CN106501898A - Metal nanoparticle-insulation composite material grating coupler - Google Patents
Metal nanoparticle-insulation composite material grating coupler Download PDFInfo
- Publication number
- CN106501898A CN106501898A CN201710015785.3A CN201710015785A CN106501898A CN 106501898 A CN106501898 A CN 106501898A CN 201710015785 A CN201710015785 A CN 201710015785A CN 106501898 A CN106501898 A CN 106501898A
- Authority
- CN
- China
- Prior art keywords
- insulator
- grating
- planar waveguide
- metal nanoparticle
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 81
- 239000002184 metal Substances 0.000 title claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 55
- 238000009413 insulation Methods 0.000 title 1
- 239000012212 insulator Substances 0.000 claims abstract description 119
- 230000003287 optical effect Effects 0.000 claims abstract description 76
- 230000008878 coupling Effects 0.000 claims abstract description 58
- 238000010168 coupling process Methods 0.000 claims abstract description 58
- 238000005859 coupling reaction Methods 0.000 claims abstract description 58
- 238000005530 etching Methods 0.000 claims abstract description 18
- 238000002360 preparation method Methods 0.000 claims abstract description 12
- 238000010521 absorption reaction Methods 0.000 claims abstract description 11
- 238000005516 engineering process Methods 0.000 claims abstract description 10
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 10
- 238000000609 electron-beam lithography Methods 0.000 claims abstract description 7
- 229910021645 metal ion Inorganic materials 0.000 claims description 49
- 238000002513 implantation Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 20
- 239000002082 metal nanoparticle Substances 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 4
- 229920002120 photoresistant polymer Polymers 0.000 claims description 4
- 239000000110 cooling liquid Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- 230000010287 polarization Effects 0.000 abstract description 6
- 238000001914 filtration Methods 0.000 abstract description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 33
- 239000002105 nanoparticle Substances 0.000 description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 229910052681 coesite Inorganic materials 0.000 description 11
- 229910052906 cristobalite Inorganic materials 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 11
- 235000012239 silicon dioxide Nutrition 0.000 description 11
- 229910052682 stishovite Inorganic materials 0.000 description 11
- 229910052905 tridymite Inorganic materials 0.000 description 11
- 238000005468 ion implantation Methods 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000000411 transmission spectrum Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005315 distribution function Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/124—Geodesic lenses or integrated gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/34—Optical coupling means utilising prism or grating
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
本发明公开了一种金属纳米颗粒-绝缘体复合材料光栅耦合器及其制备方法和应用。所述光栅耦合器由金属纳米颗粒-绝缘体复合材料耦合光栅和绝缘体光学平面波导构成,其中的金属纳米颗粒-绝缘体复合材料耦合光栅是在金属离子注入的绝缘体光学平面波导表面,依托所形成的金属纳米颗粒-绝缘体复合材料改性层,利用电子束光刻和反应离子束刻蚀技术制备而成的一种二维正交矩形衍射光栅。相比于同样结构的绝缘体光栅耦合器,本发明具有更高的耦合效率,而且不存在自由载流子吸收造成的损耗。此外,本发明对光的极化方向不敏感,在实现光耦合的同时,借助导波的形成和衍射畸变,亦可实现光的滤波、分束和偏转。本发明可用于大规模集成光路的制备等领域。
The invention discloses a metal nanoparticle-insulator composite material grating coupler, a preparation method and an application thereof. The grating coupler is composed of a metal nanoparticle-insulator composite coupling grating and an insulator optical planar waveguide. The modified layer of nanoparticle-insulator composite material is a two-dimensional orthogonal rectangular diffraction grating prepared by electron beam lithography and reactive ion beam etching technology. Compared with the insulator grating coupler with the same structure, the invention has higher coupling efficiency, and there is no loss caused by free carrier absorption. In addition, the present invention is not sensitive to the polarization direction of light, and while realizing light coupling, light filtering, beam splitting and deflection can also be realized by means of formation of guided waves and diffraction distortion. The invention can be used in the fields of preparation of large-scale integrated optical circuits and the like.
Description
技术领域:Technical field:
本发明属于纳米光子学技术领域,涉及可见和/或近红外波段光栅耦合器的制备技术,具体地说是涉及一种工作于可见和/或近红外波段的金属纳米颗粒-绝缘体复合材料光栅耦合器及其制备方法。The invention belongs to the technical field of nanophotonics, and relates to the preparation technology of grating couplers in visible and/or near-infrared bands, in particular to a metal nanoparticle-insulator composite grating coupler working in visible and/or near-infrared bands. device and its preparation method.
背景技术:Background technique:
光栅耦合器在集成光学器件和大规模集成光路的构建过程中具有重要作用,利用光栅耦合器,可以将可见和/或近红外波段的光信号有效地引入或引出光学平面波导,从而实现光信号的定向传输以及后续处理。光栅耦合器是耦合光栅与平面波导的一个集成,根据耦合光栅所基于的材料,可以将现有的光栅耦合器划分为两类,即绝缘体光栅耦合器和金属光栅耦合器。与金属光栅耦合器相比,绝缘体光栅耦合器不存在自由载流子吸收对耦合效率的影响,而且也更容易与绝缘体光学平面波导集成,因此,在基于可见和/或近红外波段的应用中,绝缘体光栅耦合器占有主导地位。绝缘体光栅耦合器的耦合效率取决于耦合光栅的衍射效率,而耦合光栅的衍射效率又依赖于耦合光栅的厚度、侧面形状、折射率对比度(高折射率区域与低折射率区域的折射率之比)和占空比(也称填充分数,是高折射率区域的宽度与光栅常数之比)等,对于具有确定结构的耦合光栅来说,折射率对比度是决定其衍射效率的关键因素,一般而言,高的折射率对比度将产生大的衍射效率。绝缘体耦合光栅与绝缘体光学平面波导的集成有两种方法,一是先在衬底材料的表面构建出所需的周期性结构,然后再沉积上波导层,二是先在波导层中构建出所需的周期性结构,然后再沉积上覆盖层作为衬底,这两种方法具有完全相同的效果,所形成的光栅耦合器由于将耦合光栅埋藏于其中,因此可靠性较高,但是,在折射率型平面波导结构中,波导材料的折射率比衬底材料和覆盖材料的折射率要大,而常用的绝缘体光学平面波导材料,如SiO2、Al2O3和PMMA(有机玻璃)等,其折射率都相对较小,受此限制,按上述方法集成而来的光栅耦合器不会具有较高的耦合效率。那么,如何才能在常用的绝缘体光学平面波导上构建出高效率的光栅耦合器呢?这已经成为近期研究所关注的一个重点,除此之外,还有一个问题也需引起注意,那就是在以往的关于光栅耦合器的研究中,由于侧重点是耦合,希望能以较高的效率将一定极化方向的光信号引入或引出平面波导,因此耦合光栅大都采用了一维结构,而非二维结构。事实上,二维结构的耦合光栅,特别是二维正交结构的矩形耦合光栅,如果能使它的±1级衍射满足相匹配条件,其与光学平面波导的结合也可以构成高效的光栅耦合器,这种二维光栅耦合器不仅对光的极化方向不敏感,而且可以在实现光耦合的同时,借助于导波的形成以及衍射畸变,亦能实现光的滤波、分束和偏转,这对于构建功能性的集成光学器件以及以之为基础的大规模集成光路来说具有重要意义。Grating couplers play an important role in the construction of integrated optical devices and large-scale integrated optical circuits. Using grating couplers, optical signals in the visible and/or near-infrared bands can be effectively introduced into or extracted from optical planar waveguides, thereby realizing optical signal directional transmission and subsequent processing. A grating coupler is an integration of a coupling grating and a planar waveguide. According to the material on which the coupling grating is based, the existing grating couplers can be divided into two categories, namely insulator grating couplers and metal grating couplers. Compared with metal grating couplers, insulator grating couplers do not have the effect of free carrier absorption on coupling efficiency, and are also easier to integrate with insulator optical planar waveguides, so in applications based on visible and/or near-infrared bands , the insulator grating coupler dominates. The coupling efficiency of the insulator grating coupler depends on the diffraction efficiency of the coupling grating, and the diffraction efficiency of the coupling grating depends on the thickness, side shape, and refractive index contrast of the coupling grating (the ratio of the refractive index of the high refractive index area to the low refractive index area ) and duty cycle (also known as filling fraction, which is the ratio of the width of the high refractive index region to the grating constant), etc., for a coupling grating with a definite structure, the refractive index contrast is the key factor determining its diffraction efficiency, and generally In other words, a high refractive index contrast will result in a large diffraction efficiency. There are two methods for the integration of insulator-coupled gratings and insulator optical planar waveguides. One is to construct the required periodic structure on the surface of the substrate material, and then deposit the waveguide layer; The required periodic structure, and then deposit the upper cover layer as the substrate. These two methods have exactly the same effect. The formed grating coupler has high reliability because the coupling grating is buried in it. However, in the refraction In the rate-type planar waveguide structure, the refractive index of the waveguide material is larger than that of the substrate material and the cover material, and the commonly used insulator optical planar waveguide materials, such as SiO 2 , Al 2 O 3 and PMMA (organic glass), etc., Their refractive indices are relatively small, limited by this, the grating coupler integrated by the above method will not have high coupling efficiency. So, how can we construct high-efficiency grating couplers on commonly used insulator optical planar waveguides? This has become a focus of recent research. In addition, there is another problem that needs attention, that is, in the previous research on the grating coupler, since the focus is on coupling, it is hoped to be able to use a higher Efficiency leads optical signals of a certain polarization direction into or out of the planar waveguide, so coupling gratings mostly adopt a one-dimensional structure rather than a two-dimensional structure. In fact, if a coupling grating with a two-dimensional structure, especially a rectangular coupling grating with a two-dimensional orthogonal structure, can make its ±1st-order diffraction meet the matching condition, its combination with an optical planar waveguide can also form an efficient grating coupling This two-dimensional grating coupler is not only insensitive to the polarization direction of light, but also can achieve light filtering, beam splitting and deflection by means of the formation of guided waves and diffraction distortion while realizing light coupling. This is of great significance for the construction of functional integrated optical devices and large-scale integrated optical circuits based on them.
金属离子注入是一种成熟而且灵活的绝缘材料表面改性方法。将低能、高剂量的金属离子(特别是Drude金属离子)注入到绝缘体中,可以在绝缘体的近表面区域形成具有一定深度分布的金属纳米颗粒,换句话说,就是可以形成一层具有一定厚度的金属纳米颗粒-绝缘体复合材料改性层,改性层的厚度以及金属纳米颗粒的平均尺寸和体积分数可以通过改变金属离子的注入能量和剂量进行调控。值得注意的是,在一定剂量范围内,由金属离子注入所形成的金属纳米颗粒-绝缘体复合材料改性层仍然是绝缘的,但相比于未改性的绝缘体而言,其光学性质却显著不同。金属纳米颗粒-绝缘体复合材料改性层存在一个与金属纳米颗粒表面等离子体相关的共振吸收波长λSPR,当入射光的波长等于λSPR时,入射光将被强烈吸收,而当入射光的波长大于λSPR时:首先,复合材料改性层的有效折射率的实部(在不引起混淆的情况下简称为折射率)比绝缘体的折射率大,这种折射率之间的差异与金属纳米颗粒的体积分数和入射光的波长相关,金属纳米颗粒的体积分数越大,入射光的波长越接近λSPR,则折射率之间的差异就越大;其次,复合材料改性层的有效折射率的虚部(即消光系数)在相当大的一个波长范围内都很小,基本上可以忽略;再者,金属纳米颗粒的表面等离子体对入射光存在散射,进而导致复合材料改性层的反射率有一个额外的增加,从Fresnel反射的观点来看,这种反射率的额外增加可以看作是复合材料改性层的折射率有一个额外增加的结果。依据复合材料改性层所表现出来的上述光学性质,我们有理由认为,以绝缘体光学平面波导的金属离子注入改性为基础,通过对耦合光栅结构(特别是光栅常数)的合理设计,再结合电子束光刻和离子束刻蚀等微纳加工技术,就有可能构造出一种新型的高效率光栅耦合器。Metal ion implantation is a mature and flexible method for surface modification of insulating materials. Implanting low-energy, high-dose metal ions (especially Drude metal ions) into the insulator can form metal nanoparticles with a certain depth distribution in the near-surface region of the insulator, in other words, it can form a layer with a certain thickness. The modified layer of metal nanoparticles-insulator composite material, the thickness of the modified layer and the average size and volume fraction of metal nanoparticles can be regulated by changing the implantation energy and dose of metal ions. It is worth noting that within a certain dose range, the metal nanoparticle-insulator composite modified layer formed by metal ion implantation is still insulating, but its optical properties are significantly better than that of the unmodified insulator. different. There is a resonant absorption wavelength λ SPR related to the metal nanoparticle surface plasmon in the modified layer of metal nanoparticles-insulator composite material. When the wavelength of the incident light is equal to λ SPR , the incident light will be strongly absorbed, and when the wavelength of the incident light is When it is greater than λ SPR : First, the real part of the effective refractive index of the modified layer of the composite material (abbreviated as the refractive index without causing confusion) is larger than the refractive index of the insulator. The volume fraction of the particles is related to the wavelength of the incident light. The larger the volume fraction of the metal nanoparticles, the closer the wavelength of the incident light is to λ SPR , and the greater the difference between the refractive indices; secondly, the effective refraction of the modified layer of the composite material The imaginary part of the ratio (that is, the extinction coefficient) is very small in a considerable wavelength range and can basically be ignored; moreover, the surface plasmons of the metal nanoparticles scatter the incident light, which leads to the loss of the modified layer of the composite material. There is an additional increase in reflectivity, which can be seen as a result of an additional increase in the refractive index of the modified layer of the composite from the Fresnel reflection point of view. According to the above-mentioned optical properties exhibited by the modified layer of the composite material, we have reason to believe that based on the metal ion implantation modification of the insulator optical planar waveguide, through the reasonable design of the coupling grating structure (especially the grating constant), combined with It is possible to construct a new type of high-efficiency grating coupler with micro-nano processing technologies such as electron beam lithography and ion beam etching.
最近,Stepanov等发表了一项研究成果(Applied Physics A(2013)111:261~264),他们采用扫描电子显微镜中的Ni制校准栅格作为注入模板,通过能量和剂量分别为40keV和5×1016cm-2的Cu离子注入,在SiO2薄板的表面形成了一种所谓的二维周期性等离子体结构,对于波长为632.8nm的入射光,该结构表现出了良好的衍射特性。值得注意的是,Stepanov等提出的二维周期性等离子体结构虽然可以作为一种衍射光栅,但是,它还不能与SiO2平面波导一起构成实际可用的高效率光栅耦合器,最主要的原因就在于它的光栅常数过大,根据文献所给出的扫描电镜观测结果,其在行与列上的光栅常数分别为49和36μm,对于可见和/或近红外波段的应用来说,如此大的光栅常数使得小级数的衍射根本无法满足相匹配条件,因此也就不能在平面波导内形成较强的导波。Recently, Stepanov et al. published a research result (Applied Physics A(2013) 111:261~264). They used the calibration grid made of Ni in the scanning electron microscope as the injection template, and the energy and dose were 40keV and 5× Cu ion implantation of 10 16 cm -2 forms a so-called two-dimensional periodic plasmonic structure on the surface of SiO 2 thin plate, which exhibits good diffraction characteristics for incident light with a wavelength of 632.8nm. It is worth noting that although the two-dimensional periodic plasmonic structure proposed by Stepanov et al. can be used as a diffraction grating, it cannot form a practical high-efficiency grating coupler together with the SiO 2 planar waveguide. The main reason is that Its grating constant is too large. According to the scanning electron microscope observation results given in the literature, its grating constants on the rows and columns are 49 and 36 μm, respectively. For applications in the visible and/or near-infrared bands, such a large The grating constant makes the diffraction of small orders unable to meet the matching condition at all, so it is impossible to form a strong guided wave in the planar waveguide.
发明内容:Invention content:
本发明旨在提出一种工作于可见和/或近红外波段的金属纳米颗粒-绝缘体复合材料光栅耦合器以及该型光栅耦合器的制备方法和应用。The invention aims to provide a metal nano particle-insulator composite material grating coupler working in visible and/or near-infrared bands, and a preparation method and application of the grating coupler.
本发明为实现其目的所采取的技术方案如下:The technical scheme that the present invention takes for realizing its purpose is as follows:
金属纳米颗粒-绝缘体复合材料光栅耦合器由金属纳米颗粒-绝缘体复合材料耦合光栅和绝缘体光学平面波导构成,其中的金属纳米颗粒-绝缘体复合材料耦合光栅是一种二维正交矩形衍射光栅,厚度为40~150nm,位于绝缘体光学平面波导表面因金属离子注入而形成的改性层中,与绝缘体光学平面波导之间无明显分界面。The metal nanoparticle-insulator composite grating coupler is composed of a metal nanoparticle-insulator composite coupling grating and an insulator optical planar waveguide. The metal nanoparticle-insulator composite coupling grating is a two-dimensional orthogonal rectangular diffraction grating with a thickness of It is 40-150nm, located in the modified layer formed by metal ion implantation on the surface of the insulator optical plane waveguide, and has no obvious interface with the insulator optical plane waveguide.
优选的,所述金属纳米颗粒-绝缘体复合材料耦合光栅中的金属纳米颗粒为Ag、Cu和Au这三种金属纳米颗粒其中之一。Preferably, the metal nanoparticles in the metal nanoparticle-insulator composite material coupling grating are one of the three metal nanoparticles of Ag, Cu and Au.
优选的,所述金属纳米颗粒-绝缘体复合材料耦合光栅在行和列上具有相同的光栅常数和占空比,光栅常数为绝缘体光学平面波导中金属纳米颗粒表面等离子体共振吸收波长的1.05~1.5倍,占空比是所述金属纳米颗粒-绝缘体复合材料耦合光栅中金属纳米颗粒-绝缘体复合材料的宽度与光栅常数之比,控制在30%~50%之间。Preferably, the metal nanoparticle-insulator composite material coupling grating has the same grating constant and duty cycle on the row and column, and the grating constant is 1.05 to 1.5 of the surface plasmon resonance absorption wavelength of the metal nanoparticle in the insulator optical planar waveguide. The duty cycle is the ratio of the width of the metal nanoparticle-insulator composite material in the metal nanoparticle-insulator composite coupling grating to the grating constant, which is controlled between 30% and 50%.
优选的,所述绝缘体光学平面波导是由可见和/或近红外波段透明的固体绝缘材料构成的薄膜或薄板。Preferably, the insulator optical planar waveguide is a thin film or thin plate made of transparent solid insulating material in visible and/or near-infrared bands.
金属纳米颗粒-绝缘体复合材料光栅耦合器的制备方法包括以下步骤:The preparation method of the metal nano particle-insulator composite material grating coupler comprises the following steps:
(1)选取或制备具有一定厚度的绝缘体光学平面波导;(1) Select or prepare an insulator optical planar waveguide with a certain thickness;
(2)将一定能量和剂量的金属离子按一定方式注入到绝缘体光学平面波导中,在绝缘体光学平面波导的表面形成金属纳米颗粒-绝缘体复合材料改性层;(2) Inject metal ions with a certain energy and dose into the insulator optical planar waveguide in a certain way, and form a metal nanoparticle-insulator composite material modification layer on the surface of the insulator optical planar waveguide;
(3)利用电子束光刻技术,在金属离子注入的绝缘体光学平面波导表面制备出带有所需二维耦合光栅结构信息的光刻胶掩膜层;(3) Using electron beam lithography technology, a photoresist mask layer with the required two-dimensional coupling grating structure information is prepared on the surface of the insulator optical planar waveguide implanted with metal ions;
(4)依托绝缘体光学平面波导表面所形成的金属纳米颗粒-绝缘体复合材料改性层,利用反应离子束刻蚀技术进行刻蚀,刻蚀深度为40~150nm,经过随后的除胶处理,构建出所需的二维金属纳米颗粒-绝缘体复合材料耦合光栅。(4) Relying on the metal nanoparticle-insulator composite material modification layer formed on the surface of the insulator optical planar waveguide, it is etched by reactive ion beam etching technology, and the etching depth is 40-150nm. After subsequent degumming treatment, the structure The desired two-dimensional metal nanoparticle-insulator composite coupling grating is obtained.
优选的,步骤(2)中所述金属离子为Ag、Cu和Au这三种金属离子其中之一。Preferably, the metal ion in step (2) is one of the three metal ions of Ag, Cu and Au.
优选的,步骤(2)中所述金属离子的注入方式或者为垂直注入,或者为倾斜注入。Preferably, the metal ion implantation method in step (2) is either vertical implantation or oblique implantation.
优选的,步骤(2)中所述金属离子的注入或者针对于绝缘体光学平面波导表面的局部区域,或者针对于绝缘体光学平面波导表面的全部区域。Preferably, the implantation of the metal ions in step (2) is aimed at either a local area of the surface of the insulator optical planar waveguide, or an entire area of the surface of the insulator optical planar waveguide.
优选的,步骤(2)中所述金属离子的注入能量和剂量分别控制在40~100keV之间和5×1016~8×1016cm-2之间,实际应用值按预定策略确定。Preferably, the implantation energy and dose of metal ions in step (2) are respectively controlled between 40-100 keV and 5×10 16 to 8×10 16 cm −2 , and the actual application values are determined according to a predetermined strategy.
所述预定策略包括:当绝缘体光学平面波导的厚度为200~750nm时,所选金属离子的注入能量和剂量应使金属离子的最大注入深度接近但不超过绝缘体光学平面波导厚度的1/5,即40~150nm;当绝缘体光学平面波导的厚度大于750nm时,所选金属离子的注入能量和剂量应使金属离子的最大注入深度接近但不超过150nm。The predetermined strategy includes: when the thickness of the insulator optical planar waveguide is 200-750 nm, the implantation energy and dose of the selected metal ions should make the maximum implantation depth of the metal ions approach but not exceed 1/5 of the thickness of the insulator optical planar waveguide, That is, 40-150nm; when the thickness of the insulator optical planar waveguide is greater than 750nm, the implantation energy and dose of the selected metal ions should make the maximum implantation depth of the metal ions approach but not exceed 150nm.
优选的,步骤(4)中所述反应离子束刻蚀技术包括冷却液工艺。Preferably, the reactive ion beam etching technique in step (4) includes a cooling liquid process.
优选的,步骤(4)中所述刻蚀深度大于或等于金属离子的最大注入深度。Preferably, the etching depth in step (4) is greater than or equal to the maximum implantation depth of metal ions.
上述金属纳米颗粒-绝缘体复合材料光栅耦合器可在制备可见和/或近红外波段的光耦合器、滤波器、分束器和偏转器方面进行应用。The metal nanoparticle-insulator composite material grating coupler can be applied in the preparation of optical couplers, filters, beam splitters and deflectors in visible and/or near-infrared bands.
本发明的有益效果是:The beneficial effects of the present invention are:
相比于传统的绝缘体光栅耦合器,本发明所公布的金属纳米颗粒-绝缘体复合材料光栅耦合器具有更高的耦合效率,而且不存在发生于金属光栅耦合器中的因自由载流子吸收造成的损耗。以实施例中所提及的Ag纳米颗粒-SiO2复合材料光栅耦合器为例,当入射光的波长为650nm时,其耦合效率比具有同样结构的SiO2光栅耦合器高出至少3倍。此外,与传统的由一维耦合光栅构成的光栅耦合器相比,本发明所公布的金属纳米颗粒-绝缘体复合材料光栅耦合器由于采用了二维正交结构的耦合光栅,因此它不仅对光的极化方向不敏感,而且可以在实现光耦合的同时,借助导波的形成和衍射畸变,亦能实现光的滤波、分束和偏转,这对于构建功能性的集成光学器件以及以之为基础的大规模集成光路具有重要意义。Compared with the traditional insulator grating coupler, the metal nanoparticle-insulator composite material grating coupler disclosed by the present invention has higher coupling efficiency, and there is no phenomenon caused by free carrier absorption in the metal grating coupler. loss. Taking the Ag nanoparticle-SiO 2 composite material grating coupler mentioned in the embodiment as an example, when the wavelength of the incident light is 650nm, its coupling efficiency is at least 3 times higher than that of the SiO 2 grating coupler with the same structure. In addition, compared with the traditional grating coupler composed of one-dimensional coupling grating, the metal nanoparticle-insulator composite material grating coupler disclosed in the present invention adopts a two-dimensional orthogonal structure coupling grating, so it not only It is not sensitive to the polarization direction, and can achieve optical filtering, beam splitting and deflection with the help of guided wave formation and diffraction distortion while achieving optical coupling, which is very important for building functional integrated optical devices and for them The basic large-scale integrated optical circuit is of great significance.
附图说明:Description of drawings:
图1为金属纳米颗粒-绝缘体复合材料光栅耦合器的局部结构示意图。Fig. 1 is a schematic diagram of a partial structure of a metal nanoparticle-insulator composite material grating coupler.
图2为金属纳米颗粒-绝缘体复合材料光栅耦合器的制备流程示意图。Fig. 2 is a schematic diagram of the preparation process of the metal nanoparticle-insulator composite material grating coupler.
图3a为Ag离子注入SiO2平面波导后所形成的Ag纳米颗粒的深度分布。Figure 3a shows the depth distribution of Ag nanoparticles formed after Ag ions are implanted into SiO 2 planar waveguide.
图3b为Ag纳米颗粒-SiO2复合材料光栅耦合器的表面形貌。Figure 3b is the surface morphology of the Ag nanoparticle-SiO 2 composite grating coupler.
图4a为Cu离子注入SiO2平面波导后所形成的Cu纳米颗粒的深度分布。Figure 4a is the depth distribution of Cu nanoparticles formed after Cu ions implanted into SiO2 planar waveguide.
图4b为Cu纳米颗粒-SiO2复合材料光栅耦合器的表面形貌。Figure 4b is the surface morphology of the Cu nanoparticle-SiO 2 composite grating coupler.
图5为Ag纳米颗粒-SiO2复合材料光栅耦合器和Cu纳米颗粒-SiO2复合材料光栅耦合器的透射光谱。Fig. 5 is the transmission spectrum of the Ag nanoparticle-SiO 2 composite grating coupler and the Cu nanoparticle-SiO 2 composite grating coupler.
图6为导波的形成与控制示意图。Fig. 6 is a schematic diagram of formation and control of guided waves.
图中:1-金属纳米颗粒-绝缘体复合材料耦合光栅,2-绝缘体光学平面波导,3-金属纳米颗粒,4-金属纳米颗粒-绝缘体复合材料改性层,5-光刻胶掩膜层,6-SiO2光学平面波导的表面,7-Ag纳米颗粒,8-Ag纳米颗粒-SiO2复合材料改性层,9-Cu纳米颗粒,10-Cu纳米颗粒-SiO2复合材料改性层,11-Ag纳米颗粒-SiO2复合材料光栅耦合器的透射光谱,12-Cu纳米颗粒-SiO2复合材料光栅耦合器的透射光谱,13-入射光,14-导波的传播方向。In the figure: 1-metal nanoparticle-insulator composite material coupling grating, 2-insulator optical planar waveguide, 3-metal nanoparticle, 4-metal nanoparticle-insulator composite material modified layer, 5-photoresist mask layer, The surface of 6- SiO2 optical planar waveguide, 7-Ag nanoparticles, 8-Ag nanoparticles- SiO2 composite modified layer, 9-Cu nanoparticles, 10-Cu nanoparticles- SiO2 composite modified layer, 11-Ag nanoparticle-SiO 2 composite material grating coupler transmission spectrum, 12-Cu nanoparticle-SiO 2 composite material grating coupler transmission spectrum, 13-incident light, 14-propagation direction of guided wave.
具体实施方式:detailed description:
下面结合附图和实施例来进一步描述本发明。本部分描述属于示范和解释,不应视为本发明所公开技术内容的限制。The present invention will be further described below in conjunction with the accompanying drawings and embodiments. The description in this part is for demonstration and explanation, and should not be regarded as a limitation of the technical content disclosed in the present invention.
本发明所述金属纳米颗粒-绝缘体复合材料光栅耦合器的结构如图1所示,由金属纳米颗粒-绝缘体复合材料耦合光栅1和绝缘体光学平面波导2构成。金属纳米颗粒-绝缘体复合材料耦合光栅1是一种二维正交矩形衍射光栅,厚度为40~150nm,位于绝缘体光学平面波导2的表面因金属离子注入而形成的金属纳米颗粒-绝缘体复合材料改性层4中,与绝缘体光学平面波导2之间无明显分界面。金属纳米颗粒-绝缘体复合材料耦合光栅1中的金属纳米颗粒3为Ag、Cu和Au这三种金属纳米颗粒其中之一。金属纳米颗粒-绝缘体复合材料耦合光栅1在行和列上具有相同的光栅常数和占空比,光栅常数为绝缘体光学平面波导2中金属纳米颗粒表面等离子体共振吸收波长的1.05~1.5倍,占空比是金属纳米颗粒-绝缘体复合材料耦合光栅1中金属纳米颗粒-绝缘体复合材料的宽度与光栅常数之比,控制在30%~50%之间。绝缘体光学平面波导2是由可见和/或近红外波段透明的固体绝缘材料构成的薄膜或薄板。The structure of the metal nanoparticle-insulator composite grating coupler in the present invention is shown in FIG. 1 , which is composed of a metal nanoparticle-insulator composite coupling grating 1 and an insulator optical planar waveguide 2 . The metal nanoparticle-insulator composite material coupling grating 1 is a two-dimensional orthogonal rectangular diffraction grating with a thickness of 40-150nm, located on the surface of the insulator optical planar waveguide 2 and formed by implanting metal ions into the metal nanoparticle-insulator composite material modification. In the active layer 4, there is no obvious interface with the insulator optical planar waveguide 2. The metal nanoparticle 3 in the metal nanoparticle-insulator composite material coupling grating 1 is one of the three metal nanoparticles of Ag, Cu and Au. The metal nanoparticle-insulator composite material coupling grating 1 has the same grating constant and duty cycle on the row and column, and the grating constant is 1.05 to 1.5 times the absorption wavelength of the metal nanoparticle surface plasmon resonance in the insulator optical planar waveguide 2, accounting for The void ratio is the ratio of the width of the metal nanoparticle-insulator composite material coupling grating 1 to the constant of the grating, which is controlled between 30% and 50%. The insulator optical planar waveguide 2 is a thin film or thin plate made of transparent solid insulating material in visible and/or near-infrared bands.
本发明所述的金属纳米颗粒-绝缘体复合材料光栅耦合器按图2所示步骤制备:The metal nanoparticle-insulator composite material grating coupler described in the present invention is prepared according to the steps shown in Figure 2:
(1)选取或制备具有一定厚度的绝缘体光学平面波导2;(1) selecting or preparing an insulator optical planar waveguide 2 with a certain thickness;
(2)将一定能量和剂量的金属离子按一定方式注入到绝缘体光学平面波导2中,在绝缘体光学平面波导2的近表面区域形成具有一定深度分布的金属纳米颗粒3,亦即形成一层具有一定厚度的金属纳米颗粒-绝缘体复合材料改性层4;(2) Metal ions with a certain energy and dosage are injected into the insulator optical planar waveguide 2 in a certain way, and metal nanoparticles 3 with a certain depth distribution are formed in the near surface area of the insulator optical planar waveguide 2, that is, a layer with A metal nanoparticle-insulator composite material modification layer 4 with a certain thickness;
(3)利用电子束光刻技术,在金属离子注入的绝缘体光学平面波导2的表面制备出带有所需二维耦合光栅结构信息的光刻胶掩膜层5;(3) Using electron beam lithography technology, a photoresist mask layer 5 with required two-dimensional coupling grating structure information is prepared on the surface of the insulator optical planar waveguide 2 implanted with metal ions;
(4)依托绝缘体光学平面波导2表面所形成的金属纳米颗粒-绝缘体复合材料改性层4,利用反应离子束刻蚀技术进行刻蚀,刻蚀深度为40~150nm,经过随后的除胶处理,构建出所需的二维金属纳米颗粒-绝缘体复合材料耦合光栅1。(4) Relying on the modified metal nanoparticle-insulator composite material modification layer 4 formed on the surface of the insulator optical planar waveguide 2, it is etched by reactive ion beam etching technology, and the etching depth is 40-150nm, after subsequent glue removal treatment , to construct the desired two-dimensional metal nanoparticle-insulator composite coupling grating 1 .
所述步骤(2)中,金属离子为Ag、Cu和Au这三种金属离子其中之一,金属离子的注入能量和剂量分别为40~100keV和5×1016~8×1016cm-2,注入方式或者为垂直注入,或者为倾斜注入,注入区域或者为绝缘体光学平面波导2的局部表面,或者为绝缘体光学平面波导2的全部表面。实际采用的金属离子注入能量和剂量可在所给范围内按预定策略,通过下述过程确定:①选择绝缘体光学平面波导的材料以及要注入的金属离子和金属离子的注入方式;②选择一个注入能量,利用SRIM(Stopping and Range of Ions in Matter)软件进行计算,确定相应的溅射产额Y、投影射程Rp和射程歧离△Rp;③选择一个注入剂量,结合所得到的Y、Rp和△Rp,计算注入金属离子的深度分布函数G(z),由此确定金属离子的最大注入深度;④如果计算出来的金属离子的最大注入深度不符合预定策略,则应重新选择注入能量和剂量,直至计算结果符合预定策略。In the step (2), the metal ion is one of the three metal ions of Ag, Cu and Au, and the implantation energy and dose of the metal ion are respectively 40-100keV and 5×10 16 ~8×10 16 cm -2 , the injection method is either vertical injection or oblique injection, and the injection area is either a partial surface of the insulator optical planar waveguide 2 or the entire surface of the insulator optical planar waveguide 2 . The actual metal ion implantation energy and dose can be determined within a given range according to a predetermined strategy through the following process: ①Select the material of the insulator optical planar waveguide, the metal ion to be implanted and the implantation method of the metal ion; ②Select an implant Energy, using SRIM (Stopping and Range of Ions in Matter) software to calculate, determine the corresponding sputtering yield Y, projected range R p and range divergence △ R p ; ③ select an injection dose, combined with the obtained Y, R p and △R p , calculate the depth distribution function G(z) of implanted metal ions, thereby determine the maximum implantation depth of metal ions; ④ If the calculated maximum implantation depth of metal ions does not meet the predetermined strategy, you should re-select Inject energy and dose until calculated results match predetermined strategy.
预定策略包括:当绝缘体光学平面波导2的厚度为200~750nm时,所选金属离子的注入能量和剂量应使金属离子的最大注入深度接近但不超过绝缘体光学平面波导2厚度的1/5,即40~150nm;当绝缘体光学平面波导2的厚度大于750nm时,所选金属离子的注入能量和剂量应使金属离子的最大注入深度接近但不超过150nm。The predetermined strategy includes: when the thickness of the insulator optical planar waveguide 2 is 200-750 nm, the implantation energy and dose of the selected metal ions should make the maximum implantation depth of the metal ions approach but not exceed 1/5 of the thickness of the insulator optical planar waveguide 2, That is, 40-150nm; when the thickness of the insulator optical planar waveguide 2 is greater than 750nm, the implantation energy and dosage of the selected metal ions should make the maximum implantation depth of the metal ions close to but not exceed 150nm.
注入金属离子的深度分布函数G(z)的具体形式为:The specific form of the depth distribution function G(z) of implanted metal ions is:
式中,z为相对于绝缘体光学平面波导2即时表面的深度,N为绝缘体光学平面波导2所用材料的原子密度,D为金属离子的注入剂量,erf()为误差函数。In the formula, z is the depth relative to the immediate surface of the insulator optical planar waveguide 2, N is the atomic density of the material used in the insulator optical planar waveguide 2, D is the implanted dose of metal ions, and erf() is an error function.
所述步骤(4)中的反应离子束刻蚀技术包括冷却液工艺,刻蚀深度大于或等于金属离子的最大注入深度。The reactive ion beam etching technique in the step (4) includes a cooling liquid process, and the etching depth is greater than or equal to the maximum implantation depth of metal ions.
根据图2所示步骤,实际制备了Ag纳米颗粒-SiO2复合材料光栅耦合器和Cu纳米颗粒-SiO2复合材料光栅耦合器,主要的制备参数及说明如下:SiO2平面波导的表面尺寸约为20×20mm2,厚度约为0.5mm;Ag和Cu离子均采用倾斜45°的方式注入,针对SiO2平面波导的全部表面;根据注入机的使用条件,结合预定策略,Ag和Cu离子的注入能量分别定为90和60keV,注入剂量均定为6×1016cm-2;耦合光栅采用二维正交矩形结构,其表面尺寸约为4×4mm2,厚度约为100nm,行与列的光栅常数均为600nm,占空比均为30%,600nm的光栅常数约为SiO2中Ag纳米颗粒表面等离子体共振吸收波长(~414nm)的1.45倍和SiO2中Cu纳米颗粒表面等离子体共振吸收波长(~564nm)的1.06倍;刻蚀环节采用的气氛为CHF3和Ar,刻蚀深度约为100nm,大于Ag和Cu离子在SiO2平面波导中的最大注入深度。According to the steps shown in Figure 2, Ag nanoparticles-SiO 2 composite grating couplers and Cu nanoparticles-SiO 2 composite grating couplers were actually prepared. The main preparation parameters and descriptions are as follows: The surface size of SiO 2 planar waveguide is about 20×20mm 2 , with a thickness of about 0.5mm; both Ag and Cu ions are implanted at an angle of 45°, aiming at the entire surface of the SiO 2 planar waveguide; according to the operating conditions of the implanter, combined with a predetermined strategy, the Ag and Cu ions The implantation energy is set at 90 and 60keV respectively, and the implantation dose is set at 6×10 16 cm -2 ; the coupling grating adopts a two-dimensional orthogonal rectangular structure with a surface size of about 4×4mm 2 and a thickness of about 100nm. The grating constants of both are 600nm, and the duty cycle is 30%. The grating constant of 600nm is about 1.45 times of the surface plasmon resonance absorption wavelength (~414nm) of the Ag nanoparticles in SiO2 and the surface plasmon of Cu nanoparticles in SiO2 . The resonance absorption wavelength (~564nm) is 1.06 times; the atmosphere used in the etching process is CHF 3 and Ar, and the etching depth is about 100nm, which is greater than the maximum implantation depth of Ag and Cu ions in the SiO 2 planar waveguide.
图3a所示为Ag离子注入SiO2平面波导后所形成的Ag纳米颗粒的深度分布,从图中可以看出,Ag纳米颗粒7近似为球形,主要分布在SiO2平面波导的表面6以下5.5~83.0nm的区域,由此可知Ag纳米颗粒-SiO2复合材料改性层8的厚度约为77.5nm。Ag纳米颗粒7明显地分为三层,上层和下层的Ag纳米颗粒相对较小,而中层的Ag纳米颗粒相对较大。统计结果表明,Ag纳米颗粒7的平均直径约为3.7nm,利用此平均直径,根据吸收光谱的测量结果以及相应的拟合计算可知,Ag纳米颗粒7在复合材料改性层8中所占的体积分数约为24%。利用Ag的介电函数、Ag纳米颗粒的平均直径和体积分数以及SiO2的介电常数,根据M-G理论,可以计算出复合材料改性层8的折射率(即有效折射率的实部)和消光系数,取入射光的波长为650nm,计算得到的折射率和消光系数分别为1.82和0.05。图3b所示为Ag纳米颗粒-SiO2复合材料光栅耦合器的表面形貌,对于该光栅耦合器来说,当入射光的波长为650nm时,其耦合光栅的折射率对比度约为1.82,而具有同样结构的SiO2耦合光栅的折射率对比度仅约1.46,根据Ghizoni等关于光栅耦合器的理论研究(IEEE Journal of QuantumElectronics(1976)12(2):69~73),即使不考虑Ag纳米颗粒表面等离子体对光的散射所引起的折射率对比度的额外调制,亦可估算出该光栅耦合器的耦合效率要比同样结构的SiO2光栅耦合器的耦合效率提高约318%,进一步地,如果适当增加Ag离子的注入剂量,或者采用适当的方法抑制Ag离子注入过程中的自溅射,耦合效率还可以获得更大的提高。Figure 3a shows the depth distribution of Ag nanoparticles formed after Ag ions are implanted into the SiO2 planar waveguide. It can be seen from the figure that the Ag nanoparticles 7 are approximately spherical and are mainly distributed 5.5 below the surface 6 of the SiO2 planar waveguide. ~83.0nm region, it can be seen that the thickness of Ag nanoparticle-SiO 2 composite modified layer 8 is about 77.5nm. The Ag nanoparticles 7 are clearly divided into three layers, the Ag nanoparticles in the upper and lower layers are relatively small, and the Ag nanoparticles in the middle layer are relatively large. Statistical results show that the average diameter of the Ag nanoparticles 7 is about 3.7nm. Using this average diameter, according to the measurement results of the absorption spectrum and the corresponding fitting calculations, it can be known that the Ag nanoparticles 7 account for the composite modified layer 8 The volume fraction is about 24%. Using the dielectric function of Ag, the average diameter and volume fraction of Ag nanoparticles and the dielectric constant of SiO2 , according to the MG theory, the refractive index (i.e. the real part of the effective refractive index) and For the extinction coefficient, the wavelength of the incident light is taken as 650nm, and the calculated refractive index and extinction coefficient are 1.82 and 0.05, respectively. Figure 3b shows the surface morphology of the Ag nanoparticle-SiO 2 composite grating coupler. For this grating coupler, when the wavelength of the incident light is 650nm, the refractive index contrast of the coupling grating is about 1.82, while The refractive index contrast of the SiO 2 coupled grating with the same structure is only about 1.46, according to the theoretical research on the grating coupler by Ghizoni et al. The additional modulation of the refractive index contrast caused by the scattering of light by surface plasmons can also estimate that the coupling efficiency of the grating coupler is about 318% higher than that of the SiO2 grating coupler with the same structure. Further, if Properly increasing the implantation dose of Ag ions, or adopting appropriate methods to suppress the self-sputtering during Ag ion implantation, the coupling efficiency can be further improved.
如图4a所示,Cu离子注入SiO2平面波导后所形成的Cu纳米颗粒9也大致为球形,主要分布于SiO2平面波导的表面6以下5.2~62.5nm的深度区域,由此可知Cu纳米颗粒-SiO2复合材料改性层10的厚度约为57.3nm。与图3a中的Ag纳米颗粒7相比,Cu纳米颗粒9的尺寸随深度的变化不是非常剧烈,但也可以大致分为三层,上层和下层的Cu纳米颗粒相对较小,而中层的Cu纳米颗粒相对较大。统计结果表明,Cu纳米颗粒9的平均直径约为3.2nm,略小于图3a中Ag纳米颗粒7的平均直径。图4b为Cu纳米颗粒-SiO2复合材料光栅耦合器的表面形貌,其与图3b所示结果基本一致,反映出电子束光刻和反应离子束刻蚀技术能够在亚微米尺度提供足够高的加工精度。由于Cu离子注入SiO2平面波导后,除了可以形成Cu纳米颗粒9以外,还可以形成Cu2O和CuO纳米团簇,因此难以根据Cu纳米颗粒9的平均尺寸和吸收谱的测量结果给出Cu纳米颗粒9在复合材料改性层10中所占的体积分数,因而也就无法对图4b所示的Cu纳米颗粒-SiO2复合材料光栅耦合器进行耦合效率的评价,尽管如此,相比于同样结构的SiO2光栅耦合器,其耦合效率存在一个较大的提高仍然是可以期待的。As shown in Figure 4a, the Cu nanoparticles 9 formed after Cu ion implantation into the SiO 2 planar waveguide are also roughly spherical, and are mainly distributed in the depth region of 5.2-62.5 nm below the surface 6 of the SiO 2 planar waveguide. The thickness of the particle-SiO 2 composite modified layer 10 is about 57.3 nm. Compared with the Ag nanoparticles 7 in Fig. 3a, the size change of Cu nanoparticles 9 with depth is not very drastic, but it can also be roughly divided into three layers, the Cu nanoparticles in the upper and lower layers are relatively small, and the Cu nanoparticles in the middle layer Nanoparticles are relatively large. The statistical results show that the average diameter of Cu nanoparticles 9 is about 3.2 nm, which is slightly smaller than that of Ag nanoparticles 7 in Fig. 3a. Figure 4b shows the surface morphology of the Cu nanoparticle-SiO 2 composite grating coupler, which is basically consistent with the results shown in Figure 3b, reflecting that electron beam lithography and reactive ion beam etching techniques can provide sufficiently high machining accuracy. Since after Cu ions are implanted into SiO2 planar waveguide, besides Cu nanoparticles 9, Cu2O and CuO nanoclusters can also be formed, so it is difficult to give Cu The volume fraction of nanoparticles 9 in the composite material modified layer 10, so it is impossible to evaluate the coupling efficiency of the Cu nanoparticles-SiO 2 composite grating coupler shown in Fig. 4b. However, compared with For the SiO 2 grating coupler with the same structure, it can still be expected that there is a large improvement in the coupling efficiency.
图5给出了Ag纳米颗粒-SiO2复合材料光栅耦合器和Cu纳米颗粒-SiO2复合材料光栅耦合器的透射光谱。从图中可以看出,Ag纳米颗粒-SiO2复合材料光栅耦合器的透射光谱11上存在两个明显的透射率减小带,一个位于414nm波长附近,其来源于Ag纳米颗粒7(见图3a)的表面等离子体共振吸收,另一个位于620~880nm的波长范围之间,该透射率减小带在Cu纳米颗粒-SiO2复合材料光栅耦合器的透射光谱12上也存在,只是透射率的减小程度相对较小。在Cu纳米颗粒-SiO2复合材料光栅耦合器的透射光谱12上也可以找到由Cu纳米颗粒9(见图4a)表面等离子体共振吸收引起的透射率减小带,其位于564nm附近。对于两组光谱中出现于620~880nm之间的透射率减小带,它们的产生可以归结于导波的形成,如图6的所示。当入射光13垂直照射到光栅耦合器的表面时,±1级衍射光由于能够满足相匹配条件而被引入SiO2平面波导,进而形成4束导波,导波的传播方向14分别为x轴(对应耦合光栅的行)和y轴(对应耦合光栅的列)的正负方向。由于所制备的光栅耦合器采用了二维正交结构的耦合光栅,因此导波的形成对入射光13的极化方向不敏感,此外,由于相匹配条件对入射光13的波长存在选择性,因此并不是所有波长的入射光13都能被耦合进SiO2平面波导,这也就意味着,利用导波的形成,所制备的光栅耦合器不仅能够实现入射光13的分束,而且具有宽带滤波的效果,相对带宽约为34.7%。值得注意的是,改变入射角,由于衍射畸变,部分导波的传播方向14亦将发生变化,例如,将x-z平面内的入射光13绕z轴向x轴的负向偏转,会导致y轴上的两束导波在x-y平面内向x轴的正向偏转,这也就是说,借助导波的形成,利用衍射畸变,所制备的光栅耦合器还可以实现光的偏转。Figure 5 shows the transmission spectra of Ag nanoparticles-SiO 2 composite grating coupler and Cu nanoparticle-SiO 2 composite grating coupler. It can be seen from the figure that there are two obvious transmittance reduction bands in the transmission spectrum 11 of the Ag nanoparticle-SiO 2 composite grating coupler, one is located near the wavelength of 414nm, which is derived from the Ag nanoparticle 7 (see Fig. 3a) surface plasmon resonance absorption, the other is located between the wavelength range of 620-880nm, this transmittance reduction band also exists in the transmission spectrum 12 of the Cu nanoparticle-SiO 2 composite grating coupler, but the transmittance The reduction is relatively small. A transmittance reduction band caused by the surface plasmon resonance absorption of Cu nanoparticles 9 (see Fig. 4a) can also be found on the transmission spectrum 12 of the Cu nanoparticles-SiO 2 composite grating coupler, which is located near 564 nm. For the transmittance reduction bands appearing between 620-880nm in the two groups of spectra, their generation can be attributed to the formation of guided waves, as shown in Figure 6. When the incident light 13 is vertically irradiated on the surface of the grating coupler, the ±1st-order diffracted light is introduced into the SiO 2 planar waveguide because it can meet the phase matching condition, and then forms 4 guided waves, and the propagation directions 14 of the guided waves are respectively the x-axis (corresponding to the row of the coupling grating) and the positive and negative directions of the y-axis (corresponding to the column of the coupling grating). Since the prepared grating coupler adopts a coupling grating with a two-dimensional orthogonal structure, the formation of the guided wave is not sensitive to the polarization direction of the incident light 13. In addition, since the phase matching condition is selective to the wavelength of the incident light 13, Therefore, not all wavelengths of incident light 13 can be coupled into the SiO 2 planar waveguide, which means that, using the formation of guided waves, the prepared grating coupler can not only achieve beam splitting of incident light 13, but also has a broadband The filtering effect is about 34.7% of the relative bandwidth. It is worth noting that when the incident angle is changed, the propagation direction 14 of part of the guided wave will also change due to diffraction distortion. For example, the negative deflection of the incident light 13 in the xz plane around the z-axis and the x-axis will cause the y-axis The two guided waves above are deflected in the positive direction of the x-axis in the xy plane, that is to say, with the help of the formation of guided waves and diffraction distortion, the prepared grating coupler can also realize light deflection.
本发明以常用的绝缘体光学平面波导为基础,采用金属离子注入、电子束光刻和离子束刻蚀等技术,通过合理选择金属离子的种类以及注入条件,并对耦合光栅的结构进行恰当设计,构建出一种基于金属纳米颗粒-绝缘体复合材料的高效率二维光栅耦合器,其工作于可见和/或近红外波段,不仅对光的极化方向不敏感,而且可以在实现光耦合的同时,借助于导波的形成和衍射畸变,亦能实现光的滤波、分束和偏转。The present invention is based on the commonly used insulator optical planar waveguide, adopts technologies such as metal ion implantation, electron beam lithography and ion beam etching, and reasonably selects the type of metal ion and implantation conditions, and properly designs the structure of the coupling grating. A high-efficiency two-dimensional grating coupler based on metal nanoparticles-insulator composites is constructed, which works in the visible and/or near-infrared bands. It is not only insensitive to the polarization direction of light, but also can realize optical coupling. , with the help of guided wave formation and diffraction distortion, the filtering, beam splitting and deflection of light can also be realized.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710015785.3A CN106501898A (en) | 2017-01-10 | 2017-01-10 | Metal nanoparticle-insulation composite material grating coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710015785.3A CN106501898A (en) | 2017-01-10 | 2017-01-10 | Metal nanoparticle-insulation composite material grating coupler |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106501898A true CN106501898A (en) | 2017-03-15 |
Family
ID=58345168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710015785.3A Pending CN106501898A (en) | 2017-01-10 | 2017-01-10 | Metal nanoparticle-insulation composite material grating coupler |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106501898A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108710172A (en) * | 2018-05-23 | 2018-10-26 | 山东大学 | A kind of polarizer and the preparation method and application thereof based on yttrium-aluminium-garnet optical waveguide |
CN110836868A (en) * | 2019-11-27 | 2020-02-25 | 中国石油大学(华东) | Localized surface plasmon resonance sensor based on noble metal/insulator nanocomposite |
CN112034546A (en) * | 2020-10-16 | 2020-12-04 | 天津大学 | Terahertz phase grating based on metal nanoparticles and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6191404B1 (en) * | 1991-03-18 | 2001-02-20 | Hughes Danbury Optical Systems, Inc. | Two-sided solid-state imager in a navigational device |
CN1372151A (en) * | 2001-02-26 | 2002-10-02 | 中国科学院半导体研究所 | Method for making plane type DFB inner grating coupling structure |
JP2008235753A (en) * | 2007-03-23 | 2008-10-02 | Sony Corp | Solid imaging apparatus and method of manufacturing the same |
CN102692682A (en) * | 2012-06-12 | 2012-09-26 | 中国科学院上海微系统与信息技术研究所 | Grating coupler and manufacturing method thereof |
-
2017
- 2017-01-10 CN CN201710015785.3A patent/CN106501898A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6191404B1 (en) * | 1991-03-18 | 2001-02-20 | Hughes Danbury Optical Systems, Inc. | Two-sided solid-state imager in a navigational device |
CN1372151A (en) * | 2001-02-26 | 2002-10-02 | 中国科学院半导体研究所 | Method for making plane type DFB inner grating coupling structure |
JP2008235753A (en) * | 2007-03-23 | 2008-10-02 | Sony Corp | Solid imaging apparatus and method of manufacturing the same |
CN102692682A (en) * | 2012-06-12 | 2012-09-26 | 中国科学院上海微系统与信息技术研究所 | Grating coupler and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
A.L.STEPANOV 等: "Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation", 《APPLIED PHYSICS A MATERIALS SCIENCE&PROCESSING》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108710172A (en) * | 2018-05-23 | 2018-10-26 | 山东大学 | A kind of polarizer and the preparation method and application thereof based on yttrium-aluminium-garnet optical waveguide |
CN110836868A (en) * | 2019-11-27 | 2020-02-25 | 中国石油大学(华东) | Localized surface plasmon resonance sensor based on noble metal/insulator nanocomposite |
CN112034546A (en) * | 2020-10-16 | 2020-12-04 | 天津大学 | Terahertz phase grating based on metal nanoparticles and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103901563B (en) | A grating coupler with adjustable refractive index and its manufacturing method | |
CN105629493B (en) | Composite construction double-level-metal grating polarization beam splitter | |
CN109901257B (en) | Visible light metamaterial polarization converter | |
CN107203018B (en) | A kind of preparation method of subwavelength reflection type one-dimensional metal wave plate | |
TW201530945A (en) | Waveguide formation using COMS fabrication techniques | |
CN102053491B (en) | Ultra-deep subwavelength tunable nano photoetching structure and method based on surface plasma resonant cavity | |
CN106501898A (en) | Metal nanoparticle-insulation composite material grating coupler | |
CN110673241B (en) | A Color Filter Structure Based on Coupling of Surface Plasmons and Cavity Resonance Modes | |
CN204116640U (en) | The surface plasma fluid filter of bridge is connected based on straight-flanked ring resonant cavity and incident wave | |
KR20130079216A (en) | The method of polarized light splitting element | |
Fu et al. | Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization | |
CN111769425A (en) | All-dielectric reflection spectral beam combining grating for 1064 nm band | |
Wang et al. | The development progress of surface structure diffraction gratings: from manufacturing technology to spectroscopic applications | |
CN112130245A (en) | Broadband high-transmittance asymmetric metamaterial polarization regulator and method for making the same | |
CN114200559B (en) | Ultra-wideband visible light and near infrared metamaterial wave absorber | |
CN105870315A (en) | Polarization-sensitive efficient superconducting nanowire single photon detector and design method therefor | |
CN100452443C (en) | Method for the production of an anti-reflecting surface on optical integrated circuits | |
CN113687465B (en) | Surface plasmon near-field focusing lens based on all-dielectric super surface | |
Miao et al. | High-efficiency broad-band transmission through a double-60/spl deg/bend in a planar photonic crystal single-line defect waveguide | |
CN113204075A (en) | Micro-nano optical fiber-waveguide-superconducting nanowire single photon detector and preparation method thereof | |
CN204758858U (en) | Reflective one -dimensional metal wave plate of inferior wavelength | |
Wang et al. | Large‐Area Wire Grid Polarizer with High Transverse Magnetic Wave Transmittance and Extinction Ratio for Infrared Imaging System | |
CN114967161B (en) | A multilayer film free geometry metasurface element and its preparation method | |
CN111880251B (en) | SPP coupler based on asymmetric metal grating structure and manufacturing method | |
JP2000275415A (en) | Resonant mode grating filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170315 |
|
WD01 | Invention patent application deemed withdrawn after publication |