CN106591335A - Codon vegetalization-transformed LbCpf1 gene and application thereof - Google Patents
Codon vegetalization-transformed LbCpf1 gene and application thereof Download PDFInfo
- Publication number
- CN106591335A CN106591335A CN201610979713.6A CN201610979713A CN106591335A CN 106591335 A CN106591335 A CN 106591335A CN 201610979713 A CN201610979713 A CN 201610979713A CN 106591335 A CN106591335 A CN 106591335A
- Authority
- CN
- China
- Prior art keywords
- lbcpf1
- rice
- gene
- codon
- genes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 46
- 108020004705 Codon Proteins 0.000 title claims abstract description 30
- 241000209094 Oryza Species 0.000 claims abstract description 34
- 235000007164 Oryza sativa Nutrition 0.000 claims abstract description 34
- 235000009566 rice Nutrition 0.000 claims abstract description 34
- 241000196324 Embryophyta Species 0.000 claims abstract description 30
- 239000013598 vector Substances 0.000 claims abstract description 21
- 239000013604 expression vector Substances 0.000 claims abstract description 16
- 230000008685 targeting Effects 0.000 claims abstract description 13
- 238000010363 gene targeting Methods 0.000 claims abstract description 4
- 238000010008 shearing Methods 0.000 claims abstract 2
- 206010020649 Hyperkeratosis Diseases 0.000 claims description 31
- 239000002609 medium Substances 0.000 claims description 29
- 241000589158 Agrobacterium Species 0.000 claims description 16
- 230000009466 transformation Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 239000002773 nucleotide Substances 0.000 claims description 10
- 125000003729 nucleotide group Chemical group 0.000 claims description 10
- 238000012216 screening Methods 0.000 claims description 9
- 230000004069 differentiation Effects 0.000 claims description 8
- 230000008929 regeneration Effects 0.000 claims description 7
- 238000011069 regeneration method Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 4
- 210000001161 mammalian embryo Anatomy 0.000 claims description 2
- 238000012258 culturing Methods 0.000 claims 2
- 230000001939 inductive effect Effects 0.000 claims 2
- 239000001963 growth medium Substances 0.000 claims 1
- 230000000869 mutational effect Effects 0.000 claims 1
- 238000010362 genome editing Methods 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 108020004414 DNA Proteins 0.000 description 10
- 239000012634 fragment Substances 0.000 description 9
- 239000000725 suspension Substances 0.000 description 8
- 230000006698 induction Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 230000009261 transgenic effect Effects 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000012882 rooting medium Substances 0.000 description 4
- 101710163270 Nuclease Proteins 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 210000002257 embryonic structure Anatomy 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000017807 phytochemicals Nutrition 0.000 description 3
- 229930000223 plant secondary metabolite Natural products 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 238000010222 PCR analysis Methods 0.000 description 2
- 244000184734 Pyrus japonica Species 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 101150077466 bel gene Proteins 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 101150028074 2 gene Proteins 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 108091033409 CRISPR Proteins 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000005976 Citrus sinensis Nutrition 0.000 description 1
- 240000002319 Citrus sinensis Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 108010050181 aleurone Proteins 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明提供了一种密码子植物化改造的LbCpf1基因及其应用。本发明利用水稻优化密码子设计合成了LbCpf1基因。并且本发明提供一种表达盒和一种表达载体,以及该表达盒和表达载体在水稻基因编辑方面的应用。本发明利用改造的LbCpf1基因构建植物表达载体,进而构建水稻打靶载体,导入水稻细胞后造成水稻特异基因位点的DNA双链剪切。本发明实现了水稻基因打靶,这是因为经过密码子植物化改造的LbCpf1的适用于水稻的基因组剪切。
The invention provides a codon-planted LbCpf1 gene and application thereof. The invention synthesizes the LbCpf1 gene by utilizing rice optimized codon design and synthesis. And the present invention provides an expression cassette and an expression vector, as well as the application of the expression cassette and the expression vector in rice gene editing. The invention utilizes the transformed LbCpf1 gene to construct a plant expression vector, and then constructs a rice targeting vector, which is introduced into rice cells to cause DNA double-strand shearing of rice-specific gene sites. The invention realizes rice gene targeting, because the LbCpf1 modified by codon plantization is suitable for genome splicing of rice.
Description
技术领域technical field
本发明涉及生物技术和植物基因工程技术领域。具体而言,本发明涉及一种密码子经过植物化改造的LbCpf1基因在水稻基因打靶方面的应用。The invention relates to the technical fields of biotechnology and plant genetic engineering. Specifically, the present invention relates to the application of a codon-modified LbCpf1 gene in rice gene targeting.
背景技术Background technique
CRISPR-核酸酶技术是近几年发展出的一种真核生物特异位点基因编辑技术。该技术所涉及的核酸酶目前发现的主要有两种:Cas9核酸酶和Cpf1核酸酶。CRISPR-Cas9技术自2012年发现以来,由于其操作简单、高效,已经被广泛应用于斑马鱼、小鼠、大鼠等动物和拟南芥、烟草、甜橙、玉米、水稻等植物的基因编辑中。CRISPR-Cpf1是近两年发现,并且已经成功应用于大鼠等动物的基因编辑。CRISPR-Cpf1相较于CRISPR-Cas9有以下优点:1、Cpf1不仅可以切割DNA,也能切割RNA;2、Cpf1能够独立的对pre-crRNA进行加工形成成熟的crRNA;3、Cpf1蛋白切割DNA双链后形成粘性末端,在一定程度上更有利于替换的发生或者造成大片段的缺失或插入;4、Cpf1为基因编辑提供更多的位点供选择。CRISPR-nuclease technology is a eukaryotic site-specific gene editing technology developed in recent years. There are two main types of nucleases involved in this technology: Cas9 nuclease and Cpf1 nuclease. Since CRISPR-Cas9 technology was discovered in 2012, due to its simple operation and high efficiency, it has been widely used in gene editing of zebrafish, mice, rats and other animals and plants such as Arabidopsis thaliana, tobacco, sweet orange, corn and rice middle. CRISPR-Cpf1 was discovered in the past two years and has been successfully applied to gene editing in rats and other animals. Compared with CRISPR-Cas9, CRISPR-Cpf1 has the following advantages: 1. Cpf1 can not only cleave DNA, but also cleave RNA; 2. Cpf1 can independently process pre-crRNA to form mature crRNA; 3. Cpf1 protein cleaves DNA double The formation of sticky ends after the chain is more conducive to the occurrence of substitutions or the deletion or insertion of large fragments to a certain extent; 4. Cpf1 provides more sites for gene editing.
但现在使用的LbCpf1是从原核生物大肠杆菌中分离出来的,而原核生物和真核生物存在不同的密码子偏好和碱基组成。例如以水稻为代表的单子叶植物,其GC含量高,较细菌及双子叶植物等物种,密码子偏好性强。因此直接使用未经人工优化设计的LbCpf1,会影响其在真核细胞中的表达效率,从而影响其对DNA双链的切割效率。此外,由于LbCpf1来自于大肠杆菌,可能对转化受体基因组造成不利影响,还可能引发对其安全性的担忧。But the LbCpf1 currently used was isolated from the prokaryote Escherichia coli, and prokaryotes and eukaryotes have different codon preferences and base compositions. For example, monocotyledonous plants represented by rice have high GC content and stronger codon preference than species such as bacteria and dicotyledonous plants. Therefore, direct use of LbCpf1 without artificial optimized design will affect its expression efficiency in eukaryotic cells, thereby affecting its cutting efficiency of DNA double strands. In addition, since LbCpf1 comes from Escherichia coli, it may have adverse effects on the genome of the transformed recipient, and may also cause concerns about its safety.
发明内容Contents of the invention
针对上述问题,本发明希望对LbCpf1进行密码子植物化改造。本发明旨在将LbCpf1基因对密码子经过植物化改造,并整合到表达载体中,在此基础上构建相应的打靶载体,而后通过水稻遗传转化实现对水稻特异基因编辑。In view of the above problems, the present invention hopes to transform LbCpf1 into phytocodons. The present invention aims to transform the codons of the LbCpf1 gene into an expression vector through phytochemical transformation, construct a corresponding targeting vector on this basis, and then realize rice-specific gene editing through rice genetic transformation.
具体而言,在第一个方面,本发明提供一种密码子植物化改造的LbCpf1基因,命名为plant LbCpf1,所述LbCpf1基因至少包含如序列表中SEQ ID NO.1所示的核苷酸序列。Specifically, in the first aspect, the present invention provides a codon phytochemically modified LbCpf1 gene named plant LbCpf1, the LbCpf1 gene at least comprising the nucleotides shown in SEQ ID NO.1 in the sequence listing sequence.
优选地,该基因由SEQ ID NO:1所示的核苷酸序列构成。该序列是以模式作物水稻密码子为基础改造获得的,即在维持编码氨基酸序列不变的前提下,利用发明人从与水稻基因相关密码子中所筛选出的密码子替换原有密码子,得到植物化改造的plant LbCpf1序列,再经过化学合成而来。采用本发明的基因可以明显提高剪切效率。Preferably, the gene consists of the nucleotide sequence shown in SEQ ID NO:1. The sequence is obtained based on the codons of the model crop rice, that is, under the premise of maintaining the coding amino acid sequence unchanged, the codons selected by the inventor from the codons related to rice genes are used to replace the original codons. The phytotransformed plant LbCpf1 sequence is obtained, and then chemically synthesized. Using the gene of the invention can obviously improve the cutting efficiency.
在第二个方面,本发明提供一种含有所述plant LbCpf1基因的植物表达载体。该植物表达载体的构建方法是利用NotI/SacI酶切位点,用NotI/SacI酶切pHUN600载体并回收,由于合成的plant LbCpf1序列两端加有NotI/SacI酶切位点,可以利用T4连接酶将plantLbCpf1连接到pHUN600载体,得到植物表达载体pHUN-plant LbCpf1(pHUN 611)。In the second aspect, the present invention provides a plant expression vector containing the plant LbCpf1 gene. The construction method of the plant expression vector is to use the NotI/SacI restriction site to digest the pHUN600 vector with NotI/SacI and recover it. Since the synthetic plant LbCpf1 sequence has NotI/SacI restriction sites at both ends, it can be connected by T4 The enzyme ligated plantLbCpf1 to the pHUN600 vector to obtain the plant expression vector pHUN-plant LbCpf1 (pHUN 611).
另一方面,在表达载体的基础上,根据实验的实际需要,构建相应的基因打靶载体。On the other hand, on the basis of the expression vector, the corresponding gene targeting vector is constructed according to the actual needs of the experiment.
另一方面,本发明提供一种表达盒,其特征在于,所述表达盒中包含上述的LbCpf1基因。On the other hand, the present invention provides an expression cassette, characterized in that the expression cassette contains the above-mentioned LbCpf1 gene.
另一方面,本发明提供一种上述基因、表达盒或载体的应用,其特征在于,所述应用包括利用所述密码子植物化改造的LbCpf1基因完成水稻体内DNA双链的剪切,并在自身修复系统的作用下,获得带有突变位点的转基因植物或植物部分。On the other hand, the present invention provides an application of the above-mentioned gene, expression cassette or vector, characterized in that the application includes utilizing the LbCpf1 gene of the codon phytochemical transformation to complete the cutting of the DNA double strand in the rice body, and Under the action of the self-repair system, transgenic plants or plant parts with mutation sites are obtained.
在另一个方面,本发明提供一种利用pHUN-plantLbCpf1(pHUN 611)表达载体(其含有所述密码子植物化改造的LbCpf1基因),在表达载体的基础上只需进行简单的退火、酶切连接作用即可获得特异基因的打靶载体(pHUN 611-BEL),将打靶载体导入水稻细胞的方法,包括下述步骤:In another aspect, the present invention provides a pHUN-plantLbCpf1 (pHUN 611) expression vector (which contains the LbCpf1 gene of the codon phytochemical transformation), on the basis of the expression vector only need to carry out simple annealing, enzyme digestion The targeting vector (pHUN 611-BEL) of the specific gene can be obtained by ligation, and the method for introducing the targeting vector into rice cells comprises the following steps:
(1)将水稻种子去壳、灭菌后将胚分离出来,置于愈伤组织诱导培养基上以产生次级愈伤组织;(1) dehulling and sterilizing the rice seeds, separating the embryos, and placing them on the callus induction medium to produce secondary callus;
(2)将次级愈伤组织转移至新的愈伤组织诱导培养基预培养;(2) Secondary callus is transferred to new callus induction medium for pre-cultivation;
(3)将步骤(2)中获得的愈伤组织与携带plantLbCpf1的打靶载体(pHUN 611-BEL)的农杆菌接触15分钟;(3) The callus obtained in step (2) was contacted with the Agrobacterium carrying the targeting vector (pHUN 611-BEL) of plantLbCpf1 for 15 minutes;
(4)将步骤(3)的愈伤组织转移到上垫上三张无菌滤纸(加入2.5-3.5mL农杆菌悬浮培养基)的培养皿中,21-23℃培养48小时;(4) Transfer the callus of step (3) to a petri dish with three sterile filter papers (adding 2.5-3.5 mL of Agrobacterium suspension medium) on the upper pad, and cultivate for 48 hours at 21-23 ° C;
(5)将步骤(4)的愈伤组织置于前筛选培养基上培养5-7天;(5) the callus of step (4) is placed on the pre-selection medium and cultivated for 5-7 days;
(6)将步骤(5)的愈伤组织转移筛选培养基上,以获得抗性愈伤组织;(6) transfer the callus of step (5) on the selection medium to obtain resistant callus;
(7)将抗性愈伤组织转移到分化再生培养基中分化成苗;和(7) transfer the resistant callus to the differentiation regeneration medium to differentiate into shoots; and
(8)将步骤(7)的苗转移到生根培养基中生根。(8) The shoots of step (7) are transferred to the rooting medium to take root.
其中所述步骤(1)中的种子是成熟种子;所述步骤(1)、(2)中的诱导培养基是说明书表1所列出的诱导培养基;所述步骤(3)中的与农杆菌接触是将愈伤组织浸泡在所述农杆菌悬浮液中;所述步骤(4)中的农杆菌悬浮培养基是说明书表1所列出的悬浮培养基;所述步骤(5)中的前筛选培养基是说明书表1所列出的前筛选培养基;所述步骤(6)中的筛选培养基是说明书表1所列出的筛选培养基;所述步骤(7)中的分化再生培养基是说明书表1所列出的分化再生培养基;所述步骤(8)中的生根培养基是说明书表1所列出的生根培养基。Wherein the seed in the step (1) is a mature seed; the induction medium in the step (1), (2) is the induction medium listed in Table 1 of the instructions; The Agrobacterium contact is that the callus is soaked in the Agrobacterium suspension; the Agrobacterium suspension medium in the step (4) is the suspension medium listed in Table 1 of the instructions; in the step (5) The pre-selection medium is the pre-screening medium listed in Table 1 of the instructions; the screening medium in the step (6) is the screening medium listed in Table 1 of the instructions; the differentiation in the step (7) The regeneration medium is the differentiation regeneration medium listed in Table 1 of the instructions; the rooting medium in the step (8) is the rooting medium listed in Table 1 of the instructions.
在优选的实施方案中,其中所述水稻是粳稻,更优选地,所述水稻是粳稻日本晴。In a preferred embodiment, wherein the rice is japonica, more preferably, the rice is japonica Nipponbare.
表1培养基的示例性配方Exemplary formulation of medium in Table 1
表格中所提到的“优化的N6大量元素”指的是,该N6大量元素中[NO3-]/[NH4+]=40mM/10mM。The "optimized N6 macroelement" mentioned in the table refers to [NO3-]/[NH4+]=40mM/10mM in the N6 macroelement.
在优选的实施方案中,所述plant LbCpf1标记基因的核苷酸序列为SEQ ID NO:1所示的核苷酸序列,具体如:In a preferred embodiment, the nucleotide sequence of the plant LbCpf1 marker gene is the nucleotide sequence shown in SEQ ID NO: 1, specifically as:
atgtccaagctggagaagtttacaaactgttacagcctctccaaaaccctcaggtttaaagcgatcccggtgggcaagacccaggagaacatcgacaacaagaggctcctggtggaagacgagaagcgcgccgaagactacaagggcgtgaagaagctgctcgataggtactacctcagctttattaacgacgtgctgcacagcatcaaactcaagaatctcaacaactacatctccctcttccgcaaaaagacccgcaccgagaaggagaacaaggagctggagaacctggagatcaacctccgcaaggaaatcgccaaagcgttcaagggcaatgaagggtacaagagcctcttcaagaaagacatcatcgaaactatcctcccagagtttctcgatgacaaggacgagatcgcgctggtgaactcctttaacgggttcacaaccgcgtttaccggcttctttgataacagggaaaatatgttctccgaggaggccaagtccaccagcatcgccttcaggtgtatcaacgagaacctcacccgctacatttccaatatggacattttcgagaaggtggatgcgatcttcgataagcacgaggtgcaggagatcaaagagaagattctcaattccgattatgacgtcgaggatttcttcgaaggggagttctttaattttgtgctcacacaagagggcattgacgtgtacaacgcgattatcgggggcttcgtcacagagtccggggagaagattaaggggctgaatgagtacatcaatctgtacaatcagaagaccaagcagaaactgccgaaattcaagccgctctacaagcaagtcctgtccgatagggaaagcctctccttctacggcgagggctataccagcgacgaggaggtgctggaagtcttccgcaacacactgaataagaatagcgagattttctcctccatcaagaagctcgagaagctctttaagaactttgacgagtacagctccgccgggattttcgtgaagaacgggccggcgatcagcaccatctccaaggacatctttggcgagtggaacgtcatcagggacaagtggaacgccgagtacgacgacatccacctgaagaagaaggcggtggtgaccgagaagtatgaggacgatcgcaggaagtccttcaaaaaaatcggctccttcagcctcgaacagctccaggagtatgccgatgcggatctgtccgtcgtcgagaagctgaaggaaatcatcattcagaaggtcgacgagatctataaagtgtacgggtccagcgagaagctgttcgacgccgactttgtgctcgagaagtccctcaaaaagaatgacgccgtggtggccattatgaaagacctgctcgactccgtgaagtccttcgaaaattacattaaagcgttctttggggaggggaaggaaactaacagggatgagtccttctatggcgactttgtcctcgcgtacgacatcctgctgaaggtcgaccacatttacgacgcgatccgcaactacgtgacacagaagccgtactccaaagacaagttcaagctgtacttccagaacccgcaatttatggggggctgggacaaggataaagagacagactaccgcgcgacaattctccgctatggctccaaatactatctggccatcatggacaagaagtacgcgaagtgcctgcagaagatcgacaaagacgacgtcaatggcaactatgaaaagatcaactacaagctgctgccgggcccgaacaagatgctcccgaaggtgttcttcagcaagaagtggatggcctactacaatccaagcgaggatattcagaaaatctataaaaacgggaccttcaagaagggggacatgtttaacctcaacgactgccacaagctcattgatttcttcaaggatagcatttcccgctacccgaaatggtccaatgcgtacgattttaacttctccgagacagaaaagtacaaagacatcgcgggcttttacagggaggtggaggagcaagggtataaagtttcttttgaatccgcgagcaagaaggaagtcgacaagctcgtcgaggagggcaagctctacatgttccaaatttataacaaggacttttccgacaagagccatgggaccccaaacctccacaccatgtacttcaaactgctctttgacgagaacaaccacgggcaaatcaggctgagcggcggcgccgaattattcatgcgcagggcctccctcaagaaggaagagctggtcgtccatccagccaattccccgatcgcgaacaagaacccggacaatccgaaaaagaccaccaccctgtcctacgacgtctacaaggacaaacgcttcagcgaagaccagtacgaattacacatcccaattgcgattaataagtgcccaaagaatatcttcaaaattaatacagaggtcagggtgctgctcaaacacgacgacaatccgtatgtcatcggcattgacaggggcgagcgcaatctgctctatatcgtggtcgtggatgggaagggcaatattgtggagcagtactccctgaacgagattatcaacaacttcaatgggattaggattaagaccgactatcacagcctgctcgacaagaaagaaaaagagaggtttgaggcccgccaaaactggacctccattgagaatatcaaagaattaaaggccggctatatttcccaagtcgtccacaagatctgcgagctggtggagaaatatgacgccgtgattgcgctcgaagacttaaattctgggttcaagaactcccgcgtgaaggtggaaaaacaggtgtatcagaaattcgagaaaatgctgatcgacaaactcaattatatggtggataagaagtccaacccgtgtgccacagggggcgcgctgaagggctatcagatcaccaacaagttcgagagcttcaagagcatgagcacccagaacgggtttattttctacatcccggcgtggctcacctccaagattgacccgagcaccggcttcgtgaacctcctgaagacaaagtatacctccattgccgacagcaagaagtttatctcctccttcgaccgcattatgtatgtgccggaggaggacctcttcgagttcgccctcgactacaaaaacttcagccgcacagatgcggattacatcaagaagtggaagctgtactcctacgggaacaggatccgcatcttcaggaatccaaaaaaaaataacgtctttgactgggaggaagtgtgcctgacatccgcctacaaggaactgttcaataaatacggcatcaattaccagcagggcgacattcgcgccctcctctgtgagcagtccgacaaagcgttttactccagcttcatggccctcatgtccctgatgctccaaatgaggaatagcatcacagggcgcaccgacgtcgacttcctcatcagcccggtgaagaactccgacgggatcttttacgactcccgcaactatgaggcgcaagagaatgcgatcctcccgaagaacgccgatgcgaacggggcctataatatcgccaggaaagtgctctgggccatcgggcagttcaaaaaggcggaggatgagaagctcgacaaggtgaaaattgccatttccaacaaggagtggctggagtacgcgcagacctccgtgaagcacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagggatcctacccatacgatgttccagattacgcttatccctacgacgtgcctgattatgcatacccatatgatgtccccgactatgcctaaatgtccaagctggagaagtttacaaactgttacagcctctccaaaaccctcaggtttaaagcgatcccggtgggcaagacccaggagaacatcgacaacaagaggctcctggtggaagacgagaagcgcgccgaagactacaagggcgtgaagaagctgctcgataggtactacctcagctttattaacgacgtgctgcacagcatcaaactcaagaatctcaacaactacatctccctcttccgcaaaaagacccgcaccgagaaggagaacaaggagctggagaacctggagatcaacctccgcaaggaaatcgccaaagcgttcaagggcaatgaagggtacaagagcctcttcaagaaagacatcatcgaaactatcctcccagagtttctcgatgacaaggacgagatcgcgctggtgaactcctttaacgggttcacaaccgcgtttaccggcttctttgataacagggaaaatatgttctccgaggaggccaagtccaccagcatcgccttcaggtgtatcaacgagaacctcacccgctacatttccaatatggacattttcgagaaggtggatgcgatcttcgataagcacgaggtgcaggagatcaaagagaagattctcaattccgattatgacgtcgaggatttcttcgaaggggagttctttaattttgtgctcacacaagagggcattgacgtgtacaacgcgattatcgggggcttcgtcacagagtccggggagaagattaaggggctgaatgagtacatcaatctgtacaatcagaagaccaagcagaaactgccgaaattcaagccgctctacaagcaagtcctgtccgatagggaaagcctctccttctacggcgagggctataccagcgacgaggaggtgctggaagtcttccgcaacacactgaataagaatagcgagattttctcctccatcaagaagctcgagaagctctttaagaactttgacgagtacagctccg ccgggattttcgtgaagaacgggccggcgatcagcaccatctccaaggacatctttggcgagtggaacgtcatcagggacaagtggaacgccgagtacgacgacatccacctgaagaagaaggcggtggtgaccgagaagtatgaggacgatcgcaggaagtccttcaaaaaaatcggctccttcagcctcgaacagctccaggagtatgccgatgcggatctgtccgtcgtcgagaagctgaaggaaatcatcattcagaaggtcgacgagatctataaagtgtacgggtccagcgagaagctgttcgacgccgactttgtgctcgagaagtccctcaaaaagaatgacgccgtggtggccattatgaaagacctgctcgactccgtgaagtccttcgaaaattacattaaagcgttctttggggaggggaaggaaactaacagggatgagtccttctatggcgactttgtcctcgcgtacgacatcctgctgaaggtcgaccacatttacgacgcgatccgcaactacgtgacacagaagccgtactccaaagacaagttcaagctgtacttccagaacccgcaatttatggggggctgggacaaggataaagagacagactaccgcgcgacaattctccgctatggctccaaatactatctggccatcatggacaagaagtacgcgaagtgcctgcagaagatcgacaaagacgacgtcaatggcaactatgaaaagatcaactacaagctgctgccgggcccgaacaagatgctcccgaaggtgttcttcagcaagaagtggatggcctactacaatccaagcgaggatattcagaaaatctataaaaacgggaccttcaagaagggggacatgtttaacctcaacgactgccacaagctcattgatttcttcaaggatagcatttcccgctacccgaaatggtccaatgcgtacgattttaacttctccgagacagaaaagtacaaagacatcgc gggcttttacagggaggtggaggagcaagggtataaagtttcttttgaatccgcgagcaagaaggaagtcgacaagctcgtcgaggagggcaagctctacatgttccaaatttataacaaggacttttccgacaagagccatgggaccccaaacctccacaccatgtacttcaaactgctctttgacgagaacaaccacgggcaaatcaggctgagcggcggcgccgaattattcatgcgcagggcctccctcaagaaggaagagctggtcgtccatccagccaattccccgatcgcgaacaagaacccggacaatccgaaaaagaccaccaccctgtcctacgacgtctacaaggacaaacgcttcagcgaagaccagtacgaattacacatcccaattgcgattaataagtgcccaaagaatatcttcaaaattaatacagaggtcagggtgctgctcaaacacgacgacaatccgtatgtcatcggcattgacaggggcgagcgcaatctgctctatatcgtggtcgtggatgggaagggcaatattgtggagcagtactccctgaacgagattatcaacaacttcaatgggattaggattaagaccgactatcacagcctgctcgacaagaaagaaaaagagaggtttgaggcccgccaaaactggacctccattgagaatatcaaagaattaaaggccggctatatttcccaagtcgtccacaagatctgcgagctggtggagaaatatgacgccgtgattgcgctcgaagacttaaattctgggttcaagaactcccgcgtgaaggtggaaaaacaggtgtatcagaaattcgagaaaatgctgatcgacaaactcaattatatggtggataagaagtccaacccgtgtgccacagggggcgcgctgaagggctatcagatcaccaacaagttcgagagcttcaagagcatgagcacccagaacgggtttattttctacatcccggcgtggctc acctccaagattgacccgagcaccggcttcgtgaacctcctgaagacaaagtatacctccattgccgacagcaagaagtttatctcctccttcgaccgcattatgtatgtgccggaggaggacctcttcgagttcgccctcgactacaaaaacttcagccgcacagatgcggattacatcaagaagtggaagctgtactcctacgggaacaggatccgcatcttcaggaatccaaaaaaaaataacgtctttgactgggaggaagtgtgcctgacatccgcctacaaggaactgttcaataaatacggcatcaattaccagcagggcgacattcgcgccctcctctgtgagcagtccgacaaagcgttttactccagcttcatggccctcatgtccctgatgctccaaatgaggaatagcatcacagggcgcaccgacgtcgacttcctcatcagcccggtgaagaactccgacgggatcttttacgactcccgcaactatgaggcgcaagagaatgcgatcctcccgaagaacgccgatgcgaacggggcctataatatcgccaggaaagtgctctgggccatcgggcagttcaaaaaggcggaggatgagaagctcgacaaggtgaaaattgccatttccaacaaggagtggctggagtacgcgcagacctccgtgaagcacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagggatcctacccatacgatgttccagattacgcttatccctacgacgtgcctgattatgcatacccatatgatgtccccgactatgcctaa
附图说明Description of drawings
图1-1至图1-4为经过密码子植物化改造的plantLbCpf1与原始LbCpf1核苷酸序列比对。其中Optimized为优化后的plantLbCpf1的核苷酸序列,Original为原始LbCpf1的核苷酸序列。Figure 1-1 to Figure 1-4 are the nucleotide sequence alignment of plantLbCpf1 modified by codon phytization and original LbCpf1. Wherein, Optimized is the nucleotide sequence of the optimized plantLbCpf1, and Original is the nucleotide sequence of the original LbCpf1.
图2为经过密码子植物化改造的plantLbCpf1与原始LbCpf1基因编码蛋白的氨基酸序列比对。Optimized为优化后plantLbCpf1基因编码的氨基酸序列,Original为原始LbCpf1编码的氨基酸序列。Figure 2 is the alignment of the amino acid sequences of the protein encoded by plantLbCpf1 and the original LbCpf1 gene after codon phytization. Optimized is the amino acid sequence encoded by the optimized plantLbCpf1 gene, and Original is the amino acid sequence encoded by the original LbCpf1.
图3为PHUN611(LbCpf1)载体质粒示意图。Fig. 3 is a schematic diagram of the PHUN611 (LbCpf1) vector plasmid.
图4为转基因植株的PCR检测电泳图。扩增片段为LbCpf1基因的部分,片段大小为496bp。M为DL2kbmarker;PC为阳性对照;NC为阴性对照;1-8为随机挑选的转基因植株。Fig. 4 is the electrophoresis diagram of PCR detection of transgenic plants. The amplified fragment is a part of the LbCpf1 gene, and the fragment size is 496bp. M is DL2kbmarker; PC is positive control; NC is negative control; 1-8 are randomly selected transgenic plants.
具体实施方式detailed description
以下结合附图叙述本发明的实施例。应该说明,下述实施例仅用于对本发明的示例性实现方式进行说明,而并非对本发明进行任何限制。本领域技术人员可以对本发明作出某些等同的改动和显而易见的改进。Embodiments of the present invention are described below in conjunction with the accompanying drawings. It should be noted that the following embodiments are only used to illustrate exemplary implementations of the present invention, but not to limit the present invention. Certain equivalent changes and obvious improvements can be made to the present invention by those skilled in the art.
在没有其他具体说明的情况下,下述具体实施方式中的操作均采用本领域通用的常规操作来进行。本领域技术人员可以很容易地从现有技术中获得关于这样的常规操作的教导,例如可以参照教科书Sambrook and DavidRussell,Molecular Cloning:ALaboratory Manual,3rd ed.,Vols1,2;CharlesNeal Stewart,Alisher Touraev,VitalyCitovsky and Tzvi Tzfira,PlantTransformation Technologies等。下述实施例中所用的药材原料、试剂、材料等,如无特殊说明,均为市售购买产品。Unless otherwise specified, the operations in the following specific embodiments are performed by common conventional operations in the art. Those skilled in the art can easily obtain teachings about such routine operations from the prior art, for example, with reference to the textbooks Sambrook and DavidRussell, Molecular Cloning: A Laboratory Manual, 3rd ed., Vols 1, 2; CharlesNeal Stewart, Alisher Touraev, Vitaly Citovsky and Tzvi Tzfira, Plant Transformation Technologies, etc. The medicinal raw materials, reagents, materials, etc. used in the following examples are all commercially available products unless otherwise specified.
实施例1——LbCpf1基因的密码子植物化改造Embodiment 1——Phytochemical modification of codons of LbCpf1 gene
本申请的发明人根据GENBANK数据库中的信息,收集水稻92188条CDS序列,共计34132283个密码子,在网站http://www.kazusa.or.jp/codon/,分析这些密码子在水稻中的使用情况。同一物种同一氨基酸,不同密码子被使用的情况有所不同,发明人根据在水稻中各密码子的使用情况,利用自行设计的密码子的组合替换原有密码子,对来自大肠杆菌的LbCpf1基因进行植物化改造,获得一条新的DNA序列,并给这个DNA序列末端加上水稻偏好的终止密码子TGA,形成一个新基因,该基因被命名为plantLbCpf1,序列如SEQ ID NO:1所示,与LbCpf1序列比对见图1。According to the information in the GENBANK database, the inventors of the present application collected 92188 CDS sequences of rice, with a total of 34132283 codons, and analyzed the distribution of these codons in rice on the website http://www.kazusa.or.jp/codon/ Usage. For the same amino acid in the same species, different codons are used differently. According to the usage of each codon in rice, the inventors replaced the original codons with a combination of self-designed codons. The LbCpf1 gene from Escherichia coli Carry out plant transformation, obtain a new DNA sequence, and add rice preferred stop codon TGA to the end of this DNA sequence to form a new gene, which is named plantLbCpf1, and the sequence is shown in SEQ ID NO: 1, See Figure 1 for the sequence alignment with LbCpf1.
进一步分析其碱基组成,结果见表2。由表2知:plantLbCpf1的GC含量高达53.06%,明显高于LbCpf1的50.30%。这样基因结构更加稳定,因为GC间可形成3个氢键,而AT间2个。Further analysis of its base composition, the results are shown in Table 2. It is known from Table 2 that the GC content of plantLbCpf1 is as high as 53.06%, significantly higher than that of LbCpf1, which is 50.30%. In this way, the gene structure is more stable, because 3 hydrogen bonds can be formed between GC and 2 between AT.
表2plant LbCpf1和LbCpf1的基因碱基组成分析。Table 2 Gene base composition analysis of plant LbCpf1 and LbCpf1.
分析plant LbCpf1和LbCpf1基因所编码的蛋白氨基酸序列,比对结果见图2。从图2可看出,二者氨基酸序列完全一致。The amino acid sequences of proteins encoded by plant LbCpf1 and LbCpf1 genes were analyzed, and the comparison results are shown in Figure 2. It can be seen from Figure 2 that the amino acid sequences of the two are completely consistent.
将设计好的plantLbCpf1基因送苏州金唯智生物科技有限公司合成后,连接于PUC57-AMP载体上,形成PUC57-AMP-plant LbCpf1载体,并装载入大肠杆菌XL-blue菌株中。The designed plantLbCpf1 gene was sent to Suzhou Jinweizhi Biotechnology Co., Ltd. for synthesis, then connected to the PUC57-AMP vector to form the PUC57-AMP-plant LbCpf1 vector, and loaded into E. coli XL-blue strain.
实施例2——含有plant LbCpf1基因植物打靶载体的构建Example 2—Construction of plant targeting vector containing plant LbCpf1 gene
从上面含有PUC57-AMP-plant LbCpf1载体的大肠杆菌XL-blue,用Axygen质粒提取试剂盒中提取质粒,用NotI/SacI酶切,回收plantLbCpf1片段。同时利用NotI/SacI酶对pHUN600进行线性化处理,回收pHUN600,将上述的plantLbCpf1片段和pHUN600片段用T4连接酶(购于TaKaRa公司)进行连接,得到植物表达载体pHUN600-plant LbCpf1(图3),命名为pHUN 611。From Escherichia coli XL-blue containing the PUC57-AMP-plant LbCpf1 vector, the plasmid was extracted with the Axygen plasmid extraction kit, digested with NotI/SacI, and the plantLbCpf1 fragment was recovered. At the same time, the NotI/SacI enzyme was used to linearize pHUN600, recover pHUN600, and connect the above-mentioned plantLbCpf1 fragment and pHUN600 fragment with T4 ligase (purchased from TaKaRa Company) to obtain the plant expression vector pHUN600-plant LbCpf1 (Fig. 3). Named pHUN 611.
选择水稻BEL基因(LOC_Os03g55240)中第2463-2487位的核苷酸序列TTTGGAAGAGAGTGACTGCGCTAGCAATC,(下划线部分为所述5’TTTN-(N)X-3’结构中TTTG部分),作为打靶位点。将靶位点序列与pHUN611融合形成pHUN611-BEL。利用冻融法将植物表达载体转入根癌农杆菌(Agrobacterium tumefaciens)EHA105菌株中(安徽省农业科学院水稻研究所保存),用于遗传转化。The nucleotide sequence TTTGGAAGAGAGTGACTGCGCTAGCAATC at position 2463-2487 in the rice BEL gene (LOC_Os03g55240) was selected as the targeting site. The target site sequence was fused to pHUN611 to form pHUN611-BEL. The plant expression vector was transformed into Agrobacterium tumefaciens EHA105 strain (preserved by Rice Research Institute, Anhui Academy of Agricultural Sciences) by freeze-thaw method for genetic transformation.
实施例3——以pHUN611-BEL为打靶载体的水稻遗传转化及突变体的获得。Example 3—the genetic transformation of rice using pHUN611-BEL as a targeting vector and the acquisition of mutants.
1、成熟胚愈伤组织的诱导和预培养1. Induction and pre-culture of mature embryo callus
将日本晴(安徽省农业科学院水稻研究所保存)的成熟种子去壳,选取外观正常、洁净无霉斑的种子,用70%酒精,摇晃90sec,倒掉酒精;再用含Tween20的50%次氯酸钠(原液有效氯浓度大于4%,每100毫升加入1滴Tween20)溶液清洗种子,在摇床上晃动45min(180r/min)。倒掉次氯酸钠,无菌水洗5-10遍至无次氯酸钠气味,最后加入无菌水,30℃浸泡过夜。用手术刀片沿糊粉层分离胚,盾片朝上放置在诱导培养基(成分见表1)上,12粒/皿,30℃暗培养以诱导愈伤组织。The mature seeds of Nipponbare (the Paddy Rice Research Institute of Anhui Academy of Agricultural Sciences are preserved) are shelled, and the seeds with normal appearance and cleanness without mildew are selected, shaken for 90 sec with 70% alcohol, and pour off the alcohol; then use 50% sodium hypochlorite ( The concentration of available chlorine in the stock solution is greater than 4%. Add 1 drop of Tween20) solution per 100 milliliters to clean the seeds, and shake for 45 minutes (180 r/min) on a shaker. Pour off the sodium hypochlorite, wash with sterile water 5-10 times until there is no smell of sodium hypochlorite, finally add sterile water, soak overnight at 30°C. Use a scalpel to separate the embryos along the aleurone layer, put the scutellum up on the induction medium (see Table 1 for ingredients), 12 embryos/dish, and culture in the dark at 30°C to induce callus.
两周后出现球形、粗糙、浅黄色的次级愈伤组织,可以进行预培养操作,即将次级愈伤转至新的愈伤组织诱导培养基上,30℃暗培养预培养5天。预培养结束后,将状态良好、分裂旺盛的小颗粒用勺收集至50mL的无菌离心管中,用于农杆菌侵染。Two weeks later, spherical, rough, light yellow secondary callus appeared, and pre-cultivation operation could be performed, that is, the secondary callus was transferred to a new callus induction medium, and pre-cultivated in the dark at 30°C for 5 days. After pre-cultivation, small particles in good condition and vigorous division were collected with a spoon into a 50 mL sterile centrifuge tube for Agrobacterium infection.
2、农杆菌菌株的培养和悬浮液准备2. Cultivation of Agrobacterium strains and preparation of suspension
将含有pHUN611-BEL载体的农杆菌菌株EHA105在含有50mg/L卡那霉素的LB平板上划线(成分见表1),28℃黑暗培养,24h后用无菌接种环将活化的农杆菌接种至新鲜的50mg/L卡那霉素的LB平板上,进行第二次活化,28℃黑暗培养过夜。在50mL的无菌离心管中加入20-30mL农杆菌悬浮培养基(成分见表1),用接种环将活化2次的农杆菌刮下,调整OD660(Optical density660nm,660nm吸光值)至约0.10-0.25,室温静置30min以上。Streak the Agrobacterium strain EHA105 containing the pHUN611-BEL carrier on an LB plate containing 50mg/L kanamycin (see Table 1 for ingredients), culture in the dark at 28°C, and inoculate the activated Agrobacterium with a sterile loop after 24 hours. Inoculate to fresh 50mg/L kanamycin LB plates for second activation, and culture overnight at 28°C in the dark. Add 20-30 mL of Agrobacterium suspension medium (see Table 1 for ingredients) into a 50 mL sterile centrifuge tube, scrape off the twice activated Agrobacterium with an inoculation loop, and adjust OD660 (Optical density660nm, 660nm absorbance value) to about 0.10 -0.25, stand at room temperature for more than 30 minutes.
3、侵染和共培养3. Infection and co-cultivation
向准备好的愈伤组织中(见步骤1),加农杆菌悬浮液,浸泡15min,其间不时轻轻晃动。浸泡结束后倒掉液体(尽量将液体滴净),用无菌滤纸吸去愈伤组织表面的多余的农杆菌菌液,并在超净台中用无菌风吹干。在100×25mm的一次性无菌培养皿垫上三张无菌滤纸,加入2.5mL农杆菌悬浮培养基,将吸干后的愈伤组织均匀分散在滤纸上,23℃黑暗培养48h。Add the Agrobacterium suspension to the prepared callus (see step 1), soak for 15 minutes, and shake gently from time to time. After soaking, pour off the liquid (drip the liquid as far as possible), use sterile filter paper to absorb excess Agrobacterium bacterium liquid on the surface of the callus, and dry it with sterile wind in an ultra-clean bench. Put three pieces of sterile filter paper on a 100×25mm disposable sterile Petri dish, add 2.5mL Agrobacterium suspension medium, evenly disperse the blotted callus on the filter paper, and incubate in the dark at 23°C for 48h.
4、前筛选和筛选培养4. Pre-screening and screening culture
共培养结束后,将经共培养的愈伤组织均匀散布于前筛选培养基(成分见表1)中,30℃黑暗培养5天。前筛选培养结束后,将愈伤组织转至筛选培养基上(成分见表1),每个培养皿接25粒愈伤组织,30℃黑暗培养,2-3周后,抗性愈伤组织生长明显,可进行分化再生操作。After the co-cultivation, the co-cultured calli were uniformly spread in the pre-selection medium (see Table 1 for composition), and cultured in the dark at 30° C. for 5 days. After the pre-screening culture, the callus was transferred to the screening medium (see Table 1 for ingredients), and 25 callus were connected to each culture dish, and cultured in the dark at 30°C. After 2-3 weeks, the resistant callus The growth is obvious, and the differentiation and regeneration operation can be carried out.
5、分化再生5. Differentiation and regeneration
每个独立转化体挑选2-3颗生长状态良好、新鲜的小颗粒,转至分化再生培养基上(成分见表1)。每培养皿接5个独立转化体。28℃光照培养,光照周期为16h光照8h黑暗,光强度为3000-6000lx。For each independent transformant, 2-3 fresh small particles with good growth status were selected and transferred to the differentiation regeneration medium (see Table 1 for the composition). Five independent transformants were received per culture dish. Light culture was carried out at 28°C, the light cycle was 16h light and 8h dark, and the light intensity was 3000-6000lx.
6、生根与移栽6. Rooting and transplanting
当抗性愈伤组织分化的芽长至约2cm时,每个独立转化体只取一株生长良好的苗,移至生根培养基上(成分见表1),28℃光照培养,光照周期为16h光照8h黑暗,光强度为3000-6000lx。两周后,选择根系发达的小苗,用水洗去培养基,移栽入土。When the shoots differentiated from the resistant callus grew to about 2 cm, each independent transformant only got one well-grown shoot, moved it to the rooting medium (see Table 1 for the composition), and cultivated it under light at 28° C. 16h light and 8h dark, the light intensity is 3000-6000lx. Two weeks later, select seedlings with well-developed root systems, wash off the medium with water, and transplant them into the soil.
7、分子鉴定7. Molecular identification
在移栽之前,采取水稻叶片样品,用CTAB法进行DNA小提。将所得到的基因组DNA样品用于PCR分析。用于扩增密码子植物化改造的plantLbCpf1的PCR引物为5’-TTCACAACCGCGTTTACC-3’及5’-TCACCACCGCCTTCTTCT-3’,产生长度为492bp的片段。将PCR组分首先在95℃保持5分钟,然后进行32个循环:94℃45秒、56℃45秒、72℃45秒,最后在72℃延伸10分钟。随机挑选8棵转基因植株,经鉴定,均为阳性,阳性率达到100%(见图4)。Before transplanting, rice leaf samples were taken, and DNA was extracted by CTAB method. The resulting genomic DNA samples were used for PCR analysis. The PCR primers used to amplify plantLbCpf1 codon phytochemically modified were 5'-TTCACAACCGCGTTTACC-3' and 5'-TCACCACCGCCTTCTTCT-3', and a fragment with a length of 492bp was generated. The PCR components were first held at 95°C for 5 minutes, followed by 32 cycles of 94°C for 45 seconds, 56°C for 45 seconds, 72°C for 45 seconds, and a final extension at 72°C for 10 minutes. Eight transgenic plants were randomly selected, all of which were positive after identification, and the positive rate reached 100% (see Figure 4).
对转基因所得的34棵植株全部进行叶片DNA提取,将所得基因组DNA样品用于PCR分析。用于扩增BEL基因片段的PCR引物为5’-GTGGAGGTCGACATGACTGAAG-3’及5’-TTGCACATTCATACAAATTGGT-3’,产生长度为416bp的片段。将PCR组分首先在95℃保持5分钟,然后进行32个循环:94℃30秒、60℃30秒、72℃30秒,最后在72℃延伸10分钟。将PCR产物测序。所测结果与野生型序列进行比对。在所测的34株转基因植株中有14株发生了点突变;突变效率为41.2%。说明经改造的Lbcpf1可以对水稻基因组进行剪切,并且具有很高的突变效率。Leaf DNA was extracted from all 34 transgenic plants, and the obtained genomic DNA samples were used for PCR analysis. The PCR primers used to amplify the BEL gene fragment were 5'-GTGGAGGTCGACATGACTGAAG-3' and 5'-TTGCACATTCATACAAATTGGT-3', resulting in a 416bp fragment. The PCR components were first held at 95°C for 5 minutes, followed by 32 cycles of 94°C for 30 seconds, 60°C for 30 seconds, 72°C for 30 seconds, and a final extension at 72°C for 10 minutes. The PCR products were sequenced. The measured results were compared with the wild-type sequence. Point mutation occurred in 14 of the 34 transgenic plants tested; the mutation efficiency was 41.2%. It shows that the modified Lbcpf1 can cut the rice genome and has a high mutation efficiency.
序列表sequence listing
<110> 安徽省农业科学院水稻研究所<110> Rice Research Institute of Anhui Academy of Agricultural Sciences
<120> 一种密码子植物化改造的 LbCpf1 基因及其应用<120> A codon-modified LbCpf1 gene and its application
<130> HCI20160265<130> HCI20160265
<160> 3<160> 3
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 3822<211> 3822
<212> DNA<212>DNA
<213> 骨干质粒载体<213> backbone plasmid vector
<400> 1:<400> 1:
atgtccaagc tggagaagtt tacaaactgt tacagcctct ccaaaaccct caggtttaaa 60atgtccaagc tggagaagtt tacaaactgt tacagcctct ccaaaaccct caggtttaaa 60
gcgatcccgg tgggcaagac ccaggagaac atcgacaaca agaggctcct ggtggaagac 120gcgatcccgg tgggcaagac ccaggagaac atcgacaaca agaggctcct ggtggaagac 120
gagaagcgcg ccgaagacta caagggcgtg aagaagctgc tcgataggta ctacctcagc 180gagaagcgcg ccgaagacta caagggcgtg aagaagctgc tcgataggta ctacctcagc 180
tttattaacg acgtgctgca cagcatcaaa ctcaagaatc tcaacaacta catctccctc 240tttattaacg acgtgctgca cagcatcaaa ctcaagaatc tcaacaacta catctccctc 240
ttccgcaaaa agacccgcac cgagaaggag aacaaggagc tggagaacct ggagatcaac 300ttccgcaaaa agacccgcac cgagaaggag aacaaggagc tggagaacct ggagatcaac 300
ctccgcaagg aaatcgccaa agcgttcaag ggcaatgaag ggtacaagag cctcttcaag 360ctccgcaagg aaatcgccaa agcgttcaag ggcaatgaag ggtacaagag cctcttcaag 360
aaagacatca tcgaaactat cctcccagag tttctcgatg acaaggacga gatcgcgctg 420aaagacatca tcgaaactat cctcccagag tttctcgatg acaaggacga gatcgcgctg 420
gtgaactcct ttaacgggtt cacaaccgcg tttaccggct tctttgataa cagggaaaat 480gtgaactcct ttaacgggtt cacaaccgcg tttaccggct tctttgataa cagggaaaat 480
atgttctccg aggaggccaa gtccaccagc atcgccttca ggtgtatcaa cgagaacctc 540atgttctccg aggaggccaa gtccaccagc atcgccttca ggtgtatcaa cgagaacctc 540
acccgctaca tttccaatat ggacattttc gagaaggtgg atgcgatctt cgataagcac 600acccgctaca tttccaatat ggacattttc gagaaggtgg atgcgatctt cgataagcac 600
gaggtgcagg agatcaaaga gaagattctc aattccgatt atgacgtcga ggatttcttc 660gaggtgcagg agatcaaaga gaagattctc aattccgatt atgacgtcga ggatttcttc 660
gaaggggagt tctttaattt tgtgctcaca caagagggca ttgacgtgta caacgcgatt 720gaagggggagt tctttaattt tgtgctcaca caagaggggca ttgacgtgta caacgcgatt 720
atcgggggct tcgtcacaga gtccggggag aagattaagg ggctgaatga gtacatcaat 780atcgggggct tcgtcacaga gtccggggag aagattaagg ggctgaatga gtacatcaat 780
ctgtacaatc agaagaccaa gcagaaactg ccgaaattca agccgctcta caagcaagtc 840ctgtacaatc agaagaccaa gcagaaactg ccgaaattca agccgctcta caagcaagtc 840
ctgtccgata gggaaagcct ctccttctac ggcgagggct ataccagcga cgaggaggtg 900ctgtccgata gggaaagcct ctccttctac ggcgagggct ataccagcga cgaggaggtg 900
ctggaagtct tccgcaacac actgaataag aatagcgaga ttttctcctc catcaagaag 960ctggaagtct tccgcaacac actgaataag aatagcgaga ttttctcctc catcaagaag 960
ctcgagaagc tctttaagaa ctttgacgag tacagctccg ccgggatttt cgtgaagaac 1020ctcgagaagc tctttaagaa ctttgacgag tacagctccg ccggggatttt cgtgaagaac 1020
gggccggcga tcagcaccat ctccaaggac atctttggcg agtggaacgt catcagggac 1080gggccggcga tcagcaccat ctccaaggac atctttggcg agtggaacgt catcagggac 1080
aagtggaacg ccgagtacga cgacatccac ctgaagaaga aggcggtggt gaccgagaag 1140aagtggaacg ccgagtacga cgacatccac ctgaagaaga aggcggtggt gaccgagaag 1140
tatgaggacg atcgcaggaa gtccttcaaa aaaatcggct ccttcagcct cgaacagctc 1200tatgaggacg atcgcaggaa gtccttcaaa aaaatcggct ccttcagcct cgaacagctc 1200
caggagtatg ccgatgcgga tctgtccgtc gtcgagaagc tgaaggaaat catcattcag 1260caggagtatg ccgatgcgga tctgtccgtc gtcgagaagc tgaaggaaat catcattcag 1260
aaggtcgacg agatctataa agtgtacggg tccagcgaga agctgttcga cgccgacttt 1320aaggtcgacg agatctataa agtgtacggg tccagcgaga agctgttcga cgccgacttt 1320
gtgctcgaga agtccctcaa aaagaatgac gccgtggtgg ccattatgaa agacctgctc 1380gtgctcgaga agtccctcaa aaagaatgac gccgtggtgg ccattatgaa agacctgctc 1380
gactccgtga agtccttcga aaattacatt aaagcgttct ttggggaggg gaaggaaact 1440gactccgtga agtccttcga aaattacatt aaagcgttct ttggggaggg gaaggaaact 1440
aacagggatg agtccttcta tggcgacttt gtcctcgcgt acgacatcct gctgaaggtc 1500aacagggatg agtccttcta tggcgacttt gtcctcgcgt acgacatcct gctgaaggtc 1500
gaccacattt acgacgcgat ccgcaactac gtgacacaga agccgtactc caaagacaag 1560gaccacattt acgacgcgat ccgcaactac gtgacacaga agccgtactc caaagacaag 1560
ttcaagctgt acttccagaa cccgcaattt atggggggct gggacaagga taaagagaca 1620ttcaagctgt acttccagaa cccgcaattt atggggggct gggacaagga taaagagaca 1620
gactaccgcg cgacaattct ccgctatggc tccaaatact atctggccat catggacaag 1680gactaccgcg cgacaattct ccgctatggc tccaaatact atctggccat catggacaag 1680
aagtacgcga agtgcctgca gaagatcgac aaagacgacg tcaatggcaa ctatgaaaag 1740aagtacgcga agtgcctgca gaagatcgac aaagacgacg tcaatggcaa ctatgaaaag 1740
atcaactaca agctgctgcc gggcccgaac aagatgctcc cgaaggtgtt cttcagcaag 1800atcaactaca agctgctgcc gggcccgaac aagatgctcc cgaaggtgtt cttcagcaag 1800
aagtggatgg cctactacaa tccaagcgag gatattcaga aaatctataa aaacgggacc 1860aagtggatgg cctactacaa tccaagcgag gatattcaga aaatctataa aaacgggacc 1860
ttcaagaagg gggacatgtt taacctcaac gactgccaca agctcattga tttcttcaag 1920ttcaagaagg gggacatgtt taacctcaac gactgccaca agctcattga tttcttcaag 1920
gatagcattt cccgctaccc gaaatggtcc aatgcgtacg attttaactt ctccgagaca 1980gatagcattt cccgctaccc gaaatggtcc aatgcgtacg attttaactt ctccgagaca 1980
gaaaagtaca aagacatcgc gggcttttac agggaggtgg aggagcaagg gtataaagtt 2040gaaaagtaca aagacatcgc gggcttttac aggggaggtgg aggagcaagg gtataaagtt 2040
tcttttgaat ccgcgagcaa gaaggaagtc gacaagctcg tcgaggaggg caagctctac 2100tcttttgaat ccgcgagcaa gaaggaagtc gacaagctcg tcgaggaggg caagctctac 2100
atgttccaaa tttataacaa ggacttttcc gacaagagcc atgggacccc aaacctccac 2160atgttccaaa tttataacaa ggacttttcc gacaagagcc atgggacccc aaacctccac 2160
accatgtact tcaaactgct ctttgacgag aacaaccacg ggcaaatcag gctgagcggc 2220accatgtact tcaaactgct ctttgacgag aacaaccacg ggcaaatcag gctgagcggc 2220
ggcgccgaat tattcatgcg cagggcctcc ctcaagaagg aagagctggt cgtccatcca 2280ggcgccgaat tattcatgcg cagggcctcc ctcaagaagg aagagctggt cgtccatcca 2280
gccaattccc cgatcgcgaa caagaacccg gacaatccga aaaagaccac caccctgtcc 2340gccaattccc cgatcgcgaa caagaacccg gacaatccga aaaagaccac caccctgtcc 2340
tacgacgtct acaaggacaa acgcttcagc gaagaccagt acgaattaca catcccaatt 2400tacgacgtct acaaggacaa acgcttcagc gaagaccagt acgaattaca catcccaatt 2400
gcgattaata agtgcccaaa gaatatcttc aaaattaata cagaggtcag ggtgctgctc 2460gcgattaata agtgcccaaa gaatatcttc aaaattaata cagaggtcag ggtgctgctc 2460
aaacacgacg acaatccgta tgtcatcggc attgacaggg gcgagcgcaa tctgctctat 2520aaacacgacg acaatccgta tgtcatcggc attgacaggg gcgagcgcaa tctgctctat 2520
atcgtggtcg tggatgggaa gggcaatatt gtggagcagt actccctgaa cgagattatc 2580atcgtggtcg tggatgggaa gggcaatatt gtggagcagt actccctgaa cgagattatc 2580
aacaacttca atgggattag gattaagacc gactatcaca gcctgctcga caagaaagaa 2640aacaacttca atgggattag gattaagacc gactatcaca gcctgctcga caagaaagaa 2640
aaagagaggt ttgaggcccg ccaaaactgg acctccattg agaatatcaa agaattaaag 2700aaagagaggt ttgaggcccg ccaaaactgg acctccattg agaatatcaa agaattaaag 2700
gccggctata tttcccaagt cgtccacaag atctgcgagc tggtggagaa atatgacgcc 2760gccggctata tttcccaagt cgtccacaag atctgcgagc tggtggagaa atatgacgcc 2760
gtgattgcgc tcgaagactt aaattctggg ttcaagaact cccgcgtgaa ggtggaaaaa 2820gtgattgcgc tcgaagactt aaattctggg ttcaagaact cccgcgtgaa ggtggaaaaa 2820
caggtgtatc agaaattcga gaaaatgctg atcgacaaac tcaattatat ggtggataag 2880caggtgtatc agaaattcga gaaaatgctg atcgacaaac tcaattatat ggtggataag 2880
aagtccaacc cgtgtgccac agggggcgcg ctgaagggct atcagatcac caacaagttc 2940aagtccaacc cgtgtgccac aggggggcgcg ctgaagggct atcagatcac caacaagttc 2940
gagagcttca agagcatgag cacccagaac gggtttattt tctacatccc ggcgtggctc 3000gagagcttca agagcatgag cacccagaac gggtttattt tctacatccc ggcgtggctc 3000
acctccaaga ttgacccgag caccggcttc gtgaacctcc tgaagacaaa gtatacctcc 3060acctccaaga ttgacccgag caccggcttc gtgaacctcc tgaagacaaa gtatacctcc 3060
attgccgaca gcaagaagtt tatctcctcc ttcgaccgca ttatgtatgt gccggaggag 3120attgccgaca gcaagaagtt tatctcctcc ttcgaccgca ttatgtatgt gccggaggag 3120
gacctcttcg agttcgccct cgactacaaa aacttcagcc gcacagatgc ggattacatc 3180gacctcttcg agttcgccct cgactacaaa aacttcagcc gcacagatgc ggattacatc 3180
aagaagtgga agctgtactc ctacgggaac aggatccgca tcttcaggaa tccaaaaaaa 3240aagaagtgga agctgtactc ctacgggaac aggatccgca tcttcaggaa tccaaaaaaa 3240
aataacgtct ttgactggga ggaagtgtgc ctgacatccg cctacaagga actgttcaat 3300aataacgtct ttgactggga ggaagtgtgc ctgacatccg cctacaagga actgttcaat 3300
aaatacggca tcaattacca gcagggcgac attcgcgccc tcctctgtga gcagtccgac 3360aaatacggca tcaattacca gcagggcgac attcgcgccc tcctctgtga gcagtccgac 3360
aaagcgtttt actccagctt catggccctc atgtccctga tgctccaaat gaggaatagc 3420aaagcgtttt actccagctt catggccctc atgtccctga tgctccaaat gaggaatagc 3420
atcacagggc gcaccgacgt cgacttcctc atcagcccgg tgaagaactc cgacgggatc 3480atcacagggc gcaccgacgt cgacttcctc atcagcccgg tgaagaactc cgacgggatc 3480
ttttacgact cccgcaacta tgaggcgcaa gagaatgcga tcctcccgaa gaacgccgat 3540ttttacgact cccgcaacta tgaggcgcaa gagaatgcga tcctcccgaa gaacgccgat 3540
gcgaacgggg cctataatat cgccaggaaa gtgctctggg ccatcgggca gttcaaaaag 3600gcgaacgggg cctataatat cgccaggaaa gtgctctggg ccatcgggca gttcaaaaag 3600
gcggaggatg agaagctcga caaggtgaaa attgccattt ccaacaagga gtggctggag 3660gcggaggatg agaagctcga caaggtgaaa attgccattt ccaacaagga gtggctggag 3660
tacgcgcaga cctccgtgaa gcacaaaagg ccggcggcca cgaaaaaggc cggccaggca 3720tacgcgcaga cctccgtgaa gcacaaaagg ccggcggcca cgaaaaaggc cggccaggca 3720
aaaaagaaaa agggatccta cccatacgat gttccagatt acgcttatcc ctacgacgtg 3780aaaaagaaaa agggatccta cccatacgat gttccagatt acgcttatcc ctacgacgtg 3780
cctgattatg catacccata tgatgtcccc gactatgcct aa 3822cctgattatg catacccata tgatgtcccc gactatgcct aa 3822
<210> 2<210> 2
<211> 22<211> 22
<212> DNA<212>DNA
<213> 引物<213> Primer
<400> 2:<400> 2:
gtggaggtcg acatgactga ag 22gtggaggtcg acatgactga ag 22
<210> 3<210> 3
<211> 22<211> 22
<212> DNA<212>DNA
<213> 引物<213> Primer
<400> 3:<400> 3:
ttgcacattc atacaaattg gt 22ttgcacattc atacaaattg gt 22
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610979713.6A CN106591335A (en) | 2016-11-08 | 2016-11-08 | Codon vegetalization-transformed LbCpf1 gene and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610979713.6A CN106591335A (en) | 2016-11-08 | 2016-11-08 | Codon vegetalization-transformed LbCpf1 gene and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106591335A true CN106591335A (en) | 2017-04-26 |
Family
ID=58590964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610979713.6A Pending CN106591335A (en) | 2016-11-08 | 2016-11-08 | Codon vegetalization-transformed LbCpf1 gene and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106591335A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107099544A (en) * | 2017-06-28 | 2017-08-29 | 安徽省农业科学院水稻研究所 | The PL LbCpf1 RVR genes of identification specific site and its application in paddy gene target practice |
CN107142271A (en) * | 2017-06-28 | 2017-09-08 | 安徽省农业科学院水稻研究所 | The PL LbCpf1 RR genes with high mutation efficiency and its application in gene targeting |
CN110283840A (en) * | 2019-04-11 | 2019-09-27 | 华中农业大学 | The accurate efficient edit methods of upland cotton genome |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103993039A (en) * | 2014-06-04 | 2014-08-20 | 安徽省农业科学院水稻研究所 | Method for introducing foreign gene into cleistogamy japonica rice by utilizing PMI (phosphomannose isomerase) selection marker |
CN104046636A (en) * | 2014-06-19 | 2014-09-17 | 安徽省农业科学院水稻研究所 | Codon vegetalization-transformed PMI gene and applications thereof |
CN105378084A (en) * | 2013-05-07 | 2016-03-02 | 瓦尔希伯伦私人肿瘤研究基金会 | Methods and compositions for the treatment of cancer |
EP3009511A2 (en) * | 2015-06-18 | 2016-04-20 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
CN105907785A (en) * | 2016-05-05 | 2016-08-31 | 苏州吉玛基因股份有限公司 | Application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cpf1 system with compounded crRNA in gene editing |
WO2016166340A1 (en) * | 2015-04-16 | 2016-10-20 | Wageningen Universiteit | Nuclease-mediated genome editing |
-
2016
- 2016-11-08 CN CN201610979713.6A patent/CN106591335A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105378084A (en) * | 2013-05-07 | 2016-03-02 | 瓦尔希伯伦私人肿瘤研究基金会 | Methods and compositions for the treatment of cancer |
CN103993039A (en) * | 2014-06-04 | 2014-08-20 | 安徽省农业科学院水稻研究所 | Method for introducing foreign gene into cleistogamy japonica rice by utilizing PMI (phosphomannose isomerase) selection marker |
CN104046636A (en) * | 2014-06-19 | 2014-09-17 | 安徽省农业科学院水稻研究所 | Codon vegetalization-transformed PMI gene and applications thereof |
WO2016166340A1 (en) * | 2015-04-16 | 2016-10-20 | Wageningen Universiteit | Nuclease-mediated genome editing |
EP3009511A2 (en) * | 2015-06-18 | 2016-04-20 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
CN105907785A (en) * | 2016-05-05 | 2016-08-31 | 苏州吉玛基因股份有限公司 | Application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cpf1 system with compounded crRNA in gene editing |
Non-Patent Citations (3)
Title |
---|
DONG D 等: "The crystal structure of Cpf1 in complex with CRISPR RNA", 《NATURE》 * |
NCBI: "type V CRISPR-associated protein Cpf1 [Lachnospiraceae bacterium ND2006]", 《GENBANK DATABASE》 * |
周宗梁 等: "水稻中cry1Ah1基因密码子优化方案的比较", 《生物工程学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107099544A (en) * | 2017-06-28 | 2017-08-29 | 安徽省农业科学院水稻研究所 | The PL LbCpf1 RVR genes of identification specific site and its application in paddy gene target practice |
CN107142271A (en) * | 2017-06-28 | 2017-09-08 | 安徽省农业科学院水稻研究所 | The PL LbCpf1 RR genes with high mutation efficiency and its application in gene targeting |
CN110283840A (en) * | 2019-04-11 | 2019-09-27 | 华中农业大学 | The accurate efficient edit methods of upland cotton genome |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109652422B (en) | Efficient single base editing system OsSpCas9-eCDA and its application | |
KR20150085846A (en) | Tal-Mediated Transfer DNA Insertion | |
CN104046636B (en) | A kind of PMI genes of codon vegetalization transformation and its application | |
CN107142271A (en) | The PL LbCpf1 RR genes with high mutation efficiency and its application in gene targeting | |
CN107099544A (en) | The PL LbCpf1 RVR genes of identification specific site and its application in paddy gene target practice | |
CN116179589B (en) | SlPRMT5 gene and application of protein thereof in regulation and control of tomato fruit yield | |
CN109929857B (en) | High-editing-efficiency SaCas9 gene and application thereof | |
CN106591335A (en) | Codon vegetalization-transformed LbCpf1 gene and application thereof | |
CN104531656B (en) | A kind of Phophomannose isomerase gene and its application from chlorella | |
CN110862998A (en) | Purple perilla FAD8 gene and application thereof in improving unsaturated fatty acid content and cold resistance of plants | |
CN112048515B (en) | Rape S-adenosine-L-methionine dependent methyltransferase gene BnPMT6 and application thereof | |
CN110791487B (en) | Rice receptor kinase gene LOC _ Os11g47290, and coding protein and application thereof | |
CN110818784B (en) | Application of rice gene OsATL15 in regulating pesticide absorption and transport | |
CN110627887B (en) | Application of SlTLFP8 protein and related biomaterials in regulating tomato drought resistance | |
CN102010864B (en) | Maize Pollen Tissue-Specific Promoter and Its Expression Vector | |
CN109486840B (en) | Codon-plant-modified NmeCas9 gene and application thereof | |
CN114214334B (en) | The application of the gene EsH2A.3 derived from the salt mustard in the regulation of plant salt tolerance | |
CN116732070A (en) | A CGBE single base editor capable of realizing base transversion and its application | |
CN116515887A (en) | Application of Medicago MsSPL4 Gene in Improving Stress Resistance of Plants | |
CN112430613A (en) | SpG gene with wide editing range and application thereof | |
CN104673794A (en) | Os-ER-ANT1 gene promoter for paddy rice and application thereof | |
CN104805103A (en) | Phosphomannose isomerase gene OsPMI1 originated from oryza sativa and application thereof | |
CN102453081B (en) | Soybean gibberellin signal transduction path-associated protein and encoding gene and application thereof | |
CN114656542B (en) | Corn saline-alkali resistant protein and coding gene and application thereof | |
CN112626050B (en) | SpCas9-NRCH mutant for recognizing specific sites in rice gene targeting and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170426 |
|
RJ01 | Rejection of invention patent application after publication |