[go: up one dir, main page]

CN106446549A - Prediction method and prediction system for dyspepsia based on incremental type neural network model - Google Patents

Prediction method and prediction system for dyspepsia based on incremental type neural network model Download PDF

Info

Publication number
CN106446549A
CN106446549A CN201610860220.0A CN201610860220A CN106446549A CN 106446549 A CN106446549 A CN 106446549A CN 201610860220 A CN201610860220 A CN 201610860220A CN 106446549 A CN106446549 A CN 106446549A
Authority
CN
China
Prior art keywords
neuron
indigestion
network model
neural network
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610860220.0A
Other languages
Chinese (zh)
Inventor
杨滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Old Code Information Technology Co Ltd
Original Assignee
Hunan Old Code Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Old Code Information Technology Co Ltd filed Critical Hunan Old Code Information Technology Co Ltd
Priority to CN201610860220.0A priority Critical patent/CN106446549A/en
Publication of CN106446549A publication Critical patent/CN106446549A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

The invention discloses a prediction method for dyspepsia based on an incremental type neural network model. The prediction method comprises the steps of establishing a daily data database of dyspepsia; conducting training on the neural network model; collecting daily life data and sending to a server, and storing the daily life data in a user daily data record sheet; extracting the data of the day from the user daily data record sheet to form a n-dimension vector quantity, inputting the n-dimension vector quantity into a dyspepsia pathology neural network model to conduct dyspepsia probability forecasting after the n-dimension vector quantity is subjected to normalization processing; using intelligent home dyspepsia nurse equipment to judge whether a dyspepsia probability value is bigger than 0.5; going to the hospital by oneself to inspect when the user is judged to have the dyspepsia, and transferring an inspection result through the intelligent home dyspepsia nurse equipment back to the server which judges whether the inspection result is correct; executing an incremental type algorithm when the inspection result is incorrect, and conducting a dynamic correction on the neural network model. The prediction method for dyspepsia based on the incremental type neural network model is accurate in prediction, and a tailor made neural network model is made for every user.

Description

A kind of indigestion Forecasting Methodology based on increment type neural network model and prediction System
Technical field
The invention belongs to field of medical technology, more particularly to a kind of indigestion based on increment type neural network model Forecasting Methodology and forecasting system.
Background technology
Currently domestic each health management system arranged be respectively provided with indigestion prediction and evaluation, its use prediction mode be data Join.Its principle is that by system matches fixed data and then personal lifestyle data entry system is shown ill probability.But due to people The complexity of body and disease, unpredictability, in the form of expression of bio signal and information, Changing Pattern (Self-variation with Change after medical intervention) on, it is detected and signal representation, the data of acquisition and the analysis of information, decision-making etc. are all multi-party All there is extremely complex non-linear relationship in face.So using traditional Data Matching can only be blindness data examination it is impossible to Judge the logic association between data and data and variable, the codomain deviation obtaining is big, causes the specificity ten of system prediction Point poor, domestic health management system arranged effectively Accurate Prediction cannot be carried out to personal indigestion so current.
Most of before this is all using BP neural network model to indigestion prediction, but when new detection data produces When it is necessary to train neural network model again, operation efficiency is extremely low.And after system user scale increases, service Device will be unable to complete in time training mission.
Content of the invention
The purpose of the present invention is that and overcomes the deficiencies in the prior art, there is provided one kind is based on increment type neural network model Indigestion Forecasting Methodology and forecasting system, the present invention by neural network model train predict a large amount of patient in hospital pathology numbers According to finding indigestion pathology and indigestion earlier life variations in detail, clinical symptoms, examination criteria value, people at highest risk special Levy, the logic association between this several causes of disease and variable, ultimately form the digestion to indigestion illness probability Accurate Prediction not Good pathology neural network model, the present invention passes through to gather user's daily life data, the periodicity of its data of active analysis, rule Property suffers from indigestion probability eventually through indigestion pathology Neural Network model predictive user, is carried in the way of visual effect Awake user's instant hospitalizing, constantly revises neural network model when Neural Network model predictive is inaccurate by increasable algorithm, To set up, for each equipment user, the neural network model training for this user, with the increase of use time, to build The vertical neural network model that this user is made to measure, accuracy rate is greatly improved.
To achieve these goals, the invention provides a kind of indigestion based on increment type neural network model is predicted Method, comprises the steps:
Step (1), acquisition hospital's indigestion etiology and pathology data source and the daily monitoring data of patient, thus set up digestion Bad daily data database;
Step (2), the daily data database of indigestion set up according to step (1) are off-line manner to neutral net Model is trained, to obtain the indigestion pathology neural network model training;
Step (3), by intelligent monitoring device, the daily life data of user is acquired, and will collection daily life Live data sends to server, and server preserves the daily life data of user to the daily data logger of user;
Step (4), from the daily data logger of user, extract same day data, form n-dimensional vector, and n-dimensional vector is done Carry out indigestion probability pre- in the indigestion pathology neural network model training in input step (2) after normalized Survey, obtain indigestion probability, server sends indigestion probability to wired home indigestion care appliances;
After step (5), the indigestion probability of wired home indigestion care appliances the reception server transmission, judge to disappear Change whether bad probable value is more than 0.5, if greater than 0.5, be then judged to that this user obtained indigestion, attention device warns to carry Awake user, if less than 0.5, is then judged to that this user does not obtain indigestion;
Step (6), when user is judged to indigestion, user voluntarily removes examination in hospital, and inspection result is led to Cross wired home indigestion care appliances and send back server, server judges whether inspection result is correct, if checking knot Fruit mistake, then explanation indigestion pathology Neural Network model predictive is inaccurate, if inspection result is correct, digestion is described not Good pathology Neural Network model predictive is accurate;
Step (7), when inspection result mistake, from the daily data logger of user extract m days in record preserve to In incremental data table, when the record quantity in incremental data table is more than h bar, execute increasable algorithm, to indigestion pathology Neural network model carries out dynamic corrections;
Step (8), repeat step (3)~(7).
Further, the input layer of neural network model is n node, and hidden layer number is n*2+1, and output layer is 1 Node, extracts k bar record from indigestion daily data database table and is trained, every record is a n-dimensional vector, institute There is data first before use through normalized so as to numerical value is in [0,1] interval, then execution following steps are to neutral net mould Type is trained:
1) one n-dimensional vector of input, to neural network model, calculates all of weight vector in neural network model defeated to this Enter the distance of n-dimensional vector, closest neuron is as won neuron, its computing formula is as follows:
Wherein:WkIt is the weight vector of triumph neuron, | | ... | | for Euclidean distance;
2) weight vector of the neuron in adjustment triumph neuron and triumph neuron field, formula is as follows:
Wherein:WjT () is neuron;Wj(t+1) weight vector before being adjustment and after adjustment;J belongs to triumph neuron neck Domain;α (t) is learning rate, and it is as the function that the increase of iterations is gradually successively decreased, and span is [01], through multiple It is 0.62 that Optimal learning efficiency is chosen in experiment;DjIt is the distance of neuron j and triumph neuron;σ (t) is as the letter that the time successively decreases Number;Iteration all input n-dimensional vectors is input in neural network model and is trained each time, when the iteration reaching regulation After number of times, neural network model training terminates.
Further, inspection result is sent back the lattice of the object information of server by wired home indigestion care appliances Formula is:{ checking whether correct, blood glucose value }, server, after receiving object information, judges whether inspection result is correct.
Further, the increasable algorithm carrying out dynamic corrections to indigestion pathology neural network model is:
Vectorial for every in incremental data table V { V1,V2,…,Vn, it is sent in neural network model learning function Row study, learning procedure is as follows:
1) first to output layer, each weight vector is assigned little random number and is done normalized, then utilizes input mode vector V Mean value Avg (V), be initialized as the weights of unique neuron in the 0th layer of neural network model, and be set to win nerve Unit, calculates its quantization error QE;
2) expand out 2 × 2 structures SOM from the 0th layer of neuron, and its level identities Layer is set to 1;
3) for each 2 × 2 structure SOM subnet expanded out in Layer layer, initialize the power of this 4 neurons Value;The input vector set Ci of i-th neuron is set to sky, main label is set to NULL, the main label ratio r of neuron ii It is set to 0;The abnormity early warning data vector V of new SOM inherits the triumph input vector set VX of his father's neuron;
4) select a vectorial VX from VXiDo following judgement:
If VXiFor the data of not tape label, then calculate its Euclidean distance with each neuron, chosen distance is the shortest Neuron is as triumph neuron;
If VXiFor the data of tape label, then select main label and VXiLabel is identical and riThe maximum neuron of value is made For triumph neuron, update this triumph neuron main label;
If can not find main label and VXiLabel identical neuron, then find and VXiClosest neuron i makees For triumph neuron;
5) weights of neuron in triumph neuron and its neighborhood are adjusted, update the vectorial set W=W ∪ that wins {VXi, calculate main label, the main label ratio r of triumph neuroniWith comentropy EiIf. not up to predetermined frequency of training, Go to step 4);
6) quantization error QE of each neuron in this neural network model after calculating is adjustedi, neuronal messages entropy Ei With the average quantization error MQE of subnet, formula is as follows:
Wherein:WiFor the weight vector of neuron i, CiThe set constituting for all input vectors being mapped to neuron i;
Wherein:Ni represents to fall that label is the number of samples of i on neuron, and m represents to fall label data on neuron Sum, T represents to fall the sample label species set on neuron;
Then judge:
If MQE>QE × threshold value q of father node, wherein q=0.71, then insert a line neuron in this SOM, turn step Rapid 4);
If Ei>The E of father nodei× threshold value p, wherein p=0.42, then grow one layer of new subnet from this neuron, will The subnet newly growing increases in the subnet queue of Layer+1 layer;
If being not inserted into new neuron in SOM also do not grow new subnet, illustrate that the training of this subnet completes;
7) for all 2 × 2 structures SOM of the Layer+1 layer newly expanded out, iteration operating procedure 3)~5) to it again It is trained, until neural network model no longer produces new neuron and new layering, whole training terminates.
Further, if user includes health check-up by other means and checks oneself, learn that oneself has suffered from indigestion, and intelligence The attention device of energy family indigestion care appliances does not warn then it represents that wired home indigestion care appliances judge to be forbidden Really, now execution step (6)~(7), wired home indigestion care appliances are sent to object information on server.
Present invention also offers a kind of forecasting system of described indigestion Forecasting Methodology, including intelligent monitoring device, intelligence Energy device data acquisition device, server and wired home indigestion care appliances, described intelligent monitoring device and described intelligence Device data acquisition device is connected, and described smart machine data acquisition unit is passed through communication device one and led to described server network News, described wired home indigestion care appliances pass through communication device two and described server network communication.
Further, described wired home indigestion care appliances are provided with attention device.
Further, described intelligent monitoring device includes Intelligent worn device, Intelligent water cup, Intelligent weight claim, intelligent horse Bucket and Intelligent light sensing equipment.
Beneficial effects of the present invention:
1st, the present invention is trained by neural network model and predicts a large amount of patient in hospital pathological data, finds indigestion pathology With indigestion earlier life variations in detail, clinical symptoms, examination criteria value, people at highest risk's feature, between this several causes of disease Logic association and variable, ultimately form the indigestion pathology neural network model to indigestion illness probability Accurate Prediction, The present invention passes through to gather user's daily life data, and the periodicity of its data of active analysis, regularity are eventually through indigestion Pathology Neural Network model predictive user suffers from indigestion probability, reminds user's instant hospitalizing and pre- in the way of visual effect Anti-.
2nd, when Neural Network model predictive is inaccurate, neural network model is constantly revised, to be directed to by increasable algorithm Each equipment user sets up the neural network model training for this user, with the increase of use time, to set up to this The neural network model that user makes to measure, accuracy rate is greatly improved.
Brief description
In order to be illustrated more clearly that the embodiment of the present invention or technical scheme of the prior art, below will be to embodiment or existing Have technology description in required use accompanying drawing be briefly described it should be apparent that, drawings in the following description be only this Some embodiments of invention, for those of ordinary skill in the art, on the premise of not paying creative work, acceptable Other accompanying drawings are obtained according to these accompanying drawings.
Fig. 1 is the flow chart of the embodiment of the present invention.
Specific embodiment
Below in conjunction with the accompanying drawings invention is further illustrated, but be not limited to the scope of the present invention.
Embodiment
As shown in figure 1, a kind of indigestion Forecasting Methodology based on increment type neural network model that the present invention provides, bag Include following steps:
Step (1), acquisition hospital's indigestion etiology and pathology data source and the daily monitoring data of patient, thus set up digestion Bad daily data database;
Wherein daily monitoring data is 16 item data, and its 16 item data is age, sex, body fat, the amount of drinking water and frequency, little Just number of times, urine color, body weight, BMI index, the length of one's sleep, sleep quality, time for falling asleep, smoking capacity (daily), the amount of drinking (daily), pursues an occupation, daily travel distance etc. 16 item data, and the present invention sets up 16 dimensional vectors with 16 item data;
Step (2), the daily data database of indigestion set up according to step (1) are off-line manner to neutral net Model is trained, to obtain the indigestion pathology neural network model training;
Step (3), by intelligent monitoring device, the daily life data of user is acquired, and will collection daily life Live data sends to server, and server preserves the daily life data of user to the daily data logger of user;
Step (4), from the daily data logger of user, extract same day data, form 16 dimensional vectors, and to 16 dimensional vectors Carry out indigestion probability in the indigestion pathology neural network model training in input step (2) after doing normalized Prediction, obtains indigestion probability, server sends indigestion probability to wired home indigestion care appliances;
After step (5), the indigestion probability of wired home indigestion care appliances the reception server transmission, judge to disappear Change whether bad probable value is more than 0.5, if greater than 0.5, be then judged to that this user obtained indigestion, attention device warns to carry Awake user, if less than 0.5, is then judged to that this user does not obtain indigestion;
Step (6), when user is judged to indigestion, user voluntarily removes examination in hospital, and inspection result is led to Cross wired home indigestion care appliances and send back server, server judges whether inspection result is correct, if checking knot Fruit mistake, then explanation indigestion pathology Neural Network model predictive is inaccurate, if inspection result is correct, digestion is described not Good pathology Neural Network model predictive is accurate;
Step (7), when inspection result mistake, from the daily data logger of user extract 7 days in record preserve to In incremental data table, when the record quantity in incremental data table is more than 100, execute increasable algorithm, to indigestion disease Reason neural network model carries out dynamic corrections;
Step (8), repeat step (3)~(7).
The input layer of the neural network model of the present invention is 16 nodes, and hidden layer number is 33, and output layer is 1 node (i.e. dyspeptic probability), extracts 400000 records from indigestion daily data database table and is trained, every Record is 16 dimensional vectors, all data before use first through normalized so as to numerical value is interval in [0,1], then hold Row following steps are trained to neural network model:
1) one 16 dimensional vector of input, to neural network model, calculate all of weight vector in neural network model defeated to this Enter the distance of 16 dimensional vectors, closest neuron is as won neuron, its computing formula is as follows:
Wherein:WkIt is the weight vector of triumph neuron, | | ... | | for Euclidean distance;
2) weight vector of the neuron in adjustment triumph neuron and triumph neuron field, formula is as follows:
Wherein:WjT () is neuron;Wj(t+1) weight vector before being adjustment and after adjustment;J belongs to triumph neuron neck Domain;α (t) is learning rate, and it is as the function that the increase of iterations is gradually successively decreased, and span is [01], through multiple It is 0.62 that Optimal learning efficiency is chosen in experiment;DjIt is the distance of neuron j and triumph neuron;σ (t) is as the letter that the time successively decreases Number;Iteration all input n-dimensional vectors is input in neural network model and is trained each time, when the iteration reaching regulation After number of times, neural network model training terminates.
Inspection result is sent back the lattice of the object information of server by the wired home indigestion care appliances of the present invention Formula is:{ checking whether correct, blood glucose value }, server, after receiving object information, judges whether inspection result is correct.
The increasable algorithm carrying out dynamic corrections to indigestion pathology neural network model of the present invention is:
Vectorial for every in incremental data table V { V1,V2,…,Vn, it is sent in neural network model learning function Row study, learning procedure is as follows:
1) first to output layer, each weight vector is assigned little random number and is done normalized, then utilizes input mode vector V Mean value Avg (V), be initialized as the weights of unique neuron in the 0th layer of neural network model, and be set to win nerve Unit, calculates its quantization error QE;
2) expand out 2 × 2 structures SOM from the 0th layer of neuron, and its level identities Layer is set to 1;
3) for each 2 × 2 structure SOM subnet expanded out in Layer layer, initialize the power of this 4 neurons Value;The input vector set Ci of i-th neuron is set to sky, main label is set to NULL, the main label ratio r of neuron ii It is set to 0;The abnormity early warning data vector V of new SOM inherits the triumph input vector set VX of his father's neuron;
4) select a vectorial VX from VXiDo following judgement:
If VXiFor the data of not tape label, then calculate its Euclidean distance with each neuron, chosen distance is the shortest Neuron is as triumph neuron;
If VXiFor the data of tape label, then select main label and VXiLabel is identical and riThe maximum neuron of value is made For triumph neuron, update this triumph neuron main label;
If can not find main label and VXiLabel identical neuron, then find and VXiClosest neuron i makees For triumph neuron;
5) weights of neuron in triumph neuron and its neighborhood are adjusted, update the vectorial set W=W ∪ that wins {VXi, calculate main label, the main label ratio r of triumph neuroniWith comentropy EiIf. not up to predetermined frequency of training, Go to step 4);
6) quantization error QE of each neuron in this neural network model after calculating is adjustedi, neuronal messages entropy Ei With the average quantization error MQE of subnet, formula is as follows:
Wherein:WiFor the weight vector of neuron i, CiThe set constituting for all input vectors being mapped to neuron i;
Wherein:niRepresent to fall that label is the number of samples of i on neuron, m represents to fall label data on neuron Sum, T represents to fall the sample label species set on neuron;
Then judge:
If MQE>QE × threshold value q of father node, wherein q=0.71, then insert a line neuron in this SOM, turn step Rapid 4);
If Ei>The E of father nodei× threshold value p, wherein p=0.42, then grow one layer of new subnet from this neuron, will The subnet newly growing increases in the subnet queue of Layer+1 layer;
If being not inserted into new neuron in SOM also do not grow new subnet, illustrate that the training of this subnet completes;
7) for all 2 × 2 structures SOM of the Layer+1 layer newly expanded out, iteration operating procedure 3)~5) to it again It is trained, until neural network model no longer produces new neuron and new layering, whole training terminates.
If the user of the present invention includes health check-up by other means and checks oneself, learn that oneself has suffered from indigestion, and intelligence The attention device of energy family indigestion care appliances does not warn then it represents that wired home indigestion care appliances judge to be forbidden Really, now execution step (6)~(7), wired home indigestion care appliances are sent to object information on server.
Present invention also offers a kind of forecasting system of described indigestion Forecasting Methodology, including intelligent monitoring device, intelligence Energy device data acquisition device, server and wired home indigestion care appliances, described intelligent monitoring device and described intelligence Device data acquisition device is connected, and described smart machine data acquisition unit is passed through communication device one and led to described server network News, described wired home indigestion care appliances pass through communication device two and described server network communication.
It is provided with attention device on the described wired home indigestion care appliances of the present invention.
The described intelligent monitoring device of the present invention includes Intelligent worn device, Intelligent water cup, Intelligent weight claim, intelligent closestool With Intelligent light sensing equipment etc..
The present invention by neural network model train predict a large amount of patient in hospital pathological data, find indigestion pathology with Indigestion earlier life variations in detail, clinical symptoms, examination criteria value, people at highest risk's feature, patrolling between this several causes of disease Collect association and variable, ultimately form the indigestion pathology neural network model to indigestion illness probability Accurate Prediction, this By gathering user's daily life data, the periodicity of its data of active analysis, regularity are eventually through indigestion disease for invention Reason Neural Network model predictive user suffers from indigestion probability, reminds user's instant hospitalizing and pre- in the way of visual effect Anti-.
All data of the present invention preserve to server, can significantly save calculating cost, hardware configuration is low, thus selling Valency is also low.
The present invention carries communication device one and communication device two, by wifi from the internet that is dynamically connected, and can protect for a long time Hold online.Various intelligent monitoring devices can easily access present device by modes such as network or bluetooths, sets in acquisition The daily life data of the monitoring of intelligent monitoring device, the data that therefore present device obtains can automatically be uploaded after standby mandate It is real-time, accurate, polynary.
Because everyone physical trait is different, the data characteristics being shown during indigestion morbidity also can be different. Therefore conventional is not high by neural network prediction dyspeptic method accuracy rate.The present invention is directed to each equipment user and sets up Train the neural network model for this user, running after a period of time, by producing to measure nerve is being made to this user Network Prediction Model, accuracy rate is greatly improved.
When neural network model is judged by accident, error message be will be feedbacked to service by wired home indigestion care appliances Device, for this user's dynamic corrections neural network model, when similar characteristics data in this user next, will not miss again Sentence.Therefore, with the increase of use time, the judgement of the wired home indigestion care appliances of the present invention will be more and more accurate Really.
General principle, principal character and the advantages of the present invention of the present invention have been shown and described above.The technology of the industry , it should be appreciated that the present invention is not restricted to the described embodiments, the simply explanation described in above-described embodiment and specification is originally for personnel Invention principle, without departing from the spirit and scope of the present invention the present invention also have various changes and modifications, these change Change and improvement both falls within scope of the claimed invention.Claimed scope by appending claims and its Equivalent defines.

Claims (8)

1. a kind of indigestion Forecasting Methodology based on increment type neural network model is it is characterised in that comprise the steps:
Step (1), obtain hospital indigestion and cure the disease etiology and pathology data source and the daily monitoring data of patient, thus setting up digestion Bad daily data database;
Step (2), the daily data database of indigestion set up according to step (1) are off-line manner to neural network model It is trained, to obtain the indigestion pathology neural network model training;
Step (3), by intelligent monitoring device, the daily life data of user is acquired, and will collection daily life number According to sending to server, server preserves the daily life data of user to the daily data logger of user;
Step (4), from the daily data logger of user, extract same day data, form n-dimensional vector, and normalizing is done to n-dimensional vector Carry out indigestion probabilistic forecasting in the indigestion pathology neural network model training in input step (2) after change process, Obtain indigestion probability, server sends indigestion probability to wired home indigestion care appliances;
After step (5), the indigestion probability of wired home indigestion care appliances the reception server transmission, judge digestion not Whether good probable value is more than 0.5, if greater than 0.5, is then judged to that this user obtained indigestion, attention device warns to remind use Family, if less than 0.5, is then judged to that this user does not obtain indigestion;
Step (6), when user is judged to indigestion, user voluntarily removes examination in hospital, and by inspection result pass through intelligence Server can be sent back by family's indigestion care appliances, server judges whether inspection result is correct, if inspection result is wrong By mistake, then explanation indigestion pathology Neural Network model predictive is inaccurate, if inspection result is correct, indigestion disease is described Reason Neural Network model predictive is accurate;
Step (7), when inspection result mistake, from the daily data logger of user extract m days in record preserve to increment In tables of data, when the record quantity in incremental data table is more than h bar, execute increasable algorithm, to indigestion pathology nerve Network model carries out dynamic corrections;
Step (8), repeat step (3)~(7).
2. a kind of indigestion Forecasting Methodology based on increment type neural network model according to claim 1, its feature It is, the input layer of neural network model is n node, and hidden layer number is n*2+1, and output layer is 1 node, from digestion not Extract k bar record in good daily data database table to be trained, every record is a n-dimensional vector, all data are using Through normalized so as to numerical value is interval in [0,1], then execution following steps are trained to neural network model for front elder generation:
1) one n-dimensional vector of input, to neural network model, calculates all of weight vector in neural network model and ties up to this input n The distance of vector, closest neuron is as won neuron, and its computing formula is as follows:
Wherein:WkIt is the weight vector of triumph neuron, | | ... | | for Euclidean distance;
2) weight vector of the neuron in adjustment triumph neuron and triumph neuron field, formula is as follows:
Wherein:WjT () is neuron;Wj(t+1) weight vector before being adjustment and after adjustment;J belongs to triumph neuron field;a T () is learning rate, it is as the function that the increase of iterations is gradually successively decreased, and span is [0 1], through many experiments Choosing Optimal learning efficiency is 0.62;DjIt is the distance of neuron j and triumph neuron;σ (t) is as the function that the time successively decreases; Iteration all input n-dimensional vectors is input in neural network model and is trained each time, when the iteration time reaching regulation After number, neural network model training terminates.
3. a kind of indigestion Forecasting Methodology based on increment type neural network model according to claim 1, its feature It is, the form that inspection result is sent back the object information of server by wired home indigestion care appliances is:{ inspection is No correct, blood glucose value }, server, after receiving object information, judges whether inspection result is correct.
4. a kind of indigestion Forecasting Methodology based on increment type neural network model according to claim 1, its feature It is, the increasable algorithm carrying out dynamic corrections to indigestion pathology neural network model is:
Vectorial for every in incremental data table V { V1,V2,…,Vn, it is sent in neural network model learning function and learned Practise, learning procedure is as follows:
1) first to output layer, each weight vector is assigned little random number and is done normalized, then utilizes the flat of input mode vector V Average Avg (V), is initialized as the weights of unique neuron in the 0th layer of neural network model, and is set to triumph neuron, meter Calculate its quantization error QE;
2) expand out 2 × 2 structures SOM from the 0th layer of neuron, and its level identities Layer is set to 1;
3) for each 2 × 2 structure SOM subnet expanded out in Layer layer, the weights of this 4 neurons are initialized;Will The input vector set Ci of i-th neuron is set to sky, and main label is set to NULL, the main label ratio r of neuron iiIt is set to 0;The abnormity early warning data vector V of new SOM inherits the triumph input vector set VX of his father's neuron;
4) select a vectorial VX from VXiDo following judgement:
If VXiFor the data of not tape label, then calculate its Euclidean distance with each neuron, chosen distance nerve the shortest Unit is as triumph neuron;
If VXiFor the data of tape label, then select main label and VXiLabel is identical and riThe maximum neuron of value is as obtaining Victory neuron, updates this triumph neuron main label;
If can not find main label and VXiLabel identical neuron, then find and VXiClosest neuron i is as obtaining Victory neuron;
5) weights of neuron in triumph neuron and its neighborhood are adjusted, update the vectorial set W=W ∪ { VX that winsi, Calculate main label, the main label ratio r of triumph neuroniWith comentropy EiIf. not up to predetermined frequency of training, go to step 4);
6) quantization error QE of each neuron in this neural network model after calculating is adjustedi, neuronal messages entropy EiAnd son The average quantization error MQE of net, formula is as follows:
Wherein:WiFor the weight vector of neuron i, CiThe set constituting for all input vectors being mapped to neuron i;
Wherein:niRepresent to fall that label is the number of samples of i on neuron, m represents to fall the total of label data on neuron Number, T represents to fall the sample label species set on neuron;
Then judge:
If MQE>QE × threshold value q of father node, wherein q=0.71, then insert a line neuron in this SOM, go to step 4);
If Ei>The E of father nodei× threshold value p, wherein p=0.42, then grow one layer of new subnet from this neuron, will be new The subnet growing increases in the subnet queue of Layer+1 layer;
If being not inserted into new neuron in SOM also do not grow new subnet, illustrate that the training of this subnet completes;
7) for all 2 × 2 structures SOM of the Layer+1 layer newly expanded out, iteration operating procedure 3)~5) it is re-started Training, until neural network model no longer produces new neuron and new layering, whole training terminates.
5. a kind of indigestion Forecasting Methodology based on increment type neural network model according to claim 1, its feature It is, if user includes health check-up by other means and checks oneself, learns that oneself has suffered from indigestion, and wired home digests not The attention device of good care appliances does not warn then it represents that wired home indigestion care appliances judge inaccurate, now executes Step (6)~(7), wired home indigestion care appliances are sent to object information on server.
6. a kind of forecasting system of indigestion Forecasting Methodology described in employing claim 1~6 is it is characterised in that include intelligence Monitoring device, smart machine data acquisition unit, server and wired home indigestion care appliances, described intelligent monitoring device It is connected with described smart machine data acquisition unit, described smart machine data acquisition unit passes through communication device one and described service Device network communication, described wired home indigestion care appliances pass through communication device two and described server network communication.
7. according to claim 7 indigestion Forecasting Methodology forecasting system it is characterised in that described wired home digestion It is provided with attention device on bad care appliances.
8. according to claim 7 the forecasting system of indigestion Forecasting Methodology it is characterised in that described intelligent monitoring device Claim including Intelligent worn device, Intelligent water cup, Intelligent weight, intelligent closestool and Intelligent light sensing equipment.
CN201610860220.0A 2016-09-28 2016-09-28 Prediction method and prediction system for dyspepsia based on incremental type neural network model Pending CN106446549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610860220.0A CN106446549A (en) 2016-09-28 2016-09-28 Prediction method and prediction system for dyspepsia based on incremental type neural network model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610860220.0A CN106446549A (en) 2016-09-28 2016-09-28 Prediction method and prediction system for dyspepsia based on incremental type neural network model

Publications (1)

Publication Number Publication Date
CN106446549A true CN106446549A (en) 2017-02-22

Family

ID=58171174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610860220.0A Pending CN106446549A (en) 2016-09-28 2016-09-28 Prediction method and prediction system for dyspepsia based on incremental type neural network model

Country Status (1)

Country Link
CN (1) CN106446549A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477581A (en) * 2003-07-01 2004-02-25 �Ϻ���ͨ��ѧ A Predictive Modeling Approach for Computer-Aided Medical Diagnosis
US20040054358A1 (en) * 2002-03-28 2004-03-18 Cox Ian G. System and method for predictive ophthalmic correction
CN102647292A (en) * 2012-03-20 2012-08-22 北京大学 A Method of Intrusion Detection Based on Semi-Supervised Neural Network Model
CN105118010A (en) * 2015-09-30 2015-12-02 成都信汇聚源科技有限公司 Chronic disease management method with functions of real-time data processing and real-time information sharing and life style intervention information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040054358A1 (en) * 2002-03-28 2004-03-18 Cox Ian G. System and method for predictive ophthalmic correction
CN1477581A (en) * 2003-07-01 2004-02-25 �Ϻ���ͨ��ѧ A Predictive Modeling Approach for Computer-Aided Medical Diagnosis
CN102647292A (en) * 2012-03-20 2012-08-22 北京大学 A Method of Intrusion Detection Based on Semi-Supervised Neural Network Model
CN105118010A (en) * 2015-09-30 2015-12-02 成都信汇聚源科技有限公司 Chronic disease management method with functions of real-time data processing and real-time information sharing and life style intervention information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEHMED KANTARDZIC: "《数据挖掘:概念、模型、方法和算法》", 31 January 2013 *

Similar Documents

Publication Publication Date Title
CN106407699A (en) Coronary heart disease prediction method and prediction system based on incremental neural network model
CN106250712A (en) A kind of ureteral calculus Forecasting Methodology based on increment type neural network model and prognoses system
CN106355035A (en) Pneumonia prediction method and prediction system based on incremental neural network model
CN106446552A (en) Prediction method and prediction system for sleep disorder based on incremental neural network model
CN106446560A (en) Hyperlipidemia prediction method and prediction system based on incremental neural network model
CN112037925A (en) LSTM algorithm-based early warning method for newly-released major infectious diseases
CN106384013A (en) Incremental neural network model-based type-II diabetes prediction method and prediction system
CN106384012A (en) Incremental neural network model-based allergic dermatitis prediction method and prediction system
CN106202986A (en) A kind of tonsillitis Forecasting Methodology based on increment type neural network model and prognoses system
CN106650206A (en) Prediction method of high blood pressure based on incremental neural network model and prediction system
CN106384005A (en) Incremental neural network model-based depression prediction method and prediction system
CN106384008A (en) Incremental neural network model-based allergic rhinitis prediction method and prediction system
CN109657907B (en) Quality control method and device for geographical national condition monitoring data and terminal equipment
CN106355034A (en) Sub-health prediction method and prediction system based on incremental neural network model
CN106295238A (en) A kind of hypertensive nephropathy Forecasting Methodology based on increment type neural network model and prognoses system
Trivedi et al. CARE: IoT enabled cow health monitoring system
CN106407694A (en) Neurasthenia prediction method and prediction system based on incremental neural network model
CN106407693A (en) Hepatitis B prediction method and prediction system based on incremental neural network model
CN106446561A (en) Incremental neural network model based urticaria prediction method and system
CN106250715A (en) A kind of chronic pharyngolaryngitis Forecasting Methodology based on increment type neural network model and prognoses system
CN106384009A (en) Incremental neural network model-based HIV prediction method and prediction system
CN106372442A (en) Dental ulcer prediction method and system based on incremental neural network model
CN106446550A (en) Cold prediction method and system based on incremental neutral network model
CN106446551A (en) Incremental neural network model based chronic gastroenteritis prediction method and system
CN106339605A (en) Colonitis prediction method and colonitis prediction system based on incremental nerve network model

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222

WD01 Invention patent application deemed withdrawn after publication