[go: up one dir, main page]

CN106546931A - A kind of miniature non-diagonal giant magnetoresistance effect sensing element - Google Patents

A kind of miniature non-diagonal giant magnetoresistance effect sensing element Download PDF

Info

Publication number
CN106546931A
CN106546931A CN201610895727.XA CN201610895727A CN106546931A CN 106546931 A CN106546931 A CN 106546931A CN 201610895727 A CN201610895727 A CN 201610895727A CN 106546931 A CN106546931 A CN 106546931A
Authority
CN
China
Prior art keywords
pcb
diagonal
coil
impedance effect
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610895727.XA
Other languages
Chinese (zh)
Inventor
张清
赵振杰
王江涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN201610895727.XA priority Critical patent/CN106546931A/en
Publication of CN106546931A publication Critical patent/CN106546931A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)

Abstract

The invention discloses a kind of non-diagonal giant magnetoresistance effect sensing element, including:Coil top layer portion, coil floor portions, sensitive material body, connection via, PCB upper stratas and PCB lower floors;The sensitive material body is arranged between the PCB upper stratas and the PCB lower floors;The coil top layer portion is arranged at PCB upper stratas upper surface;The coil floor portions are arranged at the PCB lower surfaces;The connection via passes through the PCB upper stratas and the PCB lower floors, and connects the coil top layer portion and coil floor portions composition MEMS coils, so as to surround the sensitive material body;Insulation filler is filled between the PCB upper stratas and the PCB lower floors.Instant invention overcomes because the drawbacks of sensing element volume is larger caused by general technology winding volume is excessive, planarizing non-diagonal giant magnetoresistance effect sensing element.

Description

一种微型非对角巨磁阻抗效应敏感元件A Miniature Off-Diagonal Giant Magneto-impedance Effect Sensitive Element

技术领域technical field

本发明涉及磁敏感元件领域,尤其涉及一种MEMS磁阻抗效应敏感元件。The invention relates to the field of magnetic sensitive elements, in particular to a MEMS magneto-impedance effect sensitive element.

背景技术Background technique

非对角GMI磁敏感元件具有较高的磁场分辨率(最高可达10-12T),可以被应用到生物信息检测、磁安全检测、无损探伤、地磁导航、交通控制等诸多方面。在现有的可小型化(尺寸可小于10mm*10mm*10mm)的磁场传感器中非对角GMI磁敏感元件具有最高的分辨率。但是由于其构造上存在一个信号拾取线圈,导致了其尺寸的微小化制约于线圈的尺寸。所以非对角GMI磁敏感元件的尺寸无法像霍尔元件那样小至一个芯片的大小。这就限制了其在一些场合的应用。The off-diagonal GMI magnetic sensor has a high magnetic field resolution (up to 10 -12 T), and can be applied to many aspects such as biological information detection, magnetic safety detection, nondestructive flaw detection, geomagnetic navigation, traffic control, etc. The off-diagonal GMI magnetic sensitive element has the highest resolution in the existing miniaturized (size less than 10mm*10mm*10mm) magnetic field sensors. However, because there is a signal pickup coil in its structure, the miniaturization of its size is restricted by the size of the coil. Therefore, the size of the non-diagonal GMI magnetic sensor cannot be as small as the size of a chip like the Hall element. This limits its application in some occasions.

因此,目前市场上亟需设计一种新的非对角GMI磁敏感元件。Therefore, there is an urgent need to design a new non-diagonal GMI magnetic sensor in the market.

发明内容Contents of the invention

本发明提出了一种微型非对角巨磁阻抗效应敏感元件,采用印刷电路的布线工艺制作敏感元件的信号拾取线圈和敏感材料,实现了非对角巨磁阻抗效应敏感元件的微型化。The invention proposes a miniature non-diagonal giant magneto-impedance effect sensitive element. The signal pick-up coil and sensitive material of the sensitive element are manufactured by the wiring technology of a printed circuit, and the miniaturization of the non-diagonal giant magneto-impedance effect sensitive element is realized.

本发明提出的微型非对角巨磁阻抗效应敏感元件,包括:线圈顶层部分、线圈底层部分、敏感材料体、连接过孔、PCB上层和PCB下层;所述敏感材料体设置于所述PCB上层和所述PCB下层之间;所述线圈顶层部分设置于所述PCB上层上表面;所述线圈底层部分设置于所述PCB下层下表面;所述连接过孔穿过所述PCB上层和所述PCB下层,并连接所述线圈顶层部分和所述线圈底层部分组成MEMS线圈,包围所述敏感材料体;所述PCB上层和所述PCB下层之间填充绝缘填充物。The miniature non-diagonal giant magneto-impedance effect sensitive element proposed by the present invention includes: a coil top layer part, a coil bottom layer part, a sensitive material body, connection vias, a PCB upper layer and a PCB lower layer; the sensitive material body is arranged on the PCB upper layer and the PCB lower layer; the coil top layer part is arranged on the upper surface of the PCB upper layer; the coil bottom layer part is arranged on the lower surface of the PCB lower layer; the connection via hole passes through the PCB upper layer and the The lower layer of the PCB is connected to the top layer of the coil and the bottom layer of the coil to form a MEMS coil, which surrounds the sensitive material body; an insulating filler is filled between the upper layer of the PCB and the lower layer of the PCB.

本发明提出的微型非对角巨磁阻抗效应敏感元件中,所述敏感材料体为具有磁阻抗效应的材料。In the miniature non-diagonal giant magneto-impedance effect sensitive element proposed by the present invention, the sensitive material body is a material with magneto-impedance effect.

本发明提出的微型非对角巨磁阻抗效应敏感元件中,所述PCB上层和所述PCB下层为刚性材料或柔性材料。In the miniature non-diagonal giant magneto-impedance effect sensitive element proposed by the present invention, the upper layer of the PCB and the lower layer of the PCB are rigid materials or flexible materials.

本发明提出的微型非对角巨磁阻抗效应敏感元件中,所述敏感材料体的形状为薄膜、块体或丝状。In the miniature non-diagonal giant magneto-impedance effect sensitive element proposed by the present invention, the shape of the sensitive material body is film, block or filament.

本发明提出的微型非对角巨磁阻抗效应敏感元件中,所述MEMS线圈的导线直径和导线之间间隔为电路板的最小线径和线距。In the miniature non-diagonal giant magneto-impedance effect sensitive element proposed by the present invention, the wire diameter and the spacing between the wires of the MEMS coil are the minimum wire diameter and wire distance of the circuit board.

本发明提出的微型非对角巨磁阻抗效应敏感元件中,所述微型非对角巨磁阻抗效应敏感元件的外表面覆盖有绝缘覆盖层。In the miniature non-diagonal giant magneto-impedance effect sensitive element proposed by the present invention, the outer surface of the miniature non-diagonal giant magneto-impedance effect sensitive element is covered with an insulating covering layer.

本发明提出的微型非对角巨磁阻抗效应敏感元件中,交流驱动信号加于所述敏感材料体的两端。In the miniature non-diagonal giant magneto-impedance effect sensitive element proposed by the present invention, an AC drive signal is applied to both ends of the sensitive material body.

本发明提出的微型非对角巨磁阻抗效应敏感元件中,传感器信号从所述MEMS线圈的两端取得。In the miniature non-diagonal giant magneto-impedance effect sensitive element proposed by the present invention, sensor signals are obtained from both ends of the MEMS coil.

本发明提出的微型非对角巨磁阻抗效应敏感元件中,所述线圈底层部分倾斜设置,其上端与所述线圈顶层部分对应部分导线上端相对,其下端与所述线圈顶层部分的另一相邻平行导线下端相对。In the miniature non-diagonal giant magneto-impedance effect sensitive element proposed by the present invention, the bottom part of the coil is arranged obliquely, its upper end is opposite to the upper end of the corresponding part of the wire at the top layer of the coil, and its lower end is opposite to the other phase of the top layer of the coil. The lower ends of the adjacent parallel wires are opposite.

本发明的目的在于提供一种微型非对角巨磁阻抗效应敏感元件及其制备方法,本发明制备方法采用一些微机械的制备方法克服线圈带来的尺寸问题就可以很好的拓宽非对角GMI磁敏感元件在要求敏感元件微形化方面的应用。The purpose of the present invention is to provide a miniature non-diagonal giant magneto-impedance effect sensitive element and its preparation method. The preparation method of the present invention adopts some micro-mechanical preparation methods to overcome the size problem caused by the coil and can well widen the non-diagonal The application of GMI magnetic sensitive components in the field of miniaturization of sensitive components is required.

本发明克服了因为一般工艺线圈体积过大导致的敏感元件体积较大的弊端,使非对角巨磁阻抗效应敏感元件平面化。The invention overcomes the disadvantage of large volume of the sensitive element caused by the large volume of the general process coil, and makes the non-diagonal giant magneto-impedance effect sensitive element planarized.

附图说明Description of drawings

图1是本发明微型非对角巨磁阻抗效应敏感元件的俯视图。Fig. 1 is a top view of a miniature non-diagonal giant magneto-impedance effect sensitive element of the present invention.

图2是本发明微型非对角巨磁阻抗效应敏感元件的横截面图。Fig. 2 is a cross-sectional view of a miniature non-diagonal giant magneto-impedance effect sensitive element of the present invention.

具体实施方式detailed description

结合以下具体实施例和附图,对本发明作进一步的详细说明。实施本发明的过程、条件、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。The present invention will be further described in detail in conjunction with the following specific embodiments and accompanying drawings. The process, conditions, experimental methods, etc. for implementing the present invention, except for the content specifically mentioned below, are common knowledge and common knowledge in this field, and the present invention has no special limitation content.

本发明提出了一种微型非对角巨磁阻抗效应敏感元件,包括:线圈顶层部分1、线圈底层部分2、敏感材料体3、连接过孔4、PCB上层5和PCB下层6。The present invention proposes a miniature non-diagonal giant magneto-impedance effect sensitive element, comprising: coil top layer part 1, coil bottom layer part 2, sensitive material body 3, connection via hole 4, PCB upper layer 5 and PCB lower layer 6.

本发明中,敏感材料体3设置于PCB上层5和PCB下层6之间,敏感材料体3为具有磁阻抗效应的材料。In the present invention, the sensitive material body 3 is arranged between the PCB upper layer 5 and the PCB lower layer 6, and the sensitive material body 3 is a material with magnetoresistance effect.

本发明中,线圈顶层部分1设置于PCB上层5上表面;线圈底层部分2设置于PCB下层6下表面;线圈底层部分2倾斜设置,其上端与线圈顶层部分1对应部分导线a上端相对,其下端与线圈顶层部分1的另一相邻平行导线b下端相对。In the present invention, the coil top layer part 1 is arranged on the upper surface of the PCB upper layer 5; the coil bottom layer part 2 is arranged on the lower surface of the PCB lower layer 6; The lower end is opposite to the lower end of another adjacent parallel wire b of the top layer part 1 of the coil.

本发明中,连接过孔4穿过PCB上层5和PCB下层6,并连接线圈顶层部分1和线圈底层部分2组成MEMS线圈,从而包围敏感材料体3。In the present invention, the connection via hole 4 passes through the upper layer 5 of the PCB and the lower layer 6 of the PCB, and connects the coil top layer 1 and the coil bottom layer 2 to form a MEMS coil, thereby surrounding the sensitive material body 3 .

本发明中,本发明中,PCB上层5和PCB下层6为刚性材料或柔性材料,PCB上层5和PCB下层6之间填充绝缘填充物7。In the present invention, in the present invention, the upper PCB layer 5 and the lower PCB layer 6 are rigid materials or flexible materials, and insulating fillers 7 are filled between the upper PCB layer 5 and the lower PCB layer 6 .

本发明中,敏感材料体3的形状为薄膜、块体或丝状。In the present invention, the shape of the sensitive material body 3 is film, block or filament.

本发明中,传感器信号10从MEMS线圈的两端取得。In the present invention, the sensor signal 10 is obtained from both ends of the MEMS coil.

本发明中,交流驱动信号9加于敏感材料体3的两端。In the present invention, the AC driving signal 9 is applied to both ends of the sensitive material body 3 .

本发明中,MEMS线圈的最小导线直径和导线之间最小间隔为电路板的最小线径和线距。In the present invention, the minimum wire diameter and the minimum spacing between the wires of the MEMS coil are the minimum wire diameter and wire distance of the circuit board.

本发明中,微型非对角巨磁阻抗效应敏感元件的外表面覆盖有绝缘覆盖层8。In the present invention, the outer surface of the miniature non-diagonal giant magneto-impedance effect sensitive element is covered with an insulating covering layer 8 .

如图1所示的非对角GMI磁敏感元件采用敏感材料体外套线圈的结构,其中交流驱动信号9加在敏感材料体3两端,传感器信号从线圈顶层部分1和线圈底层部分2的两端取得。The non-diagonal GMI magnetic sensitive element shown in Figure 1 adopts the structure of a coil covered by a sensitive material body, wherein the AC drive signal 9 is added to both ends of the sensitive material body 3, and the sensor signal is transmitted from the two ends of the top layer part 1 of the coil and the bottom layer part 2 of the coil. obtained at the end.

如图2所示敏感原件横截面图,制备过程为,首先在PCB上层5的上表面上制备线圈顶层部分1,然后在PCB上层5的下表面制备敏感器材料体3。As shown in the cross-sectional view of the sensitive element in FIG. 2 , the preparation process is as follows: firstly, the coil top layer part 1 is prepared on the upper surface of the PCB upper layer 5 , and then the sensor material body 3 is prepared on the lower surface of the PCB upper layer 5 .

如图2所示,制备敏感材料体3横截面平行线圈顶层部分1和线圈底层部分2,长度短于线圈且位于线圈顶层部分1和线圈底层部分2之中。敏感材料体3另一端直接连接PCB下层6。PCB上层5和PCB下层6之间的空隙用绝缘填充材料7填充以固定整个结构。对应线圈顶层部分1在PCB下层6的下表面上制备线圈底层部分2。As shown in FIG. 2 , the cross section of the sensitive material body 3 is prepared parallel to the coil top layer 1 and the coil bottom layer 2 , the length is shorter than the coil and located in the coil top layer 1 and the coil bottom layer 2 . The other end of the sensitive material body 3 is directly connected to the PCB lower layer 6 . The gap between PCB upper layer 5 and PCB lower layer 6 is filled with insulating filling material 7 to fix the whole structure. The bottom coil part 2 is prepared on the lower surface of the lower PCB layer 6 corresponding to the coil top layer part 1 .

如图1所示,线圈底层部分2倾斜设置,其上端和线圈顶层部分1的对应部分导线a上端相对,下端和线圈顶层部分1的另一相邻平行导线b下端相对。通过过孔4将这些相对的导线端点连接起来,并重复该结构就构成了完整的螺线管型MEMS线圈,包围敏感材料体3。最后在整个器件外表面涂上绝缘覆盖层8完成MEMS巨磁阻抗效应敏感元件的制备。As shown in FIG. 1 , the coil bottom part 2 is arranged obliquely, its upper end is opposite to the upper end of the corresponding part of the wire a of the coil top part 1, and its lower end is opposite to the lower end of another adjacent parallel wire b of the coil top part 1. These opposite wire terminals are connected through via holes 4 , and this structure is repeated to form a complete solenoid MEMS coil, surrounding the sensitive material body 3 . Finally, an insulating covering layer 8 is coated on the entire outer surface of the device to complete the preparation of the MEMS giant magneto-impedance effect sensitive element.

本发明的保护内容不局限于以上实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。The protection content of the present invention is not limited to the above embodiments. Without departing from the spirit and scope of the inventive concept, changes and advantages conceivable by those skilled in the art are all included in the present invention, and the appended claims are the protection scope.

Claims (9)

1.一种微型非对角巨磁阻抗效应敏感元件,其特征在于,包括:线圈顶层部分(1)、线圈底层部分(2)、敏感材料体(3)、连接过孔(4)、PCB上层(5)和PCB下层(6);1. A miniature non-diagonal giant magneto-impedance effect sensitive element, characterized in that it comprises: coil top layer part (1), coil bottom layer part (2), sensitive material body (3), connection via hole (4), PCB The upper layer (5) and the lower layer of the PCB (6); 所述敏感材料体(3)设置于所述PCB上层(5)和所述PCB下层(6)之间;The sensitive material body (3) is arranged between the PCB upper layer (5) and the PCB lower layer (6); 所述线圈顶层部分(1)设置于所述PCB上层(5)上表面;The coil top layer part (1) is arranged on the upper surface of the PCB upper layer (5); 所述线圈底层部分(2)设置于所述PCB下层(6)下表面;The coil bottom layer part (2) is arranged on the lower surface of the PCB lower layer (6); 所述连接过孔(4)穿过所述PCB上层(5)和所述PCB下层(6),并连接所述线圈顶层部分(1)和所述线圈底层部分(2)组成MEMS线圈,从而包围所述敏感材料体(3);The connection via hole (4) passes through the PCB upper layer (5) and the PCB lower layer (6), and connects the coil top layer part (1) and the coil bottom layer part (2) to form a MEMS coil, thereby enclosing said body of sensitive material (3); 所述PCB上层(5)和所述PCB下层(6)之间填充绝缘填充物(7)。An insulating filler (7) is filled between the PCB upper layer (5) and the PCB lower layer (6). 2.如权利要求1所述的微型非对角巨磁阻抗效应敏感元件,其特征在于,所述敏感材料体(3)为具有磁阻抗效应的材料。2. The miniature non-diagonal giant magneto-impedance effect sensitive element according to claim 1, characterized in that, the sensitive material body (3) is a material with magneto-impedance effect. 3.如权利要求1所述的微型非对角巨磁阻抗效应敏感元件,其特征在于,所述PCB上层(5)和所述PCB下层(6)为刚性材料或柔性材料。3. The miniature non-diagonal giant magneto-impedance effect sensitive element according to claim 1, characterized in that, the PCB upper layer (5) and the PCB lower layer (6) are rigid materials or flexible materials. 4.如权利要求1所述的微型非对角巨磁阻抗效应敏感元件,其特征在于,所述敏感材料体(3)的形状为薄膜、块体或丝状。4. The miniature non-diagonal giant magneto-impedance effect sensitive element according to claim 1, characterized in that, the shape of the sensitive material body (3) is thin film, block or filament. 5.如权利要求1所述的微型非对角巨磁阻抗效应敏感元件,其特征在于,所述MEMS线圈的导线的最小直径和导线之间的最小间隔为电路板的最小线径和线距。5. miniature non-diagonal giant magneto-impedance effect sensitive element as claimed in claim 1, is characterized in that, the minimum diameter of the wire of described MEMS coil and the minimum spacing between the wire are the minimum wire diameter and line distance of circuit board . 6.如权利要求1所述的微型非对角巨磁阻抗效应敏感元件,其特征在于,所述微型非对角巨磁阻抗效应敏感元件的外表面覆盖有绝缘覆盖层(8)。6. The miniature non-diagonal giant magneto-impedance effect sensitive element according to claim 1, characterized in that, the outer surface of the miniature off-diagonal giant magneto-impedance effect sensitive element is covered with an insulating covering layer (8). 7.如权利要求1所述的微型非对角巨磁阻抗效应敏感元件,其特征在于,交流驱动信号(9)加于所述敏感材料体(3)的两端。7. The miniature non-diagonal giant magneto-impedance effect sensitive element according to claim 1, characterized in that an AC drive signal (9) is applied to both ends of the sensitive material body (3). 8.如权利要求1所述的微型非对角巨磁阻抗效应敏感元件,其特征在于,传感器信号(10)从所述MEMS线圈的两端取得。8. The miniature non-diagonal giant magneto-impedance effect sensitive element according to claim 1, characterized in that the sensor signal (10) is obtained from both ends of the MEMS coil. 9.如权利要求1所述的微型非对角巨磁阻抗效应敏感元件,其特征在于,所述线圈底层部分(2)其上端与所述线圈顶层部分(1)对应部分导线(a)上端相对,其下端与所述线圈顶层部分(1)的另一相邻平行导线(b)下端相对。9. miniature non-diagonal giant magneto-impedance effect sensitive element as claimed in claim 1, is characterized in that, its upper end of described coil bottom layer part (2) and described coil top layer part (1) corresponding part wire (a) upper end On the contrary, its lower end is opposite to the lower end of another adjacent parallel wire (b) of the coil top layer part (1).
CN201610895727.XA 2016-10-14 2016-10-14 A kind of miniature non-diagonal giant magnetoresistance effect sensing element Pending CN106546931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610895727.XA CN106546931A (en) 2016-10-14 2016-10-14 A kind of miniature non-diagonal giant magnetoresistance effect sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610895727.XA CN106546931A (en) 2016-10-14 2016-10-14 A kind of miniature non-diagonal giant magnetoresistance effect sensing element

Publications (1)

Publication Number Publication Date
CN106546931A true CN106546931A (en) 2017-03-29

Family

ID=58368726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610895727.XA Pending CN106546931A (en) 2016-10-14 2016-10-14 A kind of miniature non-diagonal giant magnetoresistance effect sensing element

Country Status (1)

Country Link
CN (1) CN106546931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290696A (en) * 2017-06-21 2017-10-24 中国人民解放军国防科学技术大学 A kind of GMI sensor probes based on PCB and preparation method thereof
CN107314954A (en) * 2017-06-07 2017-11-03 华东师范大学 Small magnetic particle measurer and its measuring method in a kind of fluid

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439888A (en) * 2002-02-19 2003-09-03 爱知知的微技股份有限公司 Two-demensional magnetic sensors
CN1688036A (en) * 2005-06-09 2005-10-26 上海交通大学 Method for making magnetosensitive device based on soft magnetic multilayer huge magnetoimpedance effect
CN101212017A (en) * 2006-12-26 2008-07-02 中国科学院合肥物质科学研究院 Giant magnetoresistive magnetic sensor and preparation method thereof
CN101699309A (en) * 2009-10-13 2010-04-28 清华大学 Giant magneto-impedance effect sensing probe based on flexible circuit board
CN101975934A (en) * 2010-09-27 2011-02-16 上海交通大学 Integrated bias coil type giant magneto-impedance effect (GMI) magneto-dependent sensor
CN103674997A (en) * 2013-12-06 2014-03-26 东南大学 Low-field nuclear magnetic resonance probe based on solenoid coils of printed circuit board
CN104157070A (en) * 2013-05-14 2014-11-19 北京嘉岳同乐极电子有限公司 Chip magnetic sensor
CN105428523A (en) * 2015-12-17 2016-03-23 华东师范大学 Miniature off-diagonal sensitive element with giant magneto-impedance effect and preparation method of miniature off-diagonal sensitive element with giant magneto-impedance effect
CN107290696A (en) * 2017-06-21 2017-10-24 中国人民解放军国防科学技术大学 A kind of GMI sensor probes based on PCB and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439888A (en) * 2002-02-19 2003-09-03 爱知知的微技股份有限公司 Two-demensional magnetic sensors
CN1688036A (en) * 2005-06-09 2005-10-26 上海交通大学 Method for making magnetosensitive device based on soft magnetic multilayer huge magnetoimpedance effect
CN101212017A (en) * 2006-12-26 2008-07-02 中国科学院合肥物质科学研究院 Giant magnetoresistive magnetic sensor and preparation method thereof
CN101699309A (en) * 2009-10-13 2010-04-28 清华大学 Giant magneto-impedance effect sensing probe based on flexible circuit board
CN101975934A (en) * 2010-09-27 2011-02-16 上海交通大学 Integrated bias coil type giant magneto-impedance effect (GMI) magneto-dependent sensor
CN104157070A (en) * 2013-05-14 2014-11-19 北京嘉岳同乐极电子有限公司 Chip magnetic sensor
CN103674997A (en) * 2013-12-06 2014-03-26 东南大学 Low-field nuclear magnetic resonance probe based on solenoid coils of printed circuit board
CN105428523A (en) * 2015-12-17 2016-03-23 华东师范大学 Miniature off-diagonal sensitive element with giant magneto-impedance effect and preparation method of miniature off-diagonal sensitive element with giant magneto-impedance effect
CN107290696A (en) * 2017-06-21 2017-10-24 中国人民解放军国防科学技术大学 A kind of GMI sensor probes based on PCB and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHIMING WU 等: "Influence of measuring method on enhancement of giant magneto-impedance effect in glass-coated microwires with outer conductive layer", 《SENSORS AND ACTUATORS》 *
刘银春: "《大学物理新教程》", 31 December 2008, 北京邮电大学出版社 *
李欣 等: "不同长度敏感元件的两种巨磁阻抗传感器传感性能研究", 《传感技术学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314954A (en) * 2017-06-07 2017-11-03 华东师范大学 Small magnetic particle measurer and its measuring method in a kind of fluid
CN107314954B (en) * 2017-06-07 2021-11-19 华东师范大学 Device and method for measuring tiny magnetic particles in fluid
CN107290696A (en) * 2017-06-21 2017-10-24 中国人民解放军国防科学技术大学 A kind of GMI sensor probes based on PCB and preparation method thereof

Similar Documents

Publication Publication Date Title
US9885762B2 (en) Magnetic shielded package having magnetic shield members
US8486755B2 (en) Magnetic field sensors and methods for fabricating the magnetic field sensors
JP5747294B1 (en) Magnet impedance sensor element with electromagnetic coil and magneto impedance sensor with electromagnetic coil
US8823361B2 (en) Electrical current sensor device
US20190187008A1 (en) Sensor Head For a Force or Torque Sensor
CN102483443B (en) Magnetic field sensor
JP5958548B2 (en) Magneto-impedance element and manufacturing method thereof
US8056246B1 (en) Ferrofluidic orientation sensor and method of forming the sensor
JP5465861B2 (en) Integrated three-axis field sensor and manufacturing method thereof
JP2011522251A (en) Configuration of current detection circuit and integrated current sensor
WO2012116657A1 (en) Push-pull bridge magnetoresistance sensor
TW201015097A (en) Device for measuring the direction and/or strength of a magnetic field
CN102645675B (en) Magnetoresistive sensor and method for manufacturing the same
CN106546931A (en) A kind of miniature non-diagonal giant magnetoresistance effect sensing element
CN109724630B (en) Magnetic sensor with integrated solenoid
CN103123369A (en) Current sensing device
JP2009501930A (en) Sensor chip for biosensor
CN102629568A (en) Semiconductor device
US9857439B2 (en) Sensor arrangement, circuit arrangement and method of manufacturing a sensor arrangement
KR20130046485A (en) Othogonal type thin film flux gate sensor unit
JP2008224438A (en) Magnetic pressure sensor and its manufacturing method
JP6375678B2 (en) Magnetic sensor
US20240019504A1 (en) Magnetic sensor
CN106206934A (en) A kind of gear type sensor module based on magnetoresistive chip and method for packing thereof
CN105428523A (en) Miniature off-diagonal sensitive element with giant magneto-impedance effect and preparation method of miniature off-diagonal sensitive element with giant magneto-impedance effect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170329