dryness under oil bath conditions to obtain manganese source-coated hydroxide Ni-Co-Al precursor;
(3)将步骤(2)所得锰源包覆的氢氧化镍钴铝前驱体在空气气氛中进行煅烧,自然冷却至室温,得氧化锰包覆的氧化镍钴铝前驱体;(3) calcining the manganese source-coated nickel-cobalt-aluminum precursor obtained in step (2) in an air atmosphere, and naturally cooling to room temperature to obtain a manganese oxide-coated nickel-cobalt-aluminum precursor;
(4)在步骤(3)所得氧化锰包覆的氧化镍钴铝前驱体中加入锂盐,在流动的氧化性气氛下,进行两段烧结,得锰酸锂包覆的镍钴铝酸锂正极材料。(4) Lithium salt is added to the manganese oxide-coated nickel-cobalt-aluminum precursor obtained in step (3), and two-stage sintering is performed in a flowing oxidizing atmosphere to obtain lithium manganate-coated nickel-cobalt aluminate lithium positive electrode material.
优选地,步骤(1)中,所述表面活性剂与水的质量体积比(g/mL)为2~10:100(更优选4~6:100)。Preferably, in step (1), the mass-volume ratio (g/mL) of the surfactant to water is 2-10:100 (more preferably 4-6:100).
优选地,步骤(1)中,所述加热搅拌的温度为30~60℃,时间为12~20h。Preferably, in step (1), the temperature of the heating and stirring is 30-60° C., and the time is 12-20 h.
优选地,步骤(1)中,所述表面活性剂为聚乙烯吡咯烷酮、聚乙二醇、聚乙烯醇或聚丙烯酰胺等中的一种或几种。水溶性表面活性剂的加入可分散团聚的锰源或氢氧化镍钴铝固体颗粒,更有利于后续在液相环境下锰盐对氢氧化镍钴铝均匀的包覆。Preferably, in step (1), the surfactant is one or more of polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol or polyacrylamide. The addition of the water-soluble surfactant to disperse agglomerated manganese sources or nickel-cobalt-aluminum hydroxide solid particles is more conducive to the subsequent uniform coating of nickel-cobalt-aluminum hydroxide by manganese salts in a liquid phase environment.
优选地,步骤(2)中,所述氢氧化镍钴铝与表面活性剂溶液的质量体积比(g/mL)为2~10:100。所述比例若过大,则不利于氢氧化镍钴铝的分散。Preferably, in step (2), the mass-volume ratio (g/mL) of the nickel-cobalt-aluminum hydroxide to the surfactant solution is 2-10:100. If the ratio is too large, it will be unfavorable for the dispersion of nickel-cobalt-aluminum hydroxide.
优选地,步骤(2)中,所述锰源中锰原子与氢氧化镍钴铝的摩尔比为2~30:100(更优选2.2~12.0:100)。Preferably, in step (2), the molar ratio of manganese atoms to nickel-cobalt-aluminum hydroxide in the manganese source is 2-30:100 (more preferably 2.2-12.0:100).
优选地,步骤(2)中,所述锰源为乙酸锰、氯化锰、硝酸锰或硫酸锰,及其水合物等中的一种或几种。Preferably, in step (2), the manganese source is one or more of manganese acetate, manganese chloride, manganese nitrate or manganese sulfate, and hydrates thereof.
优选地,步骤(2)中,所述氢氧化镍钴铝的粒径为5~15μm。Preferably, in step (2), the particle size of the nickel-cobalt-aluminum hydroxide is 5-15 μm.
优选地,步骤(2)中,所述加热搅拌反应的温度为30~60℃,时间为12~20h。加热搅拌反应可促进锰盐的溶解。Preferably, in step (2), the temperature of the heating and stirring reaction is 30-60° C., and the time is 12-20 h. Heating and stirring the reaction can promote the dissolution of manganese salts.
优选地,步骤(2)中,所述搅拌蒸干的温度为100~150℃(更优选120~140℃)。采用搅拌蒸干比其它的干燥方式可以有效防止团聚。Preferably, in step (2), the temperature of the stirring to dryness is 100-150°C (more preferably 120-140°C). Compared with other drying methods, stirring and evaporation to dryness can effectively prevent agglomeration.
优选地,步骤(3)中,所述煅烧是指:以3~5℃/min的速率升温至450~500℃,煅烧4~6h。煅烧的作用是使锰盐氧化成氧化锰,这样更有利于使其均匀的包覆于氧化镍钴铝前驱体表面,所述温度更有利于锰盐的氧化。Preferably, in step (3), the calcination refers to: raising the temperature to 450-500° C. at a rate of 3-5° C./min, and calcining for 4-6 hours. The function of calcination is to oxidize the manganese salt into manganese oxide, which is more conducive to uniformly coating the surface of the nickel-cobalt-aluminum precursor, and the temperature is more conducive to the oxidation of the manganese salt.
优选地,步骤(4)中,所述锂盐的加入量使得锂盐中锂的摩尔数=(0.2~2.0)*锰源中锰的摩尔数+(1.01~1.10)*氢氧化镍钴铝的摩尔数。Preferably, in step (4), the amount of lithium salt added is such that the number of moles of lithium in the lithium salt=(0.2~2.0)*the number of moles of manganese in the manganese source+(1.01~1.10)*nickel cobalt aluminum hydroxide of moles.
优选地,步骤(4)中,所述锂盐为碳酸锂、氢氧化锂、硝酸锂或乙酸锂,及其水合物等中的一种或几种。锂盐既要与氧化镍钴铝反应形成镍钴铝酸锂作为正极材料成核基体,又要与锰源反应形成锰酸锂。第一次煅烧主要是为了形成氧化锰并包覆于氧化镍钴铝上,然后再加入锂盐进行烧结反应,以得到正极材料,因此,锂盐在第一次煅烧后再行加入。Preferably, in step (4), the lithium salt is one or more of lithium carbonate, lithium hydroxide, lithium nitrate or lithium acetate, and hydrates thereof. The lithium salt should not only react with nickel-cobalt-aluminum oxide to form lithium nickel-cobalt aluminate as a nucleation matrix of the positive electrode material, but also react with the manganese source to form lithium manganate. The first calcination is mainly to form manganese oxide and coat it on nickel cobalt aluminum oxide, and then add lithium salt for sintering reaction to obtain positive electrode material. Therefore, lithium salt is added after the first calcination.
优选地,步骤(4)中,所述氧化性气氛是指臭氧气氛、空气气氛或纯度≥99.9%的氧气气氛。Preferably, in step (4), the oxidizing atmosphere refers to an ozone atmosphere, an air atmosphere or an oxygen atmosphere with a purity of ≥99.9%.
优选地,步骤(4)中,所述流动的速率为0.05~0.10m3/h。Preferably, in step (4), the flow rate is 0.05-0.10 m 3 /h.
优选地,步骤(4)中,所述两段烧结是指:先以3~5℃/min的速率升温至400~550℃,烧结3~8h(更优选4~6h),再以3~5℃/min的速率升温至700~850℃,烧结10~20h(更优选15~18h)。本发明方法利用锰和锂在高温下的扩散速率差异,通过烧结形成壳体结构,即在第一段烧结时,锂盐熔解,并扩散进入氧化镍钴铝基体,在第二段烧结时,锂盐和氧化镍钴铝反应生成镍钴铝酸锂,锂盐和氧化锰反应生成锰酸锂包裹在镍钴铝酸锂的表面。控制升温速率主要是为了控制二次颗粒中一次颗粒的间隙,避免因间隙过大导致物理性能降低。Preferably, in step (4), the two-stage sintering refers to: first heating to 400-550°C at a rate of 3-5°C/min, sintering for 3-8h (more preferably 4-6h), and then sintering at a rate of 3-5°C/min The temperature is raised to 700-850°C at a rate of 5°C/min, and sintered for 10-20h (more preferably 15-18h). The method of the invention utilizes the difference in the diffusion rates of manganese and lithium at high temperature to form a shell structure through sintering, that is, during the first stage of sintering, the lithium salt is melted and diffused into the nickel-cobalt-aluminum matrix, and during the second stage of sintering, Lithium salt reacts with nickel cobalt aluminum oxide to form lithium nickel cobalt aluminate, and lithium salt reacts with manganese oxide to form lithium manganate wrapped on the surface of lithium nickel cobalt aluminate. The main purpose of controlling the heating rate is to control the gap between the primary particles in the secondary particles, and to avoid the reduction of physical properties due to the excessive gap.
本发明所述氢氧化钠镍钴铝的分子式为Ni0.8Co0.15Al0.05(OH)2,所述镍钴铝酸锂的分子式为LiNi0.8Co0.15Al0.05O2。The molecular formula of the sodium nickel cobalt aluminum hydroxide of the present invention is Ni 0.8 Co 0.15 Al 0.05 (OH) 2 , and the molecular formula of the lithium nickel cobalt aluminate is LiNi 0.8 Co 0.15 Al 0.05 O 2 .
本发明的原理是:本发明以氢氧化镍钴铝为基体,先将锰源用表面活性剂分散,在液相环境下,通过搅拌蒸干包覆于氢氧化镍钴铝颗粒上,再通过煅烧氧化成氧化锰,在其表面紧密沉积,最后将所得粉体材料通过两段烧结,在生成镍钴铝酸锂的过程中,同时在其表面生成锰酸锂,最终得到锰酸锂包覆的镍钴铝酸锂电池正极材料。锰酸锂包覆镍钴铝酸锂后,在充放电循环过程中表面会生成Mn4+,为了保持价态平衡,促使镍变为Ni2+,这样表面会形成由于镍锂混排形成的纳米支柱层以稳定结构,另外,还可以有效抑制电解液与活性物质之间的副反应,提高其循环稳定性。The principle of the present invention is as follows: the present invention uses nickel cobalt aluminum hydroxide as a matrix, first disperses the manganese source with a surfactant, and in a liquid phase environment, coats the nickel cobalt aluminum hydroxide particles by stirring and evaporating to dryness, and then passes It is oxidized into manganese oxide by calcination, which is closely deposited on its surface, and finally the obtained powder material is sintered in two stages. The cathode material of nickel-cobalt-aluminate lithium battery. After lithium manganate is coated with nickel cobalt aluminate, Mn 4+ will be formed on the surface during the charge-discharge cycle. In order to maintain the valence balance, nickel will be changed to Ni 2+ , so that the surface will be formed due to the mixed arrangement of nickel and lithium. The nano-pillar layer can stabilize the structure. In addition, it can effectively suppress the side reaction between the electrolyte and the active material, and improve its cycle stability.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
(1)本发明锰酸锂包覆的镍钴铝酸锂正极材料中,锰酸锂形成厚度2~20nm的包覆层,所述正极材料为粒径5~15μm的球形颗粒;(1) In the lithium manganate-coated nickel-cobalt lithium aluminate cathode material of the present invention, the lithium manganate forms a coating layer with a thickness of 2-20 nm, and the cathode material is spherical particles with a particle size of 5-15 μm;
(2)将本发明锰酸锂包覆的镍钴铝酸锂正极材料组装成电池,在2.7~4.3V,0.1C下,首次放电克容量可高达209.7mAh/g;在1C下首次放电克容量可高达184.4mAh/g,循环100圈后,容量保持率可高达84.1%;分别在0.5C、1C、2C、5C的倍率下,首次放电容量分别可高达196.3mAh/g、184.4mAh/g、167.8mAh/g、139.7mAh/g,说明本发明锰酸锂包覆的镍钴铝酸锂正极材料具有较好的循环稳定性和大倍率放电性能;(2) The lithium manganate-coated nickel-cobalt lithium aluminate cathode material of the present invention is assembled into a battery. At 2.7-4.3V and 0.1C, the gram capacity of the first discharge can be as high as 209.7mAh/g; The capacity can be as high as 184.4mAh/g, and after 100 cycles, the capacity retention rate can be as high as 84.1%; at the rate of 0.5C, 1C, 2C, and 5C, the first discharge capacity can be as high as 196.3mAh/g and 184.4mAh/g, respectively. , 167.8mAh/g, 139.7mAh/g, indicating that the lithium manganate-coated nickel cobalt lithium aluminate cathode material of the present invention has better cycle stability and high rate discharge performance;
(3)本发明方法在镍钴铝酸锂上包覆氧化锰后,在电化学循环过程中使得在镍钴铝酸锂表面形成由于镍锂混排形成的纳米支柱层以稳定结构,还可有效抑制电解液与活性物质之间的副反应,提高其循环稳定性;(3) After the method of the present invention coats manganese oxide on the lithium nickel cobalt aluminate, during the electrochemical cycle process, a nano-pillar layer formed by the mixed arrangement of nickel and lithium is formed on the surface of the nickel cobalt lithium aluminate to stabilize the structure, and also Effectively inhibit the side reaction between the electrolyte and the active material, and improve its cycle stability;
(4)本发明方法成本低,工艺简单,适宜于大工业生产。(4) The method of the present invention has low cost and simple process, and is suitable for large-scale industrial production.
附图说明Description of drawings
图1 是本发明实施例1所得Li2MnO3/LiNi0.8Co0.15Al0.05O2正极材料的SEM 图;1 is a SEM image of the Li 2 MnO 3 /LiNi 0.8 Co 0.15 Al 0.05 O 2 positive electrode material obtained in Example 1 of the present invention;
图2是本发明实施例1所得Li2MnO3/LiNi0.8Co0.15Al0.05O2正极材料的TEM图;2 is a TEM image of the Li 2 MnO 3 /LiNi 0.8 Co 0.15 Al 0.05 O 2 positive electrode material obtained in Example 1 of the present invention;
图3是本发明实施例1所得Li2MnO3/LiNi0.8Co0.15Al0.05O2正极材料的XRD 图;3 is an XRD pattern of the Li 2 MnO 3 /LiNi 0.8 Co 0.15 Al 0.05 O 2 positive electrode material obtained in Example 1 of the present invention;
图4 是本发明对比例1所得LiNi0.8Co0.15Al0.05O2正极材料的SEM 图;4 is a SEM image of the LiNi 0.8 Co 0.15 Al 0.05 O 2 positive electrode material obtained in Comparative Example 1 of the present invention;
图5是本发明实施例1与对比例1所得正极材料组装的电池在1C倍率下的容量循环对比图。5 is a comparison diagram of the capacity cycle of the battery assembled with the positive electrode materials obtained in Example 1 and Comparative Example 1 of the present invention at a rate of 1C.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步说明。The present invention will be further described below with reference to the embodiments and accompanying drawings.
本发明实施例所使用的氢氧化镍钴铝购于宁波金和新材料股份有限公司,粒径为5~15μm;本发明实施例所使用的化学试剂,如无特殊说明,均通过常规商业途径获得。The nickel-cobalt-aluminum hydroxide used in the embodiment of the present invention was purchased from Ningbo Jinhe New Materials Co., Ltd., and the particle size was 5-15 μm; the chemical reagents used in the embodiment of the present invention, unless otherwise specified, were all obtained through conventional commercial channels. get.
实施例1Example 1
一种锰酸锂包覆的镍钴铝酸锂正极材料:A lithium manganate-coated nickel cobalt lithium aluminate cathode material:
Li2MnO3的质量百分含量为3wt%,Li2MnO3形成厚度3nm的包覆层包覆在镍钴铝酸锂上;所述正极材料为粒径5~15μm的球形颗粒,分子式为Li2MnO3/LiNi0.8Co0.15Al0.05O2。The mass percentage content of Li 2 MnO 3 is 3 wt %, and Li 2 MnO 3 forms a coating layer with a thickness of 3 nm and coats the nickel cobalt lithium aluminate; the positive electrode material is spherical particles with a particle size of 5-15 μm, and the molecular formula is Li 2 MnO 3 /LiNi 0.8 Co 0.15 Al 0.05 O 2 .
如图1所示,本发明实施例所得锰酸锂包覆的镍钴铝酸锂正极材料为粒径5~15μm的球形颗粒,表面有锰酸锂包覆层。As shown in FIG. 1 , the lithium manganate-coated nickel-cobalt lithium aluminate cathode material obtained in the embodiment of the present invention is spherical particles with a particle size of 5-15 μm, and the surface has a lithium manganate coating layer.
如图2所示,本发明实施例所得锰酸锂包覆的镍钴铝酸锂正极材料的基体部分为镍钴铝酸锂,其表面形成了厚度为3nm的锰酸锂包覆层。As shown in FIG. 2 , the base part of the lithium manganate-coated nickel-cobalt aluminate cathode material obtained in the embodiment of the present invention is lithium nickel-cobalt aluminate, and a lithium manganate coating layer with a thickness of 3 nm is formed on its surface.
如图3所示,XRD数据中006与102,108与110面分离明显,说明本发明实施例所得锰酸锂包覆的镍钴铝酸锂正极材料层状结构明显,表面包覆锰酸锂后没有破坏镍钴铝酸锂的层状结构。As shown in Figure 3, the 006 and 102, 108 and 110 faces are clearly separated in the XRD data, indicating that the layered structure of the nickel-cobalt lithium aluminate cathode material coated with lithium manganate obtained in the embodiment of the present invention is obvious, and the surface is coated with lithium manganate. The layered structure of nickel cobalt aluminate was not destroyed.
一种锰酸锂包覆的镍钴铝酸锂正极材料的制备方法:A preparation method of a lithium manganate-coated nickel cobalt lithium aluminate cathode material:
(1)将2g聚乙烯吡咯烷酮溶于50mL去离子水中,在50℃下,搅拌12h,得表面活性剂溶液;(1) Dissolve 2g of polyvinylpyrrolidone in 50mL of deionized water, and stir at 50°C for 12h to obtain a surfactant solution;
(2)在步骤(1)所得表面活性剂溶液中加入0.3024g(1.234mmol)四水乙酸锰,搅拌溶解后,再加入4.589g(50mmol)氢氧化镍钴铝,在50℃下,搅拌12h,在120℃的油浴下搅拌蒸干,得锰源包覆的氢氧化镍钴铝前驱体;(2) Add 0.3024g (1.234mmol) manganese acetate tetrahydrate to the surfactant solution obtained in step (1), stir to dissolve, then add 4.589g (50mmol) nickel cobalt aluminum hydroxide, and stir at 50°C for 12h , stirred and evaporated to dryness in an oil bath at 120 °C to obtain a nickel cobalt aluminum hydroxide precursor coated with a manganese source;
(3)将步骤(2)所得锰源包覆的氢氧化镍钴铝前驱体在空气气氛中,以5℃/min的速率升温至450℃,煅烧6h,自然冷却至室温,得氧化锰包覆氧化镍钴铝前驱体;(3) The nickel-cobalt-aluminum hydroxide precursor coated with the manganese source obtained in step (2) is heated to 450 °C at a rate of 5 °C/min in an air atmosphere, calcined for 6 h, and cooled to room temperature naturally to obtain manganese oxide coated Coated nickel oxide cobalt aluminum precursor;
(4)在步骤(3)所得氧化锰包覆的氧化镍钴铝前驱体中加入2.313g(31.3mmol)Li2CO3,置于管式炉中,在以0.05m3/h流动的纯度≥99.9%的氧气气氛下,先以5℃/min的速率升温至480℃,烧结5h,再以5℃/min的速率升温至780℃,烧结15h,得Li2MnO3/LiNi0.8Co0.15Al0.05O2正极材料。(4) 2.313 g (31.3 mmol) Li 2 CO 3 was added to the manganese oxide-coated nickel-cobalt-aluminum precursor obtained in step (3), and placed in a tube furnace, at a purity of 0.05 m 3 /h flowing In an oxygen atmosphere of ≥99.9%, the temperature was first heated to 480 °C at a rate of 5 °C/min, sintered for 5 h, then heated to 780 °C at a rate of 5 °C/min, and sintered for 15 h to obtain Li 2 MnO 3 /LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode material.
电池的组装:称取0.4g本发明实施例所得Li2MnO3/LiNi0.8Co0.15Al0.05O2正极材料,加入0.05g乙炔黑作导电剂和0.05 g PVDF(聚偏氟乙烯)作粘结剂,混合均匀后涂于铝箔上制成正极片,在真空手套箱中以金属锂片为负极,以Celgard 2300 为隔膜,1mol/L LiPF6/EC:DMC(体积比1:1)为电解液,组装成CR2025扣式电池。Assembly of the battery: Weigh 0.4 g of the Li 2 MnO 3 /LiNi 0.8 Co 0.15 Al 0.05 O 2 positive electrode material obtained in the embodiment of the present invention, add 0.05 g of acetylene black as a conductive agent and 0.05 g of PVDF (polyvinylidene fluoride) as a bonding agent After mixing evenly, coat it on aluminum foil to make a positive electrode sheet. In a vacuum glove box, use a metal lithium sheet as the negative electrode, use Celgard 2300 as the separator, and 1mol/L LiPF 6 /EC:DMC (volume ratio 1:1) as the electrolyte. liquid, and assembled into a CR2025 button battery.
经检测,所组装的电池在2.7~4.3V电压范围内,0.1C倍率下,首次放电比容量为209.7mAh/g。After testing, the assembled battery has a specific capacity of 209.7mAh/g for the first discharge at a voltage range of 2.7-4.3V and a rate of 0.1C.
如图5所示,所组装的电池在2.7~4.3V电压范围内,1C倍率下,首次放电比容量为184.4mAh/g,循环100圈,容量保持率为83.2%。As shown in Fig. 5, the assembled battery has a specific capacity of 184.4 mAh/g for the first discharge in the voltage range of 2.7-4.3 V and a rate of 1 C, and the capacity retention rate is 83.2% after 100 cycles.
经检测,所组装的电池在2.7~4.3 V电压范围内,分别在0.5C、1C、2C、5C的倍率下,首次放电容量分别为193.2mAh/g、184.4mAh/g、163.1mAh/g、139.2mAh/g。After testing, the assembled battery has a first discharge capacity of 193.2mAh/g, 184.4mAh/g, 163.1mAh/g and 139.2mAh/g.
实施例2Example 2
一种锰酸锂包覆的镍钴铝酸锂正极材料:A lithium manganate-coated nickel cobalt lithium aluminate cathode material:
LiMnO2的质量百分含量为8wt%,LiMnO2形成厚度6nm的包覆层包覆在镍钴铝酸锂上;所述正极材料为粒径5~15μm的球形颗粒,分子式为LiMnO2/LiNi0.8Co0.15Al0.05O2。The mass percentage content of LiMnO 2 is 8wt%, and LiMnO 2 forms a coating layer with a thickness of 6 nm and coats the nickel cobalt aluminate lithium; the positive electrode material is spherical particles with a particle size of 5-15 μm, and the molecular formula is LiMnO 2 /LiNi 0.8 Co 0.15 Al 0.05 O 2 .
经检测,本发明实施例所得锰酸锂包覆的镍钴铝酸锂正极材料为粒径5~15μm的球形颗粒,表面有锰酸锂包覆层。After testing, the lithium manganate-coated nickel-cobalt lithium aluminate cathode material obtained in the embodiment of the present invention is spherical particles with a particle size of 5-15 μm, and the surface has a lithium manganate coating layer.
经检测,本发明实施例所得锰酸锂包覆的镍钴铝酸锂正极材料的基体部分为镍钴铝酸锂,其表面形成了厚度为6nm的锰酸锂包覆层。After testing, the matrix portion of the lithium manganate-coated lithium manganate lithium aluminate positive electrode material obtained in the embodiment of the present invention is lithium nickel cobalt aluminate, and a lithium manganate coating layer with a thickness of 6 nm is formed on the surface thereof.
经检测,XRD数据中006与102,108与110面分离明显,说明本发明实施例所得锰酸锂包覆的镍钴铝酸锂正极材料层状结构明显,表面包覆锰酸锂后没有破坏镍钴铝酸锂的层状结构。After testing, 006 and 102, 108 and 110 faces are clearly separated in the XRD data, indicating that the layered structure of the nickel-cobalt lithium aluminate cathode material coated with lithium manganate obtained in the embodiment of the present invention is obvious, and the surface is not damaged after coating with lithium manganate. Layered structure of nickel cobalt lithium aluminate.
一种锰酸锂包覆的镍钴铝酸锂正极材料的制备方法:A preparation method of a lithium manganate-coated nickel cobalt lithium aluminate cathode material:
(1)将3g聚乙烯醇溶于60mL去离子水中,在50℃下,搅拌15h,得表面活性剂溶液;(1) Dissolve 3g of polyvinyl alcohol in 60mL of deionized water, and stir at 50°C for 15h to obtain a surfactant solution;
(2)在步骤(1)所得表面活性剂溶液中加入0.728g(4.5mmol)二水合氯化锰,搅拌溶解后,再加入5.048g(55mmol)氢氧化镍钴铝,在50℃下,搅拌13h,在120℃的油浴下搅拌蒸干,得锰源包覆的氢氧化镍钴铝前驱体;(2) Add 0.728g (4.5mmol) manganese chloride dihydrate to the surfactant solution obtained in step (1), stir to dissolve, then add 5.048g (55mmol) nickel cobalt aluminum hydroxide, stir at 50°C 13h, stirring and evaporating to dryness in an oil bath at 120 °C to obtain a nickel-cobalt-aluminum hydroxide precursor coated with a manganese source;
(3)将步骤(2)所得锰源包覆的氢氧化镍钴铝前驱体在空气气氛中,以5℃/min的速率升温至480℃,煅烧5h,自然冷却至室温,得氧化锰包覆的氧化镍钴铝前驱体;(3) The nickel-cobalt-aluminum hydroxide precursor coated with the manganese source obtained in step (2) is heated to 480 °C at a rate of 5 °C/min in an air atmosphere, calcined for 5 h, and cooled to room temperature naturally to obtain manganese oxide coated Coated nickel-cobalt-aluminum precursor;
(4)在步骤(3)所得氧化锰包覆的氧化镍钴铝前驱体中加入2.631g(62.7mmol)LiOH·H2O,置于管式炉中,在以0.08m3/h流动的纯度≥99.9%的氧气气氛下,先以5℃/min的速率升温至500℃,烧结5h,再以5℃/min的速率升温至800℃,烧结18h,得LiMnO2/LiNi0.8Co0.15Al0.05O2正极材料。(4) Add 2.631 g (62.7 mmol) LiOH·H 2 O to the manganese oxide-coated nickel-cobalt-aluminum precursor obtained in step (3), place it in a tube furnace, and place it in a tube furnace with a flow rate of 0.08 m 3 /h. In an oxygen atmosphere with a purity of ≥99.9%, the temperature was first heated to 500°C at a rate of 5°C/min, sintered for 5h, then heated to 800°C at a rate of 5°C/min, and sintered for 18h to obtain LiMnO 2 /LiNi 0.8 Co 0.15 Al 0.05 O cathode material.
电池的组装:称取0.4g本发明实施例所得LiMnO2/LiNi0.8Co0.15Al0.05O2正极材料,加入0.05g乙炔黑作导电剂和0.05 g PVDF(聚偏氟乙烯)作粘结剂,混合均匀后涂于铝箔上制成正极片,在真空手套箱中以金属锂片为负极,以Celgard 2300 为隔膜,1mol/L LiPF6/EC:DMC(体积比1:1)为电解液,组装成CR2025扣式电池。Assembly of the battery: Weigh 0.4 g of the LiMnO 2 /LiNi 0.8 Co 0.15 Al 0.05 O 2 positive electrode material obtained in the embodiment of the present invention, add 0.05 g of acetylene black as a conductive agent and 0.05 g of PVDF (polyvinylidene fluoride) as a binder, After mixing evenly, coat it on aluminum foil to make a positive electrode sheet. In a vacuum glove box, use a metal lithium sheet as a negative electrode, use Celgard 2300 as a separator, and 1mol/L LiPF 6 /EC:DMC (volume ratio 1:1) as an electrolyte. Assembled into a CR2025 button battery.
经检测,所组装的电池在2.7~4.3V电压范围内,0.1C倍率下,首次放电比容量为200.8mAh/g。After testing, the assembled battery has a specific capacity of 200.8mAh/g for the first discharge at a voltage range of 2.7-4.3V and a rate of 0.1C.
经检测,所组装的电池在2.7~4.3V电压范围内,1C倍率下,首次放电比容量为179.8mAh/g,循环100圈,容量保持率为84.1%。After testing, the assembled battery has a specific capacity of 179.8mAh/g for the first discharge in the voltage range of 2.7-4.3V and a rate of 1C, and the capacity retention rate is 84.1% after 100 cycles.
经检测,所组装的电池在2.7~4.3V电压范围内,分别在0.5C、1C、2C、5C的倍率下,首次放电容量分别为191.4mAh/g、179.8mAh/g、167.8mAh/g、139.7mAh/g。After testing, the assembled battery has a first discharge capacity of 191.4mAh/g, 179.8mAh/g, 167.8mAh/g, 0.5C, 1C, 2C, and 5C in the voltage range of 2.7~4.3V, respectively. 139.7mAh/g.
实施例3Example 3
一种锰酸锂包覆的镍钴铝酸锂正极材料:A lithium manganate-coated nickel cobalt lithium aluminate cathode material:
LiMn2O4的质量百分含量为10wt%,LiMn2O4形成厚度15nm的包覆层包覆在镍钴铝酸锂上;所述正极材料为粒径5~15μm的球形颗粒,分子式为LiMn2O4/LiNi0.8Co0.15Al0.05O2。The mass percentage of LiMn 2 O 4 is 10 wt %, and LiMn 2 O 4 forms a coating layer with a thickness of 15 nm and coats the nickel cobalt lithium aluminate; the positive electrode material is spherical particles with a particle size of 5-15 μm, and the molecular formula is LiMn 2 O 4 /LiNi 0.8 Co 0.15 Al 0.05 O 2 .
经检测,本发明实施例所得锰酸锂包覆的镍钴铝酸锂正极材料为粒径5~15μm的球形颗粒,表面有锰酸锂包覆层。After testing, the lithium manganate-coated nickel-cobalt lithium aluminate cathode material obtained in the embodiment of the present invention is spherical particles with a particle size of 5-15 μm, and the surface has a lithium manganate coating layer.
经检测,本发明实施例所得锰酸锂包覆的镍钴铝酸锂正极材料的基体部分为镍钴铝酸锂,其表面形成了厚度为15nm的锰酸锂包覆层。After testing, the matrix portion of the lithium manganate-coated lithium manganate lithium aluminate cathode material obtained in the embodiment of the present invention is lithium nickel cobalt aluminate, and a lithium manganate coating layer with a thickness of 15 nm is formed on its surface.
经检测,XRD数据中006与102,108与110面分离明显,说明本发明实施例所得锰酸锂包覆的镍钴铝酸锂正极材料层状结构明显,表面包覆锰酸锂后没有破坏镍钴铝酸锂的层状结构。After testing, 006 and 102, 108 and 110 faces are clearly separated in the XRD data, indicating that the layered structure of the nickel-cobalt lithium aluminate cathode material coated with lithium manganate obtained in the embodiment of the present invention is obvious, and the surface is not damaged after coating with lithium manganate. Layered structure of nickel cobalt lithium aluminate.
一种锰酸锂包覆的镍钴铝酸锂正极材料的制备方法:A preparation method of a lithium manganate-coated nickel cobalt lithium aluminate cathode material:
(1)将5g聚乙二醇溶于100mL去离子水中,在40℃下,搅拌20h,得表面活性剂溶液;(1) Dissolve 5g polyethylene glycol in 100mL deionized water, and stir at 40°C for 20h to obtain a surfactant solution;
(2)在步骤(1)所得表面活性剂溶液中加入1.302g(5.314mmol)四水乙酸锰,搅拌溶解后,再加入4.589g(50mmol)氢氧化镍钴铝,在40℃下,搅拌15h,在130℃的油浴下搅拌蒸干,得锰源包覆的氢氧化镍钴铝前驱体;(2) Add 1.302 g (5.314 mmol) of manganese acetate tetrahydrate to the surfactant solution obtained in step (1), stir to dissolve, then add 4.589 g (50 mmol) of nickel cobalt aluminum hydroxide, and stir at 40 ° C for 15 h , stirred and evaporated to dryness in an oil bath at 130 °C to obtain a nickel cobalt aluminum hydroxide precursor coated with a manganese source;
(3)将步骤(2)所得锰源包覆的氢氧化镍钴铝前驱体在空气气氛中,以4℃/min的速率升温至500℃,煅烧4h,自然冷却至室温,得氧化锰包覆的氧化镍钴铝前驱体;(3) The manganese source-coated nickel-cobalt-aluminum hydroxide precursor obtained in step (2) is heated to 500 °C at a rate of 4 °C/min in an air atmosphere, calcined for 4 h, and naturally cooled to room temperature to obtain manganese oxide coated Coated nickel-cobalt-aluminum precursor;
(4)在步骤(3)所得氧化锰包覆的氧化镍钴铝前驱体中加入2.039g(27.6mmol)Li2CO3,置于管式炉中,在以0.1m3/h流动的空气气氛下,先以4℃/min的速率升温至550℃,烧结4h,再以4℃/min的速率升温至820℃,烧结18h,得LiMn2O4/LiNi0.8Co0.15Al0.05O2正极材料。(4) Add 2.039 g (27.6 mmol) Li 2 CO 3 to the manganese oxide-coated nickel-cobalt-aluminum precursor obtained in step (3), place it in a tube furnace, and place it in a tube furnace with 0.1 m 3 /h of air flowing Under the atmosphere, the temperature was first heated to 550°C at a rate of 4°C/min, sintered for 4h, then heated to 820°C at a rate of 4°C/min, and sintered for 18h to obtain LiMn 2 O 4 /LiNi 0.8 Co 0.15 Al 0.05 O 2 positive electrode Material.
电池的组装:称取0.4g本发明实施例所得LiMn2O4/LiNi0.8Co0.15Al0.05O2正极材料,加入0.05g乙炔黑作导电剂和0.05 g PVDF(聚偏氟乙烯)作粘结剂,混合均匀后涂于铝箔上制成正极片,在真空手套箱中以金属锂片为负极,以Celgard 2300 为隔膜,1mol/L LiPF6/EC:DMC(体积比1:1)为电解液,组装成CR2025扣式电池。Assembly of the battery: Weigh 0.4 g of the LiMn 2 O 4 /LiNi 0.8 Co 0.15 Al 0.05 O 2 positive electrode material obtained in the embodiment of the present invention, add 0.05 g of acetylene black as a conductive agent and 0.05 g of PVDF (polyvinylidene fluoride) as a bonding agent After mixing evenly, coat it on aluminum foil to make a positive electrode sheet. In a vacuum glove box, use a metal lithium sheet as the negative electrode, use Celgard 2300 as the separator, and 1mol/L LiPF 6 /EC:DMC (volume ratio 1:1) as the electrolyte. liquid, and assembled into a CR2025 button battery.
经检测,所组装的电池在2.7~4.3 V电压范围内,0.1C倍率下,首次放电比容量为204.2mAh/g。After testing, the assembled battery has a specific capacity of 204.2mAh/g for the first discharge at a voltage range of 2.7-4.3 V and a rate of 0.1C.
经检测,所组装的电池在2.7~4.3 V电压范围内,1C倍率下,首次放电比容量为180.7mAh/g,循环100圈,容量保持率为82.9%。After testing, the assembled battery has a specific capacity of 180.7mAh/g for the first discharge in the voltage range of 2.7-4.3 V and a rate of 1C, and the capacity retention rate is 82.9% after 100 cycles.
经检测,所组装的电池在2.7~4.3 V电压范围内,分别在0.5C、1C、2C、5C的倍率下,首次放电容量分别为196.3mAh/g、180.7mAh/g、163.9mAh/g、134.2mAh/g。After testing, the assembled battery has a first discharge capacity of 196.3mAh/g, 180.7mAh/g, 163.9mAh/g and 134.2mAh/g.
对比例1Comparative Example 1
在4.589g(50mmol)氢氧化镍钴铝中加入2.313g(31.3mmol)Li2CO3,置于管式炉中,在以0.05m3/h流动的纯度≥99.9%的氧气气氛下,先以5℃/min的速率升温至480℃,烧结5h,再以5℃/min的速率升温至780℃,烧结15h,得LiNi0.8Co0.15Al0.05O2正极材料。Add 2.313g (31.3mmol) of Li 2 CO 3 to 4.589g (50 mmol) of nickel-cobalt-aluminum hydroxide, put it in a tube furnace, in an oxygen atmosphere with a purity of ≥99.9% flowing at 0.05m 3 /h, first The temperature was raised to 480°C at a rate of 5°C/min, sintered for 5 hours, then heated to 780°C at a rate of 5°C/min, and sintered for 15 hours to obtain LiNi 0.8 Co 0.15 Al 0.05 O 2 positive electrode material.
电池的组装:称取0.4g所得镍钴铝酸锂正极材料,加入0.05g乙炔黑作导电剂和0.05 g PVDF(聚偏氟乙烯)作粘结剂,混合均匀后涂于铝箔上制成正极片,在真空手套箱中以金属锂片为负极,以Celgard 2300 为隔膜,1mol/L LiPF6/EC:DMC(体积比1:1)为电解液,组装成CR2025扣式电池。Assembly of the battery: Weigh 0.4 g of the obtained nickel-cobalt lithium aluminate positive electrode material, add 0.05 g of acetylene black as a conductive agent and 0.05 g of PVDF (polyvinylidene fluoride) as a binder, mix evenly and coat it on aluminum foil to make a positive electrode A CR2025 button cell was assembled in a vacuum glove box with a lithium metal sheet as the negative electrode, Celgard 2300 as the separator, and 1 mol/L LiPF 6 /EC:DMC (volume ratio 1:1) as the electrolyte.
如图4所示,本发明对比例所得镍钴铝酸锂正极材料为粒径5~15μm的球形颗粒。As shown in FIG. 4 , the nickel-cobalt lithium aluminate cathode material obtained in the comparative example of the present invention is spherical particles with a particle size of 5-15 μm.
经检测,所组装的电池在2.7~4.3V电压范围内,0.1C倍率下,首次放电比容量为201.4mAh/g。After testing, the assembled battery has a specific capacity of 201.4mAh/g for the first discharge at a voltage range of 2.7-4.3V and a rate of 0.1C.
如图5所示,所组装的电池在2.7~4.3V电压范围内,1C倍率下,首次放电比容量为180.4mAh/g,循环100圈,容量保持率为64.4%。As shown in Figure 5, the assembled battery has a specific capacity of 180.4 mAh/g for the first discharge in the voltage range of 2.7-4.3 V and a rate of 1 C, and the capacity retention rate is 64.4% after 100 cycles.
经检测,所组装的电池在2.7~4.3V电压范围内,分别在0.5C、1C、2C、5C的倍率下,首次放电容量分别为194.3mAh/g、180.4mAh/g、158.9mAh/g、128.4mAh/g。After testing, the assembled battery has a first discharge capacity of 194.3mAh/g, 180.4mAh/g, 158.9mAh/g, 0.5C, 1C, 2C, and 5C in the voltage range of 2.7~4.3V, respectively. 128.4mAh/g.
综上,本发明方法可以均匀地将锰酸锂包覆于镍钴铝酸锂上,较未包覆锰酸锂的镍钴铝酸锂,有效的提高了该材料的循环保持率和大倍率放电性能,且工艺简单,适宜于大工业生产。To sum up, the method of the present invention can uniformly coat the lithium manganate on the lithium nickel cobalt aluminate, which effectively improves the cycle retention rate and the high rate of the material compared with the lithium nickel cobalt aluminate without coating the lithium manganate. Discharge performance, and simple process, suitable for large-scale industrial production.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711200473.6A CN107946579B (en) | 2017-11-27 | 2017-11-27 | A kind of lithium manganate coated nickel cobalt lithium aluminate cathode material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711200473.6A CN107946579B (en) | 2017-11-27 | 2017-11-27 | A kind of lithium manganate coated nickel cobalt lithium aluminate cathode material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107946579A CN107946579A (en) | 2018-04-20 |
CN107946579B true CN107946579B (en) | 2020-07-10 |
Family
ID=61948875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711200473.6A Active CN107946579B (en) | 2017-11-27 | 2017-11-27 | A kind of lithium manganate coated nickel cobalt lithium aluminate cathode material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107946579B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108493429A (en) * | 2018-05-03 | 2018-09-04 | 中南大学 | The preparation method of anode composite material of lithium ion battery |
CN108767226B (en) * | 2018-05-30 | 2021-08-31 | 陕西煤业化工技术研究院有限责任公司 | A metal phthalocyanine compound-coated ternary positive electrode material and preparation method thereof |
CN108933239B (en) * | 2018-06-26 | 2020-11-13 | 方嘉城 | A kind of preparation method of lithium manganate coated nickel cobalt lithium manganate cathode material |
CN109037649A (en) * | 2018-08-13 | 2018-12-18 | 河北省科学院能源研究所 | It is a kind of to be mixed with modified nickel cobalt lithium aluminate cathode material and preparation method thereof |
CN111293285A (en) * | 2018-12-07 | 2020-06-16 | 湖南杉杉新能源有限公司 | Coating modified lithium ion battery anode material and preparation method thereof |
CN109904443B (en) * | 2019-01-17 | 2022-10-11 | 浙江工业大学 | Preparation method of ternary cathode material of lithium ion battery |
CN113471414A (en) * | 2020-03-31 | 2021-10-01 | 北京卫蓝新能源科技有限公司 | Lithium ion battery composite positive electrode material and preparation method and application thereof |
CN111517377B (en) * | 2020-04-28 | 2023-07-21 | 蜂巢能源科技有限公司 | Precursor of high-nickel ternary positive electrode material, high-nickel ternary positive electrode material and preparation method thereof |
CN111628157B (en) * | 2020-06-30 | 2024-03-26 | 蜂巢能源科技有限公司 | Positive electrode material, preparation method thereof and lithium ion battery |
CN113800574B (en) * | 2021-08-05 | 2023-06-20 | 广州大学 | A kind of nickel-manganese-iron-aluminum-lithium cathode material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102646826A (en) * | 2012-05-21 | 2012-08-22 | 甘肃大象能源科技有限公司 | A kind of core-shell type lithium manganate composite cathode material and its preparation method and application |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104993113B (en) * | 2015-07-08 | 2017-12-08 | 中国科学院大学 | The preparation method of the ternary layered positive electrode of LiMn2O4 coated lithium ion battery |
CN105470482A (en) * | 2015-12-02 | 2016-04-06 | 山东精工电子科技有限公司 | Preparation method of aluminum-coated spherical lithium nickel cobalt aluminum oxide cathode material for lithium-ion battery |
CN105958042B (en) * | 2016-07-19 | 2018-09-07 | 哈尔滨工业大学 | A kind of fabricated in situ Li2MnO3The anode material for lithium-ion batteries and its synthetic method of coating modification |
CN106711444A (en) * | 2016-11-30 | 2017-05-24 | 荆门市格林美新材料有限公司 | Preparation method of in situ coating modified NCA cathode material |
-
2017
- 2017-11-27 CN CN201711200473.6A patent/CN107946579B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102646826A (en) * | 2012-05-21 | 2012-08-22 | 甘肃大象能源科技有限公司 | A kind of core-shell type lithium manganate composite cathode material and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN107946579A (en) | 2018-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107946579B (en) | A kind of lithium manganate coated nickel cobalt lithium aluminate cathode material and preparation method thereof | |
CN104425808B (en) | A kind of compound negative electrode material of lithium ion battery and preparation method thereof and lithium ion battery | |
CN108091843B (en) | A core-shell structure lithium-rich manganese-based composite cathode material and preparation method thereof | |
CN104966823B (en) | Material surface has nickel cobalt lithium aluminate cathode material of component concentration gradient and preparation method thereof | |
CN114188536B (en) | Lithium ion battery anode material uniformly coated with MOF and preparation method thereof | |
CN103545519B (en) | A carbon-coated lithium-rich positive electrode material and preparation method thereof | |
CN109616664B (en) | Nickel-cobalt-manganese precursor, preparation method of nickel-cobalt-manganese ternary material and lithium ion battery | |
CN110429268A (en) | A kind of modified boron doping lithium-rich manganese-based anode material and the preparation method and application thereof | |
WO2022089205A1 (en) | Doped high-nickel ternary material and preparation method therefor | |
CN107910539A (en) | A kind of nickel cobalt lithium aluminate cathode material of lithium metasilicate cladding and preparation method thereof | |
CN104868122A (en) | Preparation method of single-crystal Li(NiCoMn)O2 ternary cathode material | |
CN107069030B (en) | Preparation method of lithium-rich manganese-based positive electrode material with controllable shape and size | |
CN103178258A (en) | Method for preparing aluminum oxide coated modified lithium nickel cobalt manganese oxygen cathode material | |
CN106602009A (en) | Lithium-rich positive electrode modified material of lithium ion battery and preparation method of lithium-rich positive electrode modified material | |
CN111477867A (en) | Modification method of high-nickel ternary cathode material of lithium ion battery | |
CN103682332A (en) | Compound type negative electrode material of lithium ion battery and preparation method of material and lithium ion battery | |
CN100416895C (en) | A kind of positive electrode active material of lithium ion battery and preparation method thereof | |
CN107946578B (en) | A kind of lithium cobalt oxide-coated nickel-cobalt-aluminum oxide cathode material and preparation method thereof | |
CN103985854A (en) | A kind of preparation method of nanoscale lithium nickel manganese oxide cathode material | |
CN106025208A (en) | Preparation method for carbon-coated ternary positive electrode material | |
WO2023179613A1 (en) | Composite positive electrode material, preparation method therefor, and application thereof | |
CN110233261B (en) | A preparation method of single crystal ternary lithium battery positive electrode material and lithium ion battery | |
CN107204426A (en) | A kind of cobalt nickel oxide manganses lithium/titanate composite anode material for lithium of zirconium doping vario-property | |
CN107069001A (en) | A kind of cellular zinc sulfide/carbon composite negative pole material and preparation method thereof | |
CN103094572B (en) | Lithium vanadate anode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230804 Address after: No. 2, Industrial Avenue, Xiaokou Town, Taihe County, Fuyang City, Anhui Province, 236600 Patentee after: Anhui Weijing New Material Technology Co.,Ltd. Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 154 Patentee before: CENTRAL SOUTH University |