CN106391021A - 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用 - Google Patents
一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用 Download PDFInfo
- Publication number
- CN106391021A CN106391021A CN201610691014.1A CN201610691014A CN106391021A CN 106391021 A CN106391021 A CN 106391021A CN 201610691014 A CN201610691014 A CN 201610691014A CN 106391021 A CN106391021 A CN 106391021A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- carrier
- metal
- preparation
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 91
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 238000002407 reforming Methods 0.000 title claims abstract description 22
- 239000006185 dispersion Substances 0.000 title claims abstract description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 8
- 239000001569 carbon dioxide Substances 0.000 title claims description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- KDRIEERWEFJUSB-UHFFFAOYSA-N carbon dioxide;methane Chemical compound C.O=C=O KDRIEERWEFJUSB-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000009467 reduction Effects 0.000 claims abstract description 17
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- 230000001603 reducing effect Effects 0.000 claims abstract description 6
- 230000006698 induction Effects 0.000 claims abstract description 4
- 230000008707 rearrangement Effects 0.000 claims abstract description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 4
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 4
- 150000003624 transition metals Chemical class 0.000 claims abstract description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 3
- 230000000694 effects Effects 0.000 claims description 18
- 238000011068 loading method Methods 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- 229910052882 wollastonite Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 27
- 229910010413 TiO 2 Inorganic materials 0.000 abstract description 20
- 229910004762 CaSiO Inorganic materials 0.000 abstract description 19
- 230000007704 transition Effects 0.000 abstract description 9
- 239000002245 particle Substances 0.000 abstract description 7
- 238000005470 impregnation Methods 0.000 abstract description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 3
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 150000002739 metals Chemical class 0.000 abstract description 3
- 230000008859 change Effects 0.000 abstract description 2
- 230000003993 interaction Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000003345 natural gas Substances 0.000 abstract description 2
- -1 oxo acid salts Chemical class 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000004939 coking Methods 0.000 abstract 1
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 49
- 239000012018 catalyst precursor Substances 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 9
- 229910021641 deionized water Inorganic materials 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000002923 metal particle Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000003917 TEM image Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000009849 deactivation Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 238000006057 reforming reaction Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/394—Metal dispersion value, e.g. percentage or fraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
本发明涉及一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法,属于天然气化工技术领域和催化剂制造工程技术领域。其特征在于,通过控制活性组分还原温度在载体相变温度范围内,在还原活性金属的同时,利用载体的相变诱导和结构重排作用,促使载体与活性金属发生强烈作用,诱导制备高分散金属负载型催化剂。所述的负载型催化剂采用浸渍法,载体为TiO2、ZrO2、Al2O3、CaSiO3等无机氧化物和含氧酸盐,所用活性金属为Ni、Co、Ru等过渡金属,金属的负载量在1%—30%。本发明所述的催化剂制备方法简单,合成条件易控制;制得的催化剂金属分散性好、粒径小,具有催化活性高、抗积炭性能和稳定性好的特点。
Description
技术领域
本发明涉及属于天然气化工技术领域和催化剂制造工程技术领域,特别是涉及一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用。
背景技术
CH4-CO2重整(Dry Reforming of Methane,DRM)是甲烷、二氧化碳转化利用的一条有效途径。但是,甲烷二氧化碳重整反应至今没有工业化,主要问题是催化剂的失活问题。催化剂的失活有很多种原因,其中最主要的原因是积炭和烧结。目前,甲烷二氧化碳重整催化剂研究主要集中在贵金属和Ⅷ族过渡金属。虽然贵金属Rh、Ru、Ir、Pt等作为活性组分具有良好的催化性能和相对不易积炭的优点,但由于价格昂贵,不适宜工业化应用。非贵金属(如Ni)成本低廉,也具有相对较高的催化活性,是目前认为最有前途的甲烷二氧化碳重整工业化催化剂。但由于其易于表面积炭和高温烧结,所面临的失活问题相较贵金属更为突出。
积炭反应是对催化剂表面活性金属颗粒大小敏感的反应。积炭易发生在较大的金属粒子表面,减小活性金属粒子的尺寸会有效地抑制积炭从而提高催化剂反应性能。催化剂另一个失活的原因是烧结,颗粒的烧结迁移直接后果是活性组分团聚成更大的粒子,加剧积炭的产生,催化剂表面可供反应的活性位点减少,最终活性金属从载体上脱离出来,进一步烧结、积炭、失活。因此,将金属的颗粒大小控制在相对小的范围内,同时提高其在催化剂表面的分散性和抗迁移性,是提升甲烷二氧化碳重整催化剂性能的关键问题。
近年来,为了减小催化剂金属颗粒尺寸以及提高其分散性和抗迁移性,研究人员做了许多卓有成效的工作。中国发明专利(公开号CN102744072A)采用共沉淀法,文献(Journal of Catalysis, 2015, 330:106-119)采用一锅法,均合成了含镍的复合氧化物催化剂,利用Ni与载体一步形成稳定结构,使镍很好地分散到载体体相,但是该类方法所得催化剂活性组分不能全部分散在载体表面且还原困难,此外制备过程也较复杂。中国发明专利(公开号CN102698789A和CN105381818A)公开了采用一步或多步浸渍法制备的Ni/SBA-15催化剂,文献(Applied Catalysis B: Environmental, 2012, 125(3): 324–330)也报道了利用介孔材料的界面限域或孔道限域作用可以使Ni颗粒的运动受到空间限制,达到稳定纳米粒子、提高分散度的目的,该方法催化剂载体负载过程虽然简单,但是载体制备过程繁琐,且载体在高温反应中易坍塌。文献(Journal of Catalysis, 2009, 266(2):380-390)利用原子层沉积技术直接均匀镀膜达到原子级的高度分散,但是设备要求高,过程能耗大,比较复杂,且反应后活性组分还是出现了明显的团聚和迁移。中国发明专利(公开号CN102974353A)公开了一种采用胶体磨制备NiO/Al2O3催化剂的方法,将镍与氧化铝悬浮液在胶体磨中循环研磨数小时,取出悬浮液,烘干、焙烧,虽然催化剂成本低、经济性好,但是胶体磨过程耗时较长,制备工序增多。中国发明专利(公开号CN1234366)公开了一种采用溶胶-凝胶-超临界流体干燥法制备Ni/ZrO2催化剂的方法,所得催化剂具有较好的甲烷二氧化碳重整活性,但是该方法技术难度大,增加了催化剂制备成本和难度;中国发明专利(公开号CN1268394)公开了一种较上述专利大大简化的催化剂制备方法,虽然载体制备过程较溶胶-凝胶-超临界流体干燥法简化,但是同样用到了回流蒸煮等工艺,方法还是较为复杂。
综上所述,直至目前,想要达到将金属的颗粒大小控制在相对小的范围内,同时提高其在催化剂表面高分散的目的,催化剂制备方法较复杂,均有耗时长、工艺繁琐的弊端。
发明内容
本发明提供了一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法,克服了上述现有技术之不足,既能达到控制金属颗粒大小、提高其在催化剂表面的分散性和抗迁移性的目的,又能大大简化催化剂制备过程。
为解决上述技术问题,本发明采用的一个技术方案是:通过控制活性组分还原温度在载体相变温度范围内,在还原活性金属的同时,利用载体的相变诱导和结构重排作用,促使载体与活性金属发生强烈作用,诱导制备高分散金属负载型催化剂,并把该催化剂用于甲烷二氧化碳重整反应。催化剂所用载体为TiO2、ZrO2、Al2O3、CaSiO3等无机氧化物和含氧酸盐,所用活性金属为Ni、Co、Ru等过渡金属。催化剂的制备条件为:金属的负载量在1%—30%;载体相变温度100oC—1500oC;还原气为氢气,浓度为1%—100%,还原温度100oC—1500oC。使用本发明工艺方法制备的催化剂明显提高了金属的分散程度,降低了金属粒径,在甲烷二氧化碳重整反应中具有高的活性和优良的稳定性。
本发明所涉及的催化剂的制备方法和甲烷二氧化碳重整反应操作步骤如下:
1. 负载型催化剂按如下步骤制备(见附图1):
(1)催化剂前驱体制备:称取一定量的金属前驱体溶于去离子水中,金属的负载量在1%~30%,加入一定量的未经过高温处理、未发生相变的载体,置于烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中焙烧,制得所需负载型的催化剂前驱体。
(2)控制活性组分还原温度在载体相变温度范围内,在一定浓度的H2中还原活性金属的同时,载体发生相转变,利用载体的相变诱导和结构重排作用,促使载体与活性金属发生强烈作用,诱导制备高分散金属催化剂。
(3)作为对比,称取一定量的金属前驱体溶于去离子水中,金属的负载量在1%~30%,加入一定量已经发生过相转变的载体,置于烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气中焙烧,制得所需负载型催化剂前驱体,并将本前驱体在一定浓度氢气中还原,还原温度和上述步骤(2)中相同,得到对比催化剂。
2. 甲烷二氧化碳重整反应的操作:
催化剂活性评价采用固定床催化剂评价装置,外部采用不锈钢套管,内部用石英管反应器,原料气为CH4和CO2的混合气。催化剂在所需温度下反应,进行0.5h后开始对反应尾气进行取样,采用在线气相色谱仪进行分析。
附图说明
附图说明
图1 本发明催化剂的制备工艺流程图
图2 Ni/TiO2催化剂的TEM图( A:Ni/TiO2-500; B:Ni/TiO2-800; C:Ni/TiO2-500; D:Ni/TiO2 -800)
图3 Ni/ZrO2催化剂的TEM图( A:Ni/ ZrO2-400; B:Ni/ ZrO2-800; C:Ni/ ZrO2-400;D:Ni/ZrO2 -800)
图4 Ni/CaSiO3催化剂的TEM图( A:Ni/ CaSiO3-650; B:Ni/ CaSiO3-800; C:Ni/CaSiO3-650; D:Ni/ CaSiO3-800)
图5 Ni/TiO2催化剂的甲烷二氧化碳重整活性测试结果
图6 Ni/ZrO2催化剂的甲烷二氧化碳重整活性测试结果
图7 Ni/ CaSiO3催化剂的甲烷二氧化碳重整活性测试结果
图8 Ni/TiO2催化剂的甲烷二氧化碳重整稳定性测试结果。
具体实施方式
实施例1:
(1)载体TiO2(锐钛矿)的制备:将钛酸丁酯与无水乙醇混合(钛的摩尔浓度CTi=0.64mol/L),超声30min后,缓慢加入去离子水,使得Ti4+稀释100倍,同时剧烈搅拌并超声30min,之后静置3h,离心清洗多次,置于100 oC烘箱中干燥;将所得固体置于马弗炉中,在流动的空气中500 oC焙烧3h,制得载体TiO2(锐钛矿),标记为TiO2-500;
(2)采用等体积浸渍法制备负载型催化剂,称取一定量的硝酸镍溶于去离子水中,加入一定量的TiO2-500,镍的负载量控制10%,于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中400oC焙烧,制得所需负载型催化剂前驱体NiO/TiO2-500。
(3)氢气浓度10%条件下,在800oC进行还原处理,该温度下载体TiO2-500(锐钛矿)发生相变转化为金红石相,同时NiO还原为活性金属,制备得到催化剂Ni/TiO2-500。
(4)作为对比,称取一定量的硝酸镍溶于去离子水中,镍的负载量在10%,加入一定量的金红石TiO2载体(TiO2-800),置于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气中400oC焙烧,制得所需负载型催化剂前驱体NiO/TiO2-800。氢气浓度10%条件下,在800oC进行还原处理,还原制备得到参比催化剂Ni/TiO2-800。
(5)催化剂的分析表征:
催化剂的TEM图(图2)可以证明:当经过了高温同步相变-还原处理过程后,催化剂金属颗粒变小,分散度增大。
(6)催化剂活性评价:
通过甲烷二氧化碳重整活性数据(图5)可知,用本方法制得的催化剂其甲烷二氧化碳重整活性要优于传统负载型催化剂。
(7)催化剂稳定性测试:
通过甲烷二氧化碳重整稳定性数据(图8)可知,用本方法制得的催化剂其甲烷二氧化碳重整稳定性也要优于传统负载型催化剂。
实施例2:
(1)载体ZrO2(单斜相)的制备:ZrOCl2·8H2O置于马弗炉中,在流动的空气的中400 oC焙烧3h,制得ZrO2(单斜相)载体,标记为ZrO2-400;
(2)采用等体积浸渍法制备负载型催化剂,称取一定量的硝酸镍溶于去离子水中,加入一定量的ZrO2(单斜相)载体,镍的负载量控制10%,于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中400oC焙烧,制得所需负载型催化剂前驱体NiO/ZrO2-400。
(3)氢气浓度10%条件下,在800oC进行还原处理,该温度下载体ZrO2-400(单斜相)发生相变转化为四方相,同时NiO还原为活性金属,制备得到催化剂Ni/ZrO2-400。
(4)作为对比,称取一定量的硝酸镍溶于去离子水中,镍的负载量在10%,加入一定量的四方相ZrO2载体(ZrO2-800),置于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中400oC焙烧,制得催化剂前驱体NiO/ZrO2-800。氢气浓度10%条件下,在800oC进行还原处理,还原制备得到参比催化剂Ni/ZrO2-800。
(5)催化剂的分析表征:
催化剂的TEM图(图3)可以证明:当经过了高温同步相变-还原处理过程后,催化剂金属颗粒变小,分散度增大。
(6)催化剂活性评价:
通过甲烷二氧化碳重整活性数据(图6)可得,用本方法制得的催化剂其甲烷二氧化碳重整活性要优于传统负载型催化剂。
实施例3:
(1)载体CaSiO3(三斜相)的制备:使用微米级二氧化硅与分析纯的CaO来制备CaSiO3。CaO与SiO2的摩尔比为0.83,水固比为10:1,将二者混合,超声搅拌30min,将混合均匀的悬浮液在180oC的饱和蒸汽压下水热合成24h;将所得沉淀离心清洗多次;之后,将得到的产物置于100oC烘箱中干燥;将所得固体置于马弗炉中,在流动的空气的中650oC焙烧3h,制得CaSiO3(三斜相)载体,标记为CaSiO3-650;
(2)采用等体积浸渍法制备负载型催化剂,称取一定量的硝酸镍溶于去离子水中,加入一定量的CaSiO3-650载体(三斜相),镍的负载量控制10%,于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中400oC焙烧,制得所需负载型催化剂前驱体NiO/CaSiO3-650。
(3)氢气浓度10%条件下,在800oC进行还原处理,该温度下载体CaSiO3-650(三斜相)发生相变转化为单斜相,同时NiO还原为活性金属,制备得到催化剂Ni/CaSiO3-650。
(4)作为对比,称取一定量的硝酸镍溶于去离子水中,镍的负载量在10%,加入一定量的单斜相CaSiO3载体,置于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气中400oC焙烧,制得催化剂前驱体NiO/CaSiO3-800。氢气浓度10%条件下,还原温度为800oC,还原制备得到参比催化剂Ni/CaSiO3-800。
(5)催化剂的分析表征:
催化剂的TEM图(图4)可以证明:当经过了高温同步相变-还原处理过程后,催化剂金属颗粒变小,分散度增大。
(6)催化剂活性评价:
通过甲烷二氧化碳重整活性(图7)数据可得,用本方法制得的催化剂其甲烷二氧化碳重整活性明显优于传统负载型催化剂。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (3)
1.一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法;其特征在于,通过控制活性组分还原温度在载体相变温度范围内,在还原活性金属的同时,利用载体的相变诱导和结构重排作用,促使载体与活性金属发生强烈作用,诱导制备高分散金属催化剂,并把该催化剂用于甲烷二氧化碳重整反应。
2.根据权利要求1,催化剂所用载体为TiO2、ZrO2、Al2O3、CaSiO3等无机氧化物和含氧酸盐,所用活性金属为Ni、Co、Ru等过渡金属。
3.根据权利要求1,催化剂的制备条件为:金属的负载量在1%—30%,载体相变温度100oC—1500oC,还原气为氢气,浓度为1%—100%,还原温度100oC—1500oC。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610691014.1A CN106391021A (zh) | 2016-08-19 | 2016-08-19 | 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610691014.1A CN106391021A (zh) | 2016-08-19 | 2016-08-19 | 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106391021A true CN106391021A (zh) | 2017-02-15 |
Family
ID=58004412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610691014.1A Pending CN106391021A (zh) | 2016-08-19 | 2016-08-19 | 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106391021A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108380197A (zh) * | 2017-11-23 | 2018-08-10 | 天津工业大学 | 一种基于微波活化的甲烷co2重整制合成气核壳催化剂及其制备方法 |
CN108579749A (zh) * | 2018-04-08 | 2018-09-28 | 浙江工业大学 | 一种高缺陷单斜相纳米氧化锆负载镍金属催化剂及其制备和使用方法 |
CN110773193A (zh) * | 2019-09-25 | 2020-02-11 | 万华化学集团股份有限公司 | 一种负载型气敏催化剂和制备方法及其在薄荷酮合成中的应用 |
CN111995882A (zh) * | 2020-08-04 | 2020-11-27 | 内蒙古工业大学 | 一种多孔硅酸钙负载稀土离子的填料粉体及制备方法 |
CN112403470A (zh) * | 2020-11-25 | 2021-02-26 | 榆林学院 | 一种用于甲烷二氧化碳重整制合成气的催化剂及其应用 |
CN116159559A (zh) * | 2022-12-16 | 2023-05-26 | 中国科学院福建物质结构研究所 | 钌掺杂的二氧化钛纳米管催化剂的制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1234366A (zh) * | 1999-05-14 | 1999-11-10 | 清华大学 | 用于二氧化碳重整甲烷制合成气的镍基催化剂及制备方法 |
CN102335609A (zh) * | 2011-07-15 | 2012-02-01 | 华东师范大学 | 一种镍基催化剂及其制备方法和用途 |
CN104646000A (zh) * | 2015-02-12 | 2015-05-27 | 天津大学 | 四方晶型的二氧化锆负载的CuCo合金催化剂及制备和应用 |
CN105688916A (zh) * | 2016-02-23 | 2016-06-22 | 中国科学院上海高等研究院 | 一种高分散高负载高活性低温甲烷重整镍基催化剂及其应用 |
CN105709754A (zh) * | 2016-01-22 | 2016-06-29 | 张川川 | 一种用于co2和ch4重整合成气的催化剂及其制备方法 |
-
2016
- 2016-08-19 CN CN201610691014.1A patent/CN106391021A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1234366A (zh) * | 1999-05-14 | 1999-11-10 | 清华大学 | 用于二氧化碳重整甲烷制合成气的镍基催化剂及制备方法 |
CN102335609A (zh) * | 2011-07-15 | 2012-02-01 | 华东师范大学 | 一种镍基催化剂及其制备方法和用途 |
CN104646000A (zh) * | 2015-02-12 | 2015-05-27 | 天津大学 | 四方晶型的二氧化锆负载的CuCo合金催化剂及制备和应用 |
CN105709754A (zh) * | 2016-01-22 | 2016-06-29 | 张川川 | 一种用于co2和ch4重整合成气的催化剂及其制备方法 |
CN105688916A (zh) * | 2016-02-23 | 2016-06-22 | 中国科学院上海高等研究院 | 一种高分散高负载高活性低温甲烷重整镍基催化剂及其应用 |
Non-Patent Citations (6)
Title |
---|
KAZUHIRO TAKANABE等: ""Influence of reduction temperature on the catalytic behavior of Co-TiO2 catalysts for CH4_CO2 reforming and its relation with titania bulk crystal structure"", 《JOURNAL OF CATALYSIS》 * |
L.VASYLECHKO等: "《Jahresbericht Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY:2002》", 31 December 2002, HAMBRUG * |
MICHAEL D. RHODES等: ""The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu-ZrO2 catalysts Part I. Steady-state studies"", 《JOURNAL OF CATALYSIS》 * |
YOSHIHISA SAKATA等: ""Preparation of a New Type of CaSiO3 with High Surface Area and Property as a Catalyst Support"", 《SCIENTIFIC BASES FOR THE PREPARATION OF HETEROGENEOUS CATALYSTS》 * |
刘宗昌等: "《材料组织结构转变原理》", 31 December 2006, 冶金工业出版社 * |
沈浚等: "《合成氨》", 31 December 2001, 化学工业出版社 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108380197A (zh) * | 2017-11-23 | 2018-08-10 | 天津工业大学 | 一种基于微波活化的甲烷co2重整制合成气核壳催化剂及其制备方法 |
CN108380197B (zh) * | 2017-11-23 | 2021-03-19 | 天津工业大学 | 一种基于微波活化的甲烷co2重整制合成气核壳催化剂及其制备方法 |
CN108579749A (zh) * | 2018-04-08 | 2018-09-28 | 浙江工业大学 | 一种高缺陷单斜相纳米氧化锆负载镍金属催化剂及其制备和使用方法 |
CN110773193A (zh) * | 2019-09-25 | 2020-02-11 | 万华化学集团股份有限公司 | 一种负载型气敏催化剂和制备方法及其在薄荷酮合成中的应用 |
CN110773193B (zh) * | 2019-09-25 | 2022-08-02 | 万华化学集团股份有限公司 | 一种负载型气敏催化剂和制备方法及其在薄荷酮合成中的应用 |
CN111995882A (zh) * | 2020-08-04 | 2020-11-27 | 内蒙古工业大学 | 一种多孔硅酸钙负载稀土离子的填料粉体及制备方法 |
CN112403470A (zh) * | 2020-11-25 | 2021-02-26 | 榆林学院 | 一种用于甲烷二氧化碳重整制合成气的催化剂及其应用 |
CN116159559A (zh) * | 2022-12-16 | 2023-05-26 | 中国科学院福建物质结构研究所 | 钌掺杂的二氧化钛纳米管催化剂的制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106391021A (zh) | 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用 | |
Tahay et al. | Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation | |
Ohtani et al. | Photocatalytic activity of amorphous− anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions | |
Kho et al. | Ni/TiO2 for low temperature steam reforming of methane | |
Wang et al. | Cr doped mesoporous silica spheres for propane dehydrogenation in the presence of CO2: Effect of Cr adding time in sol-gel process | |
Hong et al. | Tuning the metal–support interaction and enhancing the stability of titania-supported cobalt Fischer–Tropsch catalysts via carbon nitride coating | |
Wei et al. | Effect of Pt loading and calcination temperature on the photocatalytic hydrogen production activity of TiO2 microspheres | |
Yin et al. | A Ce–Fe oxygen carrier with a core–shell structure for chemical looping steam methane reforming | |
CN103007945B (zh) | 负载型铜镍合金纳米颗粒催化剂及其制法和在甲烷二氧化碳重整制合成气中的应用 | |
Razzaq et al. | Co-methanation of Carbon Oxides over Nickel-Based Ce x Zr1–x O2 Catalysts | |
Huang et al. | Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation | |
Shen et al. | Integrated photothermal nanoreactors for efficient hydrogenation of CO2 | |
CN111514893A (zh) | 一种具有亚纳米复合结构的催化剂及其制备方法 | |
Mi et al. | Controlling allotropism in ruthenium nanoparticles: a pulsed-flow supercritical synthesis and in situ synchrotron X-ray diffraction study | |
Rezaei et al. | Effects of K 2O promoter on the activity and stability of nickel catalysts supported on mesoporous nanocrystalline zirconia in CH 4 reforming with CO 2 | |
Zhou et al. | Defect-rich TiO2 in situ evolved from MXene for the enhanced oxidative dehydrogenation of ethane to ethylene | |
CN113000059A (zh) | 一种用于甲烷二氧化碳干重整的镍基催化剂及其制备方法和应用 | |
Liu et al. | Effect of TiO2 surface engineering on the performance of cobalt-based catalysts for Fischer–Tropsch synthesis | |
CN111111676B (zh) | 一种包裹型镍基催化剂及其制备方法 | |
Song et al. | Effects of hydrothermal conditions of ZrO2 on catalyst properties and catalytic performances of Ni/ZrO2 in the partial oxidation of methane | |
Liu et al. | Exploration of Alkali Metal-Induced Effects on Promoting Ammonia Decomposition Performance | |
Brussino et al. | Alumina-supported nickel onto cordierite monoliths for ethane oxidehydrogenation: coating strategies and their effect on the catalytic behavior | |
Li et al. | CuO‐modified LaNi0. 4Al0. 6O3− δ with improvement performance in MSR at low temperature | |
Gonçalves et al. | Catalytic abatement of CO over highly stable Pt supported on Ta2O5 nanotubes | |
Li et al. | One-step preparation of Pd-SiO2 composite microspheres by the sol–gel process in a microchannel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170215 |