[go: up one dir, main page]

CN106500641A - The thermal deformation error compensating method of articulated coordinate machine - Google Patents

The thermal deformation error compensating method of articulated coordinate machine Download PDF

Info

Publication number
CN106500641A
CN106500641A CN201610917354.1A CN201610917354A CN106500641A CN 106500641 A CN106500641 A CN 106500641A CN 201610917354 A CN201610917354 A CN 201610917354A CN 106500641 A CN106500641 A CN 106500641A
Authority
CN
China
Prior art keywords
temperature
measuring machine
coordinate measuring
structural parameters
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610917354.1A
Other languages
Chinese (zh)
Other versions
CN106500641B (en
Inventor
祝连庆
冯超鹏
潘志康
郭阳宽
董明利
娄小平
李伟仙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Science and Technology University
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Priority to CN201610917354.1A priority Critical patent/CN106500641B/en
Publication of CN106500641A publication Critical patent/CN106500641A/en
Application granted granted Critical
Publication of CN106500641B publication Critical patent/CN106500641B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Manipulator (AREA)

Abstract

本发明提供了一种关节式坐标测量机的热形变误差补偿方法,包括如下步骤:1)建立温度对关节式坐标测量机的结构参数影响的数学模型;2)将关节式坐标测量机置于温度可控的恒温室中,室温设定为15°等待2小时;3)用关节式坐标测量机对设计的专用标定板进行测量;4)调节恒温室的温度到20°,等待2小时之后再次对标定板进行测量;5)继续升温,每隔5°进行一组测量实验,直至温度升到40°;6)根据专用标定板的标称值计算出各组数据的误差,用关节式坐标测量机结构参数自标定的方法标定出各个温度下的结构参数;7)在恒温室中分别在不同的温度梯度下,再次对标定板进行测量,以此对f(T)的补偿效果进行验证。The invention provides a thermal deformation error compensation method of an articulated coordinate measuring machine, comprising the following steps: 1) establishing a mathematical model of the influence of temperature on the structural parameters of the articulated coordinate measuring machine; 2) placing the articulated coordinate measuring machine in In a temperature-controllable thermostatic chamber, set the room temperature to 15° and wait for 2 hours; 3) Use an articulated coordinate measuring machine to measure the designed special calibration plate; 4) Adjust the temperature of the thermostatic chamber to 20° and wait for 2 hours Measure the calibration plate again; 5) continue to heat up, and conduct a set of measurement experiments every 5° until the temperature rises to 40°; 6) calculate the error of each group of data according to the nominal value of the special calibration plate, and use the joint type The self-calibration method of the structural parameters of the coordinate measuring machine calibrates the structural parameters at each temperature; 7) In the constant temperature room, under different temperature gradients, the calibration plate is measured again, so as to calculate the compensation effect of f(T) verify.

Description

关节式坐标测量机的热形变误差补偿方法Compensation Method for Thermal Deformation Error of Articulated Coordinate Measuring Machine

技术领域technical field

本发明涉及坐标测量机的温度补偿技术,特别涉及一种关节式坐标测量机的热形变误差补偿方法。The invention relates to a temperature compensation technology of a coordinate measuring machine, in particular to a thermal deformation error compensation method of an articulated coordinate measuring machine.

背景技术Background technique

关节式坐标测量机是一种多自由度非正交式的三坐标测量机,通常具有6个自由度。它仿照人体关节,由三个测量臂和一个测头通过六个旋转关节串联而成。与传统的正交式三坐标测量机相比,关节式坐标测量机具有测量范围大、方便灵活、机械结构简单等特点。但是,因为关节式坐标测量机经常用在车间等工业现场,工作环境温度差异较大。受环境温度的影响,关节式坐标测量机会发生热形变,从而导致测量结果存在误差。关节式坐标测量机作为精密的坐标测量工具,串联结构会对误差起放大作用,因热形变而导致的误差是不容忽视的。对关节式坐标测量机进行热形变误差的补偿,可以有效提高测量结果的精度。Articulated coordinate measuring machine is a multi-degree-of-freedom non-orthogonal three-dimensional coordinate measuring machine, usually with 6 degrees of freedom. It is modeled on human joints, and consists of three measuring arms and a measuring head connected in series through six rotating joints. Compared with the traditional orthogonal three-coordinate measuring machine, the joint-type coordinate measuring machine has the characteristics of large measurement range, convenience and flexibility, and simple mechanical structure. However, because articulated coordinate measuring machines are often used in industrial sites such as workshops, the temperature of the working environment varies greatly. Affected by the ambient temperature, the articulated coordinate measuring machine undergoes thermal deformation, which leads to errors in the measurement results. The articulated coordinate measuring machine is a precise coordinate measuring tool, and the series structure will amplify the error, and the error caused by thermal deformation cannot be ignored. Compensating the thermal deformation error of the articulated coordinate measuring machine can effectively improve the accuracy of the measurement results.

近几年陆续发表的一些文献提出了不同的方法对关节式坐标测量机的热变误差进行补偿:《关节三坐标测量机温度误差修正技术研究》将关节式坐标测量机的测量臂简化成细长杆件模型,用材料的一维线膨胀系数对其热形变误差进行修正;《关节式坐标测量机热变形误差建模及修正研究》对关节式坐标测量机的热变形误差进行了研究,并基于神经网络算法对误差模型进行修正;《关节式坐标测量机热变形误差及修正》用单隐层带反向传播前馈神经网络建立了关节式坐标测量机的热变形误差模型,并通过实验验证了模型的有效性。研究多集中仿真分析、模型简化等方面,对于整机的热形变误差研究较少。Some literatures published successively in recent years have proposed different methods to compensate the thermal error of the articulated coordinate measuring machine: "Research on temperature error correction technology of the articulated three-coordinate measuring machine" simplifies the measuring arm of the articulated coordinate measuring machine into a detailed The long rod model uses the one-dimensional linear expansion coefficient of the material to correct its thermal deformation error; "Research on Thermal Deformation Error Modeling and Correction of Articulated Coordinate Measuring Machine" studies the thermal deformation error of articulated coordinate measuring machine, And the error model is corrected based on the neural network algorithm; "Thermal deformation error and correction of articulated coordinate measuring machine" establishes the thermal deformation error model of articulated coordinate measuring machine by using a single hidden layer with backpropagation feed-forward neural network, and through Experiments verify the effectiveness of the model. The research focuses on simulation analysis, model simplification, etc., and there are few studies on the thermal deformation error of the whole machine.

因此,需要研究一种能够对关节式坐标测量机整机的热形变误差进行补偿的方法。Therefore, it is necessary to study a method capable of compensating the thermal deformation error of the articulated coordinate measuring machine.

发明内容Contents of the invention

本发明的目的在于提供一种关节式坐标测量机的热形变误差补偿方法,包括如下步骤:1)建立温度对关节式坐标测量机的结构参数影响的数学模型:The object of the present invention is to provide a thermal deformation error compensation method of an articulated coordinate measuring machine, comprising the following steps: 1) establishing a mathematical model of the influence of temperature on the structural parameters of an articulated coordinate measuring machine:

其中,Δai、Δdi、Δαi、Δθi、ΔI分别为关节长度、测量臂长度、关节扭转角、关节旋转角和测头长度的误差,fai(T)、fdi(T)、fαi(T)、fI(T)、fθi(T)为温度误差函数;2)将关节式坐标测量机置于温度可控的恒温室中,室温设定为15°等待2小时;3)用关节式坐标测量机对设计的专用标定板进行测量,在每个位置对专用标定板上的指定锥孔进行100次测量,在测量时尽量使用多种不同的姿态;4)调节恒温室的温度到20°,等待2小时之后再次对标定板进行测量;5)继续升温,每隔5°进行一组测量实验,直至温度升到40°;6)根据专用标定板的标称值计算出各组数据的误差,用关节式坐标测量机结构参数自标定的方法标定出各个温度下的结构参数。根据关节式坐标测量机结构参数的标准值,分别计算各个温度下的结构参数误差,用多项式拟合的方法对温度误差函数进行拟合,得到相应的误差函数f(T);7)在恒温室中分别在不同的温度梯度下,再次对标定板进行测量,在每个位置上对指定锥孔进行30次测量,用上面拟合出的f(T)对结构参数进行修正得到各个温度下相应的结构参数,用修正后的结构参数计算出修正后的坐标值,计算修正前后关节式坐标测量机的测量结果误差,以此对f(T)的补偿效果进行验证。Among them, Δa i , Δd i , Δα i , Δθ i , ΔI are the errors of joint length, measuring arm length, joint torsion angle, joint rotation angle and probe length respectively, f ai (T), f di (T), f αi (T), f I (T), and f θi (T) are temperature error functions; 2) Place the articulated coordinate measuring machine in a temperature-controlled constant room, set the room temperature to 15° and wait for 2 hours; 3) Use an articulated coordinate measuring machine to measure the designed special calibration plate, measure the designated taper hole on the special calibration plate 100 times at each position, and try to use a variety of different postures during the measurement; 4) Adjust the constant temperature When the temperature of the chamber reaches 20°, wait for 2 hours and then measure the calibration plate again; 5) Continue to raise the temperature, and conduct a set of measurement experiments every 5° until the temperature rises to 40°; 6) According to the nominal value of the special calibration plate The error of each group of data is calculated, and the structural parameters at each temperature are calibrated by the self-calibration method of the structural parameters of the joint type coordinate measuring machine. According to the standard value of the structural parameters of the articulated coordinate measuring machine, calculate the structural parameter errors at each temperature, and use the polynomial fitting method to fit the temperature error function to obtain the corresponding error function f(T); 7) at constant temperature In the chamber, under different temperature gradients, the calibration plate is measured again, and the specified cone hole is measured 30 times at each position, and the structural parameters are corrected with the f(T) fitted above to obtain According to the corresponding structural parameters, the corrected coordinate values are calculated with the corrected structural parameters, and the error of the measurement results of the articulated coordinate measuring machine before and after the correction is calculated, so as to verify the compensation effect of f(T).

优选地,所述误差函数模型为:f(T)=kT3+mT2+nT+b。其中k,m,n,b为待拟合的常数。Preferably, the error function model is: f(T)=kT 3 +mT 2 +nT+b. Where k, m, n, b are constants to be fitted.

优选地,所述步骤7)的温度梯度为17°、23°、28°、33°和38°。Preferably, the temperature gradient in step 7) is 17°, 23°, 28°, 33° and 38°.

优选地,所述步骤7)的温度梯度为15°、18°、21°、24°和27°。Preferably, the temperature gradient in step 7) is 15°, 18°, 21°, 24° and 27°.

优选地,所述步骤7)的温度梯度为15°、18°、23°、30°和37°。Preferably, the temperature gradient in step 7) is 15°, 18°, 23°, 30° and 37°.

应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。It should be understood that both the foregoing general description and the following detailed description are exemplary illustrations and explanations, and should not be used as limitations on the claimed content of the present invention.

附图说明Description of drawings

参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:With reference to the accompanying drawings, more objects, functions and advantages of the present invention will be clarified through the following description of the embodiments of the present invention, wherein:

图1示意性示出关节式坐标测量机的结构示意图。FIG. 1 schematically shows the structure diagram of an articulated coordinate measuring machine.

图2为本发明所使用的专用标定板的结构示意图。Fig. 2 is a structural schematic diagram of a special calibration plate used in the present invention.

图3为本发明的专用标定板在使用过程中的摆放位置示意图。Fig. 3 is a schematic diagram of the placement position of the special calibration plate of the present invention during use.

具体实施方式detailed description

通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。The objects and functions of the present invention and methods for achieving the objects and functions will be clarified by referring to the exemplary embodiments. However, the present invention is not limited to the exemplary embodiments disclosed below; it can be implemented in various forms. The essence of the description is only to help those skilled in the relevant art comprehensively understand the specific details of the present invention.

在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals represent the same or similar components, or the same or similar steps.

图1为关节式坐标测量机的示意图。关节式坐标测量机100包括:基座110,三段测量臂107、108、109,转动关节101、102、103、104、105、106以及测头111。在基座110上,由三段测量臂107、108、109串联的六个可旋转的关节101、102、103、104、105、106构成空间开链结构,该开链结构的末端是测量机的测头111。Figure 1 is a schematic diagram of an articulated coordinate measuring machine. The articulated coordinate measuring machine 100 includes: a base 110 , three measuring arms 107 , 108 , 109 , rotating joints 101 , 102 , 103 , 104 , 105 , 106 and a probe 111 . On the base 110, six rotatable joints 101, 102, 103, 104, 105, 106 connected in series by three sections of measuring arms 107, 108, 109 form a space open chain structure, and the end of the open chain structure is the measuring machine The measuring head 111.

将温度对关节式坐标测量机造成的热形变误差转换成温度对关节式坐标测量机的结构参数的影响。建立数学模型如下:The thermal deformation error caused by temperature on the articulated coordinate measuring machine is converted into the influence of temperature on the structural parameters of the articulated coordinate measuring machine. The mathematical model is established as follows:

其中,Δai、Δdi、Δαi、Δθi、ΔI分别为关节长度、测量臂长度、关节扭转角、关节旋转角和测头长度的误差。fai(T)、fdi(T)、fαi(T)、fI(T)、fθi(T)为温度误差函数。Among them, Δa i , Δd i , Δα i , Δθ i , and ΔI are the errors of joint length, measuring arm length, joint torsion angle, joint rotation angle and probe length, respectively. f ai (T), f di (T), f αi (T), f I (T), f θi (T) are temperature error functions.

将关节式坐标测量机置于温度可控的恒温室中,室温设定为15°。等待2个小时以上使关节式坐标测量机和室温达到热平衡,用关节式坐标测量机对设计的专用标定板进行测量,标定板如附图2所示。为了尽可能覆盖整个测量空间,标定板的摆放位置如图3所示。在每个位置对专用标定板上的指定锥孔进行100次测量,在测量时尽量使用多种不同的姿态。之后调节恒温室的温度到20°,等待2小时之后再次对标定板进行测量。继续升温,每隔5°进行一组测量实验,直至温度升到40°。完成实验后,共得到7组分别对应不同温度的实验数据。表1为同一个点在不同温度下的部分实验数据。The articulated coordinate measuring machine was placed in a temperature-controlled constant room, and the room temperature was set at 15°. Wait for more than 2 hours for the articulated coordinate measuring machine and the room temperature to reach thermal equilibrium, and use the articulated coordinate measuring machine to measure the designed special calibration plate, which is shown in Figure 2. In order to cover the entire measurement space as much as possible, the positioning of the calibration board is shown in Figure 3. Perform 100 measurements on the designated taper hole on the special calibration plate at each position, and try to use a variety of different postures during the measurement. Then adjust the temperature of the thermostatic chamber to 20°, wait for 2 hours and then measure the calibration plate again. Continue to raise the temperature, and conduct a set of measurement experiments every 5° until the temperature rises to 40°. After completing the experiment, a total of 7 sets of experimental data corresponding to different temperatures were obtained. Table 1 shows some experimental data of the same point at different temperatures.

表1 同一个点在不同温度下的部分实验数据Table 1 Partial experimental data of the same point at different temperatures

根据专用标定板的标称值计算出各组数据的误差,用关节式坐标测量机结构参数自标定的方法标定出各个温度下的结构参数。根据关节式坐标测量机结构参数的标准值,分别计算各个温度下的结构参数误差。用多项式拟合的方法对温度误差函数进行拟合,得到相应的误差函数f(T)。误差函数模型为:f(T)=kT3+mT2+nT+b。其中k,m,n,b为待拟合的常数。The error of each group of data is calculated according to the nominal value of the special calibration plate, and the structural parameters at each temperature are calibrated by the self-calibration method of the structural parameters of the joint type coordinate measuring machine. According to the standard values of the structural parameters of the articulated coordinate measuring machine, the structural parameter errors at each temperature are calculated respectively. The temperature error function is fitted by the method of polynomial fitting, and the corresponding error function f(T) is obtained. The error function model is: f(T)=kT 3 +mT 2 +nT+b. Where k, m, n, b are constants to be fitted.

在恒温室中分别在17°、23°、28°、33°和38°下,再次对标定板进行测量,在每个位置上对指定锥孔进行30次测量。用上面拟合出的f(T)对结构参数进行修正得到各个温度下相应的结构参数,用修正后的结构参数计算出修正后的坐标值。计算修正前后关节式坐标测量机的测量结果误差,以此对f(T)的补偿效果进行验证。In the thermostatic chamber at 17°, 23°, 28°, 33° and 38°, measure the calibration plate again, and measure the designated cone hole 30 times at each position. Use the f(T) fitted above to correct the structural parameters to obtain the corresponding structural parameters at each temperature, and use the corrected structural parameters to calculate the corrected coordinate values. The error of the measurement result of the articulated coordinate measuring machine before and after correction is calculated to verify the compensation effect of f(T).

在恒温室中分别在15°、18°、21°、24°和27°下,再次对标定板进行测量,在每个位置上对指定锥孔进行30次测量。用上面拟合出的f(T)对结构参数进行修正得到各个温度下相应的结构参数,用修正后的结构参数计算出修正后的坐标值。计算修正前后关节式坐标测量机的测量结果误差,以此对f(T)的补偿效果进行验证。In the thermostatic chamber at 15°, 18°, 21°, 24° and 27°, measure the calibration plate again, and measure the designated cone hole 30 times at each position. Use the f(T) fitted above to correct the structural parameters to obtain the corresponding structural parameters at each temperature, and use the corrected structural parameters to calculate the corrected coordinate values. The error of the measurement result of the articulated coordinate measuring machine before and after correction is calculated to verify the compensation effect of f(T).

在恒温室中分别在15°、18°、23°、30°和37°下,再次对标定板进行测量,在每个位置上对指定锥孔进行30次测量。用上面拟合出的f(T)对结构参数进行修正得到各个温度下相应的结构参数,用修正后的结构参数计算出修正后的坐标值。计算修正前后关节式坐标测量机的测量结果误差,以此对f(T)的补偿效果进行验证。In the thermostatic chamber at 15°, 18°, 23°, 30° and 37°, measure the calibration plate again, and measure the designated cone hole 30 times at each position. Use the f(T) fitted above to correct the structural parameters to obtain the corresponding structural parameters at each temperature, and use the corrected structural parameters to calculate the corrected coordinate values. The error of the measurement result of the articulated coordinate measuring machine before and after correction is calculated to verify the compensation effect of f(T).

结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。Other embodiments of the invention will be apparent to and understood by those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The description and examples are considered exemplary only, with the true scope and spirit of the invention defined by the claims.

Claims (5)

1.一种关节式坐标测量机的热形变误差补偿方法,包括如下步骤:1. A thermal deformation error compensation method of an articulated coordinate measuring machine, comprising the steps of: 1)建立温度对关节式坐标测量机的结构参数影响的数学模型:1) Establish a mathematical model of the influence of temperature on the structural parameters of the articulated coordinate measuring machine: ΔaΔa ii == ff aa ii (( TT )) ΔdΔd ii == ff dd ii (( TT )) ΔαΔα ii == ff αα ii (( TT )) ΔθΔθ ii == ff θθ ii (( TT )) ΔΔ II == ff II (( TT )) 其中,Δai、Δdi、Δαi、Δθi、Δl分别为关节长度、测量臂长度、关节扭转角、关节旋转角和测头长度的误差,fai(T)、fdi(T)、fαi(T)、fl(T)、fθi(T)为温度误差函数;Among them, Δa i , Δd i , Δα i , Δθ i , Δl are the errors of joint length, measuring arm length, joint torsion angle, joint rotation angle and probe length respectively, f ai (T), f di (T), f αi (T), f l (T), f θi (T) are temperature error functions; 2)将关节式坐标测量机置于温度可控的恒温室中,室温设定为15°等待2小时;2) Place the articulated coordinate measuring machine in a temperature-controllable constant temperature room, set the room temperature to 15° and wait for 2 hours; 3)用关节式坐标测量机对设计的专用标定板进行测量,在每个位置对专用标定板上的指定锥孔进行100次测量,在测量时尽量使用多种不同的姿态;3) Use an articulated coordinate measuring machine to measure the designed special calibration plate, measure the designated taper hole on the special calibration plate 100 times at each position, and try to use a variety of different postures during the measurement; 4)调节恒温室的温度到20°,等待2小时之后再次对标定板进行测量;4) Adjust the temperature of the thermostatic chamber to 20°, wait for 2 hours and measure the calibration plate again; 5)继续升温,每隔5°进行一组测量实验,直至温度升到40°;5) Continue to heat up, and carry out a set of measurement experiments every 5° until the temperature rises to 40°; 6)根据专用标定板的标称值计算出各组数据的误差,用关节式坐标测量机结构参数自标定的方法标定出各个温度下的结构参数。根据关节式坐标测量机结构参数的标准值,分别计算各个温度下的结构参数误差,用多项式拟合的方法对温度误差函数进行拟合,得到相应的误差函数f(T);6) Calculate the error of each group of data according to the nominal value of the special calibration plate, and use the self-calibration method of the structural parameters of the joint type coordinate measuring machine to calibrate the structural parameters at each temperature. According to the standard value of the structural parameters of the articulated coordinate measuring machine, the structural parameter errors at each temperature are calculated respectively, and the temperature error function is fitted by the polynomial fitting method to obtain the corresponding error function f(T); 7)在恒温室中分别在不同的温度梯度下,再次对标定板进行测量,在每个位置上对指定锥孔进行30次测量,用上面拟合出的f(T)对结构参数进行修正得到各个温度下相应的结构参数,用修正后的结构参数计算出修正后的坐标值,计算修正前后关节式坐标测量机的测量结果误差,以此对f(T)的补偿效果进行验证。7) Under different temperature gradients in the thermostatic chamber, measure the calibration plate again, measure the designated cone hole 30 times at each position, and use the f(T) fitted above to correct the structural parameters The corresponding structural parameters at each temperature are obtained, the corrected coordinate values are calculated with the corrected structural parameters, and the error of the measurement results of the articulated coordinate measuring machine before and after correction is calculated to verify the compensation effect of f(T). 2.根据权利要求1所述的误差补偿方法,其中所述误差函数模型为:f(T)=kT3+mT2+nT+b。其中k,m,n,b为待拟合的常数。2. The error compensation method according to claim 1, wherein the error function model is: f(T)=kT 3 +mT 2 +nT+b. Where k, m, n, b are constants to be fitted. 3.根据权利要求1所述的误差补偿方法,其中所述步骤7)的温度梯度为17°、23°、28°、33°和38°。3. The error compensation method according to claim 1, wherein the temperature gradient in step 7) is 17°, 23°, 28°, 33° and 38°. 4.根据权利要求1所述的误差补偿方法,其中所述步骤7)的温度梯度为15°、18°、21°、24°和27°。4. The error compensation method according to claim 1, wherein the temperature gradient in step 7) is 15°, 18°, 21°, 24° and 27°. 5.根据权利要求1所述的误差补偿方法,其中所述步骤7)的温度梯度为15°、18°、23°、30°和37°。5. The error compensation method according to claim 1, wherein the temperature gradient in step 7) is 15°, 18°, 23°, 30° and 37°.
CN201610917354.1A 2016-10-21 2016-10-21 The thermal deformation error compensating method of articulated coordinate machine Active CN106500641B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610917354.1A CN106500641B (en) 2016-10-21 2016-10-21 The thermal deformation error compensating method of articulated coordinate machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610917354.1A CN106500641B (en) 2016-10-21 2016-10-21 The thermal deformation error compensating method of articulated coordinate machine

Publications (2)

Publication Number Publication Date
CN106500641A true CN106500641A (en) 2017-03-15
CN106500641B CN106500641B (en) 2018-12-14

Family

ID=58318167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610917354.1A Active CN106500641B (en) 2016-10-21 2016-10-21 The thermal deformation error compensating method of articulated coordinate machine

Country Status (1)

Country Link
CN (1) CN106500641B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607070A (en) * 2017-09-28 2018-01-19 中国计量大学 A kind of articulated arm coordinate measuring machine thermal deformation errors recognize bearing calibration
CN110174074A (en) * 2019-06-27 2019-08-27 南京工程学院 A kind of measuring device and method for industrial robot thermal deformation error compensation
CN110587604A (en) * 2019-09-10 2019-12-20 广东技术师范大学 Method for constructing measuring arm calibration system
CN112861317A (en) * 2021-01-11 2021-05-28 合肥工业大学 Kinematic modeling method for joint type coordinate measuring machine for compensating inclination error of rotating shaft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070163136A1 (en) * 2004-01-14 2007-07-19 Homer Eaton Automated robotic measuring system
CN101825454A (en) * 2010-05-13 2010-09-08 天津大学 Method for compensating temperature errors based on bidirectional measurement
CN101825453A (en) * 2010-05-13 2010-09-08 天津大学 Temperature error compensation method for three-coordinate measuring machine with cylindrical-coordinate system
CN103954245A (en) * 2014-03-21 2014-07-30 北京信息科技大学 Precision calibration plate for articulated coordinate measuring machine
CN105203055A (en) * 2015-09-18 2015-12-30 北京信息科技大学 Dynamic error compensation method for joint-type coordinate measuring machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070163136A1 (en) * 2004-01-14 2007-07-19 Homer Eaton Automated robotic measuring system
CN101825454A (en) * 2010-05-13 2010-09-08 天津大学 Method for compensating temperature errors based on bidirectional measurement
CN101825453A (en) * 2010-05-13 2010-09-08 天津大学 Temperature error compensation method for three-coordinate measuring machine with cylindrical-coordinate system
CN103954245A (en) * 2014-03-21 2014-07-30 北京信息科技大学 Precision calibration plate for articulated coordinate measuring machine
CN105203055A (en) * 2015-09-18 2015-12-30 北京信息科技大学 Dynamic error compensation method for joint-type coordinate measuring machine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
于波: "关节三坐标测量机温度误差修正技术研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
林铿: "关节臂式坐标测量机的误差分析与补偿研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607070A (en) * 2017-09-28 2018-01-19 中国计量大学 A kind of articulated arm coordinate measuring machine thermal deformation errors recognize bearing calibration
CN110174074A (en) * 2019-06-27 2019-08-27 南京工程学院 A kind of measuring device and method for industrial robot thermal deformation error compensation
CN110174074B (en) * 2019-06-27 2024-02-02 南京工程学院 Measuring device and method for thermal deformation error compensation of industrial robot
CN110587604A (en) * 2019-09-10 2019-12-20 广东技术师范大学 Method for constructing measuring arm calibration system
CN112861317A (en) * 2021-01-11 2021-05-28 合肥工业大学 Kinematic modeling method for joint type coordinate measuring machine for compensating inclination error of rotating shaft
CN112861317B (en) * 2021-01-11 2022-09-30 合肥工业大学 Kinematics Modeling Method of Articulated Coordinate Measuring Machine for Compensating Rotation Axis Tilt Error

Also Published As

Publication number Publication date
CN106500641B (en) 2018-12-14

Similar Documents

Publication Publication Date Title
CN109822574B (en) A method for calibrating a six-dimensional force sensor at the end of an industrial robot
CN106500641B (en) The thermal deformation error compensating method of articulated coordinate machine
KR102235383B1 (en) Force/torque sensor temperature compensation
CN100562708C (en) Six-freedom degree articulated flexible COMERO high precision calibration method
CN108406771A (en) A kind of plane restriction error model and robot self-calibrating method
CN104655063B (en) The high-precision calibrating method of articulated coordinate machine
Santolaria et al. Articulated arm coordinate measuring machine calibration by laser tracker multilateration
Santolaria et al. Calibration-based thermal error model for articulated arm coordinate measuring machines
CN108225233B (en) Dynamic error compensation method for articulated coordinate measuring machine
CN101231304A (en) Method and system for calibrating sensors
CN103954245A (en) Precision calibration plate for articulated coordinate measuring machine
CN107607070A (en) A kind of articulated arm coordinate measuring machine thermal deformation errors recognize bearing calibration
CN114083534A (en) Calibration method of mechanical arm kinematics MDH parameters based on adaptive gradient descent
CN111267143A (en) Six-degree-of-freedom industrial series robot joint stiffness identification method and system
CN104006778A (en) Calibration method of installation position of clamp at tail end of industrial robot
Wang et al. Error mapping of rotary tables in 4-axis measuring devices using a ball plate artifact
Klobucar et al. EXPERIMENTAL EVALUATION OF BALL BAR STANDARD THERMAL PROPERTIES BY SIMULATING REAL SHOP FLOOR CONDITIONS.
US8444315B2 (en) Method of determining thermophysical properties of solid bodies
KR100932454B1 (en) Residual stress measuring equipment calibration device and method
CN104897093B (en) The accuracy measurement method of Hooke's hinge
CN114441133B (en) Pose Calibration Method and Equipment for Wind Tunnel Test Angle of Attack-Double Shaft Mechanism
CN114370826B (en) Measurement reference deviation correction method based on thermal expansion coefficient reverse calculation
CN114062135B (en) Rock strain data correction method for high-temperature triaxial tester
CN105466575A (en) Measurement device and calibration method used for consistency calibration
CN105674927A (en) Measuring attitude optimization method for articulated coordinate measuring machine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared