CN104617333B - A kind of nonaqueous electrolytic solution and lithium rechargeable battery - Google Patents
A kind of nonaqueous electrolytic solution and lithium rechargeable battery Download PDFInfo
- Publication number
- CN104617333B CN104617333B CN201510004643.8A CN201510004643A CN104617333B CN 104617333 B CN104617333 B CN 104617333B CN 201510004643 A CN201510004643 A CN 201510004643A CN 104617333 B CN104617333 B CN 104617333B
- Authority
- CN
- China
- Prior art keywords
- lithium
- carbonate
- electrolyte
- battery
- structural formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000008151 electrolyte solution Substances 0.000 title claims abstract description 16
- 229910052744 lithium Inorganic materials 0.000 title claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 30
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical class O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims abstract description 26
- IZDROVVXIHRYMH-UHFFFAOYSA-N methanesulfonic anhydride Chemical compound CS(=O)(=O)OS(C)(=O)=O IZDROVVXIHRYMH-UHFFFAOYSA-N 0.000 claims abstract description 25
- -1 methylene vinyl Chemical group 0.000 claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims abstract description 22
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 10
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 9
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 9
- PACOTQGTEZMTOT-UHFFFAOYSA-N bis(ethenyl) carbonate Chemical class C=COC(=O)OC=C PACOTQGTEZMTOT-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011356 non-aqueous organic solvent Substances 0.000 claims abstract description 7
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 5
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 5
- 150000002367 halogens Chemical class 0.000 claims abstract description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 5
- 239000003792 electrolyte Substances 0.000 claims description 35
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052712 strontium Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 claims description 5
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical group O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 4
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 claims description 3
- IFDLFCDWOFLKEB-UHFFFAOYSA-N 2-methylbutylbenzene Chemical compound CCC(C)CC1=CC=CC=C1 IFDLFCDWOFLKEB-UHFFFAOYSA-N 0.000 claims description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 3
- 229910011297 LiCox Inorganic materials 0.000 claims description 3
- 229910010753 LiFex Inorganic materials 0.000 claims description 3
- 229910013716 LiNi Inorganic materials 0.000 claims description 3
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 claims description 3
- 239000011149 active material Substances 0.000 claims description 3
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 3
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 3
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 3
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 claims description 3
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 claims description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 3
- 150000003949 imides Chemical class 0.000 claims 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims 1
- 238000003860 storage Methods 0.000 abstract description 6
- 239000000654 additive Substances 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 13
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 239000007774 positive electrode material Substances 0.000 description 10
- 239000002000 Electrolyte additive Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229910014422 LiNi1/3Mn1/3Co1/3O2 Inorganic materials 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 150000008064 anhydrides Chemical class 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- SVTMLGIQJHGGFK-UHFFFAOYSA-N carbonic acid;propa-1,2-diene Chemical compound C=C=C.OC(O)=O SVTMLGIQJHGGFK-UHFFFAOYSA-N 0.000 description 5
- 238000010277 constant-current charging Methods 0.000 description 5
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 5
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000010406 cathode material Substances 0.000 description 4
- 238000007600 charging Methods 0.000 description 4
- 239000011267 electrode slurry Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- AVPYLKIIPLFMHQ-UHFFFAOYSA-N 1,2,6-oxadithiane 2,2,6,6-tetraoxide Chemical compound O=S1(=O)CCCS(=O)(=O)O1 AVPYLKIIPLFMHQ-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910012748 LiNi0.5Mn0.3Co0.2O2 Inorganic materials 0.000 description 1
- 229910015965 LiNi0.8Mn0.1Co0.1O2 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- IZJSTXINDUKPRP-UHFFFAOYSA-N aluminum lead Chemical compound [Al].[Pb] IZJSTXINDUKPRP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- XDMKGKXXTFENKL-UHFFFAOYSA-N butane;pentylsulfonyl pentane-1-sulfonate Chemical compound CCCC.CCCCCS(=O)(=O)OS(=O)(=O)CCCCC XDMKGKXXTFENKL-UHFFFAOYSA-N 0.000 description 1
- HXJNXHRCVBYKFI-UHFFFAOYSA-N butylsulfonyl butane-1-sulfonate Chemical compound CCCCS(=O)(=O)OS(=O)(=O)CCCC HXJNXHRCVBYKFI-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种非水电解液及锂离子二次电池,所述非水电解液包含非水有机溶剂、锂盐及以下的(A)和(B):(A)结构式1所示的甲基磺酸酐;(B)选自结构式2所示的碳酸亚乙烯酯化合物、结构式3所示的亚甲基碳酸乙烯酯化合物、结构式4所示的乙烯基碳酸乙烯酯化合物的至少一种化合物;其中,结构式2、3、4中,R1~R12各自独立地选自氢原子、卤素或碳原子数为1~5的烷基。本发明的非水电解液用于锂离子二次电池中,一方面能在电池负极形成良好的SEI膜,另一方面能降低电池阻抗,从而使得锂离子二次电池具有良好的充放电循环特性和低温性能以及高温存储性能。The invention discloses a non-aqueous electrolytic solution and a lithium ion secondary battery. The non-aqueous electrolytic solution includes a non-aqueous organic solvent, a lithium salt and the following (A) and (B): (A) represented by structural formula 1 Methanesulfonic anhydride; (B) at least one compound selected from vinylene carbonate compounds shown in structural formula 2, methylene vinyl carbonate compounds shown in structural formula 3, and vinyl vinyl carbonate compounds shown in structural formula 4 ; Wherein, in structural formulas 2, 3, and 4, R 1 to R 12 are each independently selected from a hydrogen atom, a halogen, or an alkyl group with 1 to 5 carbon atoms. The non-aqueous electrolyte solution of the present invention is used in lithium-ion secondary batteries, on the one hand, it can form a good SEI film on the negative electrode of the battery, and on the other hand, it can reduce the battery impedance, so that the lithium-ion secondary battery has good charge-discharge cycle characteristics And low temperature performance and high temperature storage performance.
Description
技术领域technical field
本发明涉及锂离子电池电解液技术领域,更具体地说,涉及一种可用于锂离子二次电池中的非水电解液及使用该非水电解液的锂离子二次电池。The invention relates to the technical field of lithium-ion battery electrolyte, and more specifically, relates to a non-aqueous electrolyte that can be used in lithium-ion secondary batteries and a lithium-ion secondary battery using the non-aqueous electrolyte.
背景技术Background technique
锂离子电池与其他电池相比,具有质量轻、体积小、工作电压高、能量密度高、输出功率大、充电效率高、无记忆效应和循环寿命长等优点,目前已经成为了3C电池和动力汽车电池的首选。在过去十年,3C电池的稳定增长带动了锂电池行业的快速发展。3C领域的锂离子二次电池,要求具有比能量密度高、循环性能和高温性能好的特点;而在动力汽车领域,动力锂离子电池要求具有优异的高低温性能、长寿命循环性能、长期存储性能和安全性能的特点。Compared with other batteries, lithium-ion batteries have the advantages of light weight, small size, high working voltage, high energy density, high output power, high charging efficiency, no memory effect and long cycle life. At present, lithium-ion batteries have become 3C batteries and power The first choice for car batteries. In the past ten years, the steady growth of 3C batteries has driven the rapid development of the lithium battery industry. Lithium-ion secondary batteries in the 3C field are required to have the characteristics of high specific energy density, good cycle performance and high temperature performance; while in the field of power vehicles, power lithium-ion batteries are required to have excellent high and low temperature performance, long-life cycle performance, and long-term storage. Features for performance and safety features.
钴酸锂材料因其高的比能量密度和良好的循环性能,一直是3C领域锂离子电池的首选正极材料,但钴酸锂作为正极材料的缺点是其安全性差,且价格高。三元镍钴锰材料和磷酸铁锂材料因其优良的循环性能和安全性成为目前动力锂离子电池的主流正极材料;三元材料动力锂离子电池具有能量密度高,常温循环和低温性能优良,安全性好的优点,缺点是高温性能不足;磷酸铁锂材料动力锂离子电池具有循环性能和高温性能优异,安全性优异的优点,缺点是低温性能不足,能量密度较低。无论对于哪种材料的锂离子电池,电解液是影响电池各项电化学性能的关键因素,特别地,电解液中的添加剂对电池的各项性能发挥尤其重要。Lithium cobalt oxide material has always been the preferred cathode material for lithium-ion batteries in the 3C field because of its high specific energy density and good cycle performance. However, the disadvantage of lithium cobalt oxide as a cathode material is its poor safety and high price. Ternary nickel-cobalt-manganese materials and lithium iron phosphate materials have become the mainstream cathode materials for power lithium-ion batteries due to their excellent cycle performance and safety; ternary material power lithium-ion batteries have high energy density, excellent normal temperature cycle and low temperature performance, The advantages of good safety are the disadvantages of insufficient high-temperature performance; lithium iron phosphate power lithium-ion batteries have the advantages of excellent cycle performance and high-temperature performance, and excellent safety, but the disadvantages are insufficient low-temperature performance and low energy density. No matter what kind of lithium-ion battery is made of, the electrolyte is a key factor affecting the electrochemical performance of the battery. In particular, the additives in the electrolyte are particularly important for the performance of the battery.
目前3C领域普遍使用的是钴酸锂电池,而且越来越多的使用高电压钴酸锂电池。随着锂离子电池的能量密度要求不断提高,电池越来越要求高容量化,这就要求电池的正、负极面密度和压实密度不断提高,随之带来的就是电池的阻抗不断增大。At present, lithium cobalt oxide batteries are commonly used in the 3C field, and more and more high-voltage lithium cobalt oxide batteries are used. With the continuous improvement of the energy density requirements of lithium-ion batteries, the batteries are increasingly required to be high-capacity, which requires the continuous increase of the positive and negative surface density and compaction density of the battery, and the resulting increase in the impedance of the battery .
而在动力锂离子电池领域,为了保证优异的循环性能,电解液中一般会选择碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯或乙烯基碳酸乙烯酯等作为成膜添加剂。因为这三类添加剂在电池首次充电时,能在石墨负极形成优良的SEI膜,该SEI膜致密性好,热稳定性好,能明显抑制电解液在负极的还原分解,大大提高了循环过程中负极的稳定性,从而大大提高了电池的循环寿命,特别是高温下的循环寿命。但这类成膜添加剂在使用时,也有明显的缺点,就是其分解所形成的SEI膜阻抗较大,直接导致了电池直流内阻(DCIR)的增大和低温性能的明显劣化,且这两个性能会随着成膜添加剂含量的提高,劣化更明显。因此,在动力电池中,使用碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯等添加剂来改善循环的同时,要解决这些添加剂所带来的高阻抗的问题。In the field of power lithium-ion batteries, in order to ensure excellent cycle performance, vinylene carbonate (VC), methylene ethylene carbonate or vinyl ethylene carbonate are generally selected as film-forming additives in the electrolyte. Because these three types of additives can form an excellent SEI film on the graphite negative electrode when the battery is first charged. The stability of the negative electrode greatly improves the cycle life of the battery, especially the cycle life at high temperature. However, when this kind of film-forming additive is used, it also has obvious disadvantages, that is, the resistance of the SEI film formed by its decomposition is relatively large, which directly leads to the increase of the DC internal resistance (DCIR) of the battery and the obvious deterioration of low-temperature performance. The performance will deteriorate more obviously with the increase of film-forming additive content. Therefore, in the power battery, while using additives such as vinylene carbonate (VC), methylene vinyl carbonate and vinyl vinyl carbonate to improve the cycle, it is necessary to solve the problem of high impedance caused by these additives.
为了解决3C领域小电芯因高容量所带来的高阻抗问题和动力电池领域电解液因使用VC、亚甲基碳酸乙烯酯、乙烯基碳酸乙烯酯等所带来的高阻抗问题,需要在这两个领域的电池电解液体系中使用能降低阻抗的添加剂。电解液中使用降低阻抗添加剂,可以降低电池的阻抗,降低充放电过程中的DCIR,提高低温性能,高温性能和循环性能。In order to solve the high impedance problem caused by the high capacity of small batteries in the 3C field and the high impedance problem caused by the use of VC, methylene vinyl carbonate, vinyl vinyl carbonate, etc. in the power battery field electrolyte, it is necessary to Additives that reduce impedance are used in battery electrolyte systems in both fields. The use of impedance-reducing additives in the electrolyte can reduce the impedance of the battery, reduce the DCIR during charge and discharge, and improve low-temperature performance, high-temperature performance and cycle performance.
发明内容Contents of the invention
本发明提供一种可用于锂离子二次电池中的非水电解液,该非水电解液的常温和高温循环性能优良、阻抗较低、低温性能和高温性能良好;并在此基础上,提供一种使用该非水电解液的锂离子二次电池,其具有优良的综合性能。The invention provides a non-aqueous electrolytic solution which can be used in lithium-ion secondary batteries. The non-aqueous electrolytic solution has excellent cycle performance at room temperature and high temperature, low impedance, good low-temperature performance and high-temperature performance; and on this basis, provides A lithium ion secondary battery using the non-aqueous electrolyte has excellent comprehensive performance.
根据本发明的第一方面,本发明提供一种锂离子二次电池非水电解液,包含非水有机溶剂、锂盐,还包含以下的(A)和(B):According to the first aspect of the present invention, the present invention provides a kind of non-aqueous electrolytic solution of lithium-ion secondary battery, comprises non-aqueous organic solvent, lithium salt, also comprises following (A) and (B):
(A)结构式1所示的甲基磺酸酐;(A) methanesulfonic anhydride shown in structural formula 1;
(B)选自结构式2所示的碳酸亚乙烯酯化合物、结构式3所示的亚甲基碳酸乙烯酯化合物、结构式4所示的乙烯基碳酸乙烯酯化合物的至少一种化合物;(B) at least one compound selected from vinylene carbonate compounds shown in structural formula 2, methylene vinyl carbonate compounds shown in structural formula 3, and vinyl vinyl carbonate compounds shown in structural formula 4;
其中,结构式2、3、4中,R1~R12各自独立地选自氢原子、卤素或碳原子数为1~5的烷基。Wherein, in structural formulas 2, 3, and 4, R 1 to R 12 are each independently selected from a hydrogen atom, a halogen, or an alkyl group with 1 to 5 carbon atoms.
作为本发明的优选方案,所述(A)占电解液总重量的0.1%-5%。As a preferred solution of the present invention, the (A) accounts for 0.1%-5% of the total weight of the electrolyte.
作为本发明的优选方案,所述(B)占电解液总重量的0.2%-5%。As a preferred solution of the present invention, the (B) accounts for 0.2%-5% of the total weight of the electrolyte.
作为本发明的优选方案,所述(A)占电解液的总重量与(B)占电解液的总重量之间的比值大于或等于0.2。As a preferred solution of the present invention, the ratio between (A) accounting for the total weight of the electrolyte and (B) accounting for the total weight of the electrolyte is greater than or equal to 0.2.
作为本发明的优选方案,所述(B)为碳酸亚乙烯酯、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯中的至少一种化合物。As a preferred solution of the present invention, the (B) is at least one compound selected from vinylene carbonate, methylene vinyl carbonate and vinyl vinyl carbonate.
作为本发明的优选方案,还包括1,3-丙烷磺内酯、1,4-丁烷磺内酯和1,3-丙烯磺内酯中的至少一种化合物。As a preferred solution of the present invention, at least one compound of 1,3-propane sultone, 1,4-butane sultone and 1,3-propene sultone is also included.
作为本发明的优选方案,所述非水有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上。As a preferred version of the present invention, the non-aqueous organic solvent is selected from one of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and propyl methyl carbonate species or two or more.
作为本发明的优选方案,所述锂盐选自六氟磷酸锂、高氯酸锂、四氟硼酸锂、双氟草酸硼酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂盐中的一种或两种以上。As a preferred version of the present invention, the lithium salt is selected from lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide and bisfluorosulfonimide One or more than two kinds of lithium salts.
根据本发明的第二方面,本发明提供一种锂离子二次电池,包括正极、负极和置于正极与负极之间的隔膜,还包括第一方面所述的非水电解液。According to the second aspect of the present invention, the present invention provides a lithium ion secondary battery, comprising a positive electrode, a negative electrode, and a separator placed between the positive electrode and the negative electrode, and also includes the non-aqueous electrolyte described in the first aspect.
作为本发明的优选方案,所述正极的活性物质的结构式选自:As a preferred version of the present invention, the structural formula of the active material of the positive electrode is selected from:
LiNixCoyMnzL(1-x-y-z)O2,其中,0.2≤x≤0.8,0≤y≤0.8,0≤z≤0.8,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe;或LiFexMn1-xPO4,其中,0<x≤1;或LiCoxM1-xO2,其中,0<x≤1,M为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe。LiNi x Co y Mn z L (1-xyz) O 2 , where, 0.2≤x≤0.8, 0≤y≤0.8, 0≤z≤0.8, L is Al, Sr, Mg, Ti, Ca, Zr, Zn , Si or Fe; or LiFex Mn 1-x PO 4 , where 0<x≤1; or LiCox M 1-x O 2 , where 0<x≤1, M is Al, Sr, Mg, Ti , Ca, Zr, Zn, Si or Fe.
本发明的非水电解液中含有甲基磺酸酐,可以在负极形成SEI膜,并且所形成的SEI膜阻抗较低,保证锂离子电池获得优良的低温性能和高温性能;电解液中的VC、亚甲基碳酸乙烯酯或乙烯基碳酸乙烯酯等能够在负极形成优良的SEI膜,保证锂离子电池获得优良的常温和高温循环性能,因此本发明的非水电解液具有使锂离子电池获得优良的循环性能、较低的阻抗、优良的低温性能和高温性能的有益效果。The nonaqueous electrolytic solution of the present invention contains methanesulfonic anhydride, which can form an SEI film at the negative electrode, and the formed SEI film has low impedance, ensuring that the lithium-ion battery obtains excellent low-temperature performance and high-temperature performance; VC, Methylene ethylene carbonate or vinyl ethylene carbonate etc. can form excellent SEI film at negative electrode, guarantee that lithium-ion battery obtains excellent room temperature and high-temperature cycle performance, so nonaqueous electrolytic solution of the present invention has the ability to make lithium-ion battery obtain excellent The beneficial effects of excellent cycle performance, lower impedance, excellent low temperature performance and high temperature performance.
需要特别指出的是,在申请号为CN200610088591.8的专利中,采用磺酸酐作为电解液添加剂在4.35V三元镍钴锰电池中的使用,所使用的磺酸酐为丁烷磺酸酐和丁烷戊烷磺酸酐,指出它们的作用是抑制电池的内部产气,提高电池的高温性能。此外,在专利号JP3760539中有特别提到磺酸酐类添加剂可以有效形成SEI膜,抑制电解液在负极的分解,改善电池的循环性能。这些专利中提及的磺酸酐一般都是用于提高高温性能和循环性能,并没有提及到磺酸酐降低阻抗的作用,更没有提及使用甲基磺酸酐来降低阻抗、改善电池性能的案例。本发明与专利CN200610088591.8和JP3760539所不同的是,在于创新性的选择甲基磺酸酐作为锂电池电解液添加剂,降低了电池阻抗,并且在磺酸酐的同类物质中,只有甲基磺酸酐具有降低电池阻抗的效果,因为甲基磺酸酐的有机基团最小。电解液中使用甲基磺酸酐作为添加剂,不仅可以降低电池阻抗,而且还改善电池的高低温性能和循环性能,特别是高温循环性能。It should be pointed out that in the patent application number CN200610088591.8, sulfonic anhydride is used as an electrolyte additive in a 4.35V ternary nickel-cobalt-manganese battery, and the sulfonic anhydride used is butanesulfonic anhydride and butane Pentanesulfonic anhydride points out that their function is to suppress the internal gas production of the battery and improve the high temperature performance of the battery. In addition, it is specifically mentioned in Patent No. JP3760539 that sulfonic anhydride additives can effectively form an SEI film, inhibit the decomposition of the electrolyte at the negative electrode, and improve the cycle performance of the battery. The sulfonic anhydrides mentioned in these patents are generally used to improve high temperature performance and cycle performance, and there is no mention of the effect of sulfonic anhydride on reducing impedance, let alone the use of methanesulfonic anhydride to reduce impedance and improve battery performance. . The difference between the present invention and patents CN200610088591.8 and JP3760539 lies in the innovative selection of methylsulfonic anhydride as the electrolyte additive of lithium batteries, which reduces the battery impedance, and among similar substances of sulfonic anhydride, only methylsulfonic anhydride has The effect of reducing the impedance of the battery, because the organic group of methanesulfonic anhydride is the smallest. The use of methanesulfonic anhydride as an additive in the electrolyte can not only reduce the battery impedance, but also improve the high and low temperature performance and cycle performance of the battery, especially the high temperature cycle performance.
具体实施方式detailed description
为使本发明的目的、内容和效果更加清楚明了,以下通过具体实施方式对本发明进行详细描述。In order to make the object, content and effect of the present invention clearer, the present invention will be described in detail below through specific embodiments.
本发明的关键在于,发明人将甲基磺酸酐加入含有碳酸亚乙烯酯等添加剂的非水电解液中后,惊奇地发现甲基磺酸酐能够显著地降低由碳酸亚乙烯酯等添加剂带来的电池阻抗较高的问题。也就是说,发明人通过将甲基磺酸酐与碳酸亚乙烯酯等添加剂组合使用,制得了一种能降低电池阻抗的非水电解液,在保证电池优良的循环性能的同时,获得优良的低温性能和高温性能。The key of the present invention is, after the contriver adds methylsulfonic acid anhydride in the non-aqueous electrolytic solution that contains additives such as vinylene carbonate, finds surprisingly that methylsulfonic anhydride can significantly reduce by the additives such as vinylene carbonate. High battery impedance problem. That is to say, the inventor has prepared a non-aqueous electrolyte solution that can reduce the impedance of the battery by combining the use of additives such as methanesulfonic anhydride and vinylene carbonate. While ensuring the excellent cycle performance of the battery, an excellent low temperature performance and high temperature performance.
本发明的一个实施方案中的非水电解液,包含非水有机溶剂、锂盐及如下化合物(A)和(B):The non-aqueous electrolytic solution in one embodiment of the present invention comprises non-aqueous organic solvent, lithium salt and following compounds (A) and (B):
(A)结构式1所示的甲基磺酸酐;(A) methanesulfonic anhydride shown in structural formula 1;
(B)选自结构式2所示的碳酸亚乙烯酯化合物、结构式3所示的亚甲基碳酸乙烯酯化合物和结构式4所示的乙烯基碳酸乙烯酯化合物中的至少一种化合物;(B) at least one compound selected from vinylene carbonate compounds shown in structural formula 2, methylene vinyl carbonate compounds shown in structural formula 3 and vinyl vinyl carbonate compounds shown in structural formula 4;
其中,结构式2、3、4中,R1~R12各自独立地选自氢原子、卤素或碳原子数为1~5的烷基。Wherein, in structural formulas 2, 3, and 4, R 1 to R 12 are each independently selected from a hydrogen atom, a halogen, or an alkyl group with 1 to 5 carbon atoms.
优选地,上述化合物(B)为碳酸亚乙烯酯、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯中的至少一种化合物。Preferably, the above compound (B) is at least one compound selected from vinylene carbonate, methylene vinyl carbonate and vinyl vinyl carbonate.
上述化合物(B)是常用在非水电解液中以形成SEI膜的添加剂,它们的加入能够提高电池循环性能,尤其是高温循环性能,但是其分解所形成的SEI膜阻抗较大,直接导致了电池的整体阻抗增大,从而导致低温性能和倍率充放电性能的明显劣化。而本发明中,添加甲基磺酸酐能够降低阻抗,改善低温性能和高温性能。The above compounds (B) are additives commonly used in non-aqueous electrolytes to form SEI films. Their addition can improve battery cycle performance, especially high-temperature cycle performance, but the resistance of the SEI film formed by its decomposition is relatively large, which directly leads to The overall impedance of the battery increases, resulting in significant degradation of low temperature performance and rate charge and discharge performance. However, in the present invention, adding methanesulfonic anhydride can reduce impedance and improve low-temperature performance and high-temperature performance.
本发明的一个优选的实施方案中,结构式1所示的甲基磺酸酐占电解液总重量的0.1%~5%,当甲基磺酸酐含量小于0.1%时,成膜效果较差,不能有效降低电池阻抗;而当含量大于5%时,在负极所形成的SEI膜较厚,反而会增大电池阻抗,劣化电池性能。In a preferred embodiment of the present invention, the methanesulfonic anhydride shown in structural formula 1 accounts for 0.1%~5% of electrolyte gross weight, when methanesulfonic anhydride content is less than 0.1%, film-forming effect is relatively poor, cannot effectively Reduce battery impedance; and when the content is greater than 5%, the SEI film formed on the negative electrode is thicker, which will increase battery impedance and deteriorate battery performance.
本发明的一个优选的实施方案中,化合物(B)占电解液总重量的0.2%~5%。当化合物(B)的含量小于0.2%时,在负极形成的SEI膜较薄,不够致密,在循环过程中自我修复能力较差,对循环起不到应有的改善作用;当含量大于5%时,电池的阻抗会明显增大,导致电池的低温性能严重恶化。In a preferred embodiment of the present invention, the compound (B) accounts for 0.2%-5% of the total weight of the electrolyte. When the content of compound (B) is less than 0.2%, the SEI film formed on the negative electrode is thin and not dense enough, and the self-repairing ability is poor during the cycle, and the cycle cannot be improved as it should be; when the content is greater than 5% , the impedance of the battery will increase significantly, resulting in serious deterioration of the low temperature performance of the battery.
本发明的一个优选的实施方案中,化合物(A)占电解液的总重量与化合物(B)占电解液的总重量之间的比值大于或等于0.2。当比值小于0.2,说明甲基磺酸酐的含量较低,对降低阻抗起不到应有的改善效果,对改善低温性能和高温性能也就起不到应有的改善效果。但是一般而言比值不宜过高,如果过高可能说明化合物(B)的含量不足,导致在负极形成的SEI膜较薄,不够致密,在循环过程中自我修复能力较差,对循环起不到应有的改善作用。In a preferred embodiment of the present invention, the ratio between the compound (A) accounting for the total weight of the electrolyte and the compound (B) accounting for the total weight of the electrolyte is greater than or equal to 0.2. When the ratio is less than 0.2, it means that the content of methanesulfonic anhydride is low, which cannot achieve the due improvement effect on reducing impedance, and cannot achieve the due improvement effect on improving low-temperature performance and high-temperature performance. However, generally speaking, the ratio should not be too high. If it is too high, it may indicate that the content of compound (B) is insufficient, resulting in a thin SEI film formed on the negative electrode, which is not dense enough, and has poor self-repair ability during the cycle. due improvement.
本发明的一个优选的实施方案中,非水电解液中还包含1,3-丙烷磺内酯、1,4-丁烷磺内酯和1,3-丙烯磺内酯中的一种或两种以上。这些化合物一般具有在正、负极成膜的作用,可以有效的抑制电池高温存储后的气胀,改善高温性能。In a preferred embodiment of the present invention, the non-aqueous electrolyte also contains one or both of 1,3-propane sultone, 1,4-butane sultone and 1,3-propene sultone more than one species. These compounds generally have the function of forming films on the positive and negative electrodes, which can effectively inhibit the gas swelling of the battery after high-temperature storage and improve high-temperature performance.
本发明中的非水有机溶剂,选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上。The non-aqueous organic solvent in the present invention is selected from one or both of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate above.
本发明中的锂盐电解质,选自六氟磷酸锂、高氯酸锂、四氟硼酸锂、双氟草酸硼酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂盐中的一种或两种以上。The lithium salt electrolyte in the present invention is selected from lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide and lithium salt of bisfluorosulfonylimide one or more of two.
本发明中,锂离子二次电池正极的活性物质选自:In the present invention, the active material of the positive electrode of the lithium ion secondary battery is selected from:
LiNixCoyMnzL(1-x-y-z)O2,其中,0.2≤x≤0.8,0≤y≤0.8,0≤z≤0.8,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe,例如LiNi1/3Mn1/3Co1/3O2、LiNi0.5Mn0.3Co0.2O2、LiNi0.8Mn0.1Co0.1O2等,优选为LiNi1/3Mn1/3Co1/3O2;或LiFexMn1-xPO4,其中,0<x≤1,优选为LiFePO4;或LiCoxM1-xO2,其中,0<x≤1,M为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe,优选为LiCoO2。LiNi x Co y Mn z L (1-xyz) O 2 , where, 0.2≤x≤0.8, 0≤y≤0.8, 0≤z≤0.8, L is Al, Sr, Mg, Ti, Ca, Zr, Zn , Si or Fe, such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , etc., preferably LiNi 1/3 Mn 1/3 Co 1/3 O 2 ; or LiFex Mn 1-x PO 4 , where 0<x≤1, preferably LiFePO 4 ; or LiCox M 1-x O 2 , where 0<x≤1, M is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe, preferably LiCoO 2 .
下面通过具体实施例和对比例对本发明进行更具体详细地说明,这些实施例和对比例不是对本发明保护范围的限制。The present invention will be described in more detail below through specific examples and comparative examples, and these examples and comparative examples are not intended to limit the protection scope of the present invention.
实施例1Example 1
本实施例锂离子电池的制备方法,包括正极制备步骤、负极制备步骤、电解液制备步骤、隔膜制备步骤和电池组装步骤。The preparation method of the lithium-ion battery in this embodiment includes a positive electrode preparation step, a negative electrode preparation step, an electrolyte preparation step, a diaphragm preparation step, and a battery assembly step.
所述正极制备步骤为:按96.8:2.0:1.2的质量比混合正极活性材料LiNi1/3Mn1/ 3Co1/3O2、导电碳黑和粘结剂聚偏二氟乙烯,分散在N-甲基-2-吡咯烷酮中,得到正极浆料,将正极浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm之间。The positive electrode preparation step is: mix the positive electrode active material LiNi 1/3 Mn 1/ 3 Co 1/3 O 2 , conductive carbon black and binder polyvinylidene fluoride at a mass ratio of 96.8:2.0:1.2, and disperse in In N-methyl-2-pyrrolidone, the positive electrode slurry is obtained, and the positive electrode slurry is evenly coated on both sides of the aluminum foil, after drying, calendering and vacuum drying, and the aluminum lead wire is welded with an ultrasonic welder to obtain the positive electrode plate, the thickness of the plate is between 120-150 μm.
所述负极制备步骤为:按96:1:1.2:1.8的质量比混合石墨、导电碳黑、粘结剂丁苯橡胶和羧甲基纤维素,分散在去离子水中,得到负极浆料,将负极浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm之间。The negative electrode preparation step is: mix graphite, conductive carbon black, binder styrene-butadiene rubber and carboxymethyl cellulose in a mass ratio of 96:1:1.2:1.8, disperse them in deionized water to obtain negative electrode slurry, and The negative electrode slurry is coated on both sides of the copper foil, dried, calendered and vacuum-dried, and a nickel lead-out wire is welded with an ultrasonic welder to obtain a negative electrode plate. The thickness of the electrode plate is between 120-150 μm.
所述电解液制备步骤为:将碳酸乙烯酯、碳酸甲乙酯和碳酸二甲酯按体积比为EC:EMC:DMC=3:3:4进行混合,混合后加入浓度为1.1mol/L的六氟磷酸锂,加入基于电解液总重量的0.2wt%的碳酸亚乙烯酯和0.1wt%的甲基磺酸酐。The preparation step of the electrolyte is: mix ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate in a volume ratio of EC:EMC:DMC=3:3:4, and after mixing, add a concentration of 1.1mol/L For lithium hexafluorophosphate, add 0.2wt% vinylene carbonate and 0.1wt% methanesulfonic anhydride based on the total weight of the electrolyte.
所述隔膜制备步骤为:采用聚丙烯、聚乙烯和聚丙烯三层隔离膜,厚度为20μm。The preparation step of the separator is as follows: three layers of separators of polypropylene, polyethylene and polypropylene are used, and the thickness is 20 μm.
电池组装步骤为:在正极板和负极板之间放置厚度为20μm的三层隔离膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入方形铝制金属壳中,将正负极的引出线分别焊接在盖板的相应位置上,并用激光焊接机将盖板和金属壳焊接为一体,得到待注液的电芯;将上述制备的电解液通过注液孔注入电芯中,电解液的量要保证充满电芯中的空隙。The battery assembly steps are: place a three-layer separator with a thickness of 20 μm between the positive electrode plate and the negative electrode plate, then wind the sandwich structure composed of the positive electrode plate, negative electrode plate and separator, and then flatten the winding body and put it into the In the square aluminum metal shell, the lead wires of the positive and negative electrodes were respectively welded on the corresponding positions of the cover plate, and the cover plate and the metal shell were welded together with a laser welding machine to obtain the battery cell to be injected; The electrolyte is injected into the cell through the liquid injection hole, and the amount of the electrolyte should ensure that the gap in the cell is filled.
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电3min,0.2C恒流充电5min,0.5C恒流充电25min,搁置1hr,整形,补注液,封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,0.2C恒流恒压充电至4.2V,然后以0.2C的电流恒流放电至3.0V。Then carry out the routine formation of the first charge according to the following steps: 0.05C constant current charging for 3 minutes, 0.2C constant current charging for 5 minutes, 0.5C constant current charging for 25 minutes, shelving for 1 hour, shaping, replenishing liquid, sealing, and then further charging with 0.2C current Constant current charging to 4.2V, after 24 hours at room temperature, 0.2C constant current and constant voltage charging to 4.2V, and then 0.2C constant current discharge to 3.0V.
1)高温循环性能测试:对于三元和钴酸锂电池,在45℃下,将化成后的电池用1C恒流恒压充至4.2V,然后用1C恒流放电至3.0V。对于磷酸铁锂电池,在60℃下,将化成后的电池用1C恒流恒压充至3.6V,然后用1C恒流放电至2.0V。充/放电500次循环后计算第500次循环容量的保持率。计算公式如下:1) High-temperature cycle performance test: For ternary and lithium cobalt oxide batteries, charge the formed battery to 4.2V with 1C constant current and constant voltage at 45°C, and then discharge to 3.0V with 1C constant current. For the lithium iron phosphate battery, at 60°C, charge the formed battery to 3.6V with 1C constant current and constant voltage, and then discharge it to 2.0V with 1C constant current. After 500 charge/discharge cycles, the capacity retention rate at the 500th cycle was calculated. Calculated as follows:
第500次循环容量保持率(%)=(第500次循环放电容量/第一次循环放电容量)×100%;The 500th cycle capacity retention rate (%) = (500th cycle discharge capacity / first cycle discharge capacity) × 100%;
2)常温循环性能测试:在25℃下,将化成后的电池用1C恒流恒压充至4.2V(对于磷酸铁锂电池,充至3.6V),然后用1C恒流放电至3.0V(对于磷酸铁锂电池,放至2.0V)。充/放电500次循环后计算第500次循环容量的保持率。计算公式如下:2) Cycling performance test at room temperature: At 25°C, charge the formed battery to 4.2V with 1C constant current and constant voltage (for lithium iron phosphate batteries, charge to 3.6V), and then discharge to 3.0V with 1C constant current ( For lithium iron phosphate batteries, put it to 2.0V). After 500 charge/discharge cycles, the capacity retention rate at the 500th cycle was calculated. Calculated as follows:
第500次循环容量保持率(%)=(第500次循环放电容量/第一次循环放电容量)×100%;The 500th cycle capacity retention rate (%) = (500th cycle discharge capacity / first cycle discharge capacity) × 100%;
3)高温储存性能:将化成后的电池在常温下用1C恒流恒压充满,测量电池初始放电容量,然后在60℃储存30天后,以1C放电至3.0V(对于磷酸铁锂电池,放至2.0V),测量电池的保持容量和恢复容量。计算公式如下:3) High-temperature storage performance: Fill the formed battery with 1C constant current and constant voltage at room temperature, measure the initial discharge capacity of the battery, and then store it at 60°C for 30 days, then discharge it to 3.0V at 1C (for lithium iron phosphate batteries, discharge to 2.0V) to measure the holding capacity and recovery capacity of the battery. Calculated as follows:
电池容量保持率(%)=保持容量/初始容量×100%;Battery capacity retention rate (%) = retention capacity/initial capacity × 100%;
电池容量恢复率(%)=恢复容量/初始容量×100%。Battery capacity recovery rate (%)=recovered capacity/initial capacity×100%.
4)低温放电性能测试:在25℃下,将化成后的电池用1C恒流恒压充至4.2V(对于磷酸铁锂电池,充至3.6V),然后用1C恒流放电至3.0V(对于磷酸铁锂电池,放至2.0V),记录放电容量。然后1C恒流恒压充满,置于-20℃的环境中搁置12h后,1C恒流放电至3.0V(对于磷酸铁锂电池,放至2.0V),记录放电容量。4) Low-temperature discharge performance test: At 25°C, charge the formed battery to 4.2V with 1C constant current and constant voltage (for lithium iron phosphate batteries, charge to 3.6V), and then discharge to 3.0V with 1C constant current ( For lithium iron phosphate batteries, put it to 2.0V), and record the discharge capacity. Then it is fully charged with 1C constant current and constant voltage, placed in an environment of -20°C for 12 hours, and then discharged to 3.0V at a constant current of 1C (for lithium iron phosphate batteries, 2.0V), and the discharge capacity is recorded.
-20℃的低温放电效率值=1C放电容量(-20℃)/1C放电容量(25℃)。Low temperature discharge efficiency value at -20°C = 1C discharge capacity (-20°C)/1C discharge capacity (25°C).
5)常低温DCIR性能测试:在25℃下,将化成后的电池1C充电到半电状态,分别用0.1C,0.2C,0.5C,1C和2C充放十秒,分别记录充放电截止电压;将半电状态的电池置于-10℃下,分别用0.1C,0.2C和0.5C充放十秒,分别记录充放电截止电压。然后,以不同倍率的充放电电流为横坐标(单位:A),以充放电电流所对应的截止电压为纵坐标,做线性关系图(单位:mV)。5) Normal and low temperature DCIR performance test: At 25°C, charge the formed battery 1C to a half-charged state, charge and discharge it with 0.1C, 0.2C, 0.5C, 1C and 2C for ten seconds, and record the cut-off voltage of charge and discharge respectively ;Put the half-charged battery at -10°C, charge and discharge it at 0.1C, 0.2C and 0.5C for ten seconds, and record the cut-off voltage of charge and discharge respectively. Then, take the charge and discharge current of different rates as the abscissa (unit: A), and take the cut-off voltage corresponding to the charge and discharge current as the ordinate to make a linear relationship diagram (unit: mV).
充电DCIR值=不同充电电流与相应截止电压的线性图的斜率值。Charging DCIR value = the slope value of the linear graph of different charging currents and corresponding cut-off voltages.
放电DCIR值=不同放电电流与相应截止电压的线性图的斜率值。Discharge DCIR value = the slope value of the linear graph of different discharge currents and corresponding cut-off voltages.
实施例2-18Example 2-18
实施例2-18中,除了添加剂组成、含量(基于电解液总重量)与正极材料按表1所示外,其它均与实施例1相同。表1为电解液添加剂和不同三元正极材料的各组成含量表。In Examples 2-18, except that the composition and content of the additives (based on the total weight of the electrolyte) and the positive electrode material are shown in Table 1, the others are the same as in Example 1. Table 1 is a list of the composition contents of the electrolyte additives and different ternary cathode materials.
表1Table 1
对比例1-6Comparative example 1-6
对比例1-6中,除了添加剂组成与含量(基于电解液总重量)按表2所示添加外,其它均与实施例1相同。表2为电解液添加剂的各组分含量表。In Comparative Examples 1-6, except that the composition and content of additives (based on the total weight of the electrolyte) were added as shown in Table 2, everything else was the same as that of Example 1. Table 2 is the content table of each component of the electrolyte additive.
表2Table 2
实施例1-18和对比例1-6的性能对比The performance contrast of embodiment 1-18 and comparative example 1-6
表3为实施例1-18与对比例1-6的性能对比表。Table 3 is a performance comparison table of Examples 1-18 and Comparative Examples 1-6.
表3table 3
通过实施例1-18与对比例1-6进行对比,可以发现添加甲基磺酸酐后,不仅可以提高高温性能,而且明显降低阻抗,特别是低温下的阻抗。同时,也可以发现,甲基磺酸酐与碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯分别组合使用后,电池的循环性能,特别是高温循环性能表现更为优异,低温性能也得到了明显提高,特别地对于高温储存性能,改善效果与碳酸亚乙烯酯(VC)和1,3-丙烷磺内酯(PS)的组合相当。By comparing Examples 1-18 with Comparative Examples 1-6, it can be found that the addition of methanesulfonic anhydride not only improves the high temperature performance, but also significantly reduces the impedance, especially the impedance at low temperature. At the same time, it can also be found that after the combination of methanesulfonic anhydride and vinylene carbonate (VC), methylene ethylene carbonate and vinyl ethylene carbonate, the cycle performance of the battery, especially the high temperature cycle performance, is more excellent. , low-temperature performance has also been significantly improved, especially for high-temperature storage performance, the improvement effect is comparable to the combination of vinylene carbonate (VC) and 1,3-propane sultone (PS).
实施例19-32Examples 19-32
实施例19-32中,除了在电池制备方法中将正极活性材料LiNi1/3Mn1/3Co1/3O2换成磷酸铁锂正极材料LiFePO4,电解液的各添加剂组成与含量(基于电解液总重量)按表4所示添加之外,其它均与实施例1相同。表4为实施例19-32的电解液添加剂的各组分重量含量表。In Examples 19-32, except that the positive electrode active material LiNi 1/3 Mn 1/3 Co 1/3 O 2 was replaced by lithium iron phosphate positive electrode material LiFePO 4 in the battery preparation method, each additive composition and content of the electrolyte ( Based on the total weight of the electrolyte) except for adding as shown in Table 4, the others are the same as in Example 1. Table 4 is the weight content of each component of the electrolyte additives of Examples 19-32.
表4Table 4
对比例7-12Comparative example 7-12
对比例7-12中,除了在电池制备方法中将正极活性材料LiNi1/3Mn1/3Co1/3O2换成磷酸铁锂正极材料LiFePO4,添加剂组成与含量(基于电解液总重量)按表5所示添加外,其它均与实施例1相同。表5为电解液添加剂的各组分含量表。In comparative examples 7-12, except that in the battery preparation method, the positive electrode active material LiNi 1/3 Mn 1/3 Co 1/3 O 2 is replaced by lithium iron phosphate positive electrode material LiFePO 4 , additive composition and content (based on the total amount of electrolyte Weight) except adding as shown in table 5, other are all identical with embodiment 1. Table 5 is the contents of each component of the electrolyte additive.
表5table 5
实施例19-32与对比例7-12的性能The performance of embodiment 19-32 and comparative example 7-12
表6为实施例19-32与对比例7-12的性能对比表。Table 6 is a performance comparison table of Examples 19-32 and Comparative Examples 7-12.
表6Table 6
通过实施例19-32与对比例7-12进行对比,可以发现添加甲基磺酸酐后,不仅可以提高高温性能,而且明显降低阻抗,特别是低温下的阻抗。同时,也可以发现,甲基磺酸酐与碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯分别组合使用后,低温性能得到了明显改善,电池的高温性能和循环性能也表现更为优异,特别地对于高温循环,改善效果比碳酸亚乙烯酯(VC)和1,3-丙二磺酸酐的组合更优异。By comparing Examples 19-32 with Comparative Examples 7-12, it can be found that the addition of methanesulfonic anhydride can not only improve the high temperature performance, but also significantly reduce the impedance, especially the impedance at low temperature. At the same time, it can also be found that after the combination of methanesulfonic anhydride and vinylene carbonate (VC), methylene ethylene carbonate and vinyl ethylene carbonate, the low temperature performance has been significantly improved, and the high temperature performance and cycle performance of the battery It also performs better, especially for high-temperature cycles, and the improvement effect is better than the combination of vinylene carbonate (VC) and 1,3-propanedisulfonic anhydride.
实施例33-46Examples 33-46
实施例33-46中,除了在电池制备方法中将正极活性材料LiNi1/3Mn1/3Co1/3O2换成正极材料LiCoO2,电解液的各添加剂组成与含量(基于电解液总重量)按表7所示添加之外,其它均与实施例1相同。表7为实施例33-46的电解液添加剂的各组分重量含量表。In Examples 33-46, except that the positive electrode active material LiNi 1/3 Mn 1/3 Co 1/3 O 2 is replaced by the positive electrode material LiCoO 2 in the battery preparation method, the composition and content of each additive of the electrolyte (based on the electrolyte Gross weight) except adding as shown in table 7, other are all identical with embodiment 1. Table 7 is the weight content of each component of the electrolyte additives of Examples 33-46.
表7Table 7
对比例13-18Comparative example 13-18
对比例13-18中,除了在电池制备方法中将正极活性材料LiNi1/3Mn1/3Co1/3O2换成正极材料LiCoO2,添加剂组成与含量(基于电解液总重量)按表8所示添加外,其它均与实施例1相同。表8为电解液添加剂的各组分含量表。In Comparative Examples 13-18, except that the positive electrode active material LiNi 1/3 Mn 1/3 Co 1/3 O 2 was replaced by the positive electrode material LiCoO 2 in the battery preparation method, the additive composition and content (based on the total weight of the electrolyte) were as follows: Except adding shown in table 8, others are all identical with embodiment 1. Table 8 is a content table of each component of the electrolyte additive.
表8Table 8
实施例33-46和对比例13-18的性能对比The performance contrast of embodiment 33-46 and comparative example 13-18
表9为实施例33-46与对比例13-18的性能对比表。Table 9 is a performance comparison table of Examples 33-46 and Comparative Examples 13-18.
表9Table 9
通过实施例33-46与对比例13-18进行对比,可以发现添加甲基磺酸酐后,不仅可以提高高温性能,而且明显降低阻抗,特别是低温下的阻抗。同时,也可以发现,甲基磺酸酐与碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯分别组合使用后,电池的高温性能和循环性能均得到了提高。By comparing Examples 33-46 with Comparative Examples 13-18, it can be found that the addition of methanesulfonic anhydride not only improves the high temperature performance, but also significantly reduces the impedance, especially the impedance at low temperature. At the same time, it can also be found that the high temperature performance and cycle performance of the battery are improved after the combination of methanesulfonic anhydride and vinylene carbonate (VC), methylene ethylene carbonate and vinyl ethylene carbonate respectively.
综上所述,本发明提供的锂离子电池的电解液添加剂中,通过添加碳酸亚乙烯酯类化合物、亚甲基碳酸乙烯酯类化合物或乙烯基碳酸乙烯酯类化合物,进一步添加甲基磺酸酐,在保证电池获得优良的循环性能的同时,可以有效改善电池的低温性能和高温储存性能。此外,还可以进一步添加1,3-丙烷磺酸内酯等添加剂,使得各项性能更加优化。In summary, in the electrolyte additive of the lithium ion battery provided by the present invention, by adding vinylene carbonate compound, methylene vinyl carbonate compound or vinyl vinyl carbonate compound, further add methanesulfonic anhydride , while ensuring the excellent cycle performance of the battery, it can effectively improve the low-temperature performance and high-temperature storage performance of the battery. In addition, additives such as 1,3-propane sultone can be further added to optimize various properties.
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。The above content is a further detailed description of the present invention in conjunction with specific embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. Those of ordinary skill in the technical field to which the present invention belongs can also make some simple deduction or replacement without departing from the concept of the present invention.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510004643.8A CN104617333B (en) | 2015-01-05 | 2015-01-05 | A kind of nonaqueous electrolytic solution and lithium rechargeable battery |
PCT/CN2015/089149 WO2016110123A1 (en) | 2015-01-05 | 2015-09-08 | Non-aqueous electrolyte and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510004643.8A CN104617333B (en) | 2015-01-05 | 2015-01-05 | A kind of nonaqueous electrolytic solution and lithium rechargeable battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104617333A CN104617333A (en) | 2015-05-13 |
CN104617333B true CN104617333B (en) | 2017-10-24 |
Family
ID=53151684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510004643.8A Active CN104617333B (en) | 2015-01-05 | 2015-01-05 | A kind of nonaqueous electrolytic solution and lithium rechargeable battery |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104617333B (en) |
WO (1) | WO2016110123A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104617333B (en) * | 2015-01-05 | 2017-10-24 | 深圳新宙邦科技股份有限公司 | A kind of nonaqueous electrolytic solution and lithium rechargeable battery |
CN106299324A (en) * | 2016-10-17 | 2017-01-04 | 广州天赐高新材料股份有限公司 | A kind of electrolyte for high-capacity lithium ion cell, preparation method and lithium ion battery |
WO2018169371A2 (en) * | 2017-03-17 | 2018-09-20 | 주식회사 엘지화학 | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
CN109088099B (en) * | 2018-06-28 | 2021-01-26 | 华南师范大学 | A kind of sulfonyl electrolyte additive with high and low temperature performance and electrolyte containing the additive |
CN110661028B (en) * | 2018-06-29 | 2021-04-09 | 深圳新宙邦科技股份有限公司 | Lithium ion battery non-aqueous electrolyte and lithium ion battery |
CN110265721B (en) * | 2018-09-19 | 2021-03-30 | 宁德时代新能源科技股份有限公司 | Lithium-ion secondary battery |
CN109860709B (en) * | 2019-01-11 | 2020-12-11 | 杉杉新材料(衢州)有限公司 | Electrolyte for improving low-temperature performance of lithium ion battery and lithium ion battery containing electrolyte |
CN112216864B (en) * | 2019-07-09 | 2024-03-22 | 宁德时代新能源科技股份有限公司 | Lithium ion battery |
CN112310483B (en) * | 2019-07-30 | 2021-09-17 | 宁德时代新能源科技股份有限公司 | Lithium ion battery |
CN111200162A (en) * | 2019-12-06 | 2020-05-26 | 联动天翼新能源有限公司 | Lithium ion battery electrolyte and preparation method thereof |
KR102648175B1 (en) * | 2019-12-24 | 2024-03-19 | 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 | Secondary batteries and devices containing the same |
CN110994027B (en) * | 2019-12-25 | 2022-05-13 | 湖州昆仑亿恩科电池材料有限公司 | Lithium ion battery electrolyte with good high-temperature cycle characteristic and lithium ion battery |
CN113889665A (en) * | 2020-07-02 | 2022-01-04 | 浙江蓝天环保高科技股份有限公司 | Water removal additive, electrolyte containing water removal additive and lithium ion battery |
CN112467222B (en) * | 2020-10-23 | 2022-09-16 | 福建南平延平区南孚新能源科技有限公司 | Button secondary battery |
CN112259791A (en) * | 2020-10-27 | 2021-01-22 | 惠州亿纬锂能股份有限公司 | Non-aqueous electrolyte, preparation method thereof and lithium ion battery |
CN114024033B (en) * | 2020-12-30 | 2024-10-18 | 珠海冠宇电池股份有限公司 | Nonaqueous electrolyte for lithium ion battery and lithium ion battery comprising same |
CN112968157B (en) * | 2021-02-06 | 2022-11-01 | 苏州精诚智造智能科技有限公司 | Preparation method of power lithium ion battery |
CN113851637A (en) * | 2021-08-23 | 2021-12-28 | 合肥国轩高科动力能源有限公司 | A multifunctional electrolyte additive, electrolyte containing the additive and lithium ion battery |
CN114335740B (en) * | 2021-12-29 | 2023-07-28 | 湖北亿纬动力有限公司 | Formation method of lithium ion battery and lithium ion battery |
CN114566633B (en) * | 2022-03-04 | 2025-02-11 | 中化国际(控股)股份有限公司 | A novel cobalt-free positive electrode material and preparation method thereof |
CN116315064B (en) * | 2023-01-17 | 2024-10-01 | 南开大学 | Solid polymer electrolyte and preparation method of battery thereof |
CN118884262A (en) * | 2024-07-30 | 2024-11-01 | 兴储世纪科技股份有限公司 | A method for determining the optimal cut-off voltage for sodium ion battery formation |
CN120048984A (en) * | 2025-02-21 | 2025-05-27 | 宁德时代新能源科技股份有限公司 | Battery cells, battery devices and power-consuming devices |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101646648A (en) * | 2007-03-06 | 2010-02-10 | 宇部兴产株式会社 | Tert-butylphenyl sulfonate compound, nonaqueous electrolyte solution for lithium secondary battery using the same, and lithium secondary battery using the same |
CN101652894A (en) * | 2007-04-05 | 2010-02-17 | 三菱化学株式会社 | Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using same |
CN101826637A (en) * | 2009-02-19 | 2010-09-08 | 索尼公司 | Nonaqueous electrolytic solution secondary battery |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101486618B1 (en) * | 2007-11-01 | 2015-01-26 | 우베 고산 가부시키가이샤 | Phenyl sulfonate compound, nonaqueous electrolyte solution using the same, and lithium battery |
JP5169400B2 (en) * | 2008-04-07 | 2013-03-27 | Necエナジーデバイス株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
JP2010097756A (en) * | 2008-10-15 | 2010-04-30 | Sony Corp | Secondary battery |
US8637177B2 (en) * | 2009-03-18 | 2014-01-28 | Hitachi Maxell, Ltd. | Electrochemical device |
CN110010882A (en) * | 2013-02-27 | 2019-07-12 | 三菱化学株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same |
CN104617333B (en) * | 2015-01-05 | 2017-10-24 | 深圳新宙邦科技股份有限公司 | A kind of nonaqueous electrolytic solution and lithium rechargeable battery |
-
2015
- 2015-01-05 CN CN201510004643.8A patent/CN104617333B/en active Active
- 2015-09-08 WO PCT/CN2015/089149 patent/WO2016110123A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101646648A (en) * | 2007-03-06 | 2010-02-10 | 宇部兴产株式会社 | Tert-butylphenyl sulfonate compound, nonaqueous electrolyte solution for lithium secondary battery using the same, and lithium secondary battery using the same |
CN101652894A (en) * | 2007-04-05 | 2010-02-17 | 三菱化学株式会社 | Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using same |
CN101826637A (en) * | 2009-02-19 | 2010-09-08 | 索尼公司 | Nonaqueous electrolytic solution secondary battery |
Also Published As
Publication number | Publication date |
---|---|
WO2016110123A1 (en) | 2016-07-14 |
CN104617333A (en) | 2015-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104617333B (en) | A kind of nonaqueous electrolytic solution and lithium rechargeable battery | |
KR102816860B1 (en) | Additives for battery electrolyte, lithium ion battery electrolyte and lithium ion battery | |
CN110233292B (en) | Lithium-ion battery non-aqueous electrolyte and lithium-ion battery | |
CN104269577A (en) | High-voltage lithium ion battery and electrolyte thereof | |
CN109585921B (en) | A lithium ion battery non-aqueous electrolyte and lithium ion battery | |
CN111403807B (en) | A kind of lithium-ion battery non-aqueous electrolyte and lithium-ion battery | |
CN105161763A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN103107363B (en) | Non-water electrolysis solution of lithium ion battery and corresponding lithium ion battery thereof | |
CN105977525A (en) | Lithium ion battery employing non-aqueous electrolyte | |
CN104300174A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN103367804B (en) | A kind of lithium ion battery nonaqueous electrolytic solution and use the lithium ion battery of this nonaqueous electrolytic solution | |
CN103151559A (en) | Non-aqueous electrolyte solution for lithium ion battery and corresponding lithium ion battery | |
CN111525190B (en) | Electrolyte and lithium ion battery | |
CN108110318B (en) | Non-aqueous electrolyte for lithium ion battery and lithium ion battery | |
CN103594727B (en) | A kind of lithium ion battery nonaqueous electrolytic solution and use the lithium ion battery of this nonaqueous electrolytic solution | |
CN105098244A (en) | Electrolyte and lithium ion battery comprising same | |
CN108390098B (en) | High-voltage lithium ion battery electrolyte and high-voltage lithium ion battery | |
CN108847501A (en) | A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery | |
CN105140566A (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN115377497A (en) | Cobalt-free lithium ion battery electrolyte and cobalt-free lithium ion battery containing same | |
WO2019128160A1 (en) | Non-aqueous electrolyte for lithium ion battery and lithium ion battery | |
CN110444804A (en) | A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery | |
WO2020135584A1 (en) | Positive electrode film formation additive for battery electrolyte, and electrolyte and lithium battery using additive | |
CN115332626A (en) | An electrolyte and a battery comprising the electrolyte | |
CN100421297C (en) | A lithium-ion battery that works at low temperatures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190108 Address after: 215000 No. 15, East Suhong Road, Suzhou Industrial Park, Suzhou City, Jiangsu Province Patentee after: Noel battery material (Suzhou) Co., Ltd. Address before: 518118 Shatuo Tongfu Industrial Zone, Pingshan New District, Shenzhen City, Guangdong Province Patentee before: Shenzhen Xinyubang Science and Technology Co., Ltd. |
|
TR01 | Transfer of patent right |