CN106383082B - A kind of optical path adjustment device and method of the flow cytometer without fluid path situation - Google Patents
A kind of optical path adjustment device and method of the flow cytometer without fluid path situation Download PDFInfo
- Publication number
- CN106383082B CN106383082B CN201610896195.1A CN201610896195A CN106383082B CN 106383082 B CN106383082 B CN 106383082B CN 201610896195 A CN201610896195 A CN 201610896195A CN 106383082 B CN106383082 B CN 106383082B
- Authority
- CN
- China
- Prior art keywords
- light
- optical path
- forward scattering
- microballoon
- detection circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims description 9
- 239000012530 fluid Substances 0.000 title claims 3
- 238000007493 shaping process Methods 0.000 claims abstract description 66
- 238000001514 detection method Methods 0.000 claims abstract description 57
- 238000006243 chemical reaction Methods 0.000 claims abstract description 38
- 238000005286 illumination Methods 0.000 claims abstract description 14
- 230000005284 excitation Effects 0.000 claims abstract description 10
- 239000000284 extract Substances 0.000 claims abstract description 5
- 238000000605 extraction Methods 0.000 claims description 24
- 230000003750 conditioning effect Effects 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000005693 optoelectronics Effects 0.000 claims 9
- 230000005855 radiation Effects 0.000 claims 3
- 230000006835 compression Effects 0.000 claims 2
- 238000007906 compression Methods 0.000 claims 2
- 238000012544 monitoring process Methods 0.000 claims 2
- 241000208340 Araliaceae Species 0.000 claims 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 claims 1
- 235000003140 Panax quinquefolius Nutrition 0.000 claims 1
- 238000012512 characterization method Methods 0.000 claims 1
- 235000008434 ginseng Nutrition 0.000 claims 1
- 238000007689 inspection Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 239000004005 microsphere Substances 0.000 abstract description 59
- 238000001917 fluorescence detection Methods 0.000 abstract description 17
- 239000007788 liquid Substances 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 24
- 239000003086 colorant Substances 0.000 description 4
- 230000001143 conditioned effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明提供了一种流式细胞仪无液路情况的光路调整装置,所述装置包括:照射光源、照射光斑整形光路、标准微球旋转装置、非前向散射光光束整形光路、非前向散射光检测电路、前向散射光及荧光光束整形光路、前向散射光检测电路、多色荧光分光光路及多通道荧光检测电路,其中,所述照射光源为荧光激发提供激励光源;所述照射光斑整形光路用于将光源光束压缩为一定尺寸的照明光斑;所述标准微球旋转装置用于使装载有标准微球的圆盘发生旋转从而模拟单个细胞逐一经过照射光斑;所述非前向散射光光束整形光路用于对一定范围内的非前向散射光光束进行聚焦;所述非前向散射光检测电路用于对非前向散射光进行光电转换并对产生的电脉冲信号实现参数提取。
The invention provides an optical path adjustment device for flow cytometer without a liquid path, the device includes: an irradiation light source, an irradiation spot shaping optical path, a standard microsphere rotating device, a non-forward scattered light beam shaping optical path, a non-forward Scattered light detection circuit, forward scattered light and fluorescence beam shaping optical path, forward scattered light detection circuit, multicolor fluorescence spectroscopic optical path and multi-channel fluorescence detection circuit, wherein, the irradiation light source provides an excitation light source for fluorescence excitation; the irradiation The spot shaping optical path is used to compress the light source beam into an illumination spot of a certain size; the standard microsphere rotating device is used to rotate the disc loaded with standard microspheres to simulate single cells passing through the irradiation spot one by one; the non-forward The scattered light beam shaping optical path is used to focus the non-forward scattered light beam within a certain range; the non-forward scattered light detection circuit is used for photoelectric conversion of the non-forward scattered light and realizes parameterization of the generated electrical pulse signal extract.
Description
技术领域technical field
本发明涉及流式细胞仪的光路调整及微球测量领域,特别是一种无液路情况的光路调整装置及方法。The invention relates to the field of optical path adjustment and microsphere measurement of a flow cytometer, in particular to an optical path adjustment device and method without a liquid path.
背景技术Background technique
在流式细胞仪光路调整系统中,包括照射光斑的调整和激发光信号的分光收集。由于流式细胞仪中微球的检测区域位于照射光斑和液流方向的交点处,并且液路系统的不稳定会造成微球进入检测区域的相对位置存在差异,从而引起微球在检测区域中的照射激发程度不相同,造成前向散射光、非前向散射光以及各通道荧光信号强度差异性大。后续检测电路得到脉冲参数信息不准确。现有的光学调整系统完全依赖于高精度的液路控制系统,独立性差。液路控制系统异常复杂繁琐,并且控制精度及层流效果的验证方法并无标准指标。In the flow cytometer optical path adjustment system, it includes the adjustment of the illumination spot and the spectroscopic collection of the excitation light signal. Since the detection area of the microspheres in the flow cytometer is located at the intersection of the irradiation spot and the direction of the liquid flow, and the instability of the liquid system will cause differences in the relative positions of the microspheres entering the detection area, resulting in the microspheres in the detection area The excitation degree of the irradiation is not the same, resulting in large differences in the intensity of forward scattered light, non-forward scattered light and fluorescence signal of each channel. The pulse parameter information obtained by the subsequent detection circuit is inaccurate. The existing optical adjustment system completely depends on the high-precision liquid circuit control system, which has poor independence. The hydraulic control system is extremely complex and cumbersome, and there is no standard index for the verification method of control accuracy and laminar flow effect.
因此,需要一种能有效解决上述问题的流式细胞仪在无液路情况的光路调整装置和方法。Therefore, there is a need for an optical path adjustment device and method for a flow cytometer in the absence of a liquid path that can effectively solve the above problems.
发明内容Contents of the invention
根据本发明的一个方面,提供了一种流式细胞仪无液路情况的光路调整装置,其特征在于,所述装置包括:照射光源、照射光斑整形光路、标准微球旋转装置、非前向散射光光束整形光路、非前向散射光检测电路、前向散射光及荧光光束整形光路、前向散射光检测电路、多色荧光分光光路及多通道荧光检测电路,其中,According to one aspect of the present invention, a device for adjusting the optical path of a flow cytometer without a liquid path is provided. Scattered light beam shaping optical path, non-forward scattered light detection circuit, forward scattered light and fluorescence beam shaping optical path, forward scattered light detection circuit, multicolor fluorescence splitting optical path and multi-channel fluorescence detection circuit, wherein,
所述照射光源为荧光激发提供激励光源;The irradiation light source provides an excitation light source for fluorescence excitation;
所述照射光斑整形光路用于将光源光束压缩为一定尺寸的照明光斑;The illumination spot shaping optical path is used to compress the light source beam into an illumination spot of a certain size;
所述标准微球旋转装置用于使装载有标准微球的圆盘发生旋转从而模拟单个细胞逐一经过照射光斑;The standard microsphere rotating device is used to rotate the disc loaded with standard microspheres so as to simulate single cells passing through the irradiation spot one by one;
所述非前向散射光光束整形光路用于对一定范围内的非前向散射光光束进行聚焦;The non-forward scattered light beam shaping optical path is used to focus the non-forward scattered light beam within a certain range;
所述非前向散射光检测电路用于对非前向散射光进行光电转换并对产生的电脉冲信号实现参数提取;The non-forward scattered light detection circuit is used to photoelectrically convert the non-forward scattered light and realize parameter extraction for the generated electric pulse signal;
所述前向散射光及荧光光束整形光路用于对一定范围内的前向散射光及荧光光束进行聚焦;The forward scattered light and fluorescent beam shaping optical path is used to focus the forward scattered light and fluorescent beam within a certain range;
所述前向散射光检测电路用于对前向散射光进行光电转换并对产生的电脉冲信号实现参数提取;The forward scattered light detection circuit is used to photoelectrically convert the forward scattered light and extract parameters from the generated electric pulse signal;
所述多色荧光分光光路用于将各波长范围的荧光信号进行分离并传输到相应的检测电路,该多通道荧光检测电路用于对各通道荧光信号进行光电转换并对产生的电脉冲信号实现参数提取。The multi-color fluorescence spectroscopic optical path is used to separate the fluorescence signals in various wavelength ranges and transmit them to corresponding detection circuits. The multi-channel fluorescence detection circuit is used to perform photoelectric conversion on the fluorescence signals of each channel and realize Parameter extraction.
优选地,采用一定功率及波长的激光器作为照射光源,并通过照射光斑整形光路对激光器发射光束进行压缩整形,该照射光斑整形光路根据标准微球旋转装置中微球运动方向实现两个正交方向的光斑尺寸压缩,同时通过调整光斑整形光路使运动微球在光斑焦点处进行照射。Preferably, a laser with a certain power and wavelength is used as the irradiation light source, and the laser emission beam is compressed and shaped through the irradiation spot shaping optical path. The irradiation spot shaping optical path realizes two orthogonal directions according to the movement direction of the microsphere in the standard microsphere rotating device. The spot size is compressed, and the moving microspheres are irradiated at the focal point of the spot by adjusting the light path of the spot shaping.
优选地,该标准微球旋转装置包括一个装载有标准微球的转盘、一个转盘驱动装置及一个电机运动控制电路,该装载有标准微球的转盘通过转盘驱动装置与电机运动控制电路相连,通过调整电机转速实现对转盘转速的控制,从而改变微球被光斑照射时间及相邻微球被照射的时间间隔。Preferably, the standard microsphere rotating device comprises a turntable loaded with standard microspheres, a turntable drive device and a motor motion control circuit, and the turntable loaded with standard microspheres is connected with the motor motion control circuit through the turntable drive device, through Adjusting the rotation speed of the motor realizes the control of the rotation speed of the turntable, thereby changing the irradiation time of the microspheres by the light spot and the time interval of the irradiation of adjacent microspheres.
优选地,装载有标准微球的转盘由底层及顶层两部分组成,其中一层中有用于放置标准微球的凹坑,通过顶层与底层的粘合将标准微球密封在凹坑中防止微球在旋转过程中脱落。该装载有标准微球的转盘旋转过程中标准微球逐一通过照射光斑区域形成侧向散射光、前向散射光及各色荧光信号。Preferably, the turntable loaded with standard microspheres consists of a bottom layer and a top layer, wherein there are pits for placing standard microspheres in one layer, and the standard microspheres are sealed in the pits by bonding the top layer and the bottom layer to prevent microspheres. The ball falls off during the spin. During the rotation of the turntable loaded with standard microspheres, the standard microspheres pass through the irradiated spot area one by one to form side scattered light, forward scattered light and fluorescent signals of various colors.
优选地,该非前向散射光光束整形光路放置于非前向散射角检测区域,对一定角度范围内的非前向散射光进行聚焦整形,并将整形后的光束传输到非前向散射光检测电路。该非前向散射光检测电路实现非前向散射光信号的光电转换及电脉冲信号的调理处理,并实现对表征微球特性的电脉冲参数进行提取。Preferably, the non-forward scattered light beam shaping optical path is placed in the non-forward scattered light angle detection area, focusing and shaping the non-forward scattered light within a certain angle range, and transmitting the shaped beam to the non-forward scattered light detection circuit. The non-forward scattered light detection circuit realizes the photoelectric conversion of the non-forward scattered light signal and the conditioning processing of the electric pulse signal, and realizes the extraction of the electric pulse parameters characterizing the characteristics of the microsphere.
优选地,该前向散射光及荧光光束整形光路放置于照射光束方向,对一定角度范围内的前向散射光及多通道荧光光束进行聚焦整形,并将整形后的光束传输到前向散射光检测电路及多色荧光分光光路。该前向散射光检测电路实现对前向散射光信号的光电转换及电脉冲信号的调理处理,并实现对表征微球特性的电脉冲参数进行提取。Preferably, the forward scattered light and fluorescent beam shaping optical path is placed in the direction of the irradiation beam, focusing and shaping the forward scattered light and multi-channel fluorescent beam within a certain angle range, and transmitting the shaped beam to the forward scattered light A detection circuit and a multi-color fluorescence spectroscopic light path. The forward scattered light detection circuit realizes the photoelectric conversion of the forward scattered light signal and the conditioning processing of the electric pulse signal, and realizes the extraction of the electric pulse parameters characterizing the characteristics of the microsphere.
优选地,该多色荧光分光光路通过一系列光学装置对多通道荧光信号进行分离,并将分离后的各色荧光光束传输到相应的多通道荧光检测电路。该多通道荧光检测电路实现对荧光信号的光电转换及电脉冲信号的调理处理,并实现对表征微球特性的电脉冲参数进行提取。Preferably, the multi-color fluorescence light splitting path separates multi-channel fluorescence signals through a series of optical devices, and transmits the separated fluorescent light beams of various colors to corresponding multi-channel fluorescence detection circuits. The multi-channel fluorescence detection circuit realizes the photoelectric conversion of the fluorescence signal and the conditioning processing of the electric pulse signal, and realizes the extraction of the electric pulse parameters characterizing the characteristics of the microsphere.
根据本发明的另一方面,提供了一种流式细胞仪无液路情况的光路调整方法,包括步骤:According to another aspect of the present invention, a method for adjusting the optical path of a flow cytometer without a liquid path is provided, comprising steps:
照射光斑整形光路对照射光源产生的光束进行压缩等处理,得到一定尺寸的照射光斑,并调整光斑焦距使微球从焦点处经过;The irradiation spot shaping optical path compresses the light beam generated by the irradiation light source to obtain an irradiation spot of a certain size, and adjusts the focal length of the spot to make the microsphere pass through the focal point;
标准微球旋转装置调整微球的运动速度,改变微球检测频率及微球照射时间,从而改变相应光脉冲及电脉冲频率及持续时间;The standard microsphere rotating device adjusts the movement speed of the microsphere, changes the detection frequency of the microsphere and the irradiation time of the microsphere, thereby changing the frequency and duration of the corresponding light pulse and electric pulse;
非前向散射光光束整形光路对非前向散射光进行整形等处理,调整光路焦距使非前向散射光检测电路中的探测器处于焦点位置;The non-forward scattered light beam shaping optical path performs shaping and other processing on the non-forward scattered light, and adjusts the focal length of the optical path so that the detector in the non-forward scattered light detection circuit is at the focal point;
非前向散射光检测电路实现对非前向散射光的光电转换、电脉冲调理、模/数转换及参数提取等处理,识别电脉冲的起始点和结束点;The non-forward scattered light detection circuit realizes the photoelectric conversion, electric pulse conditioning, analog/digital conversion and parameter extraction of non-forward scattered light, and identifies the starting point and ending point of the electric pulse;
前向散射光及荧光光束整形光路对前向散射光及荧光光束进行整形等处理,并将聚焦后的光束传输到多色荧光分光光路;The forward scattered light and fluorescent beam shaping optical path performs shaping and other processing on the forward scattered light and fluorescent beam, and transmits the focused beam to the multicolor fluorescent beam splitting optical path;
多色荧光分光光路根据波长信息将前向散射光及各通道荧光光束进行分光处理,并将分光后的光束传输到前向散射光检测电路及相应的多通道荧光检测电路;The multi-color fluorescence spectroscopic optical path splits the forward scattered light and the fluorescent beams of each channel according to the wavelength information, and transmits the split beams to the forward scattered light detection circuit and the corresponding multi-channel fluorescence detection circuit;
前向散射光检测电路实现对前向散射光的光电转换、电脉冲调理、模/数转换及参数提取等处理,识别电脉冲的起始点和结束点;The forward scattered light detection circuit realizes the photoelectric conversion, electric pulse conditioning, analog/digital conversion and parameter extraction of forward scattered light, and identifies the starting point and ending point of the electric pulse;
多通道荧光检测电路实现对各荧光的光电转换、电脉冲调理、模/数转换及参数提取等处理,识别电脉冲的起始点和结束点。The multi-channel fluorescence detection circuit realizes the photoelectric conversion, electric pulse conditioning, analog/digital conversion and parameter extraction of each fluorescence, and identifies the starting point and ending point of the electric pulse.
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。It should be understood that both the foregoing general description and the following detailed description are exemplary illustrations and explanations, and should not be used as limitations on the claimed content of the present invention.
附图说明Description of drawings
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:With reference to the accompanying drawings, more objects, functions and advantages of the present invention will be clarified through the following description of the embodiments of the present invention, wherein:
图1为本发明流式细胞仪无液路情况的光路调整装置的实施方式示意图;1 is a schematic diagram of an embodiment of an optical path adjustment device for a flow cytometer of the present invention without a liquid path;
图2为本发明的流式细胞仪组成连接示意图。Fig. 2 is a schematic diagram of the composition and connection of the flow cytometer of the present invention.
图3a-3c为图2所示照射光源及照射光斑整形光路的一种示例性结构示意图。其中图3a示出了照射光源发出的激光在经过整形透镜后光斑的形状变化。图3b-3c为图3a所示整形后照射光斑光强分布示意图。3a-3c are schematic diagrams of an exemplary structure of the illumination light source and the illumination spot shaping optical path shown in FIG. 2 . Fig. 3a shows the shape change of the light spot after the laser light emitted by the irradiation light source passes through the shaping lens. 3b-3c are schematic diagrams of light intensity distribution of the illuminated spot after shaping shown in FIG. 3a.
图4a-4b示出了标准微球旋转装置及标准微球的一个实施示意图。Figures 4a-4b show a schematic diagram of an implementation of a standard microsphere rotating device and standard microspheres.
图5示出了示意性的非前向散射光光束整形光路的一个具体光路实施例结构图。Fig. 5 shows a structural diagram of a specific embodiment of an optical path of a schematic non-forward scattered light beam shaping optical path.
图6示出了非前向散射光检测电路的具体电路模块图。FIG. 6 shows a specific circuit block diagram of the non-forward scattered light detection circuit.
图7示出了前向散射光检测电路的具体电路模块图。FIG. 7 shows a specific circuit block diagram of the forward scattered light detection circuit.
图8示出了示意性的多色荧光分光光路的具体光路实施例结构图。Fig. 8 shows a structural diagram of a specific optical path embodiment of a schematic multicolor fluorescence beam splitting optical path.
图9示出了另一示意性的多色荧光分光光路的具体光路实施例结构图。FIG. 9 shows a structural diagram of another schematic optical path embodiment of a multicolor fluorescence splitting optical path.
图10示出了多通道荧光检测电路的一个具体电路模块图。Fig. 10 shows a specific circuit block diagram of the multi-channel fluorescence detection circuit.
具体实施方式Detailed ways
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals represent the same or similar components, or the same or similar steps.
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。The objects and functions of the present invention and methods for achieving the objects and functions will be clarified by referring to the exemplary embodiments. However, the present invention is not limited to the exemplary embodiments disclosed below; it can be implemented in various forms. The essence of the description is only to help those skilled in the relevant art comprehensively understand the specific details of the present invention.
针对本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。The present invention is described in detail in conjunction with schematic diagrams. When describing the embodiments of the present invention in detail, for the convenience of explanation, the cross-sectional view showing the structure of the device will not be partially enlarged according to the general scale, and the schematic diagram is only an example, which should not limit this invention. scope of invention protection. In addition, the three-dimensional space dimensions of length, width and depth should be included in actual production.
本发明提供了一种流式细胞仪无液路情况的光路调整装置,图1为本发明流式细胞仪无液路情况的光路调整装置的系统框图示意图,如图1所示,所述装置包括:照射光源101、照射光斑整形光路102、标准微球旋转装置103、非前向散射光光束整形光路104、非前向散射光检测电路105、前向散射光及荧光光束整形光路106、前向散射光检测电路107、多色荧光分光光路108及多通道荧光检测电路109,其中,The present invention provides a device for adjusting the optical path of a flow cytometer without a liquid path. Fig. 1 is a schematic diagram of a system block diagram of the device for adjusting the optical path of the flow cytometer without a liquid path. As shown in Fig. 1, the device Including: irradiation light source 101, irradiation spot shaping optical path 102, standard microsphere rotating device 103, non-forward scattered light beam shaping optical path 104, non-forward scattered light detection circuit 105, forward scattered light and fluorescent light beam shaping optical path 106, front Scattered light detection circuit 107, multicolor fluorescence spectroscopic optical path 108 and multi-channel fluorescence detection circuit 109, wherein,
所述照射光源101为荧光激发提供激励光源;The illumination light source 101 provides an excitation light source for fluorescence excitation;
所述照射光斑整形光路102用于将光源光束压缩为一定尺寸的照明光斑;The illumination spot shaping optical path 102 is used to compress the light source beam into an illumination spot of a certain size;
所述标准微球旋转装置103用于使装载有标准微球的圆盘发生旋转从而模拟单个细胞逐一经过照射光斑;The standard microsphere rotating device 103 is used to rotate the disc loaded with standard microspheres so as to simulate single cells passing through the irradiation spot one by one;
所述非前向散射光光束整形光路104用于对一定范围内的非前向散射光光束进行聚焦;The non-forward scattered light beam shaping optical path 104 is used to focus the non-forward scattered light beam within a certain range;
所述非前向散射光检测电路105用于对非前向散射光进行光电转换并对产生的电脉冲信号实现参数提取;The non-forward scattered light detection circuit 105 is used for performing photoelectric conversion on the non-forward scattered light and realizing parameter extraction for the generated electric pulse signal;
所述前向散射光及荧光光束整形光路106用于对一定范围内的前向散射光及荧光光束进行聚焦;The forward scattered light and fluorescent beam shaping optical path 106 is used to focus the forward scattered light and fluorescent beam within a certain range;
所述前向散射光检测电路107用于对前向散射光进行光电转换并对产生的电脉冲信号实现参数提取;The forward scattered light detection circuit 107 is used to photoelectrically convert the forward scattered light and extract parameters from the generated electric pulse signal;
所述多色荧光分光光路108用于将各波长范围的荧光信号进行分离并传输到相应的检测电路;The multicolor fluorescence spectroscopic optical path 108 is used to separate the fluorescence signals in each wavelength range and transmit them to corresponding detection circuits;
所述多通道荧光检测电路109用于对各通道荧光信号进行光电转换并对产生的电脉冲信号实现参数提取。The multi-channel fluorescence detection circuit 109 is used for photoelectric conversion of the fluorescence signals of each channel and parameter extraction of the generated electrical pulse signals.
图2为本发明流式细胞仪无液路情况的光路调整装置的一个较佳实施方式示意图。其中示意性地示出了照射光源101、标准微球旋转装置103、非前向散射光光束整形光路104和前向散射光及荧光光束整形光路106几个部分。Fig. 2 is a schematic diagram of a preferred embodiment of an optical path adjustment device for a flow cytometer of the present invention without a liquid path. It schematically shows the illumination light source 101 , the standard microsphere rotating device 103 , the non-forward scattered light beam shaping optical path 104 and the forward scattered light and fluorescent light beam shaping optical path 106 .
优选地,采用一定功率及波长的激光器作为照射光源101,并通过照射光斑整形光路102对激光器发射光束进行压缩整形,该照射光斑整形光路102根据标准微球旋转装置103中微球运动方向实现两个正交方向的光斑尺寸压缩,同时通过照射光斑整形光路102使运动微球在光斑焦点处进行照射。图3a-3c为图2所示照射光源及照射光斑整形光路的一种示例性结构示意图。其中图3a示出了照射光源101发出的激光在经过整形透镜后光斑的形状变化。图3b-3c为图3a所示整形后照射光斑光强分布示意图。Preferably, a laser with a certain power and wavelength is used as the irradiation light source 101, and the laser emission beam is compressed and shaped through the irradiation spot shaping optical path 102. The irradiation spot shaping optical path 102 realizes two The size of the spot in two orthogonal directions is compressed, and at the same time, the moving microsphere is irradiated at the focal point of the spot through the irradiation spot shaping optical path 102. 3a-3c are schematic diagrams of an exemplary structure of the illumination light source and the illumination spot shaping optical path shown in FIG. 2 . 3a shows the shape change of the light spot after the laser light emitted by the irradiation light source 101 passes through the shaping lens. 3b-3c are schematic diagrams of light intensity distribution of the illuminated spot after shaping shown in FIG. 3a.
优选地,图4a-4b示出了标准微球旋转装置103及标准微球的一个实施示意图。该标准微球旋转装置103包括一个装载有标准微球的转盘、一个转盘驱动装置及一个电机运动控制电路,该装载有标准微球的转盘通过转盘驱动装置与电机运动控制电路相连,通过调整电机转速实现对转盘转速的控制,从而改变微球被光斑照射时间及相邻微球被照射的时间间隔。Preferably, Figures 4a-4b show a schematic diagram of an implementation of the standard microsphere rotating device 103 and standard microspheres. This standard microsphere rotation device 103 comprises a turntable that is loaded with standard microsphere, a turntable driving device and a motor motion control circuit, this turntable that is loaded with standard microsphere is connected with motor motion control circuit by turntable drive device, by adjusting motor The rotation speed controls the rotation speed of the turntable, thereby changing the time when the microspheres are irradiated by the light spot and the time interval between adjacent microspheres being irradiated.
优选地,装载有标准微球的转盘由底层及顶层两部分组成,其中一层中有用于放置标准微球的凹坑,通过顶层与底层的粘合将标准微球密封在凹坑中防止微球在旋转过程中脱落。该装载有标准微球的转盘旋转过程中标准微球逐一通过照射光斑区域形成侧向散射光、前向散射光及各色荧光信号。Preferably, the turntable loaded with standard microspheres consists of a bottom layer and a top layer, wherein there are pits for placing standard microspheres in one layer, and the standard microspheres are sealed in the pits by bonding the top layer and the bottom layer to prevent microspheres. The ball falls off during the spin. During the rotation of the turntable loaded with standard microspheres, the standard microspheres pass through the irradiated spot area one by one to form side scattered light, forward scattered light and fluorescent signals of various colors.
图5示出了示意性的非前向散射光光束整形光路104的一个具体光路实施例结构图。优选地,该非前向散射光光束整形光路放置于非前向散射角检测区域,对一定角度范围内的非前向散射光进行聚焦整形,如图5所示,通过收集透镜收集非前向散射光,然后经过阻挡滤光片的过滤后,再通过聚焦透镜,将整形后的光束传输到非前向散射光检测电路105。FIG. 5 shows a structural diagram of a specific optical path embodiment of the schematic non-forward scattered light beam shaping optical path 104 . Preferably, the non-forward scattered light beam shaping optical path is placed in the non-forward scattered angle detection area, and the non-forward scattered light within a certain angle range is focused and shaped. As shown in Figure 5, the non-forward scattered light is collected through the collection lens. The scattered light is then filtered by the blocking filter, and then passes through the focusing lens, and the shaped light beam is transmitted to the non-forward scattered light detection circuit 105 .
非前向散射光检测电路105实现非前向散射光信号的光电转换及电脉冲信号的调理处理,并实现对表征微球特性的电脉冲参数进行提取。图6示出了非前向散射光检测电路105的具体电路模块图。如图6所示,非前向散射光检测电路105包括传感器,用于将收集的光信号转换成电信号,对传感器输出的电脉冲信号进行放大、滤波等处理,并将调理后的电脉冲信号传输到后续的模数转换模块以转换成数字信号,再输入到电脉冲参数提取模块用于提取所需的电信号参数。The non-forward scattered light detection circuit 105 realizes the photoelectric conversion of the non-forward scattered light signal and the conditioning processing of the electric pulse signal, and realizes the extraction of electric pulse parameters characterizing the characteristics of the microspheres. FIG. 6 shows a specific circuit block diagram of the non-forward scattered light detection circuit 105 . As shown in Figure 6, the non-forward scattered light detection circuit 105 includes a sensor, which is used to convert the collected light signal into an electrical signal, amplify and filter the electrical pulse signal output by the sensor, and convert the conditioned electrical pulse The signal is transmitted to the subsequent analog-to-digital conversion module to be converted into a digital signal, and then input to the electric pulse parameter extraction module for extracting the required electric signal parameters.
优选地,该前向散射光及荧光光束整形光路106放置于照射光束方向,对一定角度范围内的前向散射光及多通道荧光光束进行聚焦整形,传输到前向散射光检测电路107。该前向散射光检测电路107实现对前向散射光信号的光电转换及电脉冲信号的调理处理,并实现对表征微球特性的电脉冲参数进行提取。Preferably, the forward scattered light and fluorescent beam shaping optical path 106 is placed in the direction of the irradiating light beam, focuses and shapes the forward scattered light and multi-channel fluorescent beam within a certain angle range, and transmits it to the forward scattered light detection circuit 107 . The forward scattered light detection circuit 107 realizes the photoelectric conversion of the forward scattered light signal and the conditioning processing of the electric pulse signal, and realizes the extraction of the electric pulse parameters characterizing the characteristics of the microspheres.
图7示出了前向散射光检测电路107的具体电路模块图。如图7所示,前向散射光检测电路107包括传感器,用于将收集的光信号转换成电信号,对传感器输出的电脉冲信号进行放大、滤波等处理,并将调理后的电脉冲信号传输到后续的模数转换模块以转换成数字信号,再输入到电脉冲参数提取模块用于提取所需的电信号参数。FIG. 7 shows a specific circuit block diagram of the forward scattered light detection circuit 107 . As shown in Figure 7, the forward scattered light detection circuit 107 includes a sensor, which is used to convert the collected optical signal into an electrical signal, amplify and filter the electrical pulse signal output by the sensor, and convert the conditioned electrical pulse signal It is transmitted to the subsequent analog-to-digital conversion module to be converted into a digital signal, and then input to the electric pulse parameter extraction module for extracting the required electric signal parameters.
图8和图9分别示出了示意性的多色荧光分光光路108的具体光路实施例结构图。如图8和图9所示,通过收集透镜收集前向散射光,然后经过多个二向色性分光镜进行分光,经带通滤光片滤光后,通过多个光电倍增管(PMT1-6)进行信号倍增收集。优选地,该多色荧光分光光路108通过一系列光学装置对多通道荧光信号进行分离,并将分离后的各色荧光光束传输到相应的多通道荧光检测电路109。FIG. 8 and FIG. 9 respectively show the structure diagram of a specific embodiment of the optical path of the schematic multicolor fluorescence beam splitting optical path 108 . As shown in Figure 8 and Figure 9, the forward scattered light is collected by the collection lens, then split through a plurality of dichroic beam splitters, filtered by a band-pass filter, and passed through a plurality of photomultiplier tubes (PMT1- 6) Perform signal multiplication collection. Preferably, the multi-color fluorescence beam splitting optical path 108 separates the multi-channel fluorescence signals through a series of optical devices, and transmits the separated fluorescent light beams of various colors to the corresponding multi-channel fluorescence detection circuit 109 .
该多通道荧光检测电路109实现对荧光信号的光电转换及电脉冲信号的调理处理,并实现对表征微球特性的电脉冲参数进行提取。图10示出了多通道荧光检测电路109的一个具体电路模块图。如图10所示,多通道荧光检测电路109包括多路荧光检测电路,每一路包括传感器,用于将收集的光信号转换成电信号,对传感器输出的电脉冲信号进行放大、滤波等处理,并将调理后的电脉冲信号传输到后续的模数转换模块以转换成数字信号,再输入到电脉冲参数提取模块用于提取所需的电信号参数。The multi-channel fluorescence detection circuit 109 realizes the photoelectric conversion of the fluorescence signal and the conditioning processing of the electric pulse signal, and realizes the extraction of the electric pulse parameters characterizing the characteristics of the microspheres. FIG. 10 shows a specific circuit block diagram of the multi-channel fluorescence detection circuit 109 . As shown in Figure 10, the multi-channel fluorescence detection circuit 109 includes multiple fluorescence detection circuits, each of which includes a sensor for converting the collected optical signal into an electrical signal, amplifying and filtering the electrical pulse signal output by the sensor, And the conditioned electrical pulse signal is transmitted to a subsequent analog-to-digital conversion module for conversion into a digital signal, and then input to the electrical pulse parameter extraction module for extracting required electrical signal parameters.
本发明的另一方面,提供了一种流式细胞仪无液路情况的光路调整方法,包括步骤:Another aspect of the present invention provides a method for adjusting the optical path of a flow cytometer without a liquid path, comprising the steps of:
照射光斑整形光路102对照射光源101产生的光束进行压缩等处理,得到一定尺寸的照射光斑,并调整光斑焦距使微球从焦点处经过;The irradiation spot shaping optical path 102 compresses the light beam generated by the irradiation light source 101 to obtain an irradiation spot of a certain size, and adjusts the focal length of the spot so that the microsphere passes through the focal point;
标准微球旋转装置调整微球的运动速度,改变微球检测频率及微球照射时间,从而改变相应光脉冲及电脉冲频率及持续时间;The standard microsphere rotating device adjusts the movement speed of the microsphere, changes the detection frequency of the microsphere and the irradiation time of the microsphere, thereby changing the frequency and duration of the corresponding light pulse and electric pulse;
非前向散射光光束整形光路对非前向散射光进行整形等处理,调整光路焦距使非前向散射光检测电路中的探测器处于焦点位置;The non-forward scattered light beam shaping optical path performs shaping and other processing on the non-forward scattered light, and adjusts the focal length of the optical path so that the detector in the non-forward scattered light detection circuit is at the focal point;
非前向散射光检测电路实现对非前向散射光的光电转换、电脉冲调理、模/数转换及参数提取等处理,识别电脉冲的起始点和结束点;The non-forward scattered light detection circuit realizes the photoelectric conversion, electric pulse conditioning, analog/digital conversion and parameter extraction of non-forward scattered light, and identifies the starting point and ending point of the electric pulse;
前向散射光及荧光光束整形光路对前向散射光及荧光光束进行整形等处理,并将聚焦后的光束传输到多色荧光分光光路;The forward scattered light and fluorescent beam shaping optical path performs shaping and other processing on the forward scattered light and fluorescent beam, and transmits the focused beam to the multicolor fluorescent beam splitting optical path;
多色荧光分光光路根据波长信息将前向散射光及各通道荧光光束进行分光处理,并将分光后的光束传输到前向散射光检测电路及相应的多通道荧光检测电路;The multi-color fluorescence spectroscopic optical path splits the forward scattered light and the fluorescent beams of each channel according to the wavelength information, and transmits the split beams to the forward scattered light detection circuit and the corresponding multi-channel fluorescence detection circuit;
前向散射光检测电路实现对前向散射光的光电转换、电脉冲调理、模/数转换及参数提取等处理,识别电脉冲的起始点和结束点;The forward scattered light detection circuit realizes the photoelectric conversion, electric pulse conditioning, analog/digital conversion and parameter extraction of forward scattered light, and identifies the starting point and ending point of the electric pulse;
多通道荧光检测电路实现对各荧光的光电转换、电脉冲调理、模/数转换及参数提取等处理,识别电脉冲的起始点和结束点。The multi-channel fluorescence detection circuit realizes the photoelectric conversion, electric pulse conditioning, analog/digital conversion and parameter extraction of each fluorescence, and identifies the starting point and ending point of the electric pulse.
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。Other embodiments of the invention will be apparent to and understood by those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The description and examples are considered exemplary only, with the true scope and spirit of the invention defined by the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811177492.6A CN109374511B (en) | 2015-10-14 | 2016-10-14 | An optical path adjustment device for flow cytometer without liquid path |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510661309X | 2015-10-14 | ||
CN201510661309 | 2015-10-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811177492.6A Division CN109374511B (en) | 2015-10-14 | 2016-10-14 | An optical path adjustment device for flow cytometer without liquid path |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106383082A CN106383082A (en) | 2017-02-08 |
CN106383082B true CN106383082B (en) | 2018-10-19 |
Family
ID=57937298
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610896195.1A Expired - Fee Related CN106383082B (en) | 2015-10-14 | 2016-10-14 | A kind of optical path adjustment device and method of the flow cytometer without fluid path situation |
CN201811177492.6A Expired - Fee Related CN109374511B (en) | 2015-10-14 | 2016-10-14 | An optical path adjustment device for flow cytometer without liquid path |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811177492.6A Expired - Fee Related CN109374511B (en) | 2015-10-14 | 2016-10-14 | An optical path adjustment device for flow cytometer without liquid path |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN106383082B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108107025A (en) * | 2017-11-24 | 2018-06-01 | 中国科学院苏州生物医学工程技术研究所 | A kind of water quality detection method and system |
CN108287129A (en) * | 2018-03-22 | 2018-07-17 | 中国计量大学 | The detection device of multichannel fluorescence Spectra bioaerosol particle |
CN109946219A (en) * | 2019-04-12 | 2019-06-28 | 广西师范大学 | A flow cytometer scattered light and fluorescence detection device and method |
CN110514575B (en) * | 2019-08-16 | 2022-03-18 | 迈克医疗电子有限公司 | Decoding device and method for quantum dot coding microspheres |
CN112881351A (en) * | 2019-11-30 | 2021-06-01 | 深圳市帝迈生物技术有限公司 | Particle detection method and device based on pulse recognition and storage medium |
CN112798769B (en) * | 2021-01-28 | 2022-02-18 | 深圳市科曼医疗设备有限公司 | Cell analysis method, device and cell analyzer of a cell analyzer |
CN114088606B (en) * | 2021-10-23 | 2023-05-09 | 广州市艾贝泰生物科技有限公司 | Cell analysis device |
CN114441418A (en) * | 2022-01-28 | 2022-05-06 | 天津凌视科技有限公司 | Imaging system, imaging method, and readable storage medium for high-speed flowing particles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7113266B1 (en) * | 2005-03-30 | 2006-09-26 | Beckman Coulter, Inc. | Flow cytometer for differentiating small particles in suspension |
CN101726585A (en) * | 2009-11-30 | 2010-06-09 | 宁波普赛微流科技有限公司 | Flow cytometry based on microfluidic chip |
CN103063626A (en) * | 2012-12-13 | 2013-04-24 | 江西科技师范大学 | Light path auto-correction cell laser excitation detecting device and detecting method thereof |
CN104266955A (en) * | 2014-09-02 | 2015-01-07 | 上海凯度机电科技有限公司 | High content image flow biological microscopic analysis system |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4284412A (en) * | 1979-07-13 | 1981-08-18 | Ortho Diagnostics, Inc. | Method and apparatus for automated identification and enumeration of specified blood cell subclasses |
US4545677A (en) * | 1984-03-05 | 1985-10-08 | Becton, Dickinson And Company | Prismatic beam expander for light beam shaping in a flow cytometry apparatus |
US5039613A (en) * | 1986-11-27 | 1991-08-13 | Toa Medical Electronics Co., Ltd. | Reagents used in a method of classifying leukocytes by flow cytometry |
US5162863A (en) * | 1988-02-15 | 1992-11-10 | Canon Kabushiki Kaisha | Method and apparatus for inspecting a specimen by optical detection of antibody/antigen sensitized carriers |
JPH03221835A (en) * | 1990-01-26 | 1991-09-30 | Canon Inc | Instrument for measuring body to be tested |
JPH0353147A (en) * | 1989-07-20 | 1991-03-07 | Canon Inc | Specimen measuring instrument |
JPH0486546A (en) * | 1990-07-27 | 1992-03-19 | Canon Inc | Specimen inspection device |
JP2000046723A (en) * | 1998-07-28 | 2000-02-18 | Sysmex Corp | Method for inspecting function of platelet |
US7477363B2 (en) * | 2004-04-08 | 2009-01-13 | Nihon Kohden Corporation | Flow cytometer |
CN101153868B (en) * | 2006-09-30 | 2012-05-30 | 深圳迈瑞生物医疗电子股份有限公司 | Stream type cell analyzer |
CN101236150B (en) * | 2007-02-02 | 2012-09-05 | 深圳迈瑞生物医疗电子股份有限公司 | Stream type cell technique instrument opto-electronic sensor and its irradiation unit |
CN101498646B (en) * | 2008-02-03 | 2014-06-11 | 深圳迈瑞生物医疗电子股份有限公司 | Forward-scattering signal inspection device and method, cell or particle analyzer |
CN102297854B (en) * | 2011-05-23 | 2013-10-02 | 公安部第一研究所 | High-efficiency multi-mode laser-induced fluorescence optical path exciting system |
CN103091211B (en) * | 2011-11-03 | 2017-05-17 | 深圳迈瑞生物医疗电子股份有限公司 | fluorescence detection system and cell analyzer |
CN203249850U (en) * | 2013-04-03 | 2013-10-23 | 上海睿珉机电科技有限公司 | Novel disc type cell sample measuring disc of cell analyzer |
CN103487359B (en) * | 2013-09-25 | 2016-03-30 | 江西科技师范大学 | A kind of cell of laser excitation and particle shape and apparatus for measuring distribution |
CN103852409B (en) * | 2014-03-18 | 2016-09-14 | 江西科技师范大学 | The imaging system of hemocyte in flow cytometer |
CN103913444A (en) * | 2014-04-25 | 2014-07-09 | 武汉大学 | Single-photon fluorescence excitation multi-channel quantitative determination device and detection method based on blue light optical tweezers |
CN104280327B (en) * | 2014-06-20 | 2017-01-04 | 博奥生物集团有限公司 | A kind of streaming phosphor collection optical system |
CN104483254A (en) * | 2014-12-29 | 2015-04-01 | 中国科学院长春光学精密机械与物理研究所 | Multi-color multi-parameter portable flow cytometer |
-
2016
- 2016-10-14 CN CN201610896195.1A patent/CN106383082B/en not_active Expired - Fee Related
- 2016-10-14 CN CN201811177492.6A patent/CN109374511B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7113266B1 (en) * | 2005-03-30 | 2006-09-26 | Beckman Coulter, Inc. | Flow cytometer for differentiating small particles in suspension |
CN101726585A (en) * | 2009-11-30 | 2010-06-09 | 宁波普赛微流科技有限公司 | Flow cytometry based on microfluidic chip |
CN103063626A (en) * | 2012-12-13 | 2013-04-24 | 江西科技师范大学 | Light path auto-correction cell laser excitation detecting device and detecting method thereof |
CN104266955A (en) * | 2014-09-02 | 2015-01-07 | 上海凯度机电科技有限公司 | High content image flow biological microscopic analysis system |
Also Published As
Publication number | Publication date |
---|---|
CN106383082A (en) | 2017-02-08 |
CN109374511B (en) | 2021-07-23 |
CN109374511A (en) | 2019-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106383082B (en) | A kind of optical path adjustment device and method of the flow cytometer without fluid path situation | |
CN106662521B (en) | Particle filming apparatus and particle image pickup method | |
JP4602975B2 (en) | Photodetector for particle classification system | |
JP4741986B2 (en) | Optical inspection method and optical inspection apparatus | |
CN204330595U (en) | A kind of real time multi-channel fluorescence detecting system | |
JP2016525214A5 (en) | ||
WO2017062319A1 (en) | Automated drop delay calculation | |
JP2018509752A5 (en) | ||
CN104718444A (en) | Microparticle measuring device | |
CN105980908A (en) | Multi-point scanning collection optics | |
CN107250761B (en) | Cell analysis device using multiple lasers | |
JP2017535764A5 (en) | ||
CN103777194A (en) | Modularized photoelectric detector response characteristic detection system | |
CN106841042B (en) | Micro-fluidic chip focusing control system and micro-fluidic chip fluorescence detecting system | |
CN104458691A (en) | Photothermal-fluorescent double-mode spectrum detection device and detection method thereof | |
JPH0120371B2 (en) | ||
CN104122237B (en) | gene sequencing optical system | |
CN101158644A (en) | Rotary multi-channel induced fluorescence device and method based on transmission fiber | |
CN105662339A (en) | Dark-field illumination acoustic resolution photoacoustic microscopic device | |
CN201107270Y (en) | Rotary type multichannel inducing fluorescent apparatus based on transmission optical fiber | |
CN106872525A (en) | A kind of blood cell detection means and method | |
CN205280574U (en) | Multi -functional optoacoustic, fluorescence is micro - and fluorescence spectra formation of image analytical equipment | |
US11099066B2 (en) | Light detection systems having input and output modulators, and methods of use thereof | |
CN201107271Y (en) | Rotary multi-channel excitation fluorescence device based on input and output optical fibers | |
CN103837235B (en) | A kind of Raman spectrometer detecting head and Raman spectroscopy system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhu Lianqing Inventor after: Lou Xiaoping Inventor after: Dong Mingli Inventor after: Guo Yangkuan Inventor after: Liu Chao Inventor after: Meng Xiaochen Inventor after: Zhang Wenchang Inventor before: Zhu Lianqing Inventor before: Zhang Wenchang Inventor before: Dong Mingli Inventor before: Lou Xiaoping Inventor before: Guo Yangkuan Inventor before: Liu Chao Inventor before: Meng Xiaochen |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181019 |