[go: up one dir, main page]

CN106441353A - Fiber optic gyro ring polarization coupling symmetry assessment device - Google Patents

Fiber optic gyro ring polarization coupling symmetry assessment device Download PDF

Info

Publication number
CN106441353A
CN106441353A CN201610532372.8A CN201610532372A CN106441353A CN 106441353 A CN106441353 A CN 106441353A CN 201610532372 A CN201610532372 A CN 201610532372A CN 106441353 A CN106441353 A CN 106441353A
Authority
CN
China
Prior art keywords
coupler
circulator
polarizer
port
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610532372.8A
Other languages
Chinese (zh)
Other versions
CN106441353B (en
Inventor
杨军
李创
苑勇贵
彭峰
李寒阳
苑立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201610532372.8A priority Critical patent/CN106441353B/en
Publication of CN106441353A publication Critical patent/CN106441353A/en
Application granted granted Critical
Publication of CN106441353B publication Critical patent/CN106441353B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/331Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by using interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

本发明属于光纤测量技术领域,具体涉及到一种可用于在线监测光纤陀螺环的缠绕质量的光纤陀螺环偏振耦合的对称性评估装置。一种光纤陀螺环偏振耦合的对称性评估装置,包括光源装置10、测试装置11、第一光程相关器12A、第二光程相关器12B、差分探测装置13、光电信号转换与信号记录装置14,测试装置11中包括待测器件110、与待测器件110两端相连接的第1环行器113A和第2环行器113B、第1起偏器111A和第1检偏器111B、第2起偏器112A和第2检偏器112B。本发明能够同时实现光纤陀螺环的缺陷点的偏振耦合信息的正向和反向测量,抑制了光纤陀螺环对称点色散影响不一致性带来的测量误差,该结构简单有效。

The invention belongs to the technical field of optical fiber measurement, and in particular relates to a symmetry evaluation device for polarization coupling of an optical fiber gyroscope ring which can be used for on-line monitoring of the winding quality of the optical fiber gyroscope ring. A symmetry evaluation device for fiber optic gyroscope ring polarization coupling, including a light source device 10, a test device 11, a first optical path correlator 12A, a second optical path correlator 12B, a differential detection device 13, and a photoelectric signal conversion and signal recording device 14. The test device 11 includes a device under test 110, a first circulator 113A and a second circulator 113B connected to both ends of the device under test 110, a first polarizer 111A and a first analyzer 111B, a second A polarizer 112A and a second analyzer 112B. The invention can simultaneously realize the forward and reverse measurement of the polarization coupling information of the defect point of the optical fiber gyroscope ring, suppresses the measurement error caused by the inconsistency of the dispersion effect of the symmetrical point of the optical fiber gyroscope ring, and has a simple and effective structure.

Description

一种光纤陀螺环偏振耦合的对称性评估装置A Symmetry Evaluation Device for Fiber Optic Gyro Ring Polarization Coupling

技术领域technical field

本发明属于光纤测量技术领域,具体涉及到一种可用于在线监测光纤陀螺环的缠绕质量的光纤陀螺环偏振耦合的对称性评估装置。The invention belongs to the technical field of optical fiber measurement, and in particular relates to a symmetry evaluation device for polarization coupling of an optical fiber gyroscope ring which can be used for on-line monitoring of the winding quality of the optical fiber gyroscope ring.

背景技术Background technique

作为导航、制导领域的重要传感单元和互易效应的典型应用,陀螺仪以其独有的优点被广泛应用。相对于传统机械陀螺,光纤陀螺具有质量轻、体积小、抗电磁干扰等优势。其中的关键敏感元件——光纤陀螺环的制作工艺的稳定性和可靠性将直接影响了光纤陀螺整机质量和导航精度。根据萨格纳克(Sagnac)效应,我们知道光纤陀螺环中正向传输光和反向传输光,需要经过完全相同的光程信息才能进行精确的导航。1980年,Shupe等人发现在环境中温度的变化能够引起光纤陀螺的非互易性,从而导致较大的陀螺漂移。光纤陀螺环中正向传输光和反向传输光的光程不一致性,称为影响光纤陀螺性能的重要因素。As an important sensing unit in the field of navigation and guidance and a typical application of the reciprocity effect, gyroscopes are widely used due to their unique advantages. Compared with traditional mechanical gyroscopes, fiber optic gyroscopes have the advantages of light weight, small size, and anti-electromagnetic interference. The stability and reliability of the manufacturing process of the key sensitive component, the fiber optic gyro ring, will directly affect the overall quality and navigation accuracy of the fiber optic gyroscope. According to the Sagnac effect, we know that the forward and reverse transmission light in the fiber optic gyro ring needs exactly the same optical path information to carry out accurate navigation. In 1980, Shupe et al. found that temperature changes in the environment can cause the non-reciprocity of the fiber optic gyroscope, resulting in a large gyroscope drift. The inconsistency of the optical path of the forward light and the reverse light in the fiber optic gyroscope ring is an important factor affecting the performance of the fiber optic gyroscope.

关于如何降低光纤陀螺环由热导致的非互易效应,已经提出了较多的解决方法。2012年,北京航空航天大学的宋凝芳等人公开了一种用于光纤陀螺的上下对称交叉绕制光纤陀螺环结构(中国专利申请号:201210043894.3)。光纤线圈分为上下两部分,且均有一侧无结构约束,在振动与温度变化的条件下不会受到挤压;通过交叉,两侧线圈均含有相同长度的正反向光纤,从而使得轴向与径向的温度梯度对光纤产生的温度调制相等。光纤陀螺环的对称绕制方法在一定程度上改善了其正向反向的瞬态特性。然而,光纤陀螺环关于绕制光纤中心点的轻微不对称性就会在很大程度上削弱对称绕法的优势。2012年,北京航空航天大学的杨德伟等人公开了一种光纤陀螺环偏振串音估计与对称性评价方法(中国专利申请号:CN201210359805.6)。在测量光纤陀螺环偏振耦合强度分布的同时,利用波长扫描法得到待测光纤的双折射色散系数,建立偏振串音估计模型,判断光纤陀螺环中点,得到中点左右侧偏振串音数据,将偏振串音值作为评价光纤陀螺环绕制对称性的参考指标。该发明应用于测量多种保偏光纤的绕制,便于优化选择陀螺用料光纤,对评估和指导优化光纤陀螺的温度性能有重要意义。As for how to reduce the non-reciprocal effect caused by heat in the fiber optic gyro ring, many solutions have been proposed. In 2012, Song Ningfang and others from Beihang University disclosed a top-down symmetrical cross-wound fiber optic gyro ring structure for fiber optic gyroscopes (Chinese patent application number: 201210043894.3). The optical fiber coil is divided into upper and lower parts, and one side has no structural constraints, and will not be squeezed under the conditions of vibration and temperature changes; through crossing, the coils on both sides contain forward and reverse optical fibers of the same length, so that the axial It is equal to the temperature modulation produced by the radial temperature gradient on the optical fiber. The symmetrical winding method of the fiber optic gyroscope improves its forward and reverse transient characteristics to a certain extent. However, the slight asymmetry of the fiber optic gyro ring about the center point of the winding fiber will greatly weaken the advantages of the symmetrical winding method. In 2012, Yang Dewei of Beihang University and others disclosed a method for estimating and symmetry evaluating crosstalk of optical fiber gyroscope ring polarization (Chinese patent application number: CN201210359805.6). While measuring the polarization coupling intensity distribution of the fiber optic gyro ring, the birefringence dispersion coefficient of the fiber to be tested is obtained by using the wavelength scanning method, and the polarization crosstalk estimation model is established to determine the midpoint of the fiber optic gyro ring and obtain the polarization crosstalk data on the left and right sides of the midpoint. The polarization crosstalk value is used as a reference index to evaluate the symmetry of the fiber optic gyroscope. The invention is applied to measure the winding of various polarization-maintaining optical fibers, which is convenient for optimizing the selection of optical fibers for gyroscopes, and is of great significance for evaluating and guiding the optimization of the temperature performance of optical fiber gyroscopes.

光相干域偏振技术(OCDP)是一种极其优越的分布式测量技术。他通过扫描式光学干涉仪进行光程补偿,实现不同耦合模式间的干涉,可定位绕制光纤内部缺陷的位置,利用干涉强度分析缺陷点的偏振耦合强度。2011年,哈尔滨工程大学的杨军等人公开了一种提高保偏光纤偏振耦合测量精度和对称性的装置和方法(中国专利申请号:201110118450.7)。通过光信号可控换向机构,可实现待测光纤陀螺环分别正向和反向测量。本发明提供了一种能减小双折射色散对测量精度的影响,对于光纤陀螺环的参数测量与性能评价具有非常重要的实用价值。同年,哈尔滨工程大学的杨军等人又提供了是一种减小双折射色散对保偏光纤偏振耦合测量影响的装置(中国专利申请号:CN201110118127.X)。本发明利用一只半反半透偏振旋光器,将宽谱光平均分成两束,实现了同时从正向和逆向通过待测光纤,利用同一偏振耦合检测装置,能够同时获得扫描位置对称的两幅偏振耦合测量数据。Optical coherent domain polarization technology (OCDP) is an extremely superior distributed measurement technology. He uses a scanning optical interferometer to compensate the optical path, realize the interference between different coupling modes, locate the position of the internal defect of the wound fiber, and use the interference intensity to analyze the polarization coupling strength of the defect point. In 2011, Yang Jun and others from Harbin Engineering University disclosed a device and method for improving the measurement accuracy and symmetry of polarization-maintaining optical fiber polarization coupling (Chinese patent application number: 201110118450.7). Through the optical signal controllable reversing mechanism, the forward and reverse measurements of the optical fiber gyroscope ring to be tested can be realized respectively. The invention provides a device capable of reducing the influence of birefringence dispersion on measurement accuracy, and has very important practical value for parameter measurement and performance evaluation of an optical fiber gyro ring. In the same year, Yang Jun and others from Harbin Engineering University provided a device that reduces the influence of birefringence dispersion on the polarization coupling measurement of polarization-maintaining fiber (Chinese patent application number: CN201110118127.X). The invention uses a semi-reflective and semi-transparent polarization rotator to divide the broad-spectrum light into two beams on average, realizes passing through the optical fiber to be tested from the forward and reverse directions at the same time, and using the same polarization coupling detection device, can simultaneously obtain two beams with symmetrical scanning positions Amplitude polarization coupling measurement data.

然而,上述提到的测量方法虽然能够实现正向、反向的测量或者评价光纤陀螺的对称性:宋凝芳等人的波长扫描法只是测得了光纤陀螺环的左侧和右侧区间偏振耦合的一个平均值,没有办法实现分布式测量;杨军等人可控换向机构没有实现同时性,并不能排除时间不一致时的温度等环境参数不一致带来的影响;半反半透偏振旋光器虽然实现了同时性,但是正向、反向测量并非是完全的相同路径。这些基于OCDP技术的方案,缺乏一定的可行性,在线的实时监测效果大大降低,在分析光纤陀螺环全温特性时也缺乏有效的评价标准。因此,需要一种新的方法来评价光纤陀螺环的对称性和绕环质量,对用料光纤的选择和绕环工艺的改进提供实时有效的监测和必要的指导。However, although the measurement methods mentioned above can realize forward and reverse measurements or evaluate the symmetry of the fiber optic gyroscope: the wavelength scanning method of Song Ningfang et al. is only one of the polarization couplings of the left and right intervals of the fiber optic gyroscope ring. Average value, there is no way to achieve distributed measurement; the controllable reversing mechanism of Yang Jun et al. did not achieve simultaneity, and the influence of environmental parameters such as temperature when the time is inconsistent cannot be ruled out; Simultaneity is achieved, but the forward and reverse measurements are not exactly the same path. These solutions based on OCDP technology lack certain feasibility, the online real-time monitoring effect is greatly reduced, and there is no effective evaluation standard when analyzing the full-temperature characteristics of the fiber optic gyro ring. Therefore, a new method is needed to evaluate the symmetry and quality of the fiber optic gyro ring, and provide real-time effective monitoring and necessary guidance for the selection of optical fiber and the improvement of the ring process.

发明内容Contents of the invention

本发明的目的是提出一种实现对光纤陀螺环的偏振耦合与对称性的定量评估,对光纤陀螺环的正向和反向进行同时测量的光纤陀螺环偏振耦合的对称性评估装置。The purpose of the present invention is to propose a symmetry evaluation device for the polarization coupling and symmetry of the fiber optic gyro ring, which can simultaneously measure the forward and reverse directions of the fiber optic gyro ring.

本发明的目的是这样实现的:The purpose of the present invention is achieved like this:

一种光纤陀螺环偏振耦合的对称性评估装置,包括光源装置10、测试装置11、第一光程相关器12A、第二光程相关器12B、差分探测装置13、光电信号转换与信号记录装置14。A symmetry evaluation device for fiber optic gyroscope ring polarization coupling, including a light source device 10, a test device 11, a first optical path correlator 12A, a second optical path correlator 12B, a differential detection device 13, and a photoelectric signal conversion and signal recording device 14.

测试装置11中包括待测器件110、与待测器件110两端相连接的第1环行器113A和第2环行器113B、第1起偏器111A和第1检偏器111B、第2起偏器112A和第2检偏器112B;The test device 11 includes a device under test 110, a first circulator 113A and a second circulator 113B connected to both ends of the device under test 110, a first polarizer 111A and a first analyzer 111B, a second polarizer device 112A and the second analyzer 112B;

第1环行器113A和第2环行器113B具有相同的物理参数,待测器件110的两端分别与第1环行器113A和第2环行器113B的第2端口连接;第1起偏器111A和第2起偏器112A具有相同的起偏角度,二者分别与第1环行器113A和第2环行器113B的第1端口连接;第1检偏器111B和第2检偏器112B具有相同的检偏角度,二者分别与第1环行器113A和第2环行器113B的第3端口连接;The first circulator 113A and the second circulator 113B have the same physical parameters, and the two ends of the device under test 110 are respectively connected to the second ports of the first circulator 113A and the second circulator 113B; the first polarizer 111A and The second polarizer 112A has the same polarizing angle, and the two are respectively connected to the first port of the first circulator 113A and the second circulator 113B; the first polarizer 111B and the second polarizer 112B have the same Angle of deflection analysis, the two are respectively connected to the third port of the first circulator 113A and the second circulator 113B;

宽谱光源101经由第1耦合器103平均分光到测试装置11;两束光分别经由待测器件110的两端输入,同时产生正向、反向的两组信号;由第一光程相关器12A、第二光程相关器12B 进行扫描;最后输出两幅扫描位置对称的偏振耦合信号,实现对待测器件110的正向、反向同时测试。The wide-spectrum light source 101 splits the light equally to the test device 11 through the first coupler 103; the two beams of light are respectively input through the two ends of the device under test 110, and simultaneously generate two sets of forward and reverse signals; the first optical path correlator 12A and the second optical path correlator 12B scan; finally output two polarization coupling signals with symmetrical scanning positions, so as to realize simultaneous forward and reverse testing of the device under test 110 .

光源装置10中的宽谱光源101,经由第1耦合器103平均分光到测试装置11中进行偏振耦合测试;光源装置10中的校正光源102经由第2耦合器104平均分光到第一光程相关器12A、第二光程相关器12B中进行扫描位置校正;The wide-spectrum light source 101 in the light source device 10 is split into the test device 11 via the first coupler 103 to perform polarization coupling test; the calibration light source 102 in the light source device 10 is split into the first optical path correlation through the second coupler 104 Perform scanning position correction in device 12A and second optical path correlator 12B;

第1光程相关器12A由第3耦合器121A、第4耦合器122A、第3环行器123A、第1准直透镜124A和扫描台125组成;宽谱光源101经由待测器件110及测试装置11中的器件通过第2检偏器112B和第3耦合器121A输入端连接;校正光源102通过第2耦合器104和第3耦合器121A另一个输入端连接;第4耦合器122A的两个输出端分别与第一差分探测器130A、第二差分探测器130B连接;经过数据采集卡141进行数据采集,传输到上位机142输出偏振耦合信号;The first optical path correlator 12A is composed of the third coupler 121A, the fourth coupler 122A, the third circulator 123A, the first collimator lens 124A and the scanning table 125; the wide-spectrum light source 101 passes through the device under test 110 and the testing device The devices in 11 are connected through the second analyzer 112B and the input end of the third coupler 121A; the correction light source 102 is connected through the second coupler 104 and the other input end of the third coupler 121A; the two of the fourth coupler 122A The output terminals are respectively connected to the first differential detector 130A and the second differential detector 130B; the data is collected through the data acquisition card 141, and transmitted to the host computer 142 to output the polarization coupling signal;

第2光程相关器12A与第1光程相关器12A除了共用扫描台125,其他器件的物理参数对应一致。The physical parameters of the second optical path correlator 12A and the first optical path correlator 12A are consistent except that they share the scanning stage 125 .

所述的第1环行器113A和第2环行器113B,是三端口器件,光只沿一个方向传播;信号若从第1端口71A输入,则只能从第2端口71B输出;而信号从第2端口71B输入,则只能第3端口71C输出;反之,均不可传输。The first circulator 113A and the second circulator 113B are three-port devices, and the light only propagates in one direction; if the signal is input from the first port 71A, it can only be output from the second port 71B; 2 port 71B input, then only the 3rd port 71C output; otherwise, can not transmit.

测试装置21中包括待测器件110、与待测器件110两端相连接的正向耦合器214A和反向耦合器214B、第1起偏器111A和第1检偏器111B、第2起偏器112A和第2检偏器112B、第1隔离器213A和第2隔离器213B;The test device 21 includes a device under test 110, a forward coupler 214A and a reverse coupler 214B connected to both ends of the device under test 110, a first polarizer 111A and a first polarizer 111B, a second polarizer 112A and the second polarizer 112B, the first isolator 213A and the second isolator 213B;

待测器件110的两端分别与正向耦合器214A和反向耦合器214B的一端连接;第1隔离器213A和第2隔离器213B的输出端口72B分别与正向耦合器214A和反向耦合器214B的另一端连接;第1起偏器111A和第2起偏器112A具有相同的起偏角度,二者分别与第1隔离器213A和第2隔离器213B的输入端口72A连接;第1检偏器111B和第2检偏器112B具有相同的检偏角度,二者分别与正向耦合器214A和反向耦合器214B的另一端连接。The two ends of the device under test 110 are respectively connected to one end of the forward coupler 214A and the reverse coupler 214B; The other end of the polarizer 214B is connected; the first polarizer 111A and the second polarizer 112A have the same polarizing angle, and they are respectively connected to the input port 72A of the first isolator 213A and the second isolator 213B; the first The polarizer 111B and the second polarizer 112B have the same polarizer angle, and are respectively connected to the other ends of the forward coupler 214A and the reverse coupler 214B.

所述的第1隔离器213A或第2隔离器213B从第1端口输入,从第2端口输出,光只能沿一个方向传播,反之不可传输。The first isolator 213A or the second isolator 213B is input from the first port and output from the second port, light can only travel in one direction, and vice versa.

本发明的有益效果在于:The beneficial effects of the present invention are:

1.能够同时实现光纤陀螺环的缺陷点的偏振耦合信息的正向和反向测量,抑制了光纤陀螺环对称点色散影响不一致性带来的测量误差,该结构简单有效;1. It can realize the forward and reverse measurement of the polarization coupling information of the defect point of the fiber optic gyro ring at the same time, and suppress the measurement error caused by the inconsistency of the dispersion effect of the symmetrical point of the fiber optic gyro ring. The structure is simple and effective;

2.降低了光纤陀螺环偏振耦合测量装置的测试时间,测量效率高,消除温度等环境因素的影响;2. The test time of the fiber optic gyro ring polarization coupling measurement device is reduced, the measurement efficiency is high, and the influence of environmental factors such as temperature is eliminated;

3.能够准确地获得光纤陀螺环的偏振耦合对称性。由于能够同时进行正向和反向测量,可以同时得到保偏光纤的两幅关于中点对称的分布式偏振耦合测量结果。3. The polarization coupling symmetry of the fiber optic gyro ring can be accurately obtained. Since the forward and reverse measurements can be performed at the same time, two distributed polarization coupling measurement results symmetrical about the midpoint of the polarization maintaining fiber can be obtained at the same time.

附图说明Description of drawings

图1是一种环行器型的光纤陀螺环偏振耦合的对称性评估装置示意图;Fig. 1 is a schematic diagram of a symmetry evaluation device of a circulator-type fiber optic gyroscope ring polarization coupling;

图2是一种耦合器型的光纤陀螺环偏振耦合的对称性评估装置示意图;Fig. 2 is a schematic diagram of a symmetry evaluation device of a coupler-type fiber optic gyroscope ring polarization coupling;

图3是环行器和耦合器的结构示意图;Fig. 3 is the structural representation of circulator and coupler;

图4是典型的光纤陀螺环偏振耦合的评估装置示意图;Figure 4 is a schematic diagram of a typical fiber optic gyroscope ring polarization coupling evaluation device;

图5是光纤陀螺环正向测量和反向测量的简化光路方案;Figure 5 is a simplified optical path scheme for forward measurement and reverse measurement of the fiber optic gyro ring;

图6是光纤陀螺环偏振耦合的对称性评估装置输出的偏振耦合信号。Fig. 6 is the polarization coupling signal output by the symmetry evaluation device for the polarization coupling of the fiber optic gyro ring.

图7是测量装置示意图。Fig. 7 is a schematic diagram of the measuring device.

具体实施方式detailed description

以下结合实施例和附图对本发明作进一步描述。The present invention will be further described below in conjunction with embodiment and accompanying drawing.

本发明提出了一种光纤陀螺环偏振耦合的对称性评估装置。其特征是将装置使用的白光光源平均分成两束;利用具有方向性的光学器件分别注入到待测光纤陀螺环的正向和反向;然后共用同一扫描台的两套相对独立的干涉仪进行扫描;最后利用光学相干域偏振测量技术,同时获得扫描位置对称的两幅偏振耦合测量数据。本装置结构简单,测量精度高,能够减小双折射色散对保偏光纤偏振耦合测量的影响。本发明对于光纤陀螺环的偏振耦合测量与对称性能评估具有重要的实用价值,可用于改进光纤陀螺环绕制工艺和优化光纤陀螺制作流程。The invention provides a symmetry evaluation device for optical fiber gyroscope ring polarization coupling. It is characterized in that the white light source used by the device is divided into two beams on average; using directional optical devices to inject them into the forward and reverse directions of the fiber optic gyro ring to be tested; and then sharing the same scanning table with two relatively independent interferometers for Scanning; finally, using the optical coherent domain polarization measurement technology, two pieces of polarization coupling measurement data with symmetrical scanning positions are obtained at the same time. The device has simple structure and high measurement precision, and can reduce the influence of birefringence dispersion on polarization-maintaining optical fiber polarization coupling measurement. The invention has important practical value for the polarization coupling measurement and symmetry performance evaluation of the fiber optic gyro ring, and can be used to improve the fiber optic gyroscope surround manufacturing process and optimize the fiber optic gyroscope manufacturing process.

装置包括光源装置10、测试装置11、光程相关器12A和12B、差分探测装置13、光电信号转换与信号记录装置14,其特征是:The device includes a light source device 10, a test device 11, optical path correlators 12A and 12B, a differential detection device 13, a photoelectric signal conversion and signal recording device 14, and is characterized in that:

(1)测试装置11中包括待测器件110、与待测器件110两端相连接的第1环行器113A和第2环行器113B、第1起偏器111A和第1检偏器111B、第2起偏器112A和第2检偏器112B。(1) The test device 11 includes a device under test 110, a first circulator 113A and a second circulator 113B connected to both ends of the device under test 110, a first polarizer 111A and a first analyzer 111B, a first 2 polarizer 112A and second analyzer 112B.

(2)第1环行器113A和第2环行器113B具有相同的物理参数,待测器件110的两端分别与第1环行器113A和第2环行器113B的第2端口71B连接;第1起偏器111A和第2起偏器112A具有相同的起偏角度等其他物理参数,二者分别与第1环行器113A和第2环行器113B的第1端口71A连接;第1检偏器111B和第2检偏器112B具有相同的检偏角度等其他物理参数,二者分别与第1环行器113A和第2环行器113B的第3端口71C连接。(2) The first circulator 113A and the second circulator 113B have the same physical parameters, and the two ends of the device under test 110 are respectively connected to the second port 71B of the first circulator 113A and the second circulator 113B; The polarizer 111A and the second polarizer 112A have other physical parameters such as the same polarizing angle, and the two are respectively connected to the first port 71A of the first circulator 113A and the second circulator 113B; the first polarizer 111B and The second analyzer 112B has the same other physical parameters such as the analysis angle, and both are respectively connected to the third port 71C of the first circulator 113A and the second circulator 113B.

(3)宽谱光源101经由第1耦合器103平均分光到测试装置11;两束光分别经由待测器件110的两端输入,同时产生正向、反向的两组信号;由两套相对独立的、共用扫描台125的光程相关器12A和12B进行扫描;最后输出两幅扫描位置对称的偏振耦合信号143A和143B,实现对待测器件110的正向、反向同时测试。(3) The wide-spectrum light source 101 splits the light equally to the test device 11 through the first coupler 103; the two beams of light are respectively input through the two ends of the device under test 110, and simultaneously generate two sets of forward and reverse signals; The independent and shared optical path correlators 12A and 12B of the scanning table 125 scan; finally output two polarization coupling signals 143A and 143B with symmetrical scanning positions, so as to realize the forward and reverse simultaneous testing of the device under test 110 .

所述的一种光纤陀螺环偏振耦合的对称性评估装置,其特征是:The symmetry evaluation device for the polarization coupling of a fiber optic gyro ring is characterized in that:

(1)光源装置10中的宽谱光源101,经由第1耦合器103平均分光到测试装置11中进行偏振耦合测试;光源装置10中的校正光源102经由第2耦合器104平均分光到两个光程相关器12A和12B中进行扫描位置校正。(1) The wide-spectrum light source 101 in the light source device 10 is split into the testing device 11 via the first coupler 103 to carry out the polarization coupling test; Scanning position correction is performed in the optical path correlators 12A and 12B.

(2)第1光程相关器12A由第3耦合器121A、第4耦合器122A、第3环行器123A、第1准直透镜124A和扫描台125组成;宽谱光源101经由待测器件110、及测试装置11中的相关器件通过第2检偏器112B和第3耦合器121A输入端连接;校正光源102通过第2耦合器104和第3耦合器121A另一个输入端连接;第4耦合器122A的两个输出端分别与差分探测器130A和130B连接;经过数据采集卡141进行数据采集,传输到上位机142输出偏振耦合信号143A和143B。(2) The first optical path correlator 12A is made up of the 3rd coupler 121A, the 4th coupler 122A, the 3rd circulator 123A, the 1st collimating lens 124A and the scanning platform 125; , and related devices in the testing device 11 are connected through the 2nd analyzer 112B and the input end of the 3rd coupler 121A; the correction light source 102 is connected with the other input end of the 3rd coupler 121A through the 2nd coupler 104; the 4th coupling The two output ends of the detector 122A are respectively connected to the differential detectors 130A and 130B; the data is collected through the data acquisition card 141, and transmitted to the host computer 142 to output polarization coupling signals 143A and 143B.

(3)相对独立的第2光程相关器12A与第1光程相关器12A除了共用扫描台125,其他器件的物理参数对应一致。(3) The relatively independent second optical path correlator 12A and the first optical path correlator 12A share the scanning table 125 , and the physical parameters of other devices are correspondingly consistent.

所述的环行器113A或113B,是三端口器件,光只能沿一个方向传播。信号若从第1端口71A输入,则只能从第2端口71B输出;而信号从第2端口71B输入,则将从第3端口71C输出;反之,均不可传输。The circulator 113A or 113B is a three-port device, and light can only travel in one direction. If the signal is input from the first port 71A, it can only be output from the second port 71B; if the signal is input from the second port 71B, it will be output from the third port 71C; otherwise, neither can be transmitted.

所述的一种光纤陀螺环偏振耦合的对称性评估装置,其特征是:The symmetry evaluation device for the polarization coupling of a fiber optic gyro ring is characterized in that:

(1)测试装置21中包括待测器件110、与待测器件110两端相连接的正向耦合器214A和反向耦合器214B、第1起偏器111A和第1检偏器111B、第2起偏器112A和第2检偏器112B、第1隔离器213A和第2隔离器213B。(1) The test device 21 includes a device under test 110, a forward coupler 214A and a reverse coupler 214B connected to both ends of the device under test 110, a first polarizer 111A and a first polarizer 111B, a first 2. Polarizer 112A, second analyzer 112B, first isolator 213A, and second isolator 213B.

(2)待测器件110的两端分别与正向耦合器214A和反向耦合器214B的一端连接;第1隔离器213A和第2隔离器213B的输出端口72B分别与正向耦合器214A和反向耦合器214B的另一端连接;第1起偏器111A和第2起偏器112A具有相同的起偏角度等其他物理参数,二者分别与第1隔离器213A和第2隔离器213B的输入端口72A连接;第1检偏器111B和第2检偏器112B具有相同的检偏角度等其他物理参数,二者分别与正向耦合器214A和反向耦合器214B的另一端连接。(2) two ends of the device under test 110 are respectively connected to one end of the forward coupler 214A and the reverse coupler 214B; The other end of the reverse coupler 214B is connected; the first polarizer 111A and the second polarizer 112A have the same polarization angle and other physical parameters, and the two are respectively the same as those of the first isolator 213A and the second isolator 213B. The input port 72A is connected; the first polarizer 111B and the second polarizer 112B have the same other physical parameters such as the polarizer angle, and they are respectively connected to the other end of the forward coupler 214A and the reverse coupler 214B.

所述的一种光纤陀螺环偏振耦合的隔离器213A或213B,从第1端口72A输入,从第2端口72B输出,光只能沿一个方向传播,反之不可传输。The aforementioned isolator 213A or 213B with optical fiber gyro polarization coupling is input from the first port 72A and output from the second port 72B. The light can only propagate in one direction, and vice versa.

一般地,传统的光纤陀螺环偏振耦合测量装置如附图4所示。对保偏光纤中不连续点偏振耦合评估,采用的是光学相干域偏振测量装置。宽谱光源(SLD)101发出的光依次通过起偏器411A、待测器件110、检偏器411B,与马赫泽德干涉仪(MZI)42连接,进而连接差分探测装置43,最后与干涉信号检测与处理装置14连接;另外,校正光源102用于马赫泽德干涉仪42中位移台425的位移校正;经过数据采集卡441进行数据采集,传输到上位机442输出偏振耦合信号442,其只包含待测器件110的正向信息。Generally, a conventional optical fiber gyro ring polarization coupling measurement device is shown in FIG. 4 . For the evaluation of the polarization coupling of discontinuous points in polarization-maintaining fiber, an optical coherent domain polarization measurement device is used. The light emitted by the wide-spectrum light source (SLD) 101 passes through the polarizer 411A, the device under test 110, and the polarizer 411B in sequence, and is connected with the Mach-Zehnder interferometer (MZI) 42, and then connected with the differential detection device 43, and finally with the interference signal The detection is connected to the processing device 14; in addition, the correction light source 102 is used for the displacement correction of the displacement stage 425 in the Mach-Zehnder interferometer 42; the data is collected through the data acquisition card 441, and is transmitted to the upper computer 442 to output the polarization coupling signal 442, which only Contains forward information of the device under test 110 .

本发明中提到的光纤陀螺环偏振耦合的对称性评估装置是从正向、反向同时对保偏光纤的偏振耦合同时地各测量一次。如附图5是其双向同时测量的简化光路方案。假设待测器件110为熊猫型保偏光纤,长度为L,其中慢轴的折射率为nslow,快轴的折射率为nfast,则保偏光纤的快慢轴的折射率差为Δn=nslow-nfast。假设传输光均从慢轴输入,距离待测器件110头端x距离位置有一个缺陷点。在距离头端x处偏振光会发生耦合,少量的传输光从慢轴耦合到快轴中。The symmetry evaluation device for the polarization coupling of the fiber optic gyro ring mentioned in the present invention measures the polarization coupling of the polarization-maintaining fiber simultaneously from the forward direction and the reverse direction. As shown in Figure 5, it is a simplified optical path scheme for two-way simultaneous measurement. Assuming that the device under test 110 is a panda-type polarization-maintaining fiber with a length of L, where the refractive index of the slow axis is n slow and the refractive index of the fast axis is n fast , then the difference between the refractive indices of the fast and slow axes of the polarization-maintaining fiber is Δn=n slow -n fast . Assuming that all transmitted light is input from the slow axis, there is a defect point at a distance x from the head end of the device under test 110 . The polarized light will be coupled at a distance x from the tip, and a small amount of transmitted light is coupled from the slow axis into the fast axis.

在正向测量和反向测量路径中,未发生耦合的传输光走过的光程均可表示为In the forward measurement and reverse measurement paths, the optical path traveled by the uncoupled transmitted light can be expressed as

S传输=nslow L, (1)S transmission = n slow L, (1)

正向测量路径中,耦合光走过的光程51可以表示为In the forward measurement path, the optical path 51 traveled by the coupled light can be expressed as

S耦合_正向=nslow x+nfast(L-x), (2)S coupling_forward = n slow x + n fast (Lx), (2)

反向测量路径中,耦合光走过的光程52可以表示为In the reverse measurement path, the optical path 52 traveled by the coupled light can be expressed as

S耦合_正向=nslow(L-x)+nfast x。 (3)S coupling_forward = n slow (Lx) + n fast x. (3)

对于正向测量,由公式(1)和(2)可知,传输光和耦合光的光程差为For forward measurement, it can be seen from formulas (1) and (2) that the optical path difference between transmitted light and coupled light is

ΔS正向=Δn·(L-x), (4)ΔS forward = Δn·(Lx), (4)

对于反向测量,由公式(1)和(3)可知,传输光和耦合光的光程差为For the reverse measurement, it can be seen from the formulas (1) and (3) that the optical path difference between the transmitted light and the coupled light is

ΔS反向=Δn·x。 (5)ΔS reverse = Δn·x. (5)

在附图5中,有关于光纤陀螺环中点53(长度为L/2)对称的两个缺陷点——近头端缺陷点54(长度为x1)和近尾端缺陷点55(长度为x2),即有如下关系In accompanying drawing 5, there are two defect points symmetrical about the fiber optic gyroscope ring midpoint 53 (length is L/2) -- near head end defect point 54 (length is x 1 ) and near tail end defect point 55 (length is x 2 ), that is, the following relationship

L/2-x1=x2-L/2。 (6)L/2-x 1 =x 2 -L/2. (6)

一般地,除了环境因素影响外,光纤中的色散影响跟长度相关。正向测量时,经过待测光纤的近头端缺陷点54的耦合光与传输光的光程差,比经历近尾端缺陷点55的长,因此色散对近头端缺陷点54的影响较大。Generally, in addition to the influence of environmental factors, the influence of dispersion in optical fiber is related to the length. When measuring in the forward direction, the optical path difference between the coupled light and the transmitted light passing through the near-end defect point 54 of the optical fiber to be tested is longer than that passing through the near-end defect point 55, so the influence of dispersion on the near-end defect point 54 is relatively large. Big.

此时,对于近头端缺陷点54采用正向测量时,根据公式(4)和公式(6),传输光和耦合光的光程差为At this time, when the forward measurement is adopted for the near-end defect point 54, according to formula (4) and formula (6), the optical path difference between the transmitted light and the coupled light is

ΔS正向=Δn·(L-x1), (7)ΔS forward = Δn·(Lx 1 ), (7)

对于近尾端缺陷点55采用反向测量时,根据公式(5)和公式(6),传输光和耦合光的光程差为When reverse measurement is used for the near-tail defect point 55, according to formula (5) and formula (6), the optical path difference between transmitted light and coupled light is

ΔS反向=Δn·x2=Δn·(L-x1)。 (8)ΔS reverse = Δn·x 2 =Δn·(Lx 1 ). (8)

由公式(7)和公式(8)可知,在上述光路方案中,正向和反向同时测量得到的关于偏振耦合点的位置信息,是关于光纤中点对称的。光纤中的色散对于光纤陀螺环中心对称缺陷点的影响是一样的,即采用本发明提出的偏振耦合测量装置不仅能达到同时测量的目的,还消除了测量时色散带来的影响。It can be known from formula (7) and formula (8) that in the above optical path scheme, the position information about the polarization coupling point measured simultaneously in the forward direction and the reverse direction is symmetrical about the midpoint of the optical fiber. The dispersion in the optical fiber has the same influence on the central symmetrical defect point of the fiber optic gyro ring, that is, the polarization coupling measurement device proposed by the present invention can not only achieve the purpose of simultaneous measurement, but also eliminate the influence of dispersion during measurement.

应用实施例1Application Example 1

测量装置如附图1所示,器件参数选择如下:The measurement device is shown in Figure 1, and the device parameters are selected as follows:

(1)宽带光源101的中心波长1550nm,半谱宽度45nm、出纤功率大于5mW,消光比大于6dB;(1) The central wavelength of the broadband light source 101 is 1550nm, the half-spectrum width is 45nm, the fiber output power is greater than 5mW, and the extinction ratio is greater than 6dB;

(2)待测光纤器件110为500m熊猫型保偏光纤;(2) The optical fiber device 110 to be tested is a 500m panda-type polarization-maintaining optical fiber;

(3)第1起偏器111A、第1检偏器111B、第2起偏器112A和第2检偏器112B的工作波长为1550nm,消光比大于20dB,插入损耗小于3dB;(3) The operating wavelength of the first polarizer 111A, the first analyzer 111B, the second polarizer 112A and the second analyzer 112B is 1550nm, the extinction ratio is greater than 20dB, and the insertion loss is less than 3dB;

(4)第1环行器113A和第2环行器113B为三端口保偏环行器,其他环行器123A和123B为三端口单模光纤环行器,其回波损耗大于55dB,插入损耗小于1dB;(4) The first circulator 113A and the second circulator 113B are three-port polarization-maintaining circulators, and the other circulators 123A and 123B are three-port single-mode optical fiber circulators, the return loss of which is greater than 55 dB, and the insertion loss is less than 1 dB;

(5)光纤耦合器103、104、121A、121B、122A、121B的工作波长为1310/1550nm,分光比50:50,插入损耗小于0.5dB;(5) The working wavelength of fiber couplers 103, 104, 121A, 121B, 122A, 121B is 1310/1550nm, the splitting ratio is 50:50, and the insertion loss is less than 0.5dB;

(6)准直透镜124A和124B的工作波长为1550nm;(6) The operating wavelength of the collimating lenses 124A and 124B is 1550nm;

(7)位移台125中所用反射镜的直径为20mm,平均反射率大于95%。(7) The diameter of the mirror used in the displacement stage 125 is 20mm, and the average reflectivity is greater than 95%.

综合以上条件,测得偏振耦合信号如附图6所示,其中附图6(a)和6(b)分别为500m的光纤陀螺环正向测量结果和反向测量结果。简单起见,我们各以头端和尾端的3个典型缺陷点引起的偏振耦合峰为例进行分析。附图6(a)中特征峰61、62、63分别对应附图6(b)中的特征峰61’、62’、63’,附图6(a)中特征峰64、65、66分别对应附图6(b)中的特征峰64’、65’、66’。由于光纤陀螺环头端引起的特征峰(例如64、65、66)由于受到色散影响较大,峰值展宽幅值降低,与尾端引起的特征峰比较会引起较大误差。相应地,若与附图6(b)中的相应扫描光程差位置的特征峰相比较,可得到光纤陀螺环的对称性信息。Combining the above conditions, the measured polarization coupling signal is shown in Figure 6, where Figures 6(a) and 6(b) are the forward measurement results and reverse measurement results of the 500m fiber optic gyro ring, respectively. For the sake of simplicity, we take the polarization coupling peaks caused by three typical defect points at the head end and the tail end as examples for analysis. Accompanying drawing 6 (a) characteristic peak 61,62,63 correspond respectively to accompanying drawing 6 (b) characteristic peak 61 ', 62 ', 63 ', among the accompanying drawing 6 (a) characteristic peak 64,65,66 respectively Corresponding to the characteristic peaks 64', 65', 66' in the accompanying drawing 6(b). Since the characteristic peaks (such as 64, 65, and 66) caused by the head end of the fiber optic gyro ring are greatly affected by dispersion, the peak broadening amplitude is reduced, and compared with the characteristic peaks caused by the tail end, it will cause a large error. Correspondingly, if compared with the characteristic peak at the corresponding scanning optical path difference position in Fig. 6(b), the symmetry information of the fiber optic gyro ring can be obtained.

应用实施例2Application Example 2

测量装置如附图7所示,除了测试装置71与附图1中测试装置11不同之外,其余部分两个装置基本相同。The measuring device is shown in FIG. 7 . Except that the testing device 71 is different from the testing device 11 in FIG. 1 , the rest of the two devices are basically the same.

(1)测试装置71中包括待测器件110、与待测器件(110)两端相连接的第1环行器113A和第2环行器113B、起偏器710、耦合器711、第1检偏器111B、第2检偏器112B。(1) The test device 71 includes a device under test 110, a first circulator 113A and a second circulator 113B connected to both ends of the device under test (110), a polarizer 710, a coupler 711, a first polarizer Device 111B, second analyzer 112B.

(2)第1环行器113A和第2环行器113B具有相同的物理参数,待测器件110的两端分别与第1环行器113A和第2环行器113B的第2端口连接;耦合器711的两个输出端分别与第1环行器113A和第2环行器113B的第1端口连接,耦合器711的输入端与起偏器710连接;第1检偏器111B和第2检偏器112B具有相同的检偏角度等其他物理参数,二者分别与第1环行器113A和第2环行器113B的第3端口连接。(2) The first circulator 113A and the second circulator 113B have the same physical parameters, and the two ends of the device under test 110 are respectively connected to the second ports of the first circulator 113A and the second circulator 113B; The two output ends are respectively connected to the first port of the first circulator 113A and the second circulator 113B, and the input end of the coupler 711 is connected to the polarizer 710; the first polarizer 111B and the second polarizer 112B have The same other physical parameters such as the angle of deflection analysis are connected to the third ports of the first circulator 113A and the second circulator 113B respectively.

(3)宽谱光源101与测试装置71中的起偏器710输入端连接;经由待测器件110的两端同时产生正向、反向的两组信号,由两套相对独立的、共用扫描台125的光程相关器12A和12B进行扫描;最后输出两幅扫描位置相反的偏振耦合信号143A和143B,实现对待测器件110的正向、反向同时测试。(3) The wide-spectrum light source 101 is connected to the input end of the polarizer 710 in the test device 71; two sets of forward and reverse signals are generated simultaneously through the two ends of the device under test 110, and two sets of relatively independent and shared scanning The optical path correlators 12A and 12B of the stage 125 scan; finally output two polarization coupling signals 143A and 143B with opposite scanning positions, so as to realize the forward and reverse simultaneous testing of the device under test 110 .

器件参数选择与应用实施例1类似,通过测量,可以得到附图6相同的偏振耦合信号。The selection of device parameters is similar to that of the application example 1, and the same polarization coupling signal as that shown in Fig. 6 can be obtained through measurement.

Claims (5)

1.一种光纤陀螺环偏振耦合的对称性评估装置,包括光源装置(10)、测试装置(11)、第一光程相关器(12A)、第二光程相关器(12B)、差分探测装置(13)、光电信号转换与信号记录装置(14),其特征是:1. A symmetry evaluation device for fiber optic gyroscope ring polarization coupling, comprising a light source device (10), a test device (11), a first optical path correlator (12A), a second optical path correlator (12B), a differential detection The device (13), the photoelectric signal conversion and signal recording device (14), are characterized in that: 测试装置(11)中包括待测器件(110)、与待测器件(110)两端相连接的第1环行器(113A)和第2环行器(113B)、第1起偏器(111A)和第1检偏器(111B)、第2起偏器(112A)和第2检偏器(112B);The test device (11) includes a device under test (110), a first circulator (113A) and a second circulator (113B) connected to both ends of the device under test (110), a first polarizer (111A) And the first polarizer (111B), the second polarizer (112A) and the second polarizer (112B); 第1环行器(113A)和第2环行器(113B)具有相同的物理参数,待测器件(110)的两端分别与第1环行器(113A)和第2环行器(113B)的第2端口连接;第1起偏器(111A)和第2起偏器(112A)具有相同的起偏角度,二者分别与第1环行器(113A)和第2环行器(113B)的第1端口连接;第1检偏器(111B)和第2检偏器(112B)具有相同的检偏角度,二者分别与第1环行器(113A)和第2环行器(113B)的第3端口连接;The first circulator (113A) and the second circulator (113B) have the same physical parameters, and the two ends of the device to be tested (110) are connected to the second circulator (113A) and the second circulator (113B) respectively. port connection; the first polarizer (111A) and the second polarizer (112A) have the same polarizing angle, and they are respectively connected to the first port of the first circulator (113A) and the second circulator (113B) connection; the first analyzer (111B) and the second analyzer (112B) have the same angle of analysis, and they are respectively connected to the third port of the first circulator (113A) and the second circulator (113B) ; 宽谱光源(101)经由第1耦合器(103)平均分光到测试装置(11);两束光分别经由待测器件(110)的两端输入,同时产生正向、反向的两组信号;由第一光程相关器(12A)、第二光程相关器(12B)进行扫描;最后输出两幅扫描位置对称的偏振耦合信号,实现对待测器件(110)的正向、反向同时测试。The wide-spectrum light source (101) splits the light equally to the test device (11) through the first coupler (103); the two beams of light are respectively input through the two ends of the device under test (110), and simultaneously generate two sets of forward and reverse signals Scanning by the first optical path correlator (12A) and the second optical path correlator (12B); finally output two polarization coupling signals with symmetrical scanning positions to realize the forward and reverse simultaneous test. 2.根据权利要求1所述的一种光纤陀螺环偏振耦合的对称性评估装置,其特征是:2. the symmetry evaluation device of a kind of fiber optic gyroscope ring polarization coupling according to claim 1, it is characterized in that: 光源装置(10)中的宽谱光源(101),经由第1耦合器(103)平均分光到测试装置(11)中进行偏振耦合测试;光源装置(10)中的校正光源(102)经由第2耦合器(104)平均分光到第一光程相关器(12A)、第二光程相关器(12B)中进行扫描位置校正;The wide-spectrum light source (101) in the light source device (10) splits light into the test device (11) for polarization coupling testing via the first coupler (103); the correction light source (102) in the light source device (10) passes through the first 2 The coupler (104) splits the light into the first optical path correlator (12A) and the second optical path correlator (12B) to perform scanning position correction; 第1光程相关器(12A)由第3耦合器(121A)、第4耦合器(122A)、第3环行器(123A)、第1准直透镜(124A)和扫描台(125)组成;宽谱光源(101)经由待测器件(110)及测试装置(11)中的器件通过第2检偏器(112B)和第3耦合器(121A)输入端连接;校正光源(102)通过第2耦合器(104)和第3耦合器(121A)另一个输入端连接;第4耦合器(122A)的两个输出端分别与第一差分探测器(130A)、第二差分探测器(130B)连接;经过数据采集卡(141)进行数据采集,传输到上位机(142)输出偏振耦合信号;The first optical path correlator (12A) is composed of the third coupler (121A), the fourth coupler (122A), the third circulator (123A), the first collimator lens (124A) and the scanning table (125); The wide-spectrum light source (101) is connected to the input end of the second analyzer (112B) and the third coupler (121A) through the device under test (110) and the device in the test device (11); the correction light source (102) is connected through the first The 2nd coupler (104) is connected to the other input end of the 3rd coupler (121A); the two output ends of the 4th coupler (122A) are connected to the first differential detector (130A) and the second differential detector (130B) respectively. ) connection; carry out data collection through data acquisition card (141), transmit to upper computer (142) output polarization coupling signal; 第2光程相关器(12A)与第1光程相关器(12A)除了共用扫描台(125),其他器件的物理参数对应一致。Except that the second optical path correlator (12A) and the first optical path correlator (12A) share the scanning platform (125), the physical parameters of other devices are correspondingly consistent. 3.根据权利要求1所述的一种光纤陀螺环偏振耦合的对称性评估装置,其特征在于:所述的第1环行器(113A)和第2环行器(113B),是三端口器件,光只沿一个方向传播;信号若从第1端口(71A)输入,则只能从第2端口(71B)输出;而信号从第2端口(71B)输入,则只能第3端口(71C)输出;反之,均不可传输。3. the symmetry evaluation device of a kind of fiber optic gyroscope ring polarization coupling according to claim 1, is characterized in that: described 1st circulator (113A) and the 2nd circulator (113B) are three-port devices, Light only propagates in one direction; if the signal is input from the first port (71A), it can only be output from the second port (71B); if the signal is input from the second port (71B), it can only be output from the third port (71C) output; otherwise, neither can be transmitted. 4.根据权利要求1所述的一种光纤陀螺环偏振耦合的对称性评估装置,其特征在于:4. the symmetry evaluation device of a kind of fiber optic gyroscope ring polarization coupling according to claim 1, is characterized in that: 测试装置(21)中包括待测器件(110)、与待测器件(110)两端相连接的正向耦合器(214A)和反向耦合器(214B)、第1起偏器(111A)和第1检偏器(111B)、第2起偏器(112A)和第2检偏器(112B)、第1隔离器(213A)和第2隔离器(213B);The test device (21) comprises a device under test (110), a forward coupler (214A) and a reverse coupler (214B) connected to both ends of the device under test (110), a first polarizer (111A) And the first polarizer (111B), the second polarizer (112A) and the second polarizer (112B), the first isolator (213A) and the second isolator (213B); 待测器件(110)的两端分别与正向耦合器(214A)和反向耦合器(214B)的一端连接;第1隔离器(213A)和第2隔离器(213B)的输出端口(72B)分别与正向耦合器(214A)和反向耦合器(214B)的另一端连接;第1起偏器(111A)和第2起偏器(112A)具有相同的起偏角度,二者分别与第1隔离器(213A)和第2隔离器(213B)的输入端口(72A)连接;第1检偏器(111B)和第2检偏器(112B)具有相同的检偏角度,二者分别与正向耦合器(214A)和反向耦合器(214B)的另一端连接。The two ends of the device to be tested (110) are respectively connected to one end of the forward coupler (214A) and the reverse coupler (214B); the output port (72B) of the first isolator (213A) and the second isolator (213B) ) are respectively connected to the other end of the forward coupler (214A) and the reverse coupler (214B); the first polarizer (111A) and the second polarizer (112A) have the same polarizing angle, and the two are respectively It is connected to the input port (72A) of the first isolator (213A) and the second isolator (213B); Connect with the other end of the forward coupler (214A) and the reverse coupler (214B) respectively. 5.根据权利要求1所述的一种光纤陀螺环偏振耦合的对称性评估装置,其特征是:所述的第1隔离器(213A)或第2隔离器(213B)从第1端口输入,从第2端口输出,光只能沿一个方向传播,反之不可传输。5. the symmetry evaluation device of a kind of fiber optic gyroscope ring polarization coupling according to claim 1, is characterized in that: described 1st isolator (213A) or the 2nd isolator (213B) are input from the 1st port, Output from port 2, the light can only travel in one direction, otherwise it cannot be transmitted.
CN201610532372.8A 2016-07-07 2016-07-07 A kind of symmetry assessment device of optical fibre gyro ring polarization coupled Active CN106441353B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610532372.8A CN106441353B (en) 2016-07-07 2016-07-07 A kind of symmetry assessment device of optical fibre gyro ring polarization coupled

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610532372.8A CN106441353B (en) 2016-07-07 2016-07-07 A kind of symmetry assessment device of optical fibre gyro ring polarization coupled

Publications (2)

Publication Number Publication Date
CN106441353A true CN106441353A (en) 2017-02-22
CN106441353B CN106441353B (en) 2019-05-21

Family

ID=58183918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610532372.8A Active CN106441353B (en) 2016-07-07 2016-07-07 A kind of symmetry assessment device of optical fibre gyro ring polarization coupled

Country Status (1)

Country Link
CN (1) CN106441353B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152929A (en) * 2017-07-20 2017-09-12 西安邮电大学 It is a kind of to polarize the method that alternately optical fibre gyro removes error
CN109556595A (en) * 2018-10-19 2019-04-02 上海新跃联汇电子科技有限公司 A kind of optical fibre gyro for eliminating fuel factor using polarization separation
CN111912400A (en) * 2020-07-30 2020-11-10 广东工业大学 A polarization-maintaining fiber loop distributed polarization crosstalk bidirectional simultaneous measurement device and method
CN111964663A (en) * 2020-07-30 2020-11-20 广东工业大学 An optical fiber ring distributed polarization crosstalk bidirectional simultaneous measurement device and method
CN112082735A (en) * 2020-09-04 2020-12-15 哈尔滨工程大学 A device and method for bidirectional synchronization measurement of optical fiber sensitive loop based on Sagnac structure
CN115112352A (en) * 2022-08-23 2022-09-27 中国船舶重工集团公司第七0七研究所 Method and system for evaluating temperature performance of hollow-core microstructure optical fiber for gyroscope
CN115824264A (en) * 2023-02-23 2023-03-21 中国船舶集团有限公司第七〇七研究所 Method for evaluating and improving process reliability of hollow-core microstructure fiber-optic gyroscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288388A (en) * 2011-05-09 2011-12-21 哈尔滨工程大学 Device and method for improving polarization-maintaining optical fiber polarization coupling measurement precision and symmetry
CN102889979A (en) * 2012-09-24 2013-01-23 北京航空航天大学 Polarization crosstalk estimation and symmetry estimation method of optical fiber ring
CN103743553A (en) * 2013-12-30 2014-04-23 哈尔滨工程大学 Double-channel optical performance testing device of integrated waveguide modulator and polarization crosstalk identification and processing method thereof
CN103900797A (en) * 2014-03-28 2014-07-02 哈尔滨工程大学 Optical coherence domain polarization measurement device with optical path scanning position and speed correction function
CN104280216A (en) * 2014-10-11 2015-01-14 哈尔滨工程大学 Dual-channel optical performance simultaneous testing device for Y waveguide device and Y waveguide polarization crosstalk recognizing and processing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288388A (en) * 2011-05-09 2011-12-21 哈尔滨工程大学 Device and method for improving polarization-maintaining optical fiber polarization coupling measurement precision and symmetry
CN102889979A (en) * 2012-09-24 2013-01-23 北京航空航天大学 Polarization crosstalk estimation and symmetry estimation method of optical fiber ring
CN103743553A (en) * 2013-12-30 2014-04-23 哈尔滨工程大学 Double-channel optical performance testing device of integrated waveguide modulator and polarization crosstalk identification and processing method thereof
CN103900797A (en) * 2014-03-28 2014-07-02 哈尔滨工程大学 Optical coherence domain polarization measurement device with optical path scanning position and speed correction function
CN104280216A (en) * 2014-10-11 2015-01-14 哈尔滨工程大学 Dual-channel optical performance simultaneous testing device for Y waveguide device and Y waveguide polarization crosstalk recognizing and processing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIH-HSIANG HSU ET AL.: "Low-coherence interferometric fiber sensor with improved resolution using stepper motor assisted optical ruler", 《OPTICAL FIBER TECHNOLOGY》 *
李彦等: "光子晶体光纤环偏振耦合强度温度特性实验研究", 《激光与光电子学进展》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152929A (en) * 2017-07-20 2017-09-12 西安邮电大学 It is a kind of to polarize the method that alternately optical fibre gyro removes error
CN109556595A (en) * 2018-10-19 2019-04-02 上海新跃联汇电子科技有限公司 A kind of optical fibre gyro for eliminating fuel factor using polarization separation
CN109556595B (en) * 2018-10-19 2022-10-25 上海新跃联汇电子科技有限公司 Optical fiber gyroscope for eliminating thermal effect by utilizing polarization separation
CN111912400A (en) * 2020-07-30 2020-11-10 广东工业大学 A polarization-maintaining fiber loop distributed polarization crosstalk bidirectional simultaneous measurement device and method
CN111964663A (en) * 2020-07-30 2020-11-20 广东工业大学 An optical fiber ring distributed polarization crosstalk bidirectional simultaneous measurement device and method
CN111964663B (en) * 2020-07-30 2022-04-19 广东工业大学 Optical fiber ring distributed polarization crosstalk bidirectional simultaneous measurement device and method
CN111912400B (en) * 2020-07-30 2022-09-06 广东工业大学 A polarization-maintaining fiber loop distributed polarization crosstalk bidirectional simultaneous measurement device and method
CN112082735A (en) * 2020-09-04 2020-12-15 哈尔滨工程大学 A device and method for bidirectional synchronization measurement of optical fiber sensitive loop based on Sagnac structure
CN115112352A (en) * 2022-08-23 2022-09-27 中国船舶重工集团公司第七0七研究所 Method and system for evaluating temperature performance of hollow-core microstructure optical fiber for gyroscope
CN115112352B (en) * 2022-08-23 2022-11-01 中国船舶重工集团公司第七0七研究所 Method and system for evaluating temperature performance of hollow-core microstructure optical fiber for gyroscope
CN115824264A (en) * 2023-02-23 2023-03-21 中国船舶集团有限公司第七〇七研究所 Method for evaluating and improving process reliability of hollow-core microstructure fiber-optic gyroscope

Also Published As

Publication number Publication date
CN106441353B (en) 2019-05-21

Similar Documents

Publication Publication Date Title
CN102928199B (en) Device and method for improving polarization crosstalk measurement performance of optical device
CN106441353A (en) Fiber optic gyro ring polarization coupling symmetry assessment device
CN103743553B (en) The dual channel optical performance testing device of a kind of integrated waveguide manipulator and polarization crosstalk identification thereof and processing method
CN102928198B (en) All-fiber testing device for testing polarization crosstalk of optical device
CN102279095B (en) Device for reducing influence of birefringent chromatic dispersion on polarization coupling measurement of polarization maintaining optical fiber
CN102288388B (en) Device and method for improving polarization-maintaining optical fiber polarization coupling measurement precision and symmetry
CN104792503B (en) A kind of device of optical polarization device distribution crosstalk measurement sensitivity enhancing
CN103900797B (en) With the optical coherence territory polarimeter of light path scanning position and velocity correction
CN103900798B (en) A kind of optical coherence domain polarization measurement device scanning on-line correction with light path
CN107894245A (en) A kind of polarization maintaining optical fibre interferometer strained with temperature simultaneously measuring
CN106546411B (en) Polarization maintaining optical fibre Verdet constant measuring apparatus and method based on Mach-Zehnder and Michelson interferometers
CN105841928B (en) A kind of High Extinction Ratio measurement method of optical fiber polarizer
CN103743551B (en) Method for measuring optical performance of multi-functional lithium niobate integrator
CN106768877B (en) A kind of Larger Dynamic range scaling method for optical coherence domain polarimeter
CN111912400B (en) A polarization-maintaining fiber loop distributed polarization crosstalk bidirectional simultaneous measurement device and method
CN104280216B (en) Dual-channel optical performance simultaneous testing device for Y waveguide device and Y waveguide polarization crosstalk recognizing and processing method thereof
CN104280217B (en) A kind of Y waveguide dual channel optical device for measuring properties
CN112082735B (en) Optical fiber sensing ring bidirectional synchronous measurement device and method based on Sagnac structure
CN107289922B (en) Forward and reverse simultaneous measurement device of common-light-path fiber-optic gyroscope ring
CN111426856A (en) A Single-Light Source Michelson-Sagnac Composite Dual-Polarization Fiber Interferometer
CN104280215B (en) Dual-channel optical performance bi-directional multi-alignment-angle automatic testing device for Y waveguide
CN105953817B (en) A kind of assemble method of optical fibre gyro core sensitivity light path
CN112082651B (en) Polarization characteristic measurement method for assembling full polarization-maintaining Sagnac closed light path
CN105823624B (en) A kind of caliberating device and its dynamic range scaling method for optical coherence polarimetry
CN204202850U (en) A kind of two-way multipair shaft angle degree automatic testing equipment of dual channel optical performance of Y waveguide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20241118

Address after: No.729 Dongfeng Road, Guangzhou, Guangdong 510006

Patentee after: GUANGDONG University OF TECHNOLOGY

Country or region after: China

Address before: 150001 Intellectual Property Office, Harbin Engineering University science and technology office, 145 Nantong Avenue, Nangang District, Harbin, Heilongjiang

Patentee before: HARBIN ENGINEERING University

Country or region before: China

TR01 Transfer of patent right