CN106340672A - Lithium ion battery non-aqueous electrolyte and lithium ion battery - Google Patents
Lithium ion battery non-aqueous electrolyte and lithium ion battery Download PDFInfo
- Publication number
- CN106340672A CN106340672A CN201610538401.1A CN201610538401A CN106340672A CN 106340672 A CN106340672 A CN 106340672A CN 201610538401 A CN201610538401 A CN 201610538401A CN 106340672 A CN106340672 A CN 106340672A
- Authority
- CN
- China
- Prior art keywords
- lithium ion
- aqueous electrolyte
- sulfone
- compound
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 60
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 48
- -1 unsaturated phosphate ester compound Chemical class 0.000 claims abstract description 110
- 239000003792 electrolyte Substances 0.000 claims abstract description 33
- 150000001875 compounds Chemical class 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 claims description 4
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 claims description 2
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 claims description 2
- ALNXCYVAFCOYNL-UHFFFAOYSA-N 3,3,4,4-tetrafluorothiolane 1,1-dioxide Chemical compound FC1(F)CS(=O)(=O)CC1(F)F ALNXCYVAFCOYNL-UHFFFAOYSA-N 0.000 claims description 2
- CMJLMPKFQPJDKP-UHFFFAOYSA-N 3-methylthiolane 1,1-dioxide Chemical compound CC1CCS(=O)(=O)C1 CMJLMPKFQPJDKP-UHFFFAOYSA-N 0.000 claims description 2
- 125000000524 functional group Chemical group 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims 5
- 150000003457 sulfones Chemical class 0.000 claims 5
- 125000002467 phosphate group Chemical class [H]OP(=O)(O[H])O[*] 0.000 claims 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 125000001118 alkylidene group Chemical group 0.000 claims 1
- 230000004888 barrier function Effects 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 claims 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 17
- 229910052744 lithium Inorganic materials 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 11
- 238000007600 charging Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 9
- 230000008021 deposition Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000010277 constant-current charging Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011267 electrode slurry Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 102100028667 C-type lectin domain family 4 member A Human genes 0.000 description 3
- 101000766908 Homo sapiens C-type lectin domain family 4 member A Proteins 0.000 description 3
- 229910014211 My O Inorganic materials 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- FCTINJHSYHFASK-UHFFFAOYSA-N tris(prop-2-ynyl) phosphate Chemical compound C#CCOP(=O)(OCC#C)OCC#C FCTINJHSYHFASK-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- IZJSTXINDUKPRP-UHFFFAOYSA-N aluminum lead Chemical compound [Al].[Pb] IZJSTXINDUKPRP-UHFFFAOYSA-N 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本申请涉及锂离子电池电解液领域,特别是涉及一种锂离子电池非水电解液及锂离子电池。The present application relates to the field of lithium-ion battery electrolyte, in particular to a lithium-ion battery non-aqueous electrolyte and a lithium-ion battery.
背景技术Background technique
锂离子电池与其它电池相比,具有质量轻、体积小、工作电压高、能量密度高、输出功率大、充电效率高、无记忆效应和循环寿命长等优点,目前已经越来越多的被用于3C消费类电子产品市场。并且随着新能源汽车的发展,非水电解液锂离子电池作为汽车的动力电源系统也越来越普及。随着新能源汽车续航里程要求的不断提高,越来越要求动力锂离子电池的高能量密度化。三元镍钴锰正极材料因其较高的能量密度、低成本、性能优良、安全性相对较好等优势,成为目前新能源动力电池正极材料的研究热点,且随着动力电池能量密度的不断提高,三元镍钴锰材料动力电池正朝着高电压的方向发展。Compared with other batteries, lithium-ion batteries have the advantages of light weight, small size, high working voltage, high energy density, high output power, high charging efficiency, no memory effect and long cycle life. For 3C consumer electronics market. And with the development of new energy vehicles, non-aqueous electrolyte lithium-ion batteries are becoming more and more popular as the power supply system of vehicles. With the continuous improvement of the mileage requirements of new energy vehicles, there is an increasing demand for high energy density of power lithium-ion batteries. The ternary nickel-cobalt-manganese cathode material has become a research hotspot of cathode materials for new energy power batteries due to its high energy density, low cost, excellent performance, and relatively good safety. Improvement, the ternary nickel-cobalt-manganese material power battery is developing in the direction of high voltage.
但是三元镍钴锰材料作为正极材料存在高温性能不足的缺点,在三元镍钴锰材料中,镍元素对电解液具有很强的催化作用,会催化电解液的分解,从而降低放电容量,并且分解产物的积累会导致明显的内阻增长;这种情况在高电压、高温和镍含量较高的条件下,会变得尤为严重,从而大大劣化电池性能,阻碍高电压三元镍钴锰材料电池在动力电池领域的实用化。However, the ternary nickel-cobalt-manganese material has the disadvantage of insufficient high-temperature performance as the positive electrode material. In the ternary nickel-cobalt-manganese material, the nickel element has a strong catalytic effect on the electrolyte, which will catalyze the decomposition of the electrolyte, thereby reducing the discharge capacity. And the accumulation of decomposition products will lead to a significant increase in internal resistance; this situation will become particularly serious under the conditions of high voltage, high temperature and high nickel content, which will greatly deteriorate battery performance and hinder high-voltage ternary nickel-cobalt-manganese The practical application of material batteries in the field of power batteries.
电解液是影响电池综合性能的关键因素,特别地,电解液中的添加剂对电池的各项性能的发挥尤其重要。因此,要充分发挥三元镍钴锰材料的动力电池的性能,电解液的匹配是关键。目前实用化的锂离子电池电解液是添加传统的成膜添加剂如碳酸亚乙烯酯(缩写VC)或氟代碳酸乙烯酯(缩写FEC)的非水电解液,通过VC和FEC的添加保障电池优异的循环性能。但VC的高电压稳定性较差,FEC高温下容易分解产气。因此,在高电压高温条件下,这些添加剂很难满足高温循环的性能要求。The electrolyte is a key factor affecting the overall performance of the battery. In particular, the additives in the electrolyte are particularly important for the various performances of the battery. Therefore, to give full play to the performance of the power battery of the ternary nickel-cobalt-manganese material, the matching of the electrolyte is the key. The current practical lithium-ion battery electrolyte is a non-aqueous electrolyte with traditional film-forming additives such as vinylene carbonate (abbreviated as VC) or fluoroethylene carbonate (abbreviated as FEC). The addition of VC and FEC ensures excellent battery performance. cycle performance. However, the high voltage stability of VC is poor, and FEC is easy to decompose and produce gas at high temperature. Therefore, under the condition of high voltage and high temperature, it is difficult for these additives to meet the performance requirements of high temperature cycle.
专利申请201410534841.0中公开了一种含三键的磷酸酯化合物新型成膜添加剂,其不仅可以改善高温循环性能,还能明显改善储存性能。砜类化合物也很早见于文献报道(Journal of Power Sources 179(2008)770–779),主要是提高高电压电池的稳定性,改善循环性能。但本领域的科技工作者在研究中发现,三键的磷酸酯添加剂在电极界面所形成的钝化膜导电性较差,导致界面阻抗较大,明显劣化了低温性能,特别容易导致电池在低温下充电析锂,抑制了非水 锂离子电池在低温条件下的应用。Patent application 201410534841.0 discloses a new film-forming additive of phosphate compound containing triple bonds, which can not only improve high-temperature cycle performance, but also significantly improve storage performance. Sulfone compounds were also reported in the literature very early (Journal of Power Sources 179(2008) 770–779), mainly to improve the stability of high-voltage batteries and improve cycle performance. However, scientific and technical workers in this field have found in their research that the passivation film formed by the three-bond phosphate additive at the electrode interface has poor conductivity, resulting in a large interface impedance, which significantly deteriorates the low-temperature performance, and is particularly easy to cause the battery to operate at low temperature. Under-charging and lithium analysis inhibit the application of non-aqueous lithium-ion batteries under low temperature conditions.
发明内容Contents of the invention
本申请的目的是提供一种新的锂离子电池非水电解液及锂离子电池。The purpose of this application is to provide a new lithium ion battery non-aqueous electrolyte and lithium ion battery.
为了实现上述目的,本申请采用了以下技术方案:In order to achieve the above object, the application adopts the following technical solutions:
本申请的一方面公开了一种锂离子电池非水电解液,包括不饱和磷酸酯类和砜类化合物,砜类化合物包括环状砜类化合物和/或直链砜类化合物;One aspect of the present application discloses a non-aqueous electrolyte solution for lithium-ion batteries, including unsaturated phosphoric acid esters and sulfone compounds, where the sulfone compounds include cyclic sulfone compounds and/or linear sulfone compounds;
不饱和磷酸酯类化合物具有式一所示结构,The unsaturated phosphate compound has a structure shown in formula one,
其中,R1、R2、R3分别独立地选自碳原子数为1-4的烃基,且R1、R2、R3中至少一个为含有双键或叁键的不饱和烃基;Wherein, R 1 , R 2 , and R 3 are independently selected from hydrocarbon groups with 1-4 carbon atoms, and at least one of R 1 , R 2 , and R 3 is an unsaturated hydrocarbon group containing a double bond or a triple bond;
环状砜类化合物具有式二所示结构,直链砜类化合物具有式三所示结构,The cyclic sulfone compound has the structure shown in formula 2, and the linear sulfone compound has the structure shown in formula 3,
其中,R4、R5、R6、R7分别独立地选自氢原子、卤素或碳原子数为1-5的烷基,A是包括2~6个碳原子数的取代或非取代的亚烷基,其取代的官能团可以是卤素或碳原子数为1-3的烷基。Among them, R 4 , R 5 , R 6 , and R 7 are independently selected from hydrogen atoms, halogens, or alkyl groups with 1-5 carbon atoms, and A is substituted or unsubstituted with 2-6 carbon atoms. An alkylene group, the functional group substituted by it can be a halogen or an alkyl group with 1-3 carbon atoms.
需要说明的是,本申请的关键在于,在锂离子电池非水电解液中同时添加了上述不饱和磷酸酯类化合物和砜类化合物,克服了单独添加不饱和磷酸酯类化合物所导致的界面阻抗大、低温下充电析锂等缺陷。其中,砜类化合物可以是环状砜类化合物或直链砜类化合物,也可以是两者混合使用。It should be noted that the key point of this application is that the above-mentioned unsaturated phosphoric acid ester compound and sulfone compound are added to the non-aqueous electrolyte of the lithium ion battery at the same time, which overcomes the interface impedance caused by adding the unsaturated phosphoric acid ester compound alone. Defects such as large and low temperature charging and precipitation of lithium. Wherein, the sulfone compound may be a cyclic sulfone compound or a straight chain sulfone compound, or both may be used in combination.
还需要说明的是,砜类化合物应用于电解液并非本申请率先提出的,本申请经过大量的研究和试验发现,将砜类化合物和上述不饱和磷酸酯类化合物配合使用,能够获得更好的高低温性能和循环性能,从而提出了本申请。可以理解,本申请是在专利申请201410534841的基础上,并以专利申请201510397735.7为优先权而提出的,因此,以上两件专利申请中的相关技术内容和术语适用于本申请。此外,本申请的关键在于将砜类化合物和上述不饱和磷酸酯类化合物配合使用,至于具体的砜类化合物和上述不饱和磷酸酯类化合物,可以采用现 有的实验室常用或不常用的化合物;但是,为了保障非水电解液的性能,本申请优选的方案中,对砜类化合物和上述不饱和磷酸酯类化合物的具体类型,甚至具体化合物进行了说明和限定,这将在后面的技术方案中详细介绍。It should also be noted that the application of sulfone compounds in the electrolyte is not the first proposal of this application. After a lot of research and experiments, this application has found that the use of sulfone compounds and the above-mentioned unsaturated phosphate compounds can obtain better performance. High and low temperature performance and cycle performance, thus presenting this application. It can be understood that this application is filed on the basis of patent application 201410534841 and priority is given to patent application 201510397735.7. Therefore, the relevant technical content and terms in the above two patent applications are applicable to this application. In addition, the key point of this application is to use the sulfone compound and the above-mentioned unsaturated phosphate compound in combination. As for the specific sulfone compound and the above-mentioned unsaturated phosphate compound, existing laboratory commonly used or uncommonly used compounds can be used. But, in order to guarantee the performance of non-aqueous electrolytic solution, in the preferred scheme of the present application, the concrete type of sulfone compound and above-mentioned unsaturated phosphoric acid ester compound, even specific compound has been explained and limited, and this will be in the back technology detailed in the plan.
优选的,本申请的不饱和磷酸酯类化合物选自表1所示结构式的化合物中的至少一种,即不饱和磷酸酯类化合物选自化合物1至化合物6中的至少一种。Preferably, the unsaturated phosphate compound of the present application is selected from at least one of the compounds of the structural formula shown in Table 1, that is, the unsaturated phosphate compound is selected from at least one of compounds 1 to 6.
表1用于锂离子电池非水电解液的不饱和磷酸酯类化合物Table 1 Unsaturated phosphoric acid ester compounds used in non-aqueous electrolytes for lithium-ion batteries
可以理解,无论是式一所示的不饱和磷酸酯类化合物,还是化合物1到化合物6的不饱和磷酸酯类化合物,都是本申请的优选的技术方案,不排除其它具有相似理化特性的不饱和磷酸酯类化合物。It can be understood that whether it is the unsaturated phosphoric acid ester compound shown in formula 1 or the unsaturated phosphoric acid ester compound of compound 1 to compound 6, it is the preferred technical solution of this application, and other unsaturated phosphoric acid ester compounds with similar physical and chemical properties are not excluded. Saturated phosphate compounds.
更优选的,环状砜类化合物为式四和/或式五所示结构化合物的至少一种,More preferably, the cyclic sulfone compound is at least one of the structural compounds shown in formula 4 and/or formula 5,
其中,R8-R16分别独立地选自氢原子、卤素或碳原子数为1-5的烷基。Wherein, R 8 -R 16 are each independently selected from a hydrogen atom, a halogen or an alkyl group with 1-5 carbon atoms.
更优选的,砜类化合物选自环丁砜、3-甲基环丁砜、3,3,4,4-四氟环丁砜、环戊砜、二甲基砜、甲基乙基砜和二乙基砜中的至少一种。More preferably, the sulfone compound is selected from sulfolane, 3-methylsulfolane, 3,3,4,4-tetrafluorosulfolane, sulfolane, dimethylsulfone, methylethylsulfone and diethylsulfone at least one.
可以理解,无论是式二至式五所示的砜类化合物,还是具体限定的几种砜 类化合物,都是本申请的优选技术方案,不排除其它具有相似理化特性的砜类化合物。It can be understood that no matter the sulfone compounds shown in formulas 2 to 5, or several specifically defined sulfone compounds, are the preferred technical solutions of this application, and other sulfone compounds with similar physical and chemical properties are not excluded.
优选的,本申请的锂离子电池非水电解液中,不饱和磷酸酯类化合物占锂离子电池非水电解液总重量的0.1%~2%。Preferably, in the non-aqueous electrolyte solution for lithium-ion batteries of the present application, the unsaturated phosphate compound accounts for 0.1%-2% of the total weight of the non-aqueous electrolyte solution for lithium-ion batteries.
优选的,本申请的锂离子电池非水电解液中,不饱和磷酸酯类化合物占锂离子电池非水电解液总重量的0.2%~1%。Preferably, in the non-aqueous electrolyte solution for lithium-ion batteries of the present application, the unsaturated phosphate compound accounts for 0.2%-1% of the total weight of the non-aqueous electrolyte solution for lithium-ion batteries.
优选的,本申请的锂离子电池非水电解液中,砜类化合物占锂离子电池非水电解液总重量的0.1%~30%。Preferably, in the nonaqueous electrolyte solution for lithium ion batteries of the present application, the sulfone compound accounts for 0.1% to 30% of the total weight of the nonaqueous electrolyte solution for lithium ion batteries.
优选的,砜类化合物占锂离子电池非水电解液总重量的0.1%~10%。Preferably, the sulfone compound accounts for 0.1%-10% of the total weight of the non-aqueous electrolyte of the lithium ion battery.
进一步优选的,砜类化合物占锂离子电池非水电解液总重量的0.5~10%。Further preferably, the sulfone compound accounts for 0.5-10% of the total weight of the non-aqueous electrolyte of the lithium-ion battery.
更优选的,砜类化合物占锂离子电池非水电解液总重量的1~10%。More preferably, the sulfone compound accounts for 1-10% of the total weight of the non-aqueous electrolyte of the lithium-ion battery.
本申请的锂离子电池非水电解液中,当不饱和磷酸酯类化合物的用量小于0.1%时,正负极成膜效果差,且起不到改善性能的效果;而当其用量过高,大于2%时,会使电极界面的成膜厚,增大电池阻抗,劣化电池性能。In the lithium-ion battery non-aqueous electrolyte of the present application, when the amount of unsaturated phosphoric acid ester compound is less than 0.1%, the film-forming effect of positive and negative electrodes is poor, and the effect of improving performance cannot be achieved; and when its amount is too high, When it is greater than 2%, the thickness of the film formed at the electrode interface will be increased, the impedance of the battery will be increased, and the performance of the battery will be deteriorated.
同时,当砜类化合物的含量小于0.1%时,砜类化合物无法有效发挥作用;当砜类化合物的含量大于10%时,事实上,在一定范围内,例如30%以下,仍能体现出较好的性能。当砜类化合物的含量大于30%时,会导致电解液粘度过大,同时在电极界面成膜较厚,增大电池阻抗,劣化电池性能。At the same time, when the content of sulfone compounds is less than 0.1%, the sulfone compounds cannot effectively play a role; when the content of sulfone compounds is greater than 10%, in fact, within a certain range, such as below 30%, it can still show relatively strong good performance. When the content of the sulfone compound is greater than 30%, the viscosity of the electrolyte will be too high, and at the same time, a thick film will be formed on the electrode interface, which will increase the battery impedance and deteriorate the battery performance.
需要说明的是,本申请的关键在于将不饱和磷酸酯类化合物与砜类化合物配合使用,从而改善高低温性能和循环性能;可以理解,两者的用量变化必然会直接影响电解液的性能,从而影响电池的高低温性能和循环性能。因此,在本申请的优选方案中,为了保障电解液和电池的性能,对两者的用量进行了特别限定。可以理解,在本申请所限定的范围内,所配置的非水电解液具有良好的高低温性能和循环性能;如果超出该范围,其相应的性能必然会受影响,但是,对于一些要求相对较低或者较次的使用需求中,同样可以在一定程度上改善电池的高低温性能或循环性能。It should be noted that the key point of this application is to use unsaturated phosphate compounds and sulfone compounds in combination to improve high and low temperature performance and cycle performance; it can be understood that changes in the amount of the two will inevitably directly affect the performance of the electrolyte. Thus affecting the high and low temperature performance and cycle performance of the battery. Therefore, in the preferred solution of the present application, in order to ensure the performance of the electrolyte and the battery, the amounts of both are specifically limited. It can be understood that within the scope defined in the present application, the configured non-aqueous electrolyte has good high and low temperature performance and cycle performance; if it exceeds this range, its corresponding performance will inevitably be affected, but, for some requirements relatively In low or inferior use requirements, the high and low temperature performance or cycle performance of the battery can also be improved to a certain extent.
进一步的,本申请的锂离子电池非水电解液中,砜类化合物与不饱和磷酸酯类化合物的重量比大于或等于0.2。当不饱和磷酸酯类化合物的含量高而砜类化合物含量较低时,低温性能明显不足。Further, in the non-aqueous electrolyte solution for lithium-ion batteries of the present application, the weight ratio of sulfone compounds to unsaturated phosphate compounds is greater than or equal to 0.2. When the content of unsaturated phosphate compounds is high and the content of sulfone compounds is low, the low temperature performance is obviously insufficient.
优选的,非水电解液的有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的至少一种。Preferably, the organic solvent of the non-aqueous electrolyte is at least one selected from ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and propyl methyl carbonate.
优选的,非水电解液的锂盐选自六氟磷酸锂、高氯酸锂、四氟硼酸锂、双氟草酸硼酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂盐中的至少一种。Preferably, the lithium salt of the non-aqueous electrolyte is selected from lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide and lithium bisfluorosulfonylimide at least one of the salts.
本申请的另一面公开了一种锂离子电池,包括正极、负极、置于正极与负极之间的隔膜,以及电解液,其中,电解液为本申请的锂离子电池非水电解液。Another aspect of the present application discloses a lithium-ion battery, including a positive electrode, a negative electrode, a separator placed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is the non-aqueous electrolyte of the lithium-ion battery of the present application.
本申请的锂离子电池的充电截止电压大于或等于4.35V。The charging cut-off voltage of the lithium ion battery of the present application is greater than or equal to 4.35V.
优选的,本申请的锂离子电池中,正极选自LiCoO2、LiNiO2、LiMn2O4、LiCo1-yMyO2、LiNi1-yMyO2、LiMn2-yMyO4和LiNixCoyMnzM1-x-y-zO2中的至少一种;,其中,M选自Fe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V和Ti中的至少一种,且0≤y≤1,0≤x≤1,0≤z≤1,x+y+z≤1。Preferably, in the lithium ion battery of the present application, the positive electrode is selected from LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCo 1-y My O 2 , LiNi 1-y My O 2 , LiMn 2-y My O 2 4 and at least one of LiNi x Co y Mn z M 1-xyz O 2 ; wherein M is selected from Fe, Co, Ni, Mn, Mg, Cu, Zn, Al, Sn, B, Ga, Cr, At least one of Sr, V and Ti, and 0≤y≤1, 0≤x≤1, 0≤z≤1, x+y+z≤1.
需要说明的是,本申请的非水电解液,是针对锂离子电池而研制的,因此,可以适用于各种锂离子电池,包括但不仅限于本申请所列举的类型。It should be noted that the non-aqueous electrolyte of the present application is developed for lithium-ion batteries, so it can be applied to various lithium-ion batteries, including but not limited to the types listed in this application.
由于采用以上技术方案,本申请的有益效果在于:Owing to adopting above technical scheme, the beneficial effect of the present application is:
本申请的非水电解液,将式一所示不饱和磷酸酯类化合物和砜类化合物配合,同时添加到电解液中,在电极界面形成一层成份均匀、厚薄适中,且致密性好的保护膜;两者配合使用,可以使得电解液在正极具有良好的稳定性,使得电池获得优良高温性能和循环性能,而且,可以使得电池保持较低的阻抗、使电池获得优良的低温性能。本申请的非水电解液为制备高品质的动力电池奠定了基础。In the non-aqueous electrolyte solution of the present application, the unsaturated phosphoric acid ester compound and the sulfone compound shown in Formula 1 are combined and added to the electrolyte solution at the same time to form a layer of uniform composition, moderate thickness, and good compactness on the electrode interface. Membrane; the combination of the two can make the electrolyte have good stability in the positive electrode, so that the battery can obtain excellent high-temperature performance and cycle performance, and can maintain a low impedance of the battery, so that the battery can obtain excellent low-temperature performance. The non-aqueous electrolyte of the present application has laid the foundation for the preparation of high-quality power batteries.
具体实施方式detailed description
本申请的关键在于,将式一所示的不饱和磷酸酯类化合物和砜类化合物配合,加入到的非水电解液中,在不影响高温性能和循环性能的同时,可以使得电池保持较低的内阻,进而使电池获得优良的低温性能。The key point of this application is that the combination of the unsaturated phosphoric acid ester compound and the sulfone compound shown in formula 1 can be added to the non-aqueous electrolyte solution to keep the battery at a low temperature without affecting the high temperature performance and cycle performance. internal resistance, which in turn enables the battery to obtain excellent low-temperature performance.
其中,式一所示的不饱和磷酸酯类化合物能够在负极表面形成稳定的钝化膜,可较大程度阻止电解液的还原分解。此外,不饱和磷酸酯类化合物也能在正极表面形成保护膜,可以进一步阻止电解液在正极表面被氧化分解,同时抑制正极金属离子的溶出,尤其是在充电电压等于或大于4.35V时,其效果更加明显,可以明显提高锂电池的高温性能和循环性能,但是式一不饱和磷酸酯化合物的添加同时也引起内阻增大,从而低温性能变差的问题。Among them, the unsaturated phosphate compound represented by formula 1 can form a stable passivation film on the surface of the negative electrode, which can largely prevent the reduction and decomposition of the electrolyte. In addition, unsaturated phosphate compounds can also form a protective film on the surface of the positive electrode, which can further prevent the electrolyte from being oxidized and decomposed on the surface of the positive electrode, and at the same time inhibit the dissolution of positive metal ions, especially when the charging voltage is equal to or greater than 4.35V. The effect is more obvious, and the high-temperature performance and cycle performance of the lithium battery can be significantly improved, but the addition of the unsaturated phosphate compound of formula 1 also causes the internal resistance to increase, thereby deteriorating the low-temperature performance.
针对上述问题,本申请在添加式一所示不饱和磷酸酯类化合物的基础上,加入砜类化合物。由于砜类化合物的氧化电位较低,可以在正极形成一层厚度较薄、成分均匀、致密性好的保护膜。保护膜的致密性好可以有效改善电解液在正极的分解反应,阻止正极金属离子的溶出;保护膜的厚度及成分均匀的性质,可以有效降低阻抗;而阻抗的降低可以使得电池获得优良的低温性能。In view of the above problems, the present application adds sulfone compounds on the basis of adding unsaturated phosphoric acid ester compounds shown in Formula 1. Due to the low oxidation potential of sulfone compounds, a protective film with a thinner thickness, uniform composition and good compactness can be formed on the positive electrode. The good compactness of the protective film can effectively improve the decomposition reaction of the electrolyte at the positive electrode and prevent the dissolution of positive metal ions; the thickness of the protective film and the uniform composition can effectively reduce the impedance; and the reduction of the impedance can make the battery obtain excellent low temperature. performance.
因此,本申请的锂离子电池非水电解液的有益效果在于:Therefore, the beneficial effect of the lithium-ion battery non-aqueous electrolyte of the present application is:
(1)不饱和磷酸酯类化合物可以在正极形成一致密钝化膜,使得电解液具有较好的稳定性,从而使得电池具有优良的高温性能和循环性能。砜类化合物也可以在电极成膜,所成的膜组分均匀,致密,使得电池具有较低的阻抗,从而使得电池具有优良的低温性能。(1) The unsaturated phosphate compound can form a dense passivation film on the positive electrode, so that the electrolyte has better stability, so that the battery has excellent high temperature performance and cycle performance. Sulfone compounds can also form a film on the electrode, and the formed film composition is uniform and dense, so that the battery has a lower impedance, so that the battery has excellent low-temperature performance.
(2)将式一所示不饱和磷酸酯类化合物和砜类化合物配合,同时添加到电解液中,在电极界面形成一层成份均匀、厚薄适中,且致密性好的保护膜;两者配合使用,可以使电池获得优良高温性能和循环性能,而且,两者组合可以使电池保持较低的阻抗,进而使电池获得优良的低温性能。(2) Combine the unsaturated phosphate compound shown in formula 1 and the sulfone compound, and add them to the electrolyte at the same time to form a protective film with uniform composition, moderate thickness and good compactness on the electrode interface; the combination of the two Using it can make the battery obtain excellent high-temperature performance and cycle performance, and the combination of the two can keep the battery at a low impedance, thereby enabling the battery to obtain excellent low-temperature performance.
此外,为了保障非水电解液的性能,本申请对式一不饱和磷酸酯类化合物、砜类化合物的用量进行了限定。其中,砜类化合物占锂离子电池非水电解液总重量的0.5%~30%,优选的,占锂离子电池非水电解液总重量的1~10%,这是为了在电解液中获得更高的化学稳定性,充分发挥电解液的性能。并且,在本申请的一种优选的实现方式中,同时添加了环状砜类化合物和链状砜类化合物,两者协同作用,环状砜类化合物的含量为电解液总重量的1-3%,链状砜类化合物的含量为电解液总重量的1-2%,两者的协同作用在正极形成的保护膜厚度较为均匀,且致密性良好,能有效降低阻抗,并改善电池的性能。In addition, in order to ensure the performance of the non-aqueous electrolyte, the present application limits the dosage of the unsaturated phosphoric acid ester compound and sulfone compound. Wherein, the sulfone compound accounts for 0.5%~30% of the total weight of the non-aqueous electrolyte of the lithium-ion battery, preferably, accounts for 1-10% of the total weight of the non-aqueous electrolyte of the lithium-ion battery. High chemical stability, give full play to the performance of the electrolyte. Moreover, in a preferred implementation of the present application, a cyclic sulfone compound and a chain sulfone compound are added at the same time, the two act synergistically, and the content of the cyclic sulfone compound is 1-3% of the total weight of the electrolyte. %, the content of chain sulfone compounds is 1-2% of the total weight of the electrolyte, and the synergistic effect of the two forms a protective film on the positive electrode with a relatively uniform thickness and good compactness, which can effectively reduce impedance and improve battery performance. .
下面通过具体实施例对本申请作进一步详细说明。以下实施例仅对本申请进行进一步说明,不应理解为对本申请的限制。The present application will be described in further detail below through specific examples. The following examples only further illustrate the present application, and should not be construed as limiting the present application.
实施例1Example 1
本例锂离子电池的制备方法,包括正极制备步骤、负极制备步骤、电解液制备步骤、隔膜制备步骤和电池组装步骤。具体如下:The preparation method of the lithium-ion battery in this example includes a positive electrode preparation step, a negative electrode preparation step, an electrolyte preparation step, a diaphragm preparation step and a battery assembly step. details as follows:
正极制备步骤为:按96.8:2.0:1.2的质量比混合正极活性材料LiNi0.5Co0.2Mn0.3O2、导电碳黑和粘结剂聚偏二氟乙烯,分散在N-甲基-2-吡咯烷酮中,得到正极浆料,将正极浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm之间。The positive electrode preparation steps are: mix the positive electrode active material LiNi 0.5 Co 0.2 Mn 0.3 O 2 , conductive carbon black and binder polyvinylidene fluoride at a mass ratio of 96.8:2.0:1.2, and disperse them in N-methyl-2-pyrrolidone In the process, the positive electrode slurry is obtained, and the positive electrode slurry is evenly coated on both sides of the aluminum foil, after drying, calendering and vacuum drying, and after welding the aluminum lead wires with an ultrasonic welder, the positive electrode plate is obtained. The thickness of the electrode plate is 120 Between -150μm.
负极制备步骤为:按96:1:1.2:1.8的质量比混合石墨、导电碳黑、粘结剂丁苯橡胶和羧甲基纤维素,分散在去离子水中,得到负极浆料,将负极浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm之间。Negative electrode preparation steps are: mix graphite, conductive carbon black, binder styrene-butadiene rubber and carboxymethyl cellulose according to the mass ratio of 96:1:1.2:1.8, disperse in deionized water, obtain negative electrode slurry, and negative electrode slurry The material is coated on both sides of the copper foil, dried, calendered and vacuum-dried, and the nickel lead-out wire is welded with an ultrasonic welder to obtain a negative plate, and the thickness of the plate is between 120-150 μm.
电解液制备步骤为:将碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯按体积比为EC:EMC:DEC=3:3:4进行混合,混合后加入浓度为1.0mol/L的六氟磷酸锂,加入基于电解液总重量的0.1wt%的三炔丙基磷酸酯和0.5wt%的环丁砜。Electrolyte preparation steps are: mix ethylene carbonate, ethyl methyl carbonate and diethyl carbonate in a volume ratio of EC:EMC:DEC=3:3:4, add lithium hexafluorophosphate with a concentration of 1.0mol/L after mixing, Based on the total weight of the electrolyte, 0.1 wt% of tripropargyl phosphate and 0.5 wt% of sulfolane were added.
隔膜制备步骤为:采用聚丙烯、聚乙烯和聚丙烯三层隔离膜,厚度为20μm。The preparation step of the diaphragm is as follows: a three-layer separation film of polypropylene, polyethylene and polypropylene is used, and the thickness is 20 μm.
电池组装步骤为:在正极板和负极板之间放置厚度为20μm的三层隔离膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入方形铝制金属壳中,将正负极的引出线分别焊接在盖板的相应位置上,并用激光焊接机将盖板和金属壳焊接为一体,得到待注液的电芯;将上述制备的电解液通过注液孔注入电芯中,电解液的量要保证充满电芯中的空隙。The battery assembly steps are: place a three-layer separator with a thickness of 20 μm between the positive electrode plate and the negative electrode plate, then wind the sandwich structure composed of the positive electrode plate, negative electrode plate and separator, and then flatten the winding body and put it into the In the square aluminum metal shell, the lead wires of the positive and negative electrodes were respectively welded on the corresponding positions of the cover plate, and the cover plate and the metal shell were welded together with a laser welding machine to obtain the battery cell to be injected; The electrolyte is injected into the cell through the liquid injection hole, and the amount of the electrolyte should ensure that the gap in the cell is filled.
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电3min,0.2C恒流充电5min,0.5C恒流充电25min,搁置1h,整形、补注液、封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24h后,0.2C恒流恒压充电至4.2V,然后以0.2C的电流恒流放电至3.0V。获得本例的锂离子电池。Then carry out the routine formation of the first charge according to the following steps: 0.05C constant current charging for 3 minutes, 0.2C constant current charging for 5 minutes, 0.5C constant current charging for 25 minutes, shelving for 1 hour, shaping, replenishing liquid, sealing, and then further charging with 0.2C current Constant current charging to 4.2V, after 24 hours at room temperature, 0.2C constant current and constant voltage charging to 4.2V, and then 0.2C constant current discharge to 3.0V. Obtain the lithium-ion battery for this example.
对本例制备的锂离子电池进行如下测试:The lithium-ion battery prepared in this example is tested as follows:
(1)高温循环性能测试:在45℃下,将化成后的电池用1C恒流恒压充至4.35V,然后用1C恒流放电至3.0V。充/放电300次循环后,计算第300次循环容量的保持率,以评估其高温循环性能。计算公式如下:(1) High-temperature cycle performance test: At 45°C, the formed battery was charged to 4.35V with 1C constant current and constant voltage, and then discharged to 3.0V with 1C constant current. After 300 charge/discharge cycles, calculate the capacity retention rate of the 300th cycle to evaluate its high-temperature cycle performance. Calculated as follows:
第300次循环容量保持率(%)=(第300次循环放电容量/第一次循环放电容量)×100%。The 300th cycle capacity retention rate (%)=(300th cycle discharge capacity/1st cycle discharge capacity)×100%.
(2)常温循环性能测试:在25℃下,将化成后的电池用1C恒流恒压充至4.35V,然后用1C恒流放电至3.0V。充/放电500次循环后计算第500次循环容量的保持率,以评估其常温循环性能。计算公式如下:(2) Cycling performance test at room temperature: At 25°C, the formed battery was charged to 4.35V with 1C constant current and constant voltage, and then discharged to 3.0V with 1C constant current. After 500 charge/discharge cycles, calculate the capacity retention rate of the 500th cycle to evaluate its normal temperature cycle performance. Calculated as follows:
第500次循环容量保持率(%)=(第500次循环放电容量/第一次循环放电容量)×100%;The 500th cycle capacity retention rate (%) = (500th cycle discharge capacity / first cycle discharge capacity) × 100%;
(3)高温储存性能:将化成后的电池在常温下用1C恒流恒压充至4.35V,测量电池初始放电容量,然后在60℃储存30天后,以1C放电至3.0V,测量电池的保持容量和恢复容量。计算公式如下:(3) High-temperature storage performance: charge the formed battery to 4.35V at room temperature with 1C constant current and constant voltage, measure the initial discharge capacity of the battery, and then store it at 60°C for 30 days, discharge it at 1C to 3.0V, and measure the battery capacity Maintain capacity and restore capacity. Calculated as follows:
电池容量保持率(%)=保持容量/初始容量×100%;Battery capacity retention rate (%) = retention capacity/initial capacity × 100%;
电池容量恢复率(%)=恢复容量/初始容量×100%。Battery capacity recovery rate (%)=recovered capacity/initial capacity×100%.
(4)低温放电性能测试:在25℃下,将化成后的电池用1C恒流恒压充至4.35V,然后用1C恒流放电至3.0V,记录放电容量。然后1C恒流恒压充满,置于-20℃的环境中搁置12h后,1C恒流放电至3.0V,记录放电容量。(4) Low-temperature discharge performance test: At 25°C, the formed battery was charged to 4.35V with 1C constant current and constant voltage, and then discharged to 3.0V with 1C constant current, and the discharge capacity was recorded. Then it was fully charged with 1C constant current and constant voltage, placed in an environment of -20°C for 12 hours, and then discharged to 3.0V with a constant current of 1C, and the discharge capacity was recorded.
-20℃的低温放电效率值=1C放电容量(-20℃)/1C放电容量(25℃)。Low temperature discharge efficiency value at -20°C = 1C discharge capacity (-20°C)/1C discharge capacity (25°C).
(5)常低温直流阻抗(DCIR)性能测试:在25℃下,将化成后的电池1C充电到半电状态,分别用0.1C,0.2C,0.5C,1C和2C充放十秒,分别记录充放电截止电压。然后,以不同倍率的充放电电流为横坐标(单位:A),以充放电电流所对应的截止电压为纵坐标,做线性关系图(单位:mV)。(5) Normal and low temperature direct current impedance (DCIR) performance test: At 25°C, charge the formed battery 1C to a half-charged state, charge and discharge it with 0.1C, 0.2C, 0.5C, 1C and 2C for ten seconds, respectively. Record the charge and discharge cut-off voltage. Then, take the charge and discharge current of different rates as the abscissa (unit: A), and take the cut-off voltage corresponding to the charge and discharge current as the ordinate to make a linear relationship diagram (unit: mV).
充电DCIR值=不同充电电流与相应截止电压的线性图的斜率值。Charging DCIR value = the slope value of the linear graph of different charging currents and corresponding cut-off voltages.
放电DCIR值=不同放电电流与相应截止电压的线性图的斜率值。Discharge DCIR value = the slope value of the linear graph of different discharge currents and corresponding cut-off voltages.
(6)另外,对将化成后的电池在0℃用0.3C充电后,测量负极的析锂程度,并采用5分制进行评估,分数越低,说明析锂越严重。具体的,5分表示不析锂、4表示较轻微析锂、3表示一般析锂、2表示较严重析锂、1表示严重析锂。(6) In addition, after charging the formed battery at 0°C with 0.3C, measure the degree of lithium deposition on the negative electrode, and use a 5-point scale for evaluation. The lower the score, the more serious the lithium deposition. Specifically, 5 points indicate no lithium analysis, 4 indicates slight lithium analysis, 3 indicates general lithium analysis, 2 indicates severe lithium analysis, and 1 indicates severe lithium analysis.
本例的所有测试结果如表3所示。All test results of this example are shown in Table 3.
实施例2-20Example 2-20
实施例2-20中,除了砜类化合物和不饱和磷酸酯类化合物的具体化合物,及其用量不同以外,其它均与实施例1相同。各实施例的具体化合物,及其用量如表2所示,其中用量是按照各物质占锂离子电池非水电解液总重量的百分比计算的。In Examples 2-20, except that the specific compounds of the sulfone compound and the unsaturated phosphoric acid ester compound, and the amount thereof are different, the others are the same as in Example 1. The specific compounds of each embodiment and their dosage are shown in Table 2, wherein the dosage is calculated according to the percentage of each substance accounting for the total weight of the non-aqueous electrolyte of the lithium-ion battery.
另外,本申请还设计了6个对比例,即对比例1-6,同样的,6个对比例与实施例1或其它实施例相比,也仅仅是添加的具体化合物和用量不同,其它均与实施例1相同。各对比例的具体化合物,及其用量如表2所示,同样的,其中用量是按照添加的物质占锂离子电池非水电解液总重量的百分比计算的。In addition, the present application has also designed 6 comparative examples, i.e. comparative examples 1-6. Similarly, compared with Example 1 or other examples, the 6 comparative examples are only different in the specific compound and dosage added, and the others are all Same as Example 1. The specific compounds and their dosages of each comparative example are shown in Table 2. Similarly, the dosages are calculated according to the percentage of the added substances in the total weight of the non-aqueous electrolyte of the lithium-ion battery.
表2各实施例和对比例的物质及其用量Table 2 each embodiment and the substance of comparative example and consumption thereof
表中,空白表示相应的实施例或对比例没有添加该对应的物质,三炔丙基磷酸酯即表1中的化合物1,二烯丙基乙基磷酸酯即表1中的化合物4。In the table, a blank indicates that the corresponding example or comparative example does not add the corresponding substance. Tripropargyl phosphate is the compound 1 in Table 1, and diallyl ethyl phosphate is the compound 4 in Table 1.
实施例1-20和对比例1-6的测试结果如表3所示。The test results of Examples 1-20 and Comparative Examples 1-6 are shown in Table 3.
表3各实施例和对比例的测试结果Table 3 each embodiment and the test result of comparative example
表2中,0℃0.3C充电,负极析锂程度测试中,5表示不析锂、4表示较轻微析锂、3表示一般析锂、2表示较严重析锂、1表示严重析锂。In Table 2, charging at 0°C and 0.3C, in the negative electrode lithium deposition test, 5 represents no lithium deposition, 4 represents slight lithium deposition, 3 represents normal lithium deposition, 2 represents severe lithium deposition, and 1 represents severe lithium deposition.
通过对比例1-6的测试结果对比,可以发现不饱和磷酸酯类化合物单独使用时,循环性能和高温存储较好,低温性能很差。砜类化合物单独使用时,循环性能和高温存储性能较差,低温性能较好。By comparing the test results of Comparative Examples 1-6, it can be found that when the unsaturated phosphate compound is used alone, the cycle performance and high-temperature storage are better, but the low-temperature performance is poor. When the sulfone compound is used alone, the cycle performance and high-temperature storage performance are poor, and the low-temperature performance is better.
而本申请的实施例1-20的测试结果中,通过对比例1和实施例3-5、8-13的对比,可以发现在不饱和磷酸酯类化合物基础上,添加砜类化合物,不仅仅低温性能能得到明显改善,同时循环性能和高温性能也有较明显改善。In the test results of Examples 1-20 of the present application, through the comparison of Comparative Example 1 and Examples 3-5, 8-13, it can be found that adding sulfone compounds on the basis of unsaturated phosphoric acid ester compounds, not only Low temperature performance can be significantly improved, while cycle performance and high temperature performance are also significantly improved.
同时,本申请的实施例1-20的测试结果中,相对于对比例1-6,可以发现同时包含不饱和磷酸酯类化合物和砜类化合物的所有实施例的高温性能和低温性能都有所改善。通过实施例4、6、7对比,17和19对比,随着不饱和磷酸酯类化合物的增加,其高温性能有所提高,但是低温性能相对下降,特别是阻抗,随着用量的增加,阻抗也随之增大。尤其当不饱和磷酸酯类化合物的含量高而砜类化合物含量较低时,低温性能明显不足。At the same time, in the test results of Examples 1-20 of the present application, compared with Comparative Examples 1-6, it can be found that the high-temperature performance and low-temperature performance of all examples containing unsaturated phosphoric acid ester compounds and sulfone compounds are different. improve. Through the comparison of Examples 4, 6, and 7, and the comparison between 17 and 19, with the increase of unsaturated phosphoric acid ester compounds, its high-temperature performance is improved, but the low-temperature performance is relatively reduced, especially the impedance. With the increase of the dosage, the impedance also increased. Especially when the content of unsaturated phosphate compounds is high and the content of sulfone compounds is low, the low temperature performance is obviously insufficient.
综上所述,本申请将不饱和磷酸酯类化合物和砜类化合物配合使用,在合适的比例下,可以使电池获得优良的高温性能和循环性能以及良好的低温性能。其中,在用量方面,不饱和磷酸酯类用量0.1%~2%,砜类化合物用量0.1%~30%都可以起到改善高低温性能和循环性能的效果;而在不饱和磷酸酯用量0.2%~1%、砜类化合物用量1~10%的情况下,效果更佳。To sum up, this application uses unsaturated phosphate compounds and sulfone compounds in combination, and in an appropriate ratio, the battery can obtain excellent high-temperature performance, cycle performance and good low-temperature performance. Among them, in terms of dosage, the dosage of unsaturated phosphates is 0.1% to 2%, and the dosage of sulfone compounds is 0.1% to 30%, which can improve the high and low temperature performance and cycle performance; The effect is better when the amount of sulfone compound is 1% to 10%.
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。The above content is a further detailed description of the present application in conjunction with specific implementation modes, and it cannot be considered that the specific implementation of the present application is limited to these descriptions. For those of ordinary skill in the technical field to which this application belongs, some simple deduction or substitutions can be made without departing from the concept of this application, which should be deemed to belong to the protection scope of this application.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910517222.3A CN110233292B (en) | 2015-07-08 | 2016-07-08 | Lithium-ion battery non-aqueous electrolyte and lithium-ion battery |
PCT/CN2016/113008 WO2018006563A1 (en) | 2015-07-08 | 2016-12-29 | Non-aqueous electrolyte solution for lithium-ion battery and lithium-ion battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2015103977357 | 2015-07-08 | ||
CN201510397735.7A CN105140561A (en) | 2015-07-08 | 2015-07-08 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910517222.3A Division CN110233292B (en) | 2015-07-08 | 2016-07-08 | Lithium-ion battery non-aqueous electrolyte and lithium-ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106340672A true CN106340672A (en) | 2017-01-18 |
Family
ID=54725833
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510397735.7A Pending CN105140561A (en) | 2015-07-08 | 2015-07-08 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
CN201610538401.1A Pending CN106340672A (en) | 2015-07-08 | 2016-07-08 | Lithium ion battery non-aqueous electrolyte and lithium ion battery |
CN201910517222.3A Active CN110233292B (en) | 2015-07-08 | 2016-07-08 | Lithium-ion battery non-aqueous electrolyte and lithium-ion battery |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510397735.7A Pending CN105140561A (en) | 2015-07-08 | 2015-07-08 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910517222.3A Active CN110233292B (en) | 2015-07-08 | 2016-07-08 | Lithium-ion battery non-aqueous electrolyte and lithium-ion battery |
Country Status (2)
Country | Link |
---|---|
CN (3) | CN105140561A (en) |
WO (2) | WO2017004885A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108470939A (en) * | 2018-03-31 | 2018-08-31 | 广东天劲新能源科技股份有限公司 | A kind of heat safe electrolyte of big multiplying power and lithium ion battery |
WO2018209752A1 (en) * | 2017-05-17 | 2018-11-22 | 深圳新宙邦科技股份有限公司 | Lithium ion battery nonaqueous electrolyte and lithium ion battery |
CN110148785A (en) * | 2019-05-29 | 2019-08-20 | 珠海冠宇电池有限公司 | A kind of electrolyte and lithium ion battery being adapted to silicon-carbon cathode |
CN110649317A (en) * | 2019-08-29 | 2020-01-03 | 孚能科技(赣州)股份有限公司 | Silicon-based lithium ion battery electrolyte and lithium ion secondary battery |
CN110911743A (en) * | 2018-09-14 | 2020-03-24 | 多氟多化工股份有限公司 | Lithium ion battery electrolyte additive, lithium ion battery electrolyte and lithium ion battery |
WO2020063887A1 (en) * | 2018-09-28 | 2020-04-02 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and apparatus |
WO2020063883A1 (en) * | 2018-09-28 | 2020-04-02 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte, lithium ion battery, battery module, battery pack, and device |
WO2020063886A1 (en) * | 2018-09-28 | 2020-04-02 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and device |
CN112234252A (en) * | 2019-07-15 | 2021-01-15 | 杉杉新材料(衢州)有限公司 | Wide-temperature-range lithium ion battery non-aqueous electrolyte for high voltage and lithium ion battery |
CN113937252A (en) * | 2021-10-11 | 2022-01-14 | 西北工业大学 | Laser-assisted construction method for anode interface layer |
CN114583260A (en) * | 2022-03-09 | 2022-06-03 | 蜂巢能源科技股份有限公司 | A kind of lithium ion battery electrolyte, liquid injection method and lithium ion battery |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105140561A (en) * | 2015-07-08 | 2015-12-09 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
CN105655644B (en) * | 2015-12-29 | 2019-01-22 | 东莞新能源科技有限公司 | Lithium ion battery and preparation method thereof |
JP6838363B2 (en) * | 2016-05-16 | 2021-03-03 | 宇部興産株式会社 | Non-aqueous electrolyte and storage device using it |
CN105958120B (en) * | 2016-06-28 | 2019-05-21 | 宁德时代新能源科技股份有限公司 | Electrolyte and lithium ion battery using same |
CN109037777A (en) * | 2017-06-12 | 2018-12-18 | 宁德时代新能源科技股份有限公司 | Lithium ion battery |
CN109216783B (en) * | 2017-06-29 | 2020-09-15 | 比亚迪股份有限公司 | Film-forming additive composition for lithium ion battery, non-aqueous electrolyte and lithium ion battery |
CN110911744B (en) * | 2018-09-17 | 2021-09-17 | 深圳新宙邦科技股份有限公司 | Lithium ion battery non-aqueous electrolyte and lithium ion battery |
CN110970658B (en) * | 2018-09-28 | 2021-08-06 | 宁德时代新能源科技股份有限公司 | Lithium ion battery |
CN110970659B (en) * | 2018-09-28 | 2021-03-09 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte and lithium ion battery |
CN109888421A (en) * | 2019-03-06 | 2019-06-14 | 李壮 | A kind of chemical synthesizing method of low self-discharge lithium ion battery |
CN110931869B (en) * | 2019-12-02 | 2022-05-27 | 广州天赐高新材料股份有限公司 | High-temperature lithium secondary battery electrolyte and battery |
CN111129610A (en) * | 2019-12-30 | 2020-05-08 | 成都市银隆新能源有限公司 | A kind of lithium-ion battery formation method |
CN111443123A (en) * | 2020-04-03 | 2020-07-24 | 河南华瑞高新材料有限公司 | Method for rapidly judging performance of lithium salt and additive in electrolyte |
CN113764728B (en) * | 2020-06-01 | 2023-11-14 | 比亚迪股份有限公司 | Electrolyte and lithium metal battery |
CN111883829B (en) * | 2020-07-24 | 2023-09-01 | 香河昆仑新能源材料股份有限公司 | A kind of lithium-ion battery non-aqueous electrolyte and lithium-ion battery |
CN114335740B (en) * | 2021-12-29 | 2023-07-28 | 湖北亿纬动力有限公司 | Formation method of lithium ion battery and lithium ion battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103107363A (en) * | 2013-01-31 | 2013-05-15 | 深圳新宙邦科技股份有限公司 | Non-water electrolysis solution of lithium ion battery and corresponding lithium ion battery thereof |
CN103151559A (en) * | 2013-02-05 | 2013-06-12 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte solution for lithium ion battery and corresponding lithium ion battery |
CN103594729A (en) * | 2013-11-28 | 2014-02-19 | 深圳新宙邦科技股份有限公司 | Electrolyte for lithium ion battery |
WO2014080871A1 (en) * | 2012-11-20 | 2014-05-30 | 日本電気株式会社 | Lithium ion secondary battery |
CN104300174A (en) * | 2014-10-11 | 2015-01-21 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
CN105140561A (en) * | 2015-07-08 | 2015-12-09 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8252465B2 (en) * | 2001-01-19 | 2012-08-28 | Samsung Sdi Co., Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
JP4236390B2 (en) * | 2001-04-19 | 2009-03-11 | 三洋電機株式会社 | Lithium secondary battery |
CN100444456C (en) * | 2004-05-11 | 2008-12-17 | 比亚迪股份有限公司 | Non-aqueous electrolyte and secondary battery of lithium |
JP5098280B2 (en) * | 2006-07-13 | 2012-12-12 | ソニー株式会社 | Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery |
WO2008133112A1 (en) * | 2007-04-20 | 2008-11-06 | Ube Industries, Ltd. | Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same |
JP5631111B2 (en) * | 2009-09-07 | 2014-11-26 | 株式会社デンソー | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte |
JP5506030B2 (en) * | 2009-12-09 | 2014-05-28 | 株式会社デンソー | Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery using the electrolyte |
CN104409766B (en) * | 2010-02-03 | 2017-04-12 | 宇部兴产株式会社 | Non-aqueous electrolytic solution, electrochemical element using same, and alkynyl compound used therefor |
JP5659676B2 (en) * | 2010-10-12 | 2015-01-28 | 三菱化学株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
KR20140036148A (en) * | 2011-01-31 | 2014-03-25 | 미쓰비시 가가꾸 가부시키가이샤 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same |
EP2683011B1 (en) * | 2011-03-04 | 2018-02-28 | Denso Corporation | Nonaqueous electrolyte solution for batteries, and nonaqueous electrolyte secondary battery using same |
CN103947030A (en) * | 2011-11-16 | 2014-07-23 | 株式会社Lg化学 | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same |
CN104488053B (en) * | 2012-07-26 | 2018-06-29 | 株式会社艾迪科 | Electrical storage device |
JP2014049294A (en) * | 2012-08-31 | 2014-03-17 | Tdk Corp | Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery |
CN103413970B (en) * | 2013-08-06 | 2016-06-22 | 朝阳光达化工有限公司 | Low-temperature type carbonic ester lithium battery electrolyte |
CN103730263A (en) * | 2013-12-27 | 2014-04-16 | 深圳新宙邦科技股份有限公司 | Organic electrolytic solution for super capacitor and super capacitor |
-
2015
- 2015-07-08 CN CN201510397735.7A patent/CN105140561A/en active Pending
- 2015-09-08 WO PCT/CN2015/089164 patent/WO2017004885A1/en active Application Filing
-
2016
- 2016-07-08 CN CN201610538401.1A patent/CN106340672A/en active Pending
- 2016-07-08 CN CN201910517222.3A patent/CN110233292B/en active Active
- 2016-12-29 WO PCT/CN2016/113008 patent/WO2018006563A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014080871A1 (en) * | 2012-11-20 | 2014-05-30 | 日本電気株式会社 | Lithium ion secondary battery |
CN103107363A (en) * | 2013-01-31 | 2013-05-15 | 深圳新宙邦科技股份有限公司 | Non-water electrolysis solution of lithium ion battery and corresponding lithium ion battery thereof |
CN103151559A (en) * | 2013-02-05 | 2013-06-12 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte solution for lithium ion battery and corresponding lithium ion battery |
CN103594729A (en) * | 2013-11-28 | 2014-02-19 | 深圳新宙邦科技股份有限公司 | Electrolyte for lithium ion battery |
CN104300174A (en) * | 2014-10-11 | 2015-01-21 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
CN105140561A (en) * | 2015-07-08 | 2015-12-09 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018209752A1 (en) * | 2017-05-17 | 2018-11-22 | 深圳新宙邦科技股份有限公司 | Lithium ion battery nonaqueous electrolyte and lithium ion battery |
CN108470939A (en) * | 2018-03-31 | 2018-08-31 | 广东天劲新能源科技股份有限公司 | A kind of heat safe electrolyte of big multiplying power and lithium ion battery |
CN110911743A (en) * | 2018-09-14 | 2020-03-24 | 多氟多化工股份有限公司 | Lithium ion battery electrolyte additive, lithium ion battery electrolyte and lithium ion battery |
CN110970661A (en) * | 2018-09-28 | 2020-04-07 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte and lithium ion battery |
WO2020063887A1 (en) * | 2018-09-28 | 2020-04-02 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and apparatus |
WO2020063883A1 (en) * | 2018-09-28 | 2020-04-02 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte, lithium ion battery, battery module, battery pack, and device |
WO2020063886A1 (en) * | 2018-09-28 | 2020-04-02 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and device |
CN110970652A (en) * | 2018-09-28 | 2020-04-07 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte and lithium ion battery |
US11949073B2 (en) | 2018-09-28 | 2024-04-02 | Contemporaty Amperex Technology Co., Limited | Nonaqueous electrolytic solution, lithium-ion battery, battery module, battery pack, and apparatus |
US12107227B2 (en) | 2018-09-28 | 2024-10-01 | Contemporary Amperex Technology Co., Limited | Nonaqueous electrolyte, lithium-ion battery, battery module, battery pack, and apparatus |
CN110148785A (en) * | 2019-05-29 | 2019-08-20 | 珠海冠宇电池有限公司 | A kind of electrolyte and lithium ion battery being adapted to silicon-carbon cathode |
CN112234252A (en) * | 2019-07-15 | 2021-01-15 | 杉杉新材料(衢州)有限公司 | Wide-temperature-range lithium ion battery non-aqueous electrolyte for high voltage and lithium ion battery |
CN110649317A (en) * | 2019-08-29 | 2020-01-03 | 孚能科技(赣州)股份有限公司 | Silicon-based lithium ion battery electrolyte and lithium ion secondary battery |
CN113937252A (en) * | 2021-10-11 | 2022-01-14 | 西北工业大学 | Laser-assisted construction method for anode interface layer |
CN114583260A (en) * | 2022-03-09 | 2022-06-03 | 蜂巢能源科技股份有限公司 | A kind of lithium ion battery electrolyte, liquid injection method and lithium ion battery |
CN114583260B (en) * | 2022-03-09 | 2023-09-12 | 蜂巢能源科技股份有限公司 | Lithium ion battery electrolyte, liquid injection method and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
CN110233292B (en) | 2021-02-12 |
WO2018006563A1 (en) | 2018-01-11 |
CN105140561A (en) | 2015-12-09 |
CN110233292A (en) | 2019-09-13 |
WO2017004885A1 (en) | 2017-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106340672A (en) | Lithium ion battery non-aqueous electrolyte and lithium ion battery | |
CN104617333B (en) | A kind of nonaqueous electrolytic solution and lithium rechargeable battery | |
US11757132B2 (en) | Non-aqueous electrolyte for lithium-ion battery and lithium-ion battery | |
CN104269577A (en) | High-voltage lithium ion battery and electrolyte thereof | |
JP2022551957A (en) | Battery electrolyte additive, lithium ion battery electrolyte and lithium ion battery | |
CN108847501B (en) | A lithium ion battery non-aqueous electrolyte and lithium ion battery | |
CN109585921B (en) | A lithium ion battery non-aqueous electrolyte and lithium ion battery | |
CN105161763A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN108110318B (en) | Non-aqueous electrolyte for lithium ion battery and lithium ion battery | |
CN112993408B (en) | Electrolyte, preparation method thereof, lithium ion battery and electric vehicle | |
CN105336987A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN105789698B (en) | A lithium ion battery non-aqueous electrolyte and lithium ion battery | |
CN108110317A (en) | A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery | |
CN105140566A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN105226324A (en) | A kind of high-voltage electrolytic solution and lithium-ion battery using the electrolytic solution | |
WO2018094818A1 (en) | Non-aqueous electrolyte of lithium-ion battery and lithium-ion battery | |
JP2018513542A (en) | Non-aqueous electrolyte for lithium ion battery and lithium ion battery | |
CN115377497A (en) | Cobalt-free lithium ion battery electrolyte and cobalt-free lithium ion battery containing same | |
CN105140565A (en) | Nonaqueous electrolyte for high-voltage lithium-ion battery and lithium-ion battery | |
CN117691182A (en) | A kind of sodium ion secondary battery | |
WO2023000889A1 (en) | Non-aqueous electrolyte and lithium-ion battery | |
CN117895083A (en) | Electrolyte and sodium ion battery | |
CN116845382A (en) | A highly stable sodium-ion battery | |
CN114142085A (en) | Non-aqueous electrolyte for lithium ion battery, lithium ion battery and preparation method thereof | |
WO2020135668A1 (en) | Non-aqueous electrolyte for lithium-ion battery, and lithium-ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170118 |