[go: up one dir, main page]

CN106546354A - A kind of superelevation temperature sensor based on FBG - Google Patents

A kind of superelevation temperature sensor based on FBG Download PDF

Info

Publication number
CN106546354A
CN106546354A CN201610953668.7A CN201610953668A CN106546354A CN 106546354 A CN106546354 A CN 106546354A CN 201610953668 A CN201610953668 A CN 201610953668A CN 106546354 A CN106546354 A CN 106546354A
Authority
CN
China
Prior art keywords
alumina ceramic
high temperature
fbg
protective sleeve
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610953668.7A
Other languages
Chinese (zh)
Other versions
CN106546354B (en
Inventor
祝连庆
杨润涛
董明利
娄小平
庄炜
刘锋
张钰民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Science and Technology University
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Priority to CN201610953668.7A priority Critical patent/CN106546354B/en
Publication of CN106546354A publication Critical patent/CN106546354A/en
Application granted granted Critical
Publication of CN106546354B publication Critical patent/CN106546354B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)

Abstract

本发明提供了一种基于FBG的超高温传感器,其中,所述基于FBG的超高温传感器包括:APC光纤接头、氧化铝陶瓷棒、不锈钢棒、光纤光栅、金属弹簧以及氧化铝陶瓷保护套;所述APC光纤接头通过所述耐高温陶瓷胶与所述氧化铝保护套相连,所述光纤光栅的一端固定在所述氧化铝陶瓷棒的自由端,另一端固定在所述氧化铝陶瓷保护套的一端,所述氧化铝陶瓷棒插入到所述氧化铝陶瓷保护套内,所述氧化铝陶瓷棒与所述氧化铝陶瓷保护套之间使用所述金属弹簧提供给光纤光栅的轴向拉伸力并感受温度变化。

The present invention provides a FBG-based ultra-high temperature sensor, wherein the FBG-based ultra-high temperature sensor includes: APC optical fiber connector, alumina ceramic rod, stainless steel rod, optical fiber grating, metal spring and alumina ceramic protective sleeve; The APC optical fiber connector is connected to the alumina protective sleeve through the high temperature resistant ceramic glue, one end of the fiber grating is fixed on the free end of the alumina ceramic rod, and the other end is fixed on the alumina ceramic protective sleeve. At one end, the alumina ceramic rod is inserted into the alumina ceramic protective sleeve, and the axial tensile force provided by the metal spring to the fiber grating is used between the alumina ceramic rod and the alumina ceramic protective sleeve and feel the temperature change.

Description

一种基于FBG的超高温传感器A FBG-based ultra-high temperature sensor

技术领域technical field

本发明涉及光纤传感领域,特别涉及一种基于FBG的超高温传感器。The invention relates to the field of optical fiber sensing, in particular to an FBG-based ultra-high temperature sensor.

背景技术Background technique

通常,光纤光栅作为一种新型的光纤无源器件,因其具有抗干扰性强、耐腐蚀、体积小、重量轻、寿命长、无连接损耗、可实现多点分布式测量等优良特性,在光纤传感领域具有广阔的应用前景。普通Ⅰ型光纤光栅只适用于200℃以下的工作环境,当温度高于200℃时其反射率随温度的上升而下降,当温度超过300℃时,光纤光栅产生衰退效应,直至擦除。而且传统的光纤光栅温度传感器还受封装材料的限制。如环氧树脂封装胶的使用工作温度为-50℃~180℃。这些限制了光纤光栅在高温环境下的使用。Generally, as a new type of fiber optic passive device, fiber Bragg grating has excellent characteristics such as strong anti-interference, corrosion resistance, small size, light weight, long life, no connection loss, and multi-point distributed measurement. The field of optical fiber sensing has broad application prospects. Ordinary type I fiber gratings are only suitable for working environments below 200°C. When the temperature is higher than 200°C, its reflectivity decreases with the increase of temperature. When the temperature exceeds 300°C, the fiber grating will have a decay effect until it is erased. Moreover, traditional fiber grating temperature sensors are also limited by packaging materials. For example, the working temperature of epoxy resin encapsulation glue is -50℃~180℃. These limit the use of fiber gratings in high temperature environments.

因此,需要一种能有效地传感器来解决上述问题。Therefore, there is a need for an effective sensor to solve the above problems.

发明内容Contents of the invention

本发明的目的在于提供一种基于FBG的超高温传感器,能够实现大范围及超高温度的测量。所述基于FBG的超高温传感器包括:The purpose of the present invention is to provide an ultra-high temperature sensor based on FBG, which can realize the measurement of a wide range and ultra-high temperature. The FBG-based ultra-high temperature sensor includes:

APC光纤接头、氧化铝陶瓷棒、不锈钢棒、光纤光栅、金属弹簧以及氧化铝陶瓷保护套;APC optical fiber connector, alumina ceramic rod, stainless steel rod, fiber grating, metal spring and alumina ceramic protective sleeve;

所述APC光纤接头通过所述耐高温陶瓷胶与所述氧化铝保护套相连,所述光纤光栅的一端固定在所述氧化铝陶瓷棒的自由端,另一端固定在所述氧化铝陶瓷保护套的一端,所述氧化铝陶瓷棒插入到所述氧化铝陶瓷保护套内,所述氧化铝陶瓷棒与所述氧化铝陶瓷保护套之间使用所述金属弹簧提供给光纤光栅的轴向拉伸力并感受温度变化。The APC optical fiber connector is connected to the alumina protective sleeve through the high temperature resistant ceramic glue, one end of the fiber grating is fixed to the free end of the alumina ceramic rod, and the other end is fixed to the alumina ceramic protective sleeve One end of the alumina ceramic rod is inserted into the alumina ceramic protective sleeve, and the axial tension of the fiber grating is provided by the metal spring between the alumina ceramic rod and the alumina ceramic protective sleeve. force and feel the temperature change.

优选地,所述光纤光栅的布拉格波长为1550nm。Preferably, the Bragg wavelength of the fiber grating is 1550nm.

优选地,所述不锈钢棒的热膨胀系数为~17×10-6/℃。Preferably, the thermal expansion coefficient of the stainless steel rod is ~17×10-6/°C.

优选地,所述氧化铝陶瓷棒的热膨胀系数为~7×10-6/℃。Preferably, the thermal expansion coefficient of the alumina ceramic rod is ~7×10-6/°C.

优选地,所述氧化铝陶瓷保护套的热膨胀系数为~7×10-6/℃。Preferably, the thermal expansion coefficient of the alumina ceramic protective sheath is ~7×10-6/°C.

优选地,所述光纤光栅与所述氧化铝陶瓷棒之间通过耐高温陶瓷胶粘贴固定。Preferably, the fiber grating and the alumina ceramic rod are fixed by high temperature resistant ceramic glue.

优选地,所述光纤光栅与所述氧化铝陶瓷保护套之间通过耐高温陶瓷胶粘贴固定。Preferably, the optical fiber grating and the alumina ceramic protective sleeve are fixed by high temperature resistant ceramic glue.

应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。It should be understood that both the foregoing general description and the following detailed description are exemplary illustrations and explanations, and should not be used as limitations on the claimed content of the present invention.

附图说明Description of drawings

参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:With reference to the accompanying drawings, more objects, functions and advantages of the present invention will be clarified through the following description of the embodiments of the present invention, wherein:

图1示出了一种一种基于FBG的超高温传感器的结构示意图。FIG. 1 shows a schematic structural diagram of a FBG-based ultra-high temperature sensor.

图2示出了本发明的一种基于FBG的超高温传感器的工作原理示意图。Fig. 2 shows a schematic diagram of the working principle of a FBG-based ultra-high temperature sensor of the present invention.

具体实施方式detailed description

通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。The objects and functions of the present invention and methods for achieving the objects and functions will be clarified by referring to the exemplary embodiments. However, the present invention is not limited to the exemplary embodiments disclosed below; it can be implemented in various forms. The essence of the description is only to help those skilled in the relevant art comprehensively understand the specific details of the present invention.

在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals represent the same or similar components, or the same or similar steps.

如图示出了一种一种基于FBG的超高温传感器的结构示意图。如图1所示,The figure shows a schematic structural diagram of a FBG-based ultra-high temperature sensor. As shown in Figure 1,

本发明提供了一种基于FBG的超高温传感器100包括:APC光纤接头101、氧化铝陶瓷棒102、不锈钢棒103、光纤光栅104、金属弹簧105以及氧化铝陶瓷保护套106;所述APC光纤接头101通过所述耐高温陶瓷胶107与所述氧化铝保护套106相连,所述光纤光栅104的一端固定在所述氧化铝陶瓷棒102的自由端,另一端固定在所述氧化铝陶瓷保护套106的一端,所述氧化铝陶瓷棒102插入到所述氧化铝陶瓷保护套106内,所述氧化铝陶瓷棒102与所述氧化铝陶瓷保护套106之间使用所述金属弹簧105提供给光纤光栅104的轴向拉伸力并感受温度变化,所述光纤光栅104与所述氧化铝陶瓷棒102之间通过耐高温陶瓷胶107粘贴固定;所述光纤光栅104与所述氧化铝陶瓷保护套106之间通过耐高温陶瓷胶107粘贴固定。The present invention provides a FBG-based ultra-high temperature sensor 100 comprising: an APC optical fiber connector 101, an alumina ceramic rod 102, a stainless steel rod 103, a fiber grating 104, a metal spring 105, and an alumina ceramic protective sleeve 106; the APC optical fiber connector 101 is connected to the alumina protective sleeve 106 through the high temperature resistant ceramic glue 107, one end of the fiber grating 104 is fixed to the free end of the alumina ceramic rod 102, and the other end is fixed to the alumina ceramic protective sleeve 106, the alumina ceramic rod 102 is inserted into the alumina ceramic protective sleeve 106, and the metal spring 105 is used between the alumina ceramic rod 102 and the alumina ceramic protective sleeve 106 to provide optical fiber The axial tensile force of the grating 104 and the feeling of temperature changes, the fiber grating 104 and the alumina ceramic rod 102 are pasted and fixed by high temperature resistant ceramic glue 107; the fiber grating 104 and the alumina ceramic protective sleeve 106 are pasted and fixed by high temperature resistant ceramic glue 107.

优选的,所述光纤光栅104的布拉格波长为1550nm。Preferably, the Bragg wavelength of the fiber grating 104 is 1550 nm.

优选的,所述不锈钢棒1003的热膨胀系数为~17×10-6/℃。Preferably, the thermal expansion coefficient of the stainless steel rod 1003 is ~17×10-6/°C.

优选的,所述氧化铝陶瓷棒102的热膨胀系数为~7×10-6/℃。Preferably, the thermal expansion coefficient of the alumina ceramic rod 102 is ~7×10 −6 /°C.

优选的,所述氧化铝陶瓷保护套106的热膨胀系数为~7×10-6/℃。Preferably, the thermal expansion coefficient of the alumina ceramic protective sheath 106 is ~7×10 −6 /°C.

基于FBG的超高温传感器的工作原理我们将在下面的实施例中详细阐述。The working principle of the FBG-based ultra-high temperature sensor will be described in detail in the following examples.

图2示出了本发明的一种基于FBG的超高温传感器的工作原理示意图。如图2所示,Fig. 2 shows a schematic diagram of the working principle of a FBG-based ultra-high temperature sensor of the present invention. as shown in picture 2,

本实施例中的基于FBG的超高温传感器200包括:APC光纤接头201、氧化铝陶瓷棒202、不锈钢棒203、光纤光栅204、金属弹簧205以及氧化铝陶瓷保护套206;所述APC光纤接头101通过所述耐高温陶瓷胶207与所述氧化铝保护套206相连,所述光纤光栅204的一端固定在所述氧化铝陶瓷棒202的自由端,另一端固定在所述氧化铝陶瓷保护套106的一端,所述氧化铝陶瓷棒202插入到所述氧化铝陶瓷保护套206内,所述氧化铝陶瓷棒202与所述氧化铝陶瓷保护套206之间使用所述金属弹簧205提供给光纤光栅204的轴向拉伸力并感受温度变化,所述光纤光栅204与所述氧化铝陶瓷棒202之间通过耐高温陶瓷胶207粘贴固定;所述光纤光栅104与所述氧化铝陶瓷保护套206之间通过耐高温陶瓷胶207粘贴固定。The FBG-based ultra-high temperature sensor 200 in this embodiment includes: APC optical fiber connector 201, alumina ceramic rod 202, stainless steel rod 203, fiber grating 204, metal spring 205 and alumina ceramic protective sleeve 206; the APC optical fiber connector 101 The high temperature resistant ceramic glue 207 is connected to the alumina protective sleeve 206, one end of the fiber grating 204 is fixed to the free end of the alumina ceramic rod 202, and the other end is fixed to the alumina ceramic protective sleeve 106 One end of the alumina ceramic rod 202 is inserted into the alumina ceramic protective sleeve 206, and the metal spring 205 is used between the alumina ceramic rod 202 and the alumina ceramic protective sleeve 206 to provide a fiber grating 204 axial tensile force and feel the temperature change, the fiber grating 204 and the alumina ceramic rod 202 are pasted and fixed by high temperature resistant ceramic glue 207; the fiber grating 104 and the alumina ceramic protective sleeve 206 Paste and fix them with high temperature resistant ceramic glue 207.

该实施例中的光纤光栅204为Ⅱ型光纤光栅,布拉格波长为1550nm,该光纤光栅204的一端固定在氧化铝陶瓷棒202的自由端,另一端连接至氧化铝陶瓷保护套206的一端,分别用高温陶瓷胶207粘贴固定。热膨胀系数为~17×10-6/℃不锈钢棒203和热膨胀系数为~7×10-6/℃的氧化铝陶瓷棒202,插入到热膨胀系数为~7×10-6/℃的氧化铝陶瓷保护套206内。将被测物体208通过高温陶瓷胶207粘贴在基于FBG的超高温传感器200的氧化铝陶瓷保护套206的侧面,被测物体的长度为250mm。The fiber grating 204 in this embodiment is a type II fiber grating, and the Bragg wavelength is 1550nm. One end of the fiber grating 204 is fixed on the free end of the alumina ceramic rod 202, and the other end is connected to one end of the alumina ceramic protective sleeve 206, respectively. Paste and fix with high temperature ceramic glue 207. A stainless steel rod 203 with a thermal expansion coefficient of ~17×10-6/°C and an alumina ceramic rod 202 with a thermal expansion coefficient of ~7×10-6/°C are inserted into the alumina ceramic with a thermal expansion coefficient of ~7×10-6/°C Inside the protective cover 206. The measured object 208 is pasted on the side of the alumina ceramic protective cover 206 of the FBG-based ultra-high temperature sensor 200 through a high-temperature ceramic glue 207, and the length of the measured object is 250 mm.

光纤光栅传感以其反射波长随外界参量的变化而改变为基础。当宽带光源在光纤光栅中传输时,产生模式耦合,根据光纤耦合模理论,满足布拉格条件的光波λB被反射,其余波长的光波被透射,有Fiber grating sensing is based on the change of its reflection wavelength with the change of external parameters. When a broadband light source is transmitted in a fiber grating, mode coupling occurs. According to the fiber-coupled mode theory, the light wave λ B satisfying the Bragg condition is reflected, and the light waves of other wavelengths are transmitted.

λB=2neffΛ (1)λ B = 2n eff Λ (1)

式中:Λ为光栅的周期;neff为光栅的有效折射率。当温度、应力等参量发生变化时,将会导致Λ和neff的变化,从而导致λB的变化有Where: Λ is the period of the grating; n eff is the effective refractive index of the grating. When the parameters such as temperature and stress change, it will lead to the change of Λ and n eff , which will lead to the change of λ B

ΔλB=2ΔneffΛ+2neffΔΛ (2)Δλ B =2Δn eff Λ+2n eff ΔΛ (2)

所提出的FBG超高温度传感器的工作原理是测量布拉格波长的改变,这种改变是通过由温度引起的应变导致的。The proposed FBG ultrahigh temperature sensor works by measuring the change in Bragg wavelength, which is induced by temperature-induced strain.

布拉格波长λB的相对变化ΔλBThe relative change Δλ B of the Bragg wavelength λ B is

ΔλB=λB(1-pe)Δε (3)Δλ B =λ B (1-p e )Δε (3)

式中:pe是光纤光栅的弹光系数,对于石英光纤,一般为0.22;In the formula: p e is the elasto-optic coefficient of the fiber grating, for the silica fiber, it is generally 0.22;

当传感器感受到被测物体208的温度影响后,传感元件导致FBG产生轴向应变When the sensor senses the influence of the temperature of the measured object 208, the sensing element causes the FBG to generate axial strain

由公式(3)和公式(4)可得From formula (3) and formula (4) can get

其中L是胶封传感器的长度。图2所示传感器的参数分别为,L=25mm,传感元件的有效长度Leff=20mm,Ⅱ型FBG的反射波长λB=1550nm,Ⅱ型FBG的弹光系数Pe=0.22,氧化铝棒的热膨胀系数α1=~7×10-6/℃,不锈钢棒的热膨胀系数α2=~17×10-6/℃。Where L is the length of the rubber-sealed sensor. The parameters of the sensor shown in Figure 2 are, L=25mm, the effective length of the sensing element Leff=20mm, the reflection wavelength λB of Type II FBG=1550nm, the elastic-optical coefficient Pe of Type II FBG=0.22, and the thermal expansion of the alumina rod Coefficient α1=~7×10-6/℃, thermal expansion coefficient α2=~17×10-6/℃ of stainless steel rod.

由于氧化铝的热膨胀系数小于不锈钢,相比氧化铝,不锈钢棒的热膨胀较大。导致FBG产生轴向应变。当施加的最大温度为1000℃时,氧化铝棒的自由端产生的相对位移为200μm。施加到包含FBG的25mm光纤的最大应变为8000με。可得在1000℃时波长改变的最大值约为是9.6nm,传感探头的温度灵敏度约为9.6pm/℃。Since alumina has a smaller coefficient of thermal expansion than stainless steel, the thermal expansion of stainless steel rods is greater compared to alumina. resulting in axial strain on the FBG. When the maximum temperature applied was 1000 °C, the relative displacement of the free end of the alumina rod was 200 μm. The maximum strain applied to a 25 mm fiber containing FBG was 8000 με. It can be obtained that the maximum wavelength change at 1000°C is about 9.6nm, and the temperature sensitivity of the sensing probe is about 9.6pm/°C.

本发明的有益效果至少在于:The beneficial effects of the present invention are at least:

使用能够承受1000℃超高温的飞秒激光器刻写的Ⅱ型光纤光栅,并利用膨胀系数不同的材料及高温陶瓷胶进行封装。该温度传感器将被测物体表面的温度信息转换为内部的机械力,具有测温范围大、耐超高温、克服温度应变交叉敏感性、可远程监控等优点。Type II fiber grating written by a femtosecond laser that can withstand ultra-high temperature of 1000°C is used, and it is packaged with materials with different expansion coefficients and high-temperature ceramic glue. The temperature sensor converts the temperature information on the surface of the measured object into internal mechanical force, and has the advantages of large temperature measurement range, ultra-high temperature resistance, overcoming temperature-strain cross-sensitivity, and remote monitoring.

结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。Other embodiments of the invention will be apparent to and understood by those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The description and examples are considered exemplary only, with the true scope and spirit of the invention defined by the claims.

Claims (7)

1.一种基于FBG的超高温传感器,其中,所述基于FBG的超高温传感器包括:1. A FBG-based ultra-high temperature sensor, wherein the FBG-based ultra-high temperature sensor comprises: APC光纤接头、氧化铝陶瓷棒、不锈钢棒、光纤光栅、金属弹簧以及氧化铝陶瓷保护套;APC optical fiber connector, alumina ceramic rod, stainless steel rod, fiber grating, metal spring and alumina ceramic protective sleeve; 所述APC光纤接头通过所述耐高温陶瓷胶与所述氧化铝保护套相连,所述光纤光栅的一端固定在所述氧化铝陶瓷棒的自由端,另一端固定在所述氧化铝陶瓷保护套的一端,所述氧化铝陶瓷棒插入到所述氧化铝陶瓷保护套内,所述氧化铝陶瓷棒与所述氧化铝陶瓷保护套之间使用所述金属弹簧提供给光纤光栅的轴向拉伸力并感受温度变化。The APC optical fiber connector is connected to the alumina protective sleeve through the high temperature resistant ceramic glue, one end of the fiber grating is fixed to the free end of the alumina ceramic rod, and the other end is fixed to the alumina ceramic protective sleeve One end of the alumina ceramic rod is inserted into the alumina ceramic protective sleeve, and the axial tension of the fiber grating is provided by the metal spring between the alumina ceramic rod and the alumina ceramic protective sleeve. force and feel the temperature change. 2.根据权利要求1所述的基于FBG的超高温传感器,其中,所述光纤光栅的布拉格波长为1550nm。2. The FBG-based ultra-high temperature sensor according to claim 1, wherein the Bragg wavelength of the fiber grating is 1550 nm. 3.根据权利要求1所述的基于FBG的超高温传感器,其中,所述不锈钢棒的热膨胀系数为~17×10-6/℃。3. The FBG-based ultra-high temperature sensor of claim 1, wherein the thermal expansion coefficient of the stainless steel rod is ~17×10-6/°C. 4.根据权利要求1所述的基于FBG的超高温传感器,其中,所述氧化铝陶瓷棒的热膨胀系数为~7×10-6/℃。4. The FBG-based ultra-high temperature sensor of claim 1, wherein the thermal expansion coefficient of the alumina ceramic rod is ~7×10-6/°C. 5.根据权利要求1所述的基于FBG的超高温传感器,其中,所述氧化铝陶瓷保护套的热膨胀系数为~7×10-6/℃。5. The FBG-based ultra-high temperature sensor according to claim 1, wherein the thermal expansion coefficient of the alumina ceramic protective sheath is ~7×10 −6 /°C. 6.根据权利要求1所述的基于FBG的超高温传感器,其中,所述光纤光栅与所述氧化铝陶瓷棒之间通过耐高温陶瓷胶粘贴固定。6 . The FBG-based ultra-high temperature sensor according to claim 1 , wherein the fiber grating and the alumina ceramic rod are pasted and fixed by a high-temperature-resistant ceramic glue. 7.根据权利要求1所述的基于FBG的超高温传感器,其中,所述光纤光栅与所述氧化铝陶瓷保护套之间通过耐高温陶瓷胶粘贴固定。7. The FBG-based ultra-high temperature sensor according to claim 1, wherein the fiber grating and the alumina ceramic protective sleeve are fixed by high temperature resistant ceramic glue.
CN201610953668.7A 2016-11-03 2016-11-03 A kind of superelevation temperature sensor based on FBG Active CN106546354B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610953668.7A CN106546354B (en) 2016-11-03 2016-11-03 A kind of superelevation temperature sensor based on FBG

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610953668.7A CN106546354B (en) 2016-11-03 2016-11-03 A kind of superelevation temperature sensor based on FBG

Publications (2)

Publication Number Publication Date
CN106546354A true CN106546354A (en) 2017-03-29
CN106546354B CN106546354B (en) 2019-03-08

Family

ID=58393759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610953668.7A Active CN106546354B (en) 2016-11-03 2016-11-03 A kind of superelevation temperature sensor based on FBG

Country Status (1)

Country Link
CN (1) CN106546354B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151909A (en) * 2017-12-26 2018-06-12 北京信息科技大学 A kind of superelevation temperature sensor based on FBG
CN108151665A (en) * 2017-12-26 2018-06-12 北京信息科技大学 A kind of superhigh temperature resistant strain transducer based on FBG
CN108169696A (en) * 2017-12-27 2018-06-15 北京信息科技大学 A kind of magnetic field strength transducer and its performance test methods based on FBG
CN113203704A (en) * 2021-05-11 2021-08-03 东北大学 Transformer monitoring and sensing integrated optical fiber sensor and use method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW476013B (en) * 2000-08-07 2002-02-11 Ind Tech Res Inst Electric fiber grating filter with switchable central wavelength
US6366721B1 (en) * 1999-11-04 2002-04-02 Industrial Technology Research Institute Tunable optical fiber grating
CN101526339A (en) * 2009-04-22 2009-09-09 东南大学 Temperature self-compensation fiber grating displacement sensor
US7801403B2 (en) * 2007-10-30 2010-09-21 Fei Luo Optical fiber grating tuning device and optical systems employing same
CN201844820U (en) * 2010-11-08 2011-05-25 昆明理工大学 Double-cantilever beam type optical fiber Bragg grating displacement sensor
CN102564640A (en) * 2012-01-04 2012-07-11 中国计量学院 LPFG (Long Period Fiber Grating) high temperature sensor based on stretching compensation encapsulation technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366721B1 (en) * 1999-11-04 2002-04-02 Industrial Technology Research Institute Tunable optical fiber grating
TW476013B (en) * 2000-08-07 2002-02-11 Ind Tech Res Inst Electric fiber grating filter with switchable central wavelength
US7801403B2 (en) * 2007-10-30 2010-09-21 Fei Luo Optical fiber grating tuning device and optical systems employing same
CN101526339A (en) * 2009-04-22 2009-09-09 东南大学 Temperature self-compensation fiber grating displacement sensor
CN201844820U (en) * 2010-11-08 2011-05-25 昆明理工大学 Double-cantilever beam type optical fiber Bragg grating displacement sensor
CN102564640A (en) * 2012-01-04 2012-07-11 中国计量学院 LPFG (Long Period Fiber Grating) high temperature sensor based on stretching compensation encapsulation technology

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151909A (en) * 2017-12-26 2018-06-12 北京信息科技大学 A kind of superelevation temperature sensor based on FBG
CN108151665A (en) * 2017-12-26 2018-06-12 北京信息科技大学 A kind of superhigh temperature resistant strain transducer based on FBG
CN108169696A (en) * 2017-12-27 2018-06-15 北京信息科技大学 A kind of magnetic field strength transducer and its performance test methods based on FBG
CN113203704A (en) * 2021-05-11 2021-08-03 东北大学 Transformer monitoring and sensing integrated optical fiber sensor and use method
CN113203704B (en) * 2021-05-11 2022-09-27 东北大学 A kind of transformer monitoring and sensing integrated optical fiber sensor and using method

Also Published As

Publication number Publication date
CN106546354B (en) 2019-03-08

Similar Documents

Publication Publication Date Title
CN103076109B (en) Magnetic type flaky optical fiber grating temperature sensor
CN102162753B (en) Sensor structure for simultaneously measuring temperature and strain of long period fiber gratings (LPFGs)
CN201331395Y (en) Fibre grating temperature compensation transducer
CN203025082U (en) Refractive index sensor based on LPG-TFBG (Long Period Grating-Tilted Fiber Bragg Grating) structure
CN205655942U (en) Meet an emergency and optical fiber sensor of temperature simultaneous measurement
KR101529610B1 (en) Apparatus and Sensing System for Fiber Bragg Grating Probes Having Controlled Sensitivity and Method for Sensing and Manufacturing thereof
CN103852191B (en) The fibre optic temperature sensor that a kind of refractive index is insensitive
CN102483499A (en) Polarization maintaining fiber and optical fiber sensor using same
CN105387968B (en) Fibre cladding surface Bragg grating temperature self-compensating pressure transducers
CN106546354A (en) A kind of superelevation temperature sensor based on FBG
CN205861241U (en) A kind of based on spherical structure with the fibre optic temperature sensor of hollow optic fibre
CN205785609U (en) A kind of optical fiber optical grating stress sensor based on carbon fiber encapsulation
CN101545851A (en) Long period fiber grating-based reflection-type optical fiber biochemical sensor and manufacturing method thereof
CN202141546U (en) High pressure sensor having fiber Bragg grating based on carbon fiber lamination composite material
CN106884830A (en) The monitoring device and monitoring method of spiral swing hydranlic pressure jar runner sealing state of wear
KR101631361B1 (en) Light based interferometer system
CN209820658U (en) FBG pressure sensing head based on temperature compensation
CN203224440U (en) Humidity sensor based on multimode interference MSM (multilayer switch module) structure
CN209432073U (en) Fiber Bragg Grating Sensor Packaged in Long Gauge Coaxial Multiple Sleeves for Measuring Tension and Compression Strain
CN208238740U (en) Double hump cone fiber optic bend sensor
CN201034747Y (en) Fiber Bragg Grating High Temperature Sensing System with Long Period Fiber Bragg Grating Demodulation
CN203672771U (en) Optical fiber humidity sensor based on offset fusion splicing
CN110044288A (en) High temperature resistant strain transducer based on FBG
CN104019928B (en) Seriation cushion layer structure optical fiber micro-bending sensor
CN202024961U (en) Temperature self compensation fiber bragg grating (FBG) refraction index sensor based on conical corrosion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170329

Assignee: NINGBO TIANDE INNOVATION INTELLIGENT TECHNOLOGY Co.,Ltd.

Assignor: Beijing Information Science & Technology University

Contract record no.: X2020990000716

Denomination of invention: An ultra high temperature sensor based on FBG

Granted publication date: 20190308

License type: Common License

Record date: 20201230