CN106338787A - Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers - Google Patents
Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers Download PDFInfo
- Publication number
- CN106338787A CN106338787A CN201610395759.3A CN201610395759A CN106338787A CN 106338787 A CN106338787 A CN 106338787A CN 201610395759 A CN201610395759 A CN 201610395759A CN 106338787 A CN106338787 A CN 106338787A
- Authority
- CN
- China
- Prior art keywords
- layer
- omnidirectional
- absorption body
- body layer
- high chroma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 42
- 239000002184 metal Substances 0.000 title claims abstract description 42
- 239000006096 absorbing agent Substances 0.000 title abstract description 78
- 238000010521 absorption reaction Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 20
- 239000003086 colorant Substances 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 13
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 12
- 229910000906 Bronze Inorganic materials 0.000 claims description 11
- 239000010974 bronze Substances 0.000 claims description 11
- 150000002739 metals Chemical class 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims 6
- 229910052683 pyrite Inorganic materials 0.000 claims 4
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 claims 4
- 239000011028 pyrite Substances 0.000 claims 4
- 230000008021 deposition Effects 0.000 claims 3
- 230000011514 reflex Effects 0.000 claims 3
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 170
- 239000012792 core layer Substances 0.000 abstract description 29
- 239000000049 pigment Substances 0.000 abstract description 19
- 230000005670 electromagnetic radiation Effects 0.000 description 25
- 230000005684 electric field Effects 0.000 description 23
- 238000002310 reflectometry Methods 0.000 description 8
- 229910001369 Brass Inorganic materials 0.000 description 7
- 239000010951 brass Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- -1 aluminum (Al) Chemical class 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000000985 reflectance spectrum Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 101100445834 Drosophila melanogaster E(z) gene Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000000469 dry deposition Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0808—Mirrors having a single reflecting layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/286—Interference filters comprising deposited thin solid films having four or fewer layers, e.g. for achieving a colour effect
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Optical Filters (AREA)
Abstract
Description
相关申请的交叉引用Cross References to Related Applications
本申请为2015年1月28日提交的序列号为14/607,933的美国专利申请的部分继续(CIP),序列号为14/607,933的美国专利申请又为2014年8月28日提交的序列号为14/471,834的美国专利申请的CIP,序列号为14/471,834的美国专利申请又为2014年8月15日提交的序列号为14/460,511的美国专利申请的CIP,序列号为14/460,511的美国专利申请又为2014年4月1日提交的序列号为14/242,429的美国专利申请的CIP,序列号为14/242,429的美国专利申请又为2013年12月23日提交的序列号为14/138,499的美国专利申请的CIP,序列号为14/138,499的美国专利申请又为2013年6月8日提交的序列号为13/913,402的美国专利申请的CIP,序列号为13/913,402的美国专利申请又为2013年2月6日提交的13/760,699的CIP,序列号为13/760,699的美国专利申请又为2012年8月10日提交的序列号为13/572,071的美国专利申请的CIP,通过引用将上述所有申请的全部内容并入本文。This application is a continuation-in-part (CIP) of U.S. Patent Application Serial No. 14/607,933, filed January 28, 2015, which in turn is Serial No. 14/607,933, filed August 28, 2014 CIP to U.S. Patent Application Serial No. 14/471,834, U.S. Patent Application Serial No. 14/471,834 and CIP to U.S. Patent Application Serial No. 14/460,511 filed August 15, 2014, Serial No. 14/460,511 U.S. Patent Application Serial No. 14/242,429 filed April 1, 2014, and U.S. Patent Application Serial No. 14/242,429 filed December 23, 2013 with Serial No. CIP of U.S. Patent Application Serial No. 14/138,499, which is in turn CIP of U.S. Patent Application Serial No. 13/913,402 filed June 8, 2013, Serial No. 13/913,402 U.S. patent application in turn is CIP 13/760,699 filed February 6, 2013, and U.S. patent application serial number 13/760,699 is in turn U.S. patent application serial number 13/572,071 filed August 10, 2012 CIP, all of the aforementioned applications are hereby incorporated by reference in their entirety.
发明领域field of invention
本发明涉及当暴露于宽频带电磁辐射并从不同角度观察时,表现出具有最小的或者不显著的色移的高色度红色颜色的多层堆叠体结构。The present invention relates to multilayer stack structures exhibiting a highly chroma red color with minimal or insignificant color shift when exposed to broadband electromagnetic radiation and viewed from different angles.
背景技术Background technique
由多层结构制成的颜料是已知的。此外,表现出或者提供高色度全向结构色的颜料也是已知的。然而,这样的现有技术颜料需要多达39个薄膜层以便获得所期望的颜色性质。Pigments made from multilayer structures are known. Furthermore, pigments which exhibit or provide highly chromatic omnidirectional structural colors are also known. However, such prior art pigments require as many as 39 thin film layers in order to obtain the desired color properties.
应理解的是,与薄膜多层颜料的制备相关的成本与所需要的层的数目成比例。如此,与使用多层介电材料堆叠体来制备高色度全向结构色相关的成本可高得负担不起。因此,需要最小数目的薄膜层的高色度全向结构色料会是所期望的。It will be appreciated that the costs associated with the preparation of thin film multilayer pigments are proportional to the number of layers required. As such, the costs associated with using multilayer dielectric material stacks to produce high chroma omnidirectional structural colors can be prohibitively high. Therefore, high chroma omnidirectional structural colorants requiring a minimal number of film layers would be desirable.
除了上述的以外,还应理解的是,相对于其它颜色(例如蓝色、绿色等)的颜料,具有红色颜色的颜料的设计面对着额外的困难。特别是,红色颜色的角度独立性的控制是困难的,因为需要较厚的介电层,这又导致高谐波设计,即第二谐波和可能的第三谐波的存在是不可避免的。而且,暗红色颜色色调空间非常窄。如此,红色颜色多层堆叠体具有较高的角向色散(angular variance)。In addition to the above, it should also be understood that the design of pigments having a red color faces additional difficulties relative to pigments of other colors (eg blue, green, etc.). In particular, the control of the angular independence of the red color is difficult because thicker dielectric layers are required, which in turn leads to high harmonic designs, i.e. the presence of second and possibly third harmonics is unavoidable . Also, the dark red color tone space is very narrow. Thus, the red color multilayer stack has higher angular variance.
基于上述原因,具有最小层数的高色度红色全向结构色颜料会是所期望的。For the above reasons, a high chroma red omnidirectional structural color pigment with a minimal number of layers would be desirable.
发明内容Contents of the invention
提供了一种全向高色度红色结构色颜料。该全向结构色颜料为多层堆叠体的形式,该多层堆叠体具有反射芯层,横过该反射芯层延伸的金属吸收体层,和横过该金属吸收体层延伸的介电吸收体层。该多层堆叠体层反射在a*b*Lab颜色映射上具有介于0-40°之间、且优选介于10-30°之间的色调的单频带可见光。此外,当从垂直于多层堆叠体的外表面的介于0-45°之间的所有角度观察时,该单频带可见光在a*b*Lab颜色映射上具有小于30°的色调偏移,并由此提供了对于人眼不显著的色移。An omnidirectional high chroma red structural color pigment is provided. The omnidirectional structural color pigment is in the form of a multilayer stack having a reflective core layer, a metallic absorber layer extending across the reflective core layer, and a dielectric absorber layer extending across the metallic absorber layer body layer. The multilayer stack layer reflects monoband visible light with a hue on the a*b*Lab color map between 0-40°, and preferably between 10-30°. Furthermore, the single-band visible light has a hue shift of less than 30° on the a*b*Lab color map when viewed from all angles between 0-45° perpendicular to the outer surface of the multilayer stack, And thus provides a color shift that is not noticeable to the human eye.
反射芯层具有介于50-200纳米(nm)之间(包含端值)的厚度,且可由反射金属(例如铝(Al)、银(Ag)、铂(Pt)、锡(Sn)及其组合等)制成。反射芯层还可由彩色的(colorful)金属(例如金(Au)、铜(Cu)、黄铜、青铜等)制成。The reflective core layer has a thickness between 50-200 nanometers (nm), inclusive, and can be made of reflective metals such as aluminum (Al), silver (Ag), platinum (Pt), tin (Sn), and combinations, etc.) made. The reflective core layer can also be made of colorful metals such as gold (Au), copper (Cu), brass, bronze, etc.).
金属吸收体层可具有介于5-500nm之间(包含端值)的厚度,且可由这样的材料制成:例如彩色的金属,例如,铜(Cu)、金(Au)、青铜(Cu-Zn合金)、黄铜(Cu-Sn合金)、非晶的硅(Si)或彩色的氮化物材料(如氮化钛(TiN))。介电吸收体层可具有介于5-500nm之间(包含端值)的厚度,且可由产生介电材料制成,例如但不限于氧化铁(Fe2O3)。The metal absorber layer may have a thickness between 5-500 nm inclusive and may be made of materials such as colored metals such as copper (Cu), gold (Au), bronze (Cu- Zn alloy), brass (Cu-Sn alloy), amorphous silicon (Si) or colored nitride materials (such as titanium nitride (TiN)). The dielectric absorber layer may have a thickness between 5-500 nm inclusive, and may be made of a dielectric-generating material such as, but not limited to, iron oxide (Fe 2 O 3 ).
反射芯层、金属吸收体层和/或介电吸收体层可以是干式沉积的层。然而,介电吸收体层可以是湿式沉积的层。此外,反射芯层可以是中心反射芯层且金属吸收体层是横过该中心反射芯层的相对侧延伸的一对金属吸收体层,即,该中心反射芯层夹在该一对金属吸收体层之间。进而,介电吸收体层可以是一对介电吸收体层从而该中心反射芯层和该一对金属吸收体层夹在该一对介电吸收体层之间。The reflective core layer, metallic absorber layer and/or dielectric absorber layer may be dry deposited layers. However, the dielectric absorber layer may be a wet deposited layer. Additionally, the reflective core layer may be a central reflective core layer and the metal absorber layer is a pair of metal absorber layers extending across opposite sides of the central reflective core layer, i.e., the central reflective core layer is sandwiched between the pair of metal absorber layers. between body layers. Furthermore, the dielectric absorber layer may be a pair of dielectric absorber layers such that the central reflective core layer and the pair of metallic absorber layers are sandwiched between the pair of dielectric absorber layers.
制备这样的全向高色度红色结构色料的方法包括:通过干式沉积反射芯层,干式沉积横过该反射芯层延伸的金属吸收体层,和干式沉积或湿式沉积横过该金属吸收体层延伸的介电吸收体层来制造多层堆叠体。以这种方式,混合的制造方法可用来生产可用于颜料、涂层等的全向高色度红色结构色料。Methods of making such omnidirectional high chroma red structural pigments include by dry depositing a reflective core layer, dry depositing a metallic absorber layer extending across the reflective core layer, and dry depositing or wet depositing across the The metal absorber layer is extended by the dielectric absorber layer to make a multilayer stack. In this way, a hybrid manufacturing method can be used to produce omnidirectional high chroma red structural pigments that can be used in pigments, coatings, etc.
附图简要说明Brief description of the drawings
图1是由介电层、选择性吸收层(SAL)和反射体层制成的全向结构色多层堆叠体的示意性说明;Figure 1 is a schematic illustration of an omnidirectional structural color multilayer stack made of a dielectric layer, a selective absorber layer (SAL) and a reflector layer;
图2A是暴露于波长为500nm的电磁辐射(EMR)的ZnS介电层内的零电场点或接近零的电场点的示意性说明;2A is a schematic illustration of a zero or near-zero electric field point within a ZnS dielectric layer exposed to electromagnetic radiation (EMR) having a wavelength of 500 nm;
图2B为当暴露于波长为300、400、500、600和700nm的EMR时图2A中所示的ZnS介电层的电场绝对值的平方(|E|2)对厚度的图示;2B is a graphical representation of the absolute value of the electric field squared (|E| 2 ) versus thickness for the ZnS dielectric layer shown in FIG. 2A when exposed to EMR at wavelengths of 300, 400, 500, 600, and 700 nm;
图3为在基材或反射体层上方延伸并相对于介电层外表面的法线方向以角度θ暴露于电磁辐射的介电层的示意性说明;3 is a schematic illustration of a dielectric layer extending over a substrate or reflector layer and exposed to electromagnetic radiation at an angle θ with respect to a normal direction to the outer surface of the dielectric layer;
图4为对于波长为434nm的入射EMR来说,具有位于ZnS介电层内的零电场点或者接近零的电场点处的Cr吸收体层的ZnS介电层的示意性说明;4 is a schematic illustration of a ZnS dielectric layer with a Cr absorber layer located at a zero or near-zero electric field point within the ZnS dielectric layer for incident EMR at a wavelength of 434 nm;
图5为暴露于白光的不具有Cr吸收体层的多层堆叠体(例如图2A)和具有Cr吸收体层的多层堆叠体(例如图4)的百分比反射率对反射的EMR波长的图示;5 is a graph of percent reflectance versus reflected EMR wavelength for a multilayer stack without a Cr absorber layer (such as FIG. 2A ) and a multilayer stack with a Cr absorber layer (such as FIG. 4 ) exposed to white light Show;
图6A为由在Al反射体层上方延伸的ZnS介电层(例如图2A)所表现出的第一谐波和第二谐波的图示;Figure 6A is a graphical representation of first and second harmonics exhibited by a ZnS dielectric layer (such as Figure 2A) extending over an Al reflector layer;
图6B为具有横过Al反射体层延伸的ZnS介电层加上位于ZnS介电层内的Cr吸收体层(从而吸收在图6A中所示的第二谐波)的多层堆叠体的百分比反射率对反射的EMR波长的图示;Figure 6B is a diagram of a multilayer stack with a ZnS dielectric layer extending across the Al reflector layer plus a Cr absorber layer within the ZnS dielectric layer (thus absorbing the second harmonic shown in Figure 6A). Plot of percent reflectance versus reflected EMR wavelength;
图6C为具有横过Al反射体层延伸的ZnS介电层加上位于ZnS介电层内的Cr吸收体层(从而吸收在图6A中所示的第一谐波)的多层堆叠体的百分比反射率对反射的EMR波长的图示;Figure 6C is a diagram of a multilayer stack with a ZnS dielectric layer extending across the Al reflector layer plus a Cr absorber layer within the ZnS dielectric layer (thus absorbing the first harmonic shown in Figure 6A). Plot of percent reflectance versus reflected EMR wavelength;
图7A为以0和45度暴露于入射光时显示出Cr吸收体层的电场角度依赖性的电场平方值对介电层厚度的图示;Figure 7A is a plot of electric field squared versus dielectric layer thickness showing the angular dependence of the electric field for a Cr absorber layer at 0 and 45 degree exposure to incident light;
图7B为当相对于外表面的法线以0°和45°角度暴露于白光时(0°为与表面垂直)Cr吸收体层的百分比吸收率对反射的EMR波长的图示;Figure 7B is a graphical representation of the percent absorbance of a Cr absorber layer versus reflected EMR wavelength when exposed to white light at angles of 0° and 45° relative to the normal to the outer surface (0° being normal to the surface);
图8A为根据本文公开的一方面的红色全向结构色多层堆叠体的示意性说明;8A is a schematic illustration of a red omnidirectional structural color multilayer stack according to an aspect disclosed herein;
图8B为白光以0°和45°的入射角暴露于图8A中所示的多层堆叠体时,在图8A中所示的Cu吸收体层的百分比吸收率对反射的EMR波长的图示;Figure 8B is a graphical representation of the percent absorbance of the Cu absorber layer shown in Figure 8A versus reflected EMR wavelength when white light is exposed to the multilayer stack shown in Figure 8A at incident angles of 0° and 45° ;
图9为概念验证的红色全向结构色多层堆叠体以0°的入射角暴露于白光时百分比反射率对反射的EMR波长的计算/模拟数据和试验数据之间的对比图;Fig. 9 is a comparison chart between calculated/simulated data and experimental data of percent reflectance versus reflected EMR wavelength of a proof-of-concept red omnidirectional structural color multilayer stack exposed to white light at an incident angle of 0°;
图10为根据本文公开的一方面的全向结构色多层堆叠体的百分比反射率对波长的图示;10 is a graphical representation of percent reflectance versus wavelength for an omnidirectional structural color multilayer stack according to an aspect disclosed herein;
图11为根据本文公开的一方面的全向结构色多层堆叠体的百分比反射率对波长的图示;11 is a graphical representation of percent reflectance versus wavelength for an omnidirectional structural color multilayer stack according to an aspect disclosed herein;
图12为使用CIELAB(Lab)色空间的a*b*颜色映射的一部分的图示,其中比较了常规涂料与由根据本文公开的一方面的颜料制备的涂料的色度和色调偏移(样品(b));12 is a graphical representation of a portion of an a*b* color map using the CIELAB (Lab) color space, comparing the chromaticity and hue shift of a conventional paint to a paint prepared from a pigment according to an aspect disclosed herein (sample (b));
图13是根据本文公开的另一方面的红色全向结构色多层堆叠体的示意性说明;13 is a schematic illustration of a red omnidirectional structural color multilayer stack according to another aspect disclosed herein;
图14是图13中所示的方面的百分比反射率对波长的图示。FIG. 14 is a graphical representation of percent reflectance versus wavelength for the aspect shown in FIG. 13 .
图15是图13中所示的方面的百分比吸收率对波长的图示。FIG. 15 is a graphical representation of percent absorbance versus wavelength for the aspect shown in FIG. 13 .
图16是图13中所示的方面的百分比反射率对波长对视角的图示。16 is a graphical representation of percent reflectance versus wavelength versus viewing angle for the aspect shown in FIG. 13 .
图17是图13中所示的方面的色度和色调对视角的图示。FIG. 17 is a graphical representation of chromaticity and hue versus viewing angle for the aspect shown in FIG. 13 .
图18是由图13中所示的方面反射的颜色相对于a*b*Lab颜色映射的图示;和Figure 18 is a graphical representation of the color reflected by the facet shown in Figure 13 versus the a*b*Lab colormap; and
图19是根据本文公开的一方面的用于制造全向红色结构色多层堆叠体的方法的示意性说明。19 is a schematic illustration of a method for fabricating an omnidirectional red structural color multilayer stack according to an aspect disclosed herein.
具体实施方式detailed description
提供了一种全向高色度红色结构色颜料。全向高色度红色结构色料为多层堆叠体形式,该多层堆叠体具有反射芯层、金属吸收体层和介电吸收体层。金属吸收体层横过反射芯层延伸,且在一些情况下,直接抵靠反射芯层或位于反射芯层的顶部。介电吸收体层横过金属吸收体层延伸,且在一些情况下,直接抵靠金属吸收体层或位于金属吸收体层的顶部。多层堆叠体可以是对称的堆叠体,即,反射芯层是由一对金属吸收体层约束的中心反射芯层,且该一对金属吸收体层由一对介电吸收体层约束。An omnidirectional high chroma red structural color pigment is provided. The omnidirectional high chroma red structural colorant is in the form of a multilayer stack having a reflective core layer, a metallic absorber layer and a dielectric absorber layer. The metal absorber layer extends across, and in some cases, directly against or on top of the reflective core. The dielectric absorber layer extends across, and in some cases, directly against or on top of the metal absorber layer. The multilayer stack may be a symmetrical stack, ie the reflective core layer is a central reflective core layer bounded by a pair of metallic absorber layers bounded by a pair of dielectric absorber layers.
多层堆叠体反射具有红色颜色的单频带可见光,该单频带可见光在a*b*Lab颜色映射上具有介于0-40°之间、优选介于10-30°之间的色调。此外,当从垂直于其外表面的介于0-45°之间的所有角度观察该多层堆叠体时,该单频带可见光的色调偏移在a*b*Lab颜色映射上为小于30°,优选小于20°,且更优选小于10°。如此,反射的单频带可见光的色调偏移可在a*b*Lab映射上的0-40°区域和/或10-30°区域内。The multilayer stack reflects monoband visible light with a red color having a hue on the a*b*Lab color map between 0-40°, preferably between 10-30°. Furthermore, the monoband visible light has a hue shift of less than 30° on the a*b*Lab color map when viewing the multilayer stack from all angles between 0-45° perpendicular to its outer surface , preferably less than 20°, and more preferably less than 10°. As such, the hue shift of the reflected monoband visible light may be in the 0-40° region and/or the 10-30° region on the a*b*Lab map.
反射芯层可以是具有介于50-200nm之间(包含端值)的厚度的干式沉积的层。术语“干式沉积的”意指诸如包括电子束沉积、溅射的物理气相沉积(PVD),化学气相沉积(CVD),等离子体辅助CVD等干式沉积工艺。在一些情况下,反射芯层由反射金属(例如Al、Ag、Pt、Sn及其组合等)制成。在其它情况下,反射芯层由彩色的金属(例如Au、Cu、黄铜、青铜及其组合等)制成。应理解术语“黄铜”和“青铜”分别指本领域技术人员已知的铜-锌合金和铜-锡合金。The reflective core layer may be a dry deposited layer having a thickness between 50-200 nm inclusive. The term "dry deposited" means dry deposition processes such as physical vapor deposition (PVD) including electron beam deposition, sputtering, chemical vapor deposition (CVD), plasma assisted CVD, and the like. In some cases, the reflective core layer is made of a reflective metal (eg, Al, Ag, Pt, Sn, combinations thereof, etc.). In other cases, the reflective core layer is made of colored metals such as Au, Cu, brass, bronze, combinations thereof, and the like. It should be understood that the terms "brass" and "bronze" refer to copper-zinc and copper-tin alloys, respectively, known to those skilled in the art.
金属吸收体层还可以是沉积到反射芯层上的干式沉积的层。在替代方式中,反射芯层可沉积到金属吸收体层上。金属吸收体层可具有介于5-500nm之间(包含端值)的厚度,且可由彩色的金属(例如Cu、青铜、黄铜或材料如非晶的硅(Si)、锗(Ge)、TiN等)制成。应理解的是,出于本发明内容的目的,术语“金属吸收体层”包括通常不被认为是金属的材料,如非晶的Si、Ge、TiN等。The metal absorber layer may also be a dry deposited layer deposited onto the reflective core layer. In an alternative, a reflective core layer may be deposited onto the metallic absorber layer. The metal absorber layer can have a thickness between 5-500 nm inclusive and can be made of colored metals such as Cu, bronze, brass or materials such as amorphous silicon (Si), germanium (Ge), TiN, etc.) made. It is to be understood that for the purposes of this disclosure, the term "metal absorber layer" includes materials not generally considered metals, such as amorphous Si, Ge, TiN, etc.
介电吸收体层还可以是沉积到金属吸收体层上的干式沉积的层或湿式沉积的层。在替代方式中,可将金属吸收体层沉积到介电吸收体层上。介电吸收体层可具有介于5-500nm之间(包含端值)的厚度,且可由介电材料(例如氧化铁(Fe2O3)等)制成。另外,术语“湿式沉积的”意指湿式沉积工艺,例如溶解凝胶工艺、旋涂工艺、湿式化学沉积工艺等。The dielectric absorber layer may also be a dry-deposited layer or a wet-deposited layer deposited onto the metallic absorber layer. In an alternative, a metallic absorber layer can be deposited onto the dielectric absorber layer. The dielectric absorber layer may have a thickness between 5-500 nm inclusive, and may be made of a dielectric material such as iron oxide (Fe 2 O 3 ), etc. In addition, the term "wet deposited" means a wet deposition process, such as a solution gel process, a spin coating process, a wet chemical deposition process, and the like.
多层堆叠体的整体厚度可以小于3微米,优选小于2微米,更优选小于1.5微米,且进一步更优选小于或等于1.0微米。此外,多层堆叠体具有的总层数少于或等于9,优选总层数少于或等于7,且更优选总层数少于或等于5。The overall thickness of the multilayer stack may be less than 3 microns, preferably less than 2 microns, more preferably less than 1.5 microns, and even more preferably less than or equal to 1.0 microns. Furthermore, the multilayer stack has a total number of layers of 9 or less, preferably 7 or less, and more preferably 5 or less.
参考图1,示出了一种设计,其中下面的反射体层(RL)具有横过该反射体层延伸的第一介电材料层DL1和横过该DL1层延伸的选择性吸收层SAL。另外,可以提供或可以不提供另一DL1层并且其可以横过该选择性吸收层延伸或可以不横过该选择性吸收层延伸。在该图中还示出了由该多层结构反射或选择性吸收所有的入射电磁辐射的说明。Referring to Figure 1, a design is shown wherein the underlying reflector layer (RL) has a first layer of dielectric material DL1 extending across the reflector layer and a selective absorbing layer extending across the DL1 layer Sal. Additionally, a further DL 1 layer may or may not be provided and it may or may not extend across the selective absorbing layer. Also shown in this figure is an illustration of the reflection or selective absorption of all incident electromagnetic radiation by the multilayer structure.
如在图1中说明的,这样的设计对应于用于设计和制造所期望的多层堆叠体的不同途径。特别地,下面使用和讨论了对于介电层而言的零能量点或接近零能量的点的厚度。As illustrated in Figure 1, such designs correspond to different approaches for designing and manufacturing the desired multilayer stack. In particular, the thickness of the point of zero energy or near zero energy for the dielectric layer is used and discussed below.
例如,图2A为ZnS介电层的示意性说明,其横过Al反射体芯层延伸。该ZnS介电层具有143nm的总厚度,并且对于波长为500nm的入射电磁辐射来说,零能量点或接近零的能量点存在于77nm处。换句话说,对于波长为500nm的入射电磁辐射(EMR),ZnS介电层在离Al反射体层77nm距离处表现出零电场或接近零的电场。此外,图2B提供了对于数个不同的入射EMR波长来说,跨过ZnS介电层的能量场的图示。如在图中所示的,对于500nm波长,介电层在77nm厚度处具有零电场,但是对于300、400、600和700nm的EMR波长,在77nm厚度处具有非零电场。For example, Figure 2A is a schematic illustration of a ZnS dielectric layer extending across an Al reflector core. The ZnS dielectric layer has a total thickness of 143 nm, and for incident electromagnetic radiation having a wavelength of 500 nm, a point of zero energy or near zero energy exists at 77 nm. In other words, for incident electromagnetic radiation (EMR) at a wavelength of 500 nm, the ZnS dielectric layer exhibits zero or near-zero electric field at a distance of 77 nm from the Al reflector layer. Furthermore, Figure 2B provides a graphical representation of the energy field across the ZnS dielectric layer for several different incident EMR wavelengths. As shown in the figure, the dielectric layer has a zero electric field at a thickness of 77 nm for a wavelength of 500 nm, but a non-zero electric field at a thickness of 77 nm for EMR wavelengths of 300, 400, 600 and 700 nm.
关于零电场点或接近零的电场点的计算,图3说明了具有总厚度“D”、增量厚度“d”和折射指数“n”的介电层4,其位于具有折射指数ns的基材或芯层2上。入射光相对于垂直于外表面5的线6以角度θ照射到介电层4的外表面5,并以相同的角度θ从外表面5反射。入射光透射穿过外表面5并相对于线6以角度θF进入介电层4中,并且以角度θs照射到基材层2的表面3。With regard to the calculation of the point of zero or near zero electric field, Figure 3 illustrates a dielectric layer 4 with a total thickness "D", an incremental thickness " d " and a refractive index "n" located at on the substrate or core layer 2. Incident light strikes the outer surface 5 of the dielectric layer 4 at an angle Θ with respect to a line 6 perpendicular to the outer surface 5 and is reflected from the outer surface 5 at the same angle Θ. Incident light is transmitted through the outer surface 5 and enters the dielectric layer 4 at an angle θ F relative to the line 6 and strikes the surface 3 of the substrate layer 2 at an angle θ s .
对于单一介电层来说,θs=θF并且当z=d时能量/电场(E)可以表示为E(z)。根据麦克斯韦(Maxwell)方程,对于s极化,电场可以表示为:For a single dielectric layer, θ s =θ F and the energy/electric field (E) when z=d can be expressed as E(z). According to Maxwell's equations, for s-polarization, the electric field can be expressed as:
并且对于p极化,可以表示为:And for p-polarization, it can be expressed as:
其中并且λ为将要反射的所期望的波长。此外,α=ns sin θs,其中“s”对应于图5中的基材,并且为作为z的函数的所述层的介电常数。如此,对于s极化in And λ is the desired wavelength to be reflected. Furthermore, α = n s sin θ s , where "s" corresponds to the substrate in Figure 5, and is the dielectric constant of the layer as a function of z. Thus, for s-polarization
|E(d)|2=|u(z)|2exp(2ikαy)|z=d (3)|E(d)| 2 =|u(z)| 2 exp(2ikαy)| z=d (3)
并且对于p极化and for p-polarization
应理解的是,电场沿着介电层4的Z方向上的变化可以通过计算未知参数u(z)和v(z)来估算,其可示出为:It will be appreciated that the variation of the electric field along the Z direction of the dielectric layer 4 can be estimated by calculating the unknown parameters u(z) and v(z), which can be shown as:
自然地,“i”为-1的平方根。使用边界条件u|z=0=1,v|z=0=qs,以及如下的关系式:Naturally, "i" is the square root of -1. Use the boundary conditions u| z=0 =1, v| z=0 =q s , and the following relationship:
对于s极化,qs=ns cosθs (6)For s-polarization, q s = n s cosθ s (6)
对于p极化,qs=ns/cosθs (7)For p-polarization, q s = n s /cosθ s (7)
对于s极化,q=n cosθF (8)For s-polarization, q=n cosθ F (8)
对于p极化,q=n/cosθF (9)For p-polarization, q=n/cosθ F (9)
u(z)和v(z)可以表示为:u(z) and v(z) can be expressed as:
和and
因此,对于的s极化:Therefore, for The s polarization:
并且对于p极化:and for p-polarization:
其中:in:
α=nssinθs=n sinθF (15)α=n s sinθ s =n sinθ F (15)
和and
由此,对于θF=0或者垂直入射的简单情况,并且α=0:Thus, for the simple case of θ F =0 or normal incidence, and α=0:
s极化的|E(d)|2=p极化的 s-polarized |E(d)| 2 =p-polarized
其允许解出厚度“d”,即介电层内电场为零的位置或地点。It allows solving for the thickness "d", the position or location within the dielectric layer where the electric field is zero.
现在参考图4,使用式19来计算当暴露于波长为434nm的EMR时在图2A中所示的ZnS介电层中的零电场点或接近零的电场点。计算该零电场点或接近零的电场点为70nm(对于500nm波长,代替为77nm)。此外,在离Al反射体芯层70nm厚度或距离处插入15nm厚的Cr吸收体层,以提供零电场或接近零的电场ZnS-Cr界面。这样的发明结构允许波长为434nm的光通过Cr-ZnS界面,但是吸收不具有434nm波长的光。换句话说,Cr-ZnS界面对于波长为434nm的光具有零电场或接近零的电场,并且因此434nm光通过该界面。然而,Cr-ZnS界面对于波长不为434nm的光不具有零电场或接近零的电场,并且因此,这样的光被Cr吸收体层和/或Cr-ZnS界面吸收,并且不会被Al反射体层反射。Referring now to FIG. 4 , Equation 19 was used to calculate the zero or near-zero electric field point in the ZnS dielectric layer shown in FIG. 2A when exposed to EMR at a wavelength of 434 nm. This zero electric field point or near zero electric field point is calculated to be 70nm (for 500nm wavelength instead 77nm). In addition, a 15 nm thick Cr absorber layer was inserted at a thickness or distance of 70 nm from the Al reflector core layer to provide a zero or near zero electric field ZnS-Cr interface. Such an inventive structure allows light having a wavelength of 434 nm to pass through the Cr-ZnS interface, but absorbs light not having a wavelength of 434 nm. In other words, the Cr-ZnS interface has a zero electric field or an electric field close to zero for light having a wavelength of 434 nm, and thus 434 nm light passes through the interface. However, the Cr-ZnS interface does not have a zero or near-zero electric field for light with a wavelength other than 434nm, and thus, such light is absorbed by the Cr absorber layer and/or the Cr-ZnS interface and will not be absorbed by the Al reflector layer reflection.
应理解的是,所期望的434nm的+/-10nm范围内的一些百分比的光将通过Cr-ZnS界面。然而,还应理解的是,这样的窄频带反射光,例如434+/-10nm,仍会对人眼提供耀眼的结构色。It should be understood that some percent of the light within +/- 10nm of the desired 434nm will pass through the Cr-ZnS interface. However, it should also be understood that such narrow band reflected light, eg 434 +/- 10 nm, would still provide a dazzling structural color to the human eye.
在图5中说明图4中的多层堆叠体中的Cr吸收体层的结果,其中示出百分比反射率对反射的EMR波长。如通过虚线所示出的,其对应于在图4中所示的没有Cr吸收体层的ZnS介电层,狭窄的反射峰存在于约400nm处,但是宽得多的峰存在于约550+nm处。此外,在500nm波长区域,仍然存在大量的反射光。如此,存在防止多层堆叠体具有或者表现出结构色的双峰。The results for the Cr absorber layer in the multilayer stack in Figure 4 are illustrated in Figure 5, where the percent reflectance is shown versus reflected EMR wavelength. As shown by the dashed line, which corresponds to the ZnS dielectric layer without the Cr absorber layer shown in Figure 4, a narrow reflection peak exists at about 400 nm, but a much broader peak exists at about 550+ nm. In addition, in the 500nm wavelength region, there is still a large amount of reflected light. As such, there is a doublet that prevents the multilayer stack from having or exhibiting structural color.
与之相比,图5中的实线对应于在图4中示出的存在Cr吸收体层的结构。如在图中所示的,在约434nm处存在尖锐峰并且由Cr吸收体层提供了对于大于434nm的波长的反射率的急剧下降。应理解的是,由实线表示的尖锐峰在视觉上呈现为耀眼/结构色。此外,图5描述了反射峰或频带的宽度的测量,即在最大反射波长的50%反射率处确定频带的宽度(其还已知为半宽度(FWHM))。In contrast, the solid line in FIG. 5 corresponds to the structure shown in FIG. 4 in which the Cr absorber layer is present. As shown in the graph, there is a sharp peak at about 434 nm and a sharp drop in reflectivity for wavelengths greater than 434 nm is provided by the Cr absorber layer. It will be appreciated that the sharp peaks represented by the solid lines appear visually as dazzling/structural colors. Furthermore, Figure 5 depicts the measurement of the width of the reflection peak or band, ie the width of the band is determined at 50% reflectance of the wavelength of maximum reflection (which is also known as half width (FWHM)).
关于在图4中所示的多层结构的全向行为,可以设计或设定ZnS介电层的厚度使得仅提供反射光的第一谐波。应理解的是,这对于“蓝色”颜色是足够的,然而,“红色”颜色的产生需要其它的条件。例如,红色颜色的角度独立性的控制是困难的,因为需要较厚的介电层,这又导致高谐波设计,即第二谐波和可能的第三谐波的存在是不可避免的。而且,暗红色颜色色调空间非常狭窄。如此,红色颜色多层堆叠体具有较高的角向色散。Regarding the omnidirectional behavior of the multilayer structure shown in Fig. 4, the thickness of the ZnS dielectric layer can be designed or set such that only the first harmonic of the reflected light is provided. It will be appreciated that this is sufficient for the "blue" color, however, other conditions are required for the generation of the "red" color. For example, control of the angular independence of red color is difficult because thicker dielectric layers are required, which in turn leads to high harmonic designs, i.e. the presence of second and possibly third harmonics is unavoidable. Also, the dark red color tone space is very narrow. As such, the red color multilayer stack has higher angular dispersion.
为了克服红色颜色的较高的角向色散,本申请公开了一种独特的和新颖的设计/结构,其提供不依赖于角度的红色颜色。例如,图6A说明了当从相对于外表面的法线的0和45°观察介电层的外表面时对于入射的白光来说表现出第一谐波和第二谐波的介电层。如通过图示所示出的,由介电层的厚度来提供低角度依赖性(小的Δλc),然而,这样的多层堆叠体具有蓝色颜色(第一谐波)和红色颜色(第二谐波)的组合,并且因此并不适用于所期望的“仅为红色”颜色。因此,开发出了使用吸收体层来吸收所不需要的谐波系列的概念/结构。图6A还说明了对于给出的反射峰来说反射频带中心波长(λc)的位置的例子,以及当从0和45°观察试样时中心波长的分散或偏移(Δλc)。In order to overcome the higher angular dispersion of the red color, the present application discloses a unique and novel design/structure that provides an angle-independent red color. For example, FIG. 6A illustrates a dielectric layer exhibiting first and second harmonics for incident white light when the outer surface of the dielectric layer is viewed from 0 and 45° relative to the normal to the outer surface. As shown graphically, the low angular dependence (small Δλ c ) is provided by the thickness of the dielectric layer, however, such a multilayer stack has a blue color (first harmonic) and a red color ( second harmonic) and thus are not suitable for the desired "only red" color. Therefore, the concept/structure of using an absorber layer to absorb the unwanted harmonic series was developed. Figure 6A also illustrates an example of the location of the reflection band center wavelength (λ c ) for a given reflection peak, and the dispersion or shift of the center wavelength (Δλ c ) when viewing the sample from 0 and 45°.
现在转向图6B,在恰当的介电层厚度(例如72nm)处用Cr吸收体层来吸收在图6A中示出的第二谐波,并且提供了耀眼的蓝色颜色。此外,图6C描述了通过在不同的介电层厚度(例如125nm)处用Cr吸收体吸收第一谐波来提供红色颜色。然而,图6C还说明了Cr吸收体层的使用可导致大于多层堆叠体所期望的角度依赖性,即比所期望的Δλc大。Turning now to FIG. 6B, the second harmonic shown in FIG. 6A is absorbed with a Cr absorber layer at the appropriate dielectric layer thickness (eg, 72nm) and provides a brilliant blue color. Furthermore, Figure 6C depicts the provision of a red color by absorbing the first harmonic with a Cr absorber at a different dielectric layer thickness (eg, 125 nm). However, FIG. 6C also illustrates that the use of a Cr absorber layer can result in an angular dependence greater than expected for a multilayer stack, ie greater than the expected Δλc .
应理解的是,对于红色颜色来说,与蓝色颜色相比,相对大的λc偏移是由于暗红色颜色色调空间非常狭窄以及这样的事实:Cr吸收体层吸收与非零电场相关的波长,即不吸收当电场为零或接近零时的光。如此,图7A描述了零点或非零点对于不同入射角度下的光波长来说是不同的。这样的因素导致在图7B中所示的角度依赖性吸收,即在0°和45°吸收率曲线中的不同。因此,为了进一步细化多层堆叠体设计和角度独立性性能,使用吸收例如蓝光的吸收体层,而无论电场是否为零或者不为零。It will be appreciated that the relatively large shift in λc for the red color compared to the blue color is due to the very narrow hue space of the dark red color and the fact that the Cr absorber layer absorption is associated with a non-zero electric field The wavelength, that is, the light that is not absorbed when the electric field is zero or close to zero. Thus, Figure 7A illustrates that the null or non-zero point is different for light wavelengths at different angles of incidence. Such factors lead to the angle-dependent absorption shown in Figure 7B, ie the difference in the 0° and 45° absorbance curves. Therefore, to further refine the multilayer stack design and angle-independent performance, absorber layers are used that absorb eg blue light, regardless of whether the electric field is zero or not.
特别地,图8A示出具有Cu吸收体层的多层堆叠体,该Cu吸收体层替代Cr吸收体层,横过介电ZnS层延伸。使用这样的“彩色的”或者“选择性”吸收体层的结果在图8B中示出,其证明了对于在图8A中所示的多层堆叠体来说0°和45°吸收线的“较紧密”的集聚。如此,图8B和图7B之间的对比说明了当使用选择性吸收体层而不是非选择性吸收体层时吸收率角度独立性的显著改进。In particular, FIG. 8A shows a multilayer stack with a Cu absorber layer extending across the dielectric ZnS layer instead of the Cr absorber layer. The results of using such a "colored" or "selective" absorber layer are shown in Figure 8B, which demonstrate the " tighter clustering. As such, a comparison between Figure 8B and Figure 7B illustrates the dramatic improvement in angular independence of absorbance when a selective absorber layer is used instead of a non-selective absorber layer.
基于上述内容,设计并制备了概念验证的多层堆叠体结构。此外,对比了用于概念验证的样品的计算/模拟结果和实际试验数据。特别地,并且通过图9中的曲线图所示的,产生了耀眼的红色颜色(大于700nm的波长典型地不会被人眼看到),并且在计算/模拟和由实际样品获得的试验性光数据之间获得了非常良好的一致性。换句话说,计算/模拟可以用于和/或被用于模拟根据本文公开的一种或多种实施方案的多层堆叠体设计和/或现有技术多层堆叠体的结果。Based on the above, a proof-of-concept multilayer stack structure was designed and fabricated. In addition, the calculation/simulation results and actual experimental data of samples used for proof of concept are compared. In particular, and as shown by the graph in Figure 9, a dazzling red color is produced (wavelengths greater than 700 nm are typically not seen by the human eye), and in calculations/simulations and experimental light obtained from actual samples Very good agreement was obtained between the data. In other words, calculations/simulations may be used and/or used to simulate the results of multilayer stack designs and/or prior art multilayer stacks according to one or more embodiments disclosed herein.
图10示出当相对于反射体的外表面的法线以0°和45°的角度暴露于白光时另一个全向反射体设计的百分比反射率对反射的EMR波长的曲线图。如该曲线图所示,0°和45°曲线均说明了对于小于550nm的波长来说由全向反射体提供的非常低的反射率(例如小于10%)。然而,如该曲线所示,反射体在介于560-570nm之间的波长处提供了反射率的急剧增加,并在700nm处达到约90%的最大值。应理解的是,该曲线的右手侧(IR侧)上的图形的部分或区域表示由反射体提供的反射频带的IR部分。Figure 10 shows a graph of percent reflectance versus reflected EMR wavelength for another omnidirectional reflector design when exposed to white light at angles of 0° and 45° relative to the normal to the reflector's outer surface. As shown in the graph, both the 0° and 45° curves illustrate the very low reflectance provided by the omnidirectional reflector (eg, less than 10%) for wavelengths less than 550 nm. However, as shown by the curve, the reflector provides a sharp increase in reflectivity at wavelengths between 560-570 nm, reaching a maximum of about 90% at 700 nm. It will be appreciated that the portion or area of the graph on the right hand side (IR side) of the curve represents the IR portion of the reflection band provided by the reflector.
由全向反射体提供的反射率的急剧增加的特征在于每条曲线的UV侧边缘由波长小于550nm的低反射率部分延伸至高反射率部分(例如大于70%)。UV侧边缘的线性部分200相对于x轴以大于60°的角度(β)倾斜,具有在反射率轴上约40的长度L以及1.4的斜率。在一些情况下,线性部分相对于x轴以大于70°的角度倾斜,而在其它情况下,β大于75°。另外,反射频带具有小于200nm的可见FWHM,并且在一些情况下具有小于150nm的可见FWHM,并且在其它情况下具有小于100nm的可见FWHM。此外,将如在图10中所说明的可见反射频带的中心波长λc定义为在可见FWHM处的反射频带的UV侧边缘和IR光谱的IR边缘之间等距离的波长。The sharp increase in reflectance provided by omnidirectional reflectors is characterized by the UV side edge of each curve extending from a low reflectance portion at wavelengths below 550 nm to a high reflectance portion (eg greater than 70%). The linear portion 200 of the UV side edge is inclined at an angle (β) greater than 60° with respect to the x-axis, has a length L of about 40 on the reflectivity axis and a slope of 1.4. In some cases, the linear portion is inclined at an angle greater than 70° with respect to the x-axis, while in other cases, β is greater than 75°. Additionally, the reflection bands have a visible FWHM of less than 200 nm, and in some cases have a visible FWHM of less than 150 nm, and in other cases have a visible FWHM of less than 100 nm. Furthermore, the central wavelength λ c of the visible reflection band as illustrated in FIG. 10 is defined as the wavelength equidistant between the UV side edge of the reflection band at the visible FWHM and the IR edge of the IR spectrum.
应理解的是,术语“可见FWHM”意指曲线UV侧边缘和IR光谱范围的边缘之间的反射频带的宽度,超出该宽度,由全向反射体提供的反射对人眼是不可见的。以这种方式,本文公开的发明设计和多层堆叠体使用电磁辐射光谱的不可见IR部分来提供耀眼色或结构色。换句话说,尽管存在这样的事实,即反射体可以反射延伸至IR区域内的较宽频带的电磁辐射,但是本文公开的全向反射体利用电磁辐射光谱的不可见IR部分以提供窄频带的反射的可见光。It will be understood that the term "visible FWHM" means the width of the reflection band between the UV side edge of the curve and the edge of the IR spectral range beyond which the reflection provided by the omnidirectional reflector is invisible to the human eye. In this way, the inventive designs and multilayer stacks disclosed herein use the invisible IR portion of the electromagnetic radiation spectrum to provide brilliant or structural color. In other words, despite the fact that reflectors can reflect a wider band of electromagnetic radiation extending into the IR region, the omnidirectional reflectors disclosed herein utilize the invisible IR portion of the electromagnetic radiation spectrum to provide narrowband reflected visible light.
现在参考图11,示出了当相对于反射体表面以0°和45°的角度暴露于白光时,另一个七层设计全向反射体的百分比反射率对波长的曲线图。此外,示出了由本文公开的全向反射体提供的全向性质的定义或表征。特别地,并且当由本发明的反射体提供的反射频带具有如图所示的最大值即峰值时,每条曲线具有中心波长(λc),其定义为表现出或者经历最大反射率的波长。术语最大反射的波长还可用于λc。Referring now to FIG. 11 , there is shown a graph of percent reflectance versus wavelength for another seven layer design omnidirectional reflector when exposed to white light at angles of 0° and 45° relative to the reflector surface. Furthermore, a definition or characterization of the omnidirectional properties provided by the omnidirectional reflectors disclosed herein is shown. In particular, and when the reflection band provided by the reflector of the present invention has a maximum or peak as shown, each curve has a center wavelength (λ c ), which is defined as the wavelength exhibiting or experiencing maximum reflectance. The term wavelength of maximum reflection can also be used for λ c .
如图11所示,当从角度45°(λc(45°))观察全向反射体的外表面、例如外表面相对于观察该表面的人眼倾斜45°时,与从0°的角度(λc(0°))、即垂直于该表面来观察该表面时相比,存在λc的偏移或位移。λc的这种偏移(Δλc)提供了全向反射体的全向性质的量度。自然地,零偏移即完全无偏移会是完美的全向反射体。然而,本文公开的全向反射体可以提供小于50nm的Δλc,其对于人眼来说可以表现为仿佛反射体的表面没有改变颜色,并且因此从实际的角度来看,该反射体为全向的。在一些情况下,本文公开的全向反射体可以提供小于40nm的Δλc,在其它情况下可以提供小于30nm的Δλc,并且还在其它情况下可以提供小于20nm的Δλc,而又还在其他情况下可以提供小于15nm的Δλc。Δλc的这样的偏移可以通过反射体的实际反射率对波长的曲线图来确定,和/或可替代地,如果已知材料和层厚度,那么可以通过对反射体进行建模来确定。As shown in Figure 11, when observing the outer surface of the omnidirectional reflector from an angle of 45° (λ c (45°)), for example, when the outer surface is inclined at 45° relative to the human eyes observing the surface, the angle from 0° ( λ c (0°)), ie, there is an offset or displacement of λ c compared to viewing the surface perpendicular to the surface. This shift in λ c (Δλ c ) provides a measure of the omnidirectional properties of the omnidirectional reflector. Naturally, zero offset, ie no offset at all, would be a perfect omni reflector. However, the omnidirectional reflectors disclosed herein can provide a Δλc of less than 50 nm, which can appear to the human eye as if the surface of the reflector has not changed color, and thus from a practical point of view, the reflector is omnidirectional of. In some cases, the omnidirectional reflectors disclosed herein can provide a Δλ c of less than 40 nm, in other cases can provide a Δλ c of less than 30 nm, and in still other cases can provide a Δλ c of less than 20 nm, while still Other cases may provide Δλ c of less than 15 nm. Such a shift in Δλc can be determined from a plot of the actual reflectivity of the reflector versus wavelength, and/or alternatively, by modeling the reflector if the material and layer thicknesses are known.
反射体的全向性质的另一个定义或表征可以通过所给出的一组角度反射频带的侧边缘的偏移来确定。例如,并且参考图11,与对于从45°观察相同的反射体的反射率(SUV(45°))来说的UV侧边缘相比,对于从0°观察全向反射体的反射率(SUV(0°))来说的UV侧边缘的偏移或位移(ΔSUV)提供了全向反射体的全向性质的量度。应理解的是,在可见FWHM处测量UV侧边缘的偏移(ΔSUV),和/或可以在可见FWHM处测量UV侧边缘的偏移(ΔSUV)。Another definition or characterization of the omnidirectional nature of a reflector can be determined by the offset of the side edges of the reflection bands for a given set of angles. For example, and with reference to FIG. 11 , the reflectivity for an omnidirectional reflector viewed from 0° (( The offset or displacement (ΔS UV ) of the UV side edge in terms of S UV (0°)) provides a measure of the omnidirectional properties of the omnidirectional reflector. It is understood that the offset of the UV side edge (ΔS UV ) is measured at the visible FWHM, and/or may be measured at the visible FWHM.
自然地,零偏移即完全无偏移(ΔSUV=0nm)会表征完美的全向反射体。然而,本文公开的全向反射体可以提供小于50nm的ΔSUV,其对于人眼来说可以表现为仿佛反射体的表面没有改变颜色,并且因此从实际的角度来说,该反射体为全向的。在一些情况下,本文公开的全向反射体可以提供小于40nm的ΔSUV,在其它情况下可以提供小于30nm的ΔSUV,并且还在其它情况下可以提供小于20nm的ΔSUV,而又还在其它情况下可以提供小于15nm的ΔSUV。ΔSUV的这样的偏移可以通过反射体的实际反射率对波长的曲线图来确定,和/或可替代地,如果已知材料和层厚度,那么可以通过对反射体进行建模来确定。Naturally, zero offset, ie no offset at all (ΔS UV =0 nm), would characterize a perfect omnidirectional reflector. However, the omnidirectional reflectors disclosed herein can provide a ΔS UV of less than 50 nm, which can appear to the human eye as if the surface of the reflector has not changed color, and thus from a practical point of view, the reflector is omnidirectional of. In some cases, the omnidirectional reflectors disclosed herein can provide a ΔS UV of less than 40 nm, in other cases can provide a ΔS UV of less than 30 nm, and in still other cases can provide a ΔS UV of less than 20 nm, while still Other cases may provide ΔS UV of less than 15 nm. Such a shift in ΔSUV can be determined from a plot of the actual reflectivity of the reflector versus wavelength, and/or alternatively, by modeling the reflector if the material and layer thicknesses are known.
还可以通过低色调偏移来测量全向反射的偏移。例如,如在图12中所示的(例如参见Δθ1),由根据本文公开的一方面的多层堆叠体制备的颜料的色调偏移为30°或更小,并且在一些情况下,色调偏移为25°或更小,优选小于20°,更优选小于15°,并且还更优选小于10°。与之相比,传统的颜料表现出45°或更大的色调偏移(例如参见Δθ2)。应理解的是,与Δθ1相关的色调偏移通常对应于红色颜色,然而对于由本文公开的混合全向结构色颜料所反射的任何颜色而言,低的色调偏移是相关的。The shift in omnidirectional reflection can also be measured by low tone shift. For example, as shown in FIG. 12 (see, for example, Δθ 1 ), pigments prepared from multilayer stacks according to an aspect disclosed herein have a hue shift of 30° or less, and in some cases, hue The offset is 25° or less, preferably less than 20°, more preferably less than 15°, and still more preferably less than 10°. In contrast, conventional pigments exhibit a hue shift of 45° or more (see eg Δθ 2 ). It will be appreciated that a hue shift associated with Δθ 1 generally corresponds to a red color, however a low hue shift is relevant for any color reflected by the hybrid omnidirectional structural color pigments disclosed herein.
在图13中以附图标记10示出根据本文公开的另一方面的全向多层堆叠体的示意性说明。该多层堆叠体10具有第一层110和第二层120。可包括任选的反射体层100。用于反射体层100(有时称作反射体芯层)的示例性材料可包括但不限于Al、Ag、Pt、Cr、Cu、Zn、Au、Sn及其组合或其合金。如此,该反射体层100可为金属性反射体层,然而这不是必需的。另外,芯反射体层的示例性厚度介于30至200nm之间。A schematic illustration of an omnidirectional multilayer stack according to another aspect disclosed herein is shown at 10 in FIG. 13 . The multilayer stack 10 has a first layer 110 and a second layer 120 . An optional reflector layer 100 may be included. Exemplary materials for reflector layer 100 (sometimes referred to as a reflector core layer) may include, but are not limited to, Al, Ag, Pt, Cr, Cu, Zn, Au, Sn, combinations thereof, or alloys thereof. As such, the reflector layer 100 may be a metallic reflector layer, although this is not required. Additionally, an exemplary thickness of the core reflector layer is between 30 and 200 nm.
对称的一对层可以位于反射体层100的相对侧上,即反射体层100可以具有与第一层110相对布置的另一第一层,从而将反射体层100夹在一对第一层之间。此外,另一第二层120可以相对地布置于反射体层100,从而提供五层结构。因此,应理解的是,本文提供的多层堆叠体的讨论还包括关于一个或多个中心层的镜像结构的可能性。如此,图13可以是五层多层堆叠体的一半的说明。A symmetrical pair of layers may be located on opposite sides of the reflector layer 100, i.e. the reflector layer 100 may have another first layer disposed opposite to the first layer 110, thereby sandwiching the reflector layer 100 between the pair of first layers. between. In addition, another second layer 120 may be disposed opposite to the reflector layer 100, thereby providing a five-layer structure. Accordingly, it should be understood that the discussion of multilayer stacks provided herein also includes the possibility of mirroring structures with respect to one or more central layers. As such, FIG. 13 may be an illustration of one half of a five-layer multilayer stack.
相对于以上讨论的方面,第一层110可以是吸收体层,例如,具有介于5-500nm之间(包含端值)的厚度的金属吸收体层。而且,第二层可以是具有5-500nm之间(包含端值)的厚度的介电吸收体层。金属吸收体层110可以由彩色的金属材料例如Cu、青铜、黄铜制成,或者由材料例如非晶的Si、Ge、TiN及其组合制成。介电吸收体层120可由Fe2O3制成。With respect to the aspects discussed above, the first layer 110 may be an absorber layer, eg a metal absorber layer having a thickness between 5-500 nm inclusive. Furthermore, the second layer may be a dielectric absorber layer having a thickness between 5-500 nm inclusive. The metal absorber layer 110 may be made of colored metallic materials such as Cu, bronze, brass, or materials such as amorphous Si, Ge, TiN and combinations thereof. The dielectric absorber layer 120 may be made of Fe 2 O 3 .
如图13所示且具有如以下表1所示尺寸的方面表现出图14中所示的反射率谱。如该图所示,具有表1所示厚度的Cu或其合金或其它彩色的反射体如TiN层110及Fe2O3介电吸收体层120提供了这样的反射率谱,其中小于大概550-575nm的波长具有小于10-15%的反射率,且大于大概575-600nm的波长对应于在a*b*Lab颜色映射上介于0-40°之间、优选介于10-30°之间的色调。此外,可见光的反射频带的色度大于70,优选大于80,且更优选等于或大于90。Aspects as shown in FIG. 13 and having dimensions as shown in Table 1 below exhibit the reflectance spectrum shown in FIG. 14 . As shown in this figure, Cu or its alloys or other colored reflectors such as TiN layer 110 and Fe2O3 dielectric absorber layer 120 having the thicknesses shown in Table 1 provide a reflectance spectrum in which less than approximately 550 A wavelength of -575 nm has a reflectivity of less than 10-15%, and wavelengths greater than approximately 575-600 nm correspond to between 0-40°, preferably between 10-30° on the a*b*Lab color map between hues. In addition, the chromaticity of the reflection band of visible light is greater than 70, preferably greater than 80, and more preferably equal to or greater than 90.
表1Table 1
图14中示例性地示出了对于0°和45°的视角,如图13所示的这样的多层堆叠体的反射谱。如该图所示,UV侧边缘在FWHM处的偏移(ΔSUV=SUV(0°)–SUV(45°))小于50nm,优选小于30nm,且仍更优选地小于20nm,且还更优选地小于10nm。结合可见光谱中的频带的宽度,介于角度0和45°之间的反射的频带的偏移对应于对于人眼不显著的颜色改变。The reflectance spectrum of such a multilayer stack as shown in FIG. 13 is shown exemplarily in FIG. 14 for viewing angles of 0° and 45°. As shown in the figure, the offset of the UV side edge at FWHM (ΔSUV = SUV (0°) - SUV (45°)) is less than 50 nm, preferably less than 30 nm, and still more preferably less than 20 nm, and also More preferably less than 10 nm. Combined with the width of the frequency bands in the visible spectrum, a shift in the reflected frequency band between angles 0 and 45° corresponds to a color change that is not noticeable to the human eye.
图15示出了图13中所示的设计的吸收对波长。如该图所示,多层堆叠体10对于直至约575nm的波长吸收超过80%的可见光光谱。此外,该方面10吸收直至约660nm的所有波长的大于40%。如此,金属吸收层110和介电吸收层120的组合提供了可见反射频带,其在a*b*Lab色空间上具有介于0-40°之间、且优选介于10-30°之间的色调,即,红色颜色光谱中的反射的波长。FIG. 15 shows the absorption versus wavelength for the design shown in FIG. 13 . As shown in this figure, the multilayer stack 10 absorbs more than 80% of the visible light spectrum for wavelengths up to about 575 nm. Furthermore, the aspect 10 absorbs greater than 40% of all wavelengths up to about 660 nm. Thus, the combination of the metallic absorbing layer 110 and the dielectric absorbing layer 120 provides a visible reflection frequency band with a range between 0-40°, and preferably between 10-30° in the a*b*Lab color space The hue, that is, the reflected wavelength in the red color spectrum.
图16示出了该方面10的图示,作为百分比反射率、被反射的波长和观察角度的函数。如该3D等值线图所示,反射率非常低,即,对于介于400-550-575nm之间的波长且在介于0至45-50°之间的视角下,反射率小于20%。然而,在介于约550-600nm之间的波长处存在百分比反射率的急剧增加。Figure 16 shows a graphical representation of this aspect 10 as a function of percent reflectance, reflected wavelength and viewing angle. As shown in this 3D contour plot, the reflectivity is very low, i.e. less than 20% for wavelengths between 400-550-575nm and at viewing angles between 0 and 45-50° . However, there is a sharp increase in percent reflectance at wavelengths between about 550-600 nm.
描述本发明公开的本发明的多层堆叠体的全向性质的另一方法或技术是如图17所示的色度及色调对视角的曲线图。图17示出了图13所示的方面的反射特性,其中介于0和45°之间的角度的色调介于20-30之间,且具有小于10°、优选小于5°的改变或偏移。此外,对于介于0-45°之间的所有视角,色度介于80-90之间,其中色度(C*)定义为a*和b*是当暴露于宽频带电磁辐射(例如白光)时,由多层堆叠体反射的颜色在Lab色空间或映射上的坐标。Another method or technique to describe the omnidirectional properties of the multilayer stacks of the present invention disclosed herein is the plot of chromaticity and hue versus viewing angle as shown in FIG. 17 . Figure 17 shows the reflective properties of the aspect shown in Figure 13, wherein the hue for angles between 0 and 45° is between 20-30 with a change or deviation of less than 10°, preferably less than 5° shift. Furthermore, for all viewing angles between 0-45°, the chromaticity is between 80-90, where chromaticity (C*) is defined as a* and b* are the coordinates on the Lab color space or map of the color reflected by the multilayer stack when exposed to broadband electromagnetic radiation (eg white light).
图18显示或标绘了图13所示的方面在a*b*Lab色空间映射上的色调(参见箭头所指的数据点)。在该映射上还显示了介于15-40°之间的区域。应理解的是,这两个点用于说明相对于多层堆叠体的外表面的法线的0°视角。另外,应理解的是,介于0-45°的视角之间,如图13所示的该方面的色调没有移动至15-40°色调区域之外。换言之,该方面表明了低的色调偏移,例如小于30°,优选小于20°,且仍更优选小于10°。还进一步应理解的是,图13所示的该方面还可经设计从而提供具有介于0-40°之间的色调的单频带可见光,且可绘制曲线于图18,且优选为具有介于10-30°之间的色调的单频带可见光。Figure 18 shows or plots the hue of the aspect shown in Figure 13 on the a*b*Lab color space map (see data points indicated by arrows). The region between 15-40° is also shown on this map. It should be understood that these two points are used to illustrate a 0° viewing angle relative to the normal to the outer surface of the multilayer stack. In addition, it should be understood that between viewing angles of 0-45°, the hue of this aspect as shown in FIG. 13 does not shift beyond the 15-40° hue region. In other words, this aspect demonstrates a low hue shift, eg less than 30°, preferably less than 20°, and still more preferably less than 10°. It should further be understood that the aspect shown in FIG. 13 can also be designed to provide a single band of visible light with a hue between 0-40° and can be plotted in FIG. 18 , preferably with a hue between Single-band visible light with hues between 10-30°.
现在转向图19,以附图标记20大致示出了用于制造全向高色度红色结构色料的方法。方法20包括在步骤202干式沉积反射芯层,然后在步骤210将金属吸收体层干式沉积到干式沉积的反射芯层上。然后,在步骤220将介电吸收体层干式沉积或湿式沉积到金属吸收体层上。应理解的是,可重复步骤210和220以在干式沉积的反射芯层上产生另外的层。此外,可将干式沉积的反射芯层沉积到金属吸收体层上,也可将湿式沉积的介电层沉积到金属吸收体层上。Turning now to FIG. 19 , a method for making an omnidirectional high chroma red structural colorant is shown generally at 20 . Method 20 includes dry depositing a reflective core layer at step 202 and then dry depositing a metal absorber layer onto the dry deposited reflective core layer at step 210 . Then, at step 220, the dielectric absorber layer is dry-deposited or wet-deposited onto the metal absorber layer. It should be understood that steps 210 and 220 may be repeated to create additional layers on the dry deposited reflective core layer. Additionally, a dry-deposited reflective core layer can be deposited onto the metal absorber layer, and a wet-deposited dielectric layer can also be deposited onto the metal absorber layer.
上文的实施例和方面仅为说明性的目的,并且变化、改变等对于本领域技术人员来说将是明显的,并且也仍然落入本发明的范围内。如此,本发明的范围由权利要求及其所有等价形式来定义。The above embodiments and aspects are for illustrative purposes only, and variations, changes, etc. will be apparent to those skilled in the art and still fall within the scope of the invention. As such, the scope of the invention is defined by the claims and all equivalents thereof.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010173026.1A CN111239876A (en) | 2015-07-07 | 2016-06-07 | Omnidirectional high chroma red structural colorants with a combination of metallic and dielectric absorber layers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/793,133 US9658375B2 (en) | 2012-08-10 | 2015-07-07 | Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers |
US14/793,133 | 2015-07-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010173026.1A Division CN111239876A (en) | 2015-07-07 | 2016-06-07 | Omnidirectional high chroma red structural colorants with a combination of metallic and dielectric absorber layers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106338787A true CN106338787A (en) | 2017-01-18 |
CN106338787B CN106338787B (en) | 2020-04-07 |
Family
ID=57584217
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010173026.1A Pending CN111239876A (en) | 2015-07-07 | 2016-06-07 | Omnidirectional high chroma red structural colorants with a combination of metallic and dielectric absorber layers |
CN201610395759.3A Expired - Fee Related CN106338787B (en) | 2015-07-07 | 2016-06-07 | Omnidirectional high chroma red structural colorants with a combination of metallic and dielectric absorber layers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010173026.1A Pending CN111239876A (en) | 2015-07-07 | 2016-06-07 | Omnidirectional high chroma red structural colorants with a combination of metallic and dielectric absorber layers |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP6645912B2 (en) |
CN (2) | CN111239876A (en) |
DE (1) | DE102016110095A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109308440A (en) * | 2017-07-27 | 2019-02-05 | 采钰科技股份有限公司 | Thin film collimator and method of forming the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6399228B1 (en) * | 1996-09-23 | 2002-06-04 | Qinetiq Limited | Multi-layer interference coatings |
CN1202429C (en) * | 1998-11-24 | 2005-05-18 | 福来克斯产品公司 | Color shifting thin film pigments |
CN101765791A (en) * | 2007-08-01 | 2010-06-30 | 大日本印刷株式会社 | antireflection laminate |
CN103507322A (en) * | 2012-06-29 | 2014-01-15 | 北川工业株式会社 | Transparent infrared reflection laminate and manufacturing method thereof |
CN104619668A (en) * | 2012-09-21 | 2015-05-13 | 法国圣戈班玻璃厂 | Substrate provided with a stack having thermal properties and an absorbent layer |
CN104730737A (en) * | 2013-12-23 | 2015-06-24 | 丰田自动车工程及制造北美公司 | Red omnidirectional structural color made from metal and dielectric layers |
WO2015153043A1 (en) * | 2014-04-01 | 2015-10-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Non-color shifting multilayer structures |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5437931A (en) * | 1993-10-20 | 1995-08-01 | Industrial Technology Research Institute | Optically variable multilayer film and optically variable pigment obtained therefrom |
US20150138642A1 (en) * | 2007-08-12 | 2015-05-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Durable hybrid omnidirectional structural color pigments for exterior applications |
US9612369B2 (en) * | 2007-08-12 | 2017-04-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Red omnidirectional structural color made from metal and dielectric layers |
JP6655278B2 (en) * | 2013-06-08 | 2020-02-26 | トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド | High chroma omnidirectional structure Color multilayer structure |
DE102015113535B4 (en) * | 2014-08-28 | 2020-12-17 | Toyota Motor Corporation | Red omnidirectional structural paint made of metal and dielectric layers |
-
2016
- 2016-06-01 DE DE102016110095.1A patent/DE102016110095A1/en active Pending
- 2016-06-07 CN CN202010173026.1A patent/CN111239876A/en active Pending
- 2016-06-07 JP JP2016113285A patent/JP6645912B2/en active Active
- 2016-06-07 CN CN201610395759.3A patent/CN106338787B/en not_active Expired - Fee Related
-
2020
- 2020-01-09 JP JP2020002230A patent/JP6985434B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6399228B1 (en) * | 1996-09-23 | 2002-06-04 | Qinetiq Limited | Multi-layer interference coatings |
CN1202429C (en) * | 1998-11-24 | 2005-05-18 | 福来克斯产品公司 | Color shifting thin film pigments |
CN101765791A (en) * | 2007-08-01 | 2010-06-30 | 大日本印刷株式会社 | antireflection laminate |
CN103507322A (en) * | 2012-06-29 | 2014-01-15 | 北川工业株式会社 | Transparent infrared reflection laminate and manufacturing method thereof |
CN104619668A (en) * | 2012-09-21 | 2015-05-13 | 法国圣戈班玻璃厂 | Substrate provided with a stack having thermal properties and an absorbent layer |
CN104730737A (en) * | 2013-12-23 | 2015-06-24 | 丰田自动车工程及制造北美公司 | Red omnidirectional structural color made from metal and dielectric layers |
WO2015153043A1 (en) * | 2014-04-01 | 2015-10-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Non-color shifting multilayer structures |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109308440A (en) * | 2017-07-27 | 2019-02-05 | 采钰科技股份有限公司 | Thin film collimator and method of forming the same |
CN109308440B (en) * | 2017-07-27 | 2021-06-11 | 采钰科技股份有限公司 | Thin film collimator and method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
JP2020060800A (en) | 2020-04-16 |
JP6985434B2 (en) | 2021-12-22 |
CN106338787B (en) | 2020-04-07 |
JP2017021334A (en) | 2017-01-26 |
JP6645912B2 (en) | 2020-02-14 |
CN111239876A (en) | 2020-06-05 |
DE102016110095A1 (en) | 2017-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9658375B2 (en) | Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers | |
JP6947885B2 (en) | Multi-layer structure without color shift | |
CN104730737B (en) | Omnidirectional structural color in red made of metal and dielectric layers | |
US9664832B2 (en) | Omnidirectional high chroma red structural color with combination semiconductor absorber and dielectric absorber layers | |
JP6655278B2 (en) | High chroma omnidirectional structure Color multilayer structure | |
JP6416714B2 (en) | Red omnidirectional structural color made from metal and dielectric layers | |
JP6817407B2 (en) | Omnidirectional high saturation red structural color with semiconductor absorber layer | |
JP2016049777A5 (en) | ||
US9678260B2 (en) | Omnidirectional high chroma red structural color with semiconductor absorber layer | |
CN107340556B (en) | Omnidirectional high chromatic red structural color | |
CN111257986B (en) | Omnidirectional high chroma red structural colorants with a combination of semiconductor absorber layer and dielectric absorber layer | |
CN106338787A (en) | Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers | |
CN105372731B (en) | Red Omnidirectional Structural Pigment Made from Metal and Dielectric Layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200628 Address after: Aichi Prefecture, Japan Patentee after: Toyota Motor Corp. Address before: Kentucky, USA Patentee before: Toyota Motor Engineering & Manufacturing North America, Inc. |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200407 |
|
CF01 | Termination of patent right due to non-payment of annual fee |