CN104730737A - Red omnidirectional structural color made from metal and dielectric layers - Google Patents
Red omnidirectional structural color made from metal and dielectric layers Download PDFInfo
- Publication number
- CN104730737A CN104730737A CN201410693385.4A CN201410693385A CN104730737A CN 104730737 A CN104730737 A CN 104730737A CN 201410693385 A CN201410693385 A CN 201410693385A CN 104730737 A CN104730737 A CN 104730737A
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- layer
- absorbing layers
- selectively absorbing
- multilayer laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0102—Constructional details, not otherwise provided for in this subclass
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/65—Chroma (C*)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/66—Hue (H*)
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/1054—Interference pigments characterized by the core material the core consisting of a metal
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/24—Interference pigments comprising a metallic reflector or absorber layer, which is not adjacent to the core
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/30—Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
- C09C2200/301—Thickness of the core
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/30—Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
- C09C2200/308—Total thickness of the pigment particle
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
本发明公开了由金属和电介质层制成的红色的全方向结构色。一种显示红色的全方向结构色的多层叠层。该多层叠层包括反射体层、遍及反射体层延伸的电介质层以及遍及电介质层延伸的吸收层。电介质层反射超过70%的具有大于580纳米(nm)波长的入射白光。另外,吸收层吸收超过70%的具有小于580nm波长的入射白光。结合起来的话,反射体层、电介质层和吸收层形成全方向反射体,该全方向反射体反射这样的电磁辐射的窄带:其具有580nm至680nm之间的中心波长、具有小于200nm宽的宽度以及当该反射体被从0和45度之间的角度观看时小于100nm的色移。
The present invention discloses an omnidirectional structural color of red made from metal and dielectric layers. A multilayer stack that exhibits red omnidirectional structural color. The multilayer stack includes a reflector layer, a dielectric layer extending across the reflector layer, and an absorber layer extending across the dielectric layer. The dielectric layer reflects more than 70 percent of incident white light having a wavelength greater than 580 nanometers (nm). In addition, the absorbing layer absorbs more than 70% of incident white light having a wavelength of less than 580 nm. When combined, the reflector layer, dielectric layer, and absorber layer form an omnidirectional reflector that reflects a narrow band of electromagnetic radiation having a center wavelength between 580 nm and 680 nm, having a width less than 200 nm wide, and A color shift of less than 100 nm when the reflector is viewed from an angle between 0 and 45 degrees.
Description
相关申请的交叉引用Cross References to Related Applications
本申请是2013年6月8日提交的美国专利申请序列号13/913,402的部分继续(CIP),申请13/913,402接着是2013年2月6日提交的美国专利申请序列号13/760,699的CIP,申请13/760,699接着是2012年8月10日提交的13/572,071的CIP,申请13/572,071接着是2011年2月5日提交的美国专利申请序列号13/021,730的CIP,申请13/021,730接着是2010年6月4日提交的申请12/793,772的CIP,申请12/793,772接着是2009年2月18日提交的美国专利申请序列号12/388,395的CIP,申请12/388,395接着是2007年8月12日提交的美国专利申请序列号11/837,529(美国专利7,903,339)的CIP。2011年2月5日提交的美国专利申请序列号13/021,730也是2007年8月12日提交的11/837,529(美国专利7,903,339)的CIP。2013年2月6日提交的美国专利申请序列号13/760,699也是2009年5月18日提交的12/467,656的CIP,上述所有申请的全文内容通过引用被并入于此。This application is a continuation-in-part (CIP) of U.S. Patent Application Serial No. 13/913,402, filed June 8, 2013, which is a CIP of U.S. Patent Application Serial No. 13/760,699, filed February 6, 2013 , application 13/760,699 followed by CIP of 13/572,071 filed August 10, 2012, application 13/572,071 followed by CIP of US Patent Application Serial No. 13/021,730, filed February 5, 2011, application 13/021,730 This was followed by CIP of application 12/793,772 filed June 4, 2010, application 12/793,772 followed by CIP of US patent application serial number 12/388,395 filed February 18, 2009, application 12/388,395 followed by 2007 CIP of US Patent Application Serial No. 11/837,529 (US Patent 7,903,339), filed August 12. US Patent Application Serial No. 13/021,730, filed February 5, 2011, is also a CIP of 11/837,529, filed August 12, 2007 (US Patent 7,903,339). US Patent Application Serial No. 13/760,699, filed February 6, 2013, is also a CIP of 12/467,656, filed May 18, 2009, the entire contents of all of which are hereby incorporated by reference.
技术领域technical field
本发明涉及全方向结构色(omnidirectional structural color),并且更具体地涉及由具有吸收体层和电介质层的多层叠层(multilayer stack)提供的红色的全方向结构色。The present invention relates to omnidirectional structural color, and more particularly to the omnidirectional structural color of red provided by a multilayer stack having an absorber layer and a dielectric layer.
背景技术Background technique
用多层结构制成的色料(pigment)是已知的。另外,呈现或提供高色度的全方向结构色的色料也是已知的。然而,这种现有技术的色料需要多达39个薄膜层以便获得希望的颜色特性。Pigments made with multilayer structures are known. In addition, colorants that exhibit or provide omnidirectional structural colors of high chroma are also known. However, this prior art colorant requires as many as 39 film layers in order to obtain the desired color characteristics.
要领会的是,和薄膜多层色料的生产相关的成本与所需的层数成比例。因此,和使用电介质材料的多层叠层来进行的高色度全方向结构色的生产相关的成本可能过高。所以,需要最小数量的薄膜层的高色度全方向结构色是合意的。It will be appreciated that the costs associated with the production of thin film multilayer colorants are proportional to the number of layers required. Therefore, the costs associated with the production of high chroma omnidirectional structural colors using multilayer stacks of dielectric materials may be prohibitive. Therefore, high chroma omnidirectional structural colors requiring a minimum number of film layers are desirable.
发明内容Contents of the invention
可提供红色的全方向结构色的多层叠层被提供。多层叠层包括反射体层、遍及(across)反射体层延伸的电介质层以及遍及电介质层延伸的吸收体层。电介质层结合反射体层反射超过70%的具有大于550纳米(nm)的波长的入射白光。另外,吸收体层吸收超过70%的具有一般小于550nm的波长的入射白光。结合起来的话,反射体层、电介质层和吸收层形成这样的全方向反射体:(1)其反射具有550nm至700nm之间的中心波长和小于200nm宽的宽度的可见电磁辐射的窄带(反射峰或带);(2)当该全方向反射体被从0度和45度之间的角度观看时其具有小于100nm的色移(color shift)。在一些实例中,被反射的可见电磁辐射的窄带的宽度小于175nm,优选为小于150nm,更优选为小于125nm,并且再更优选为小于100nm。Multi-layer stacks that provide omnidirectional structural color in red are provided. The multilayer stack includes a reflector layer, a dielectric layer extending across the reflector layer, and an absorber layer extending across the dielectric layer. The dielectric layer in combination with the reflector layer reflects more than 70 percent of incident white light having a wavelength greater than 550 nanometers (nm). Additionally, the absorber layer absorbs more than 70% of incident white light having a wavelength typically less than 550 nm. When combined, the reflector layer, dielectric layer, and absorber layer form an omnidirectional reflector that (1) reflects a narrow band (reflection peak) of visible electromagnetic radiation having a center wavelength between 550 nm and 700 nm and a width less than 200 nm wide. or belt); (2) when the omnidirectional reflector is viewed from an angle between 0 degrees and 45 degrees, it has a color shift (color shift) of less than 100 nm. In some examples, the narrow band of reflected visible electromagnetic radiation has a width of less than 175 nm, preferably less than 150 nm, more preferably less than 125 nm, and even more preferably less than 100 nm.
反射体层具有50nm至200nm之间的厚度并且由诸如铝、银、铂、锡以及它们的合金等金属制成。The reflector layer has a thickness between 50nm and 200nm and is made of metals such as aluminum, silver, platinum, tin and their alloys.
在一些实例中,电介质层具有0.1至2.0个希望的被反射的中心波长的四分之一波(QW,quarter wave)的光学厚度。在其他实例中,电介质层具有大于2.0个希望的被反射的中心波长的QW的光学厚度。电介质层还具有大于1.6的折射率并包含诸如硫化锌(ZnS)、二氧化钛(TiO2)、氧化铪(HfO2)、氧化铌(Nb2O5)、氧化钽(Ta2O5)、它们的组合等电介质材料。电介质层也可以包含诸如氧化铁(Fe2O3)、氧化亚铜(Cu2O)、它们的组合等彩色的电介质材料。In some examples, the dielectric layer has an optical thickness of 0.1 to 2.0 quarter waves (QW) of the desired reflected center wavelength. In other examples, the dielectric layer has an optical thickness greater than 2.0 QW of the desired reflected center wavelength. The dielectric layer also has a refractive index greater than 1.6 and contains materials such as zinc sulfide (ZnS), titanium dioxide (TiO 2 ), hafnium oxide (HfO 2 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), which combination of other dielectric materials. The dielectric layer may also contain colored dielectric materials such as iron oxide (Fe 2 O 3 ), cuprous oxide (Cu 2 O), combinations thereof, and the like.
吸收层,在此也被称为吸收体层,可以是或者可以不是彩色的或选择性的吸收层。例如,非彩色的或非选择性的吸收体层可包括由铬、银、铂等制成的层。在替代方案中,吸收层可以是由铜、金、诸如青铜和黄铜的合金等制成的彩色的或选择性的吸收体层。在另一替代方案中,彩色的或选择性的吸收体层包含诸如Fe2O3、Cu2O、它们的组合等彩色的电介质材料。The absorber layer, also referred to herein as the absorber layer, may or may not be a colored or selective absorber layer. For example, neutral or non-selective absorber layers may include layers made of chromium, silver, platinum, and the like. In the alternative, the absorber layer may be a colored or selective absorber layer made of copper, gold, alloys such as bronze and brass, or the like. In another alternative, the colored or selective absorber layer comprises a colored dielectric material such as Fe2O3 , Cu2O , combinations thereof, or the like.
要领会的是,选择性吸收体层被选择以吸收白光光谱内所希望的范围的波长并反射另一希望的范围的白光光谱。例如,选择性吸收体层可被设计和制造为使得它吸收具有与蓝紫色、蓝色、绿色、黄色相对应的波长(例如,400nm至550nm)的电磁辐射并且还反射与红色(即,580至红外(IR)的范围)相对应的电磁辐射。It will be appreciated that the selective absorber layer is selected to absorb a desired range of wavelengths within the white light spectrum and reflect another desired range of the white light spectrum. For example, a selective absorber layer can be designed and fabricated such that it absorbs electromagnetic radiation having wavelengths corresponding to violet, blue, green, yellow (e.g., 400 nm to 550 nm) and also reflects electromagnetic radiation associated with red (i.e., 580 nm). to the infrared (IR) range) corresponding to electromagnetic radiation.
在一些实例中,多层叠层除了之前提到的电介质层(即,第一电介质层)外包括第二电介质层,第二电介质层遍及吸收层延伸并与第一电介质层关于吸收层相对地设置。另外,提供了包含第二吸收层、第三电介质层等的其他实施例。然而,在此公开的多层叠层的总厚度小于2微米(μm),在一些实例中小于1.5μm,在其他实例中小于1.0μm,并且在另一些实例中小于0.75μm。In some examples, the multilayer stack includes, in addition to the previously mentioned dielectric layer (i.e., the first dielectric layer), a second dielectric layer extending across the absorber layer and disposed opposite the first dielectric layer with respect to the absorber layer . Additionally, other embodiments are provided that include a second absorber layer, a third dielectric layer, and the like. However, the multilayer stacks disclosed herein have an overall thickness of less than 2 micrometers (μm), in some examples less than 1.5 μm, in other examples less than 1.0 μm, and in still other examples less than 0.75 μm.
附图说明Description of drawings
图1A是在暴露于具有500nm波长的电磁辐射(EMR)的ZnS电介质层内的零或近零电场点的示意图;1A is a schematic diagram of zero or near-zero electric field points within a ZnS dielectric layer exposed to electromagnetic radiation (EMR) having a wavelength of 500 nm;
图1B是当暴露于具有300nm、400nm、500nm、600nm和700nm的波长的EMR时电场的绝对值的平方(|E|2)对图1A中所示的ZnS电介质层的厚度的图解;FIG. 1B is a plot of the absolute value of the electric field squared (|E| 2 ) versus the thickness of the ZnS dielectric layer shown in FIG. 1A when exposed to EMR having wavelengths of 300 nm, 400 nm, 500 nm, 600 nm, and 700 nm;
图2是在衬底或反射体层上延伸并相对于电介质层的外表面的法线方向成角度θ暴露于电磁辐射的电介质层的示意图;2 is a schematic diagram of a dielectric layer extending over a substrate or reflector layer and exposed to electromagnetic radiation at an angle θ with respect to the normal direction of the outer surface of the dielectric layer;
图3是具有Cr吸收体层的ZnS电介质层的示意图,其中所述Cr吸收体层位于ZnS电介质层内的针对具有434nm波长的入射EMR的零或近零电场点处;3 is a schematic diagram of a ZnS dielectric layer with a Cr absorber layer located within the ZnS dielectric layer at a point of zero or near zero electric field for incident EMR having a wavelength of 434 nm;
图4是针对暴露于白光的没有Cr吸收体层的多层叠层(例如,图1A)和有Cr吸收体层的多层叠层(例如,图3A)的反射率百分比对被反射的EMR波长的图形表示;4 is a graph of percent reflectance versus reflected EMR wavelength for a multilayer stack without a Cr absorber layer (e.g., FIG. 1A ) and a multilayer stack with a Cr absorber layer (e.g., FIG. 3A ) exposed to white light. graphic representation;
图5A是由在Al吸收体层上延伸的ZnS电介质层(例如,图1A)呈现的一次谐波和二次谐波的图解;Figure 5A is a diagram of the first and second harmonics presented by a ZnS dielectric layer (e.g., Figure 1A) extending on an Al absorber layer;
图5B是针对具有遍及Al反射体层延伸的ZnS电介质层外加位于ZnS电介质层内的Cr吸收体层使得图5A中所示的二次谐波被吸收的多层叠层的反射率百分比对被反射的EMR波长的图解;5B is a graph of percent reflectance versus reflected for a multilayer stack having a ZnS dielectric layer extending throughout the Al reflector layer plus a Cr absorber layer within the ZnS dielectric layer such that the second harmonic shown in FIG. Graphical illustration of the EMR wavelength of ;
图5C是针对具有遍及Al反射体层延伸的ZnS电介质层外加位于ZnS电介质层内的Cr吸收体层使得图5A中所示的一次谐波被吸收的多层叠层的反射率百分比对反射的EMR波长的图解;Figure 5C is the percent reflectance versus reflected EMR for a multilayer stack having a ZnS dielectric layer extending throughout the Al reflector layer plus a Cr absorber layer within the ZnS dielectric layer such that the first harmonic shown in Figure 5A is absorbed Diagram of wavelength;
图6A是示出了针对以0和45度暴露于入射光的Cr吸收体层的电场角度相关性的电场平方对电介质层厚度的图解;Figure 6A is a plot of electric field squared versus dielectric layer thickness showing the angular dependence of the electric field for a Cr absorber layer exposed to incident light at 0 and 45 degrees;
图6B是当相对于外表面的法线成0和45度(0°为垂直于表面)暴露于白光时Cr吸收体层的吸收率百分比对被反射的EMR波长的图解;Figure 6B is a graph of the percent absorbance of the Cr absorber layer versus reflected EMR wavelength when exposed to white light at 0 and 45 degrees (0° being normal to the surface) relative to the normal to the outer surface;
图7A是根据本发明实施例的红色的全方向结构色多层叠层的示意图;Figure 7A is a schematic diagram of a red omni-directional structural color multilayer stack according to an embodiment of the present invention;
图7B是针对图7A中所示的多层叠层以0和45°的入射角暴露于白光,图7A中所示的Cu吸收体层的吸收率百分比对被反射的EMR波长的图解;Figure 7B is a graph of the percent absorbance of the Cu absorber layer shown in Figure 7A versus reflected EMR wavelength for the multilayer stack shown in Figure 7A exposed to white light at incident angles of 0 and 45°;
图8是针对以0°的入射角暴露于白光的概念红色全方向结构色多层叠层的证例(proof),用于反射率百分比对被反射的EMR波长的计算/仿真数据和实验数据之间的图形比较;Figure 8 is a proof of concept red omnidirectional structural color multilayer stack for exposure to white light at an incident angle of 0° between calculated/simulated and experimental data for percent reflectance versus reflected EMR wavelength Graphical comparison between;
图9是根据本发明实施例的全方向结构色多层叠层的示意图;9 is a schematic diagram of an omnidirectional structural color multilayer stack according to an embodiment of the present invention;
图10是根据本发明实施例的全方向结构色多层叠层的示意图;10 is a schematic diagram of an omnidirectional structural color multilayer stack according to an embodiment of the present invention;
图11是根据本发明实施例的全方向结构色多层叠层的示意图;以及Figure 11 is a schematic diagram of an omnidirectional structural color multilayer stack according to an embodiment of the invention; and
图12是根据本发明实施例的全方向结构色多层叠层的示意图;Figure 12 is a schematic diagram of an omnidirectional structured color multilayer stack according to an embodiment of the present invention;
图13是具有根据本发明实施例的多层叠层结构的薄片(flake)或色料的扫描电子显微镜(SEM)图像;13 is a scanning electron microscope (SEM) image of a flake or colorant having a multilayer laminate structure according to an embodiment of the present invention;
图14是图13中所示的单个薄片的横截面的SEM图像;Figure 14 is an SEM image of a cross-section of a single flake shown in Figure 13;
图15A是使用根据本发明实施例设计和制造并具有图15D中所示的颜色图(color map)上的色调(hue)为36°的橙色的色料来涂绘的板的示意图;Figure 15A is a schematic illustration of a panel painted with a colorant designed and fabricated in accordance with an embodiment of the present invention and having a hue of 36° orange on the color map shown in Figure 15D;
图15B是使用根据本发明实施例设计和制造并具有图15D中所示的颜色图上的色调为26°的深红色的色料来涂绘的板的示意图;Figure 15B is a schematic illustration of a panel painted with a stain designed and fabricated in accordance with an embodiment of the present invention and having a shade of deep red at 26° on the color chart shown in Figure 15D;
图15C是使用根据本发明实施例设计和制造并具有图15D中所示的颜色图上的色调为354°的亮粉色的色料来涂绘的板的示意图;Figure 15C is a schematic illustration of a panel painted with a stain designed and fabricated in accordance with an embodiment of the present invention and having a hue of bright pink at 354° on the color chart shown in Figure 15D;
图15D是使用CIELAB颜色空间的a*b*颜色图;Figure 15D is an a*b* colormap using the CIELAB color space;
图15E是用于图15A至15C中所示范的颜料中的色料的十一层设计的示意图;Figure 15E is a schematic diagram of an eleven-layer design for the colorants in the pigments exemplified in Figures 15A to 15C;
图16A是根据本发明实施例的七层叠层的示意图;Figure 16A is a schematic diagram of a seven-layer stack according to an embodiment of the invention;
图16B是根据本发明实施例的七层叠层的示意图;Figure 16B is a schematic diagram of a seven-layer stack according to an embodiment of the invention;
图16C是根据本发明实施例的七层叠层的示意图;Figure 16C is a schematic diagram of a seven-layer stack according to an embodiment of the invention;
图16D是根据本发明实施例的七层叠层的示意图;Figure 16D is a schematic diagram of a seven layer stack according to an embodiment of the invention;
图17是使用CIELAB颜色空间的一部分a*b*颜色图的图形表示,其中在传统的颜料和用于涂绘图15B中所示的板的颜料之间比较色度(chroma)和色调偏移;Figure 17 is a graphical representation of a portion of the a*b* color diagram using the CIELAB color space, where chroma and hue shift are compared between conventional pigments and the pigments used to paint the panel shown in Figure 15B;
图18是针对根据本发明实施例的七层设计的反射率对波长的图解;以及Figure 18 is a graph of reflectance versus wavelength for a seven-layer design according to an embodiment of the invention; and
图19是针对根据本发明实施例的七层设计的反射率对波长的图解。Figure 19 is a graph of reflectance versus wavelength for a seven-layer design according to an embodiment of the invention.
具体实施方式Detailed ways
可提供全方向结构色(例如红色的全方向色)的多层叠层被提供。因此,所述多层叠层具有作为颜料色料(paint pigment)、提供希望的颜色的薄膜等用途。A multi-layer stack that can provide an omnidirectional structural color, such as an omnidirectional color of red, is provided. Thus, the multilayer laminate has utility as a paint pigment, a film providing a desired color, and the like.
可提供全方向结构色的多层叠层包括反射体层和遍及反射体层延伸的电介质层。反射体层和电介质层反射超过70%的具有大于550nm的波长的入射白光。要领会的是电介质层的厚度可以预先限定为使得在超过70%的入射白光被反射之处的波长大于550nm、560nm、580nm、600nm、620nm、640nm、660nm、680nm或它们之间的波长。换句话说,电介质层的厚度可被选择和生产为使得在Lab颜色系统图上具有希望的色调、色度和/或亮度的特定颜色被反射并被人眼观察到。A multilayer stack that can provide omnidirectional structural color includes a reflector layer and a dielectric layer extending across the reflector layer. The reflector layer and the dielectric layer reflect more than 70% of incident white light having a wavelength greater than 550 nm. It will be appreciated that the thickness of the dielectric layer may be predefined such that wavelengths at which more than 70% of incident white light is reflected are greater than 550nm, 560nm, 580nm, 600nm, 620nm, 640nm, 660nm, 680nm, or wavelengths in between. In other words, the thickness of the dielectric layer can be selected and produced such that a specific color having a desired hue, chroma and/or brightness on the Lab color system diagram is reflected and observed by the human eye.
在一些实例中,多层叠层在lab颜色空间中具有315°和45°之间的色调。此外,多层叠层具有大于50的色度和小于30°的色调偏移。在其他实例中,色度大于55,优选为大于60,并更优选为大于65,并且/或者色调偏移小于25°,优选为小于20°,更优选为小于15°并再更优选为小于10°。In some examples, the multi-layer stack has hues between 315° and 45° in lab color space. In addition, the multilayer stack has a chroma greater than 50 and a hue shift of less than 30°. In other examples, the chroma is greater than 55, preferably greater than 60, and more preferably greater than 65, and/or the hue shift is less than 25°, preferably less than 20°, more preferably less than 15° and still more preferably less than 10°.
吸收层遍及电介质层延伸,针对一般比与电介质层的希望的反射波长相对应的波长小的所有波长,所述吸收层吸收超过70%的入射白光。例如,如果电介质层具有使得超过70%的具有大于600nm的波长的入射白光被反射的厚度,则遍及电介质层延伸的吸收层吸收超过70%的具有一般小于600nm的波长的入射白光。以这种方式,提供了具有红色颜色空间中的波长的尖锐的反射峰。在一些实例中,反射体层和电介质层反射超过80%的具有大于550nm的波长的入射白光,并且在其他实例中为超过90%。另外,在一些实例中,吸收体层吸收一般比与电介质层的希望的反射波长相对应的波长小的波长的超过80%,并在其他实例中为超过90%。An absorbing layer extends throughout the dielectric layer, the absorbing layer absorbing more than 70% of incident white light for all wavelengths generally smaller than the wavelength corresponding to the desired reflection wavelength of the dielectric layer. For example, if the dielectric layer has a thickness such that more than 70% of incident white light having wavelengths greater than 600 nm is reflected, an absorbing layer extending across the dielectric layer absorbs more than 70% of incident white light having wavelengths generally less than 600 nm. In this way, sharp reflection peaks with wavelengths in the red color space are provided. In some examples, the reflector layer and dielectric layer reflect more than 80% of incident white light having a wavelength greater than 550 nm, and in other examples more than 90%. Additionally, in some examples, the absorber layer absorbs more than 80%, and in other examples, more than 90%, of wavelengths that are generally less than the wavelength corresponding to the desired reflection wavelength of the dielectric layer.
要领会的是本上下文中的术语“一般”在一些实例中指的是正和/或负20nm,在其他实例中为正和/或负30nm,在其他一些实例中为正和/或负40nm以及在另一些实例中为正和/或负50nm。It is to be appreciated that the term "generally" in this context refers to plus and/or minus 20nm in some instances, plus and/or minus 30nm in other instances, plus and/or minus 40nm in some other instances and plus and/or minus 40nm in other instances and Examples are plus and/or minus 50nm.
反射体层、电介质层和吸收层形成全方向反射体,所述全方向反射体反射这样的电磁辐射的窄带(在下文中被称为反射峰或反射带):其具有550nm和EMR光谱的可见-红外边缘之间的中心波长、宽度小于200nm的反射带以及当全方向反射体暴露于白光并且被从0和45度之间的角度观看时小于100nm的色移。所述色移可以是反射带的中心波长的偏移的形式,或者在替代方案中,是反射带的UV侧边缘(UV-sided edge)的偏移的形式。为了本发明的目的,电磁辐射的反射带的宽度被限定为在可见光谱内最大反射波长的一半反射高度处的反射带的宽度。另外,被反射的电磁辐射的窄带,即全方向反射体的“颜色”,具有小于25度的色调偏移。在一些实例中,反射体层具有50nm至200nm之间的厚度并由诸如铝、银、铂、锡、它们的合金等金属制成或包含所述金属。The reflector layer, the dielectric layer and the absorbing layer form an omnidirectional reflector that reflects a narrow band (hereinafter referred to as reflection peak or band) of electromagnetic radiation having the visible- A central wavelength between the infrared fringes, a reflection band less than 200 nm in width, and a color shift of less than 100 nm when the omnidirectional reflector is exposed to white light and viewed from an angle between 0 and 45 degrees. The color shift may be in the form of a shift in the center wavelength of the reflection band, or in the alternative a UV-sided edge of the reflection band. For the purposes of the present invention, the width of the reflection band of electromagnetic radiation is defined as the width of the reflection band at half the reflection height of the wavelength of maximum reflection within the visible spectrum. Additionally, the narrow band of electromagnetic radiation that is reflected, the "color" of the omnidirectional reflector, has a hue shift of less than 25 degrees. In some examples, the reflector layer has a thickness between 50 nm and 200 nm and is made of or includes a metal such as aluminum, silver, platinum, tin, alloys thereof, or the like.
关于遍及反射体层延伸的电介质层,电介质层具有介于0.1个QW和2.0个QW之间的光学厚度。在一些实例中,电介质层具有介于0.1个QW和1.9个QW之间的光学厚度,而在其他实例中,电介质层具有介于0.1个QW和1.8个QW之间的厚度。在另一些实例中,电介质层具有小于1.9个QW的光学厚度,例如小于1.8个QW、小于1.7个QW、小于1.6个QW、小于1.5个QW、小于1.4个QW、小于1.3个QW、小于1.2个QW或小于1.1个QW。在替代方案中,电介质层可具有大于2.0个QW的光学厚度。With respect to the dielectric layer extending throughout the reflector layer, the dielectric layer has an optical thickness between 0.1 QW and 2.0 QW. In some examples, the dielectric layer has an optical thickness between 0.1 QW and 1.9 QW, while in other examples, the dielectric layer has a thickness between 0.1 QW and 1.8 QW. In other examples, the dielectric layer has an optical thickness of less than 1.9 QW, such as less than 1.8 QW, less than 1.7 QW, less than 1.6 QW, less than 1.5 QW, less than 1.4 QW, less than 1.3 QW, less than 1.2 QW or less than 1.1 QW. In the alternative, the dielectric layer may have an optical thickness greater than 2.0 QW.
电介质层具有大于1.60、1.62、1.65或1.70的折射率,并且可由诸如ZnS、TiO2、HfO2、Nb2O5、Ta2O5、它们的组合等电介质材料制成。在一些实例中,电介质层是由诸如Fe2O3、Cu2O等彩色的电介质材料制成的彩色的或选择性的电介质层。为了本发明的目的,术语“彩色的电介质材料”或“彩色的电介质层”指的是在反射入射白光的一部分的同时透射白光的另一部分的电介质材料或电介质层。例如,彩色的电介质层可透射具有400nm和600nm之间的波长的电磁辐射并反射大于600nm的波长。因此,彩色的电介质材料或彩色的电介质层具有橙色、红色和/或红橙色的可见外观。The dielectric layer has a refractive index greater than 1.60, 1.62, 1.65 or 1.70 and can be made of a dielectric material such as ZnS, TiO 2 , HfO 2 , Nb 2 O 5 , Ta 2 O 5 , combinations thereof. In some examples, the dielectric layer is a colored or selective dielectric layer made of a colored dielectric material such as Fe2O3 , Cu2O , or the like. For the purposes of the present invention, the term "colored dielectric material" or "colored dielectric layer" refers to a dielectric material or layer that reflects a portion of incident white light while transmitting another portion of the white light. For example, a colored dielectric layer may transmit electromagnetic radiation having a wavelength between 400 nm and 600 nm and reflect wavelengths greater than 600 nm. Thus, the colored dielectric material or the colored dielectric layer has an orange, red and/or reddish-orange visible appearance.
除了电介质层之外,全方向反射体可包括具有5nm至200nm之间的厚度的选择性吸收体层。在一些实例中,彩色的吸收体层取代或代替上面所述的吸收体层。类似于上面的描述,选择性吸收体层可吸收具有与蓝紫色、蓝色、黄色、绿色等相关的波长的光,并且还反射与橙色、红色、红橙色等相对应的波长。在一些实例中,彩色的吸收体层包含诸如铜、金、及诸如青铜和黄铜的其合金等彩色金属,或由所述彩色金属制成。在其他实例中,彩色的吸收体层可包含诸如Fe2O3、Cu2O等彩色的电介质材料,或由所述彩色的电介质材料制成。In addition to the dielectric layer, the omnidirectional reflector may comprise a selective absorber layer having a thickness between 5nm and 200nm. In some examples, a colored absorber layer replaces or replaces the absorber layer described above. Similar to the description above, the selective absorber layer may absorb light having wavelengths associated with violet, blue, yellow, green, etc., and also reflect wavelengths corresponding to orange, red, reddish-orange, etc. In some examples, the colored absorber layer comprises or is made of colored metals such as copper, gold, and alloys thereof such as bronze and brass. In other examples, the colored absorber layer may comprise or be made of colored dielectric materials such as Fe2O3 , Cu2O , and the like .
吸收体层的位置为使得零或近零能量交界面出现在吸收体层和电介质层之间。换句话说,电介质层具有使得零或近零能量场位于电介质层-吸收体层交界面的厚度。要领会的是零或近零能量场出现之处的电介质层的厚度是入射EMR波长的函数。另外,还要领会的是,与零或近零电场相对应的波长将透射通过电介质层-吸收体层交界面,然而不与交界面处的零或近零电场相对应的波长将不透射通过所述交界面。因此,电介质层的厚度被设计和制造为使得所希望的入射白光的波长透射通过电介质层-吸收体层交界面,从反射体层反射出去,然后往回透射通过电介质层-吸收层交界面。同样地,电介质层的厚度被制造为使得不希望的入射白光的波长不透射通过电介质层-吸收体层交界面。The absorber layer is positioned such that a zero or near zero energy interface occurs between the absorber layer and the dielectric layer. In other words, the dielectric layer has a thickness such that the zero or near zero energy field is located at the dielectric layer-absorber layer interface. It is to be appreciated that the thickness of the dielectric layer where the zero or near zero energy field occurs is a function of the incident EMR wavelength. Additionally, it is also to be appreciated that wavelengths corresponding to zero or near zero electric field will be transmitted through the dielectric layer-absorber layer interface, whereas wavelengths not corresponding to zero or near zero electric field at the interface will not be transmitted through the interface. Accordingly, the thickness of the dielectric layer is designed and fabricated such that the desired wavelength of incident white light is transmitted through the dielectric layer-absorber layer interface, reflected off the reflector layer, and then transmitted back through the dielectric layer-absorber layer interface. Likewise, the thickness of the dielectric layer is made such that undesired wavelengths of incident white light are not transmitted through the dielectric layer-absorber layer interface.
鉴于上面所述,不与希望的零或近零电场交界面相对应的波长被吸收体层吸收并因此不被反射。以这种方式,提供了所希望的“鲜明”的颜色,也称为结构色。另外,电介质层的厚度为使得产生希望的一次谐波和/或二次谐波的反射以便提供带有红颜色的表面,其也具有全方向的外观。In view of the above, wavelengths that do not correspond to the desired zero or near-zero electric field interface are absorbed by the absorber layer and thus are not reflected. In this way, the desired "vibrant" color, also called structural color, is provided. In addition, the thickness of the dielectric layer is such that the desired reflection of the first and/or second harmonic is produced in order to provide a reddish colored surface which also has an omni-directional appearance.
多层叠层除了之前提到的电介质层(也称为第一电介质层)之外可以包括第二电介质层,所述第二电介质层遍及吸收体层延伸。另外,第二电介质层与提到的第一电介质层关于吸收体层相对地设置。The multilayer stack may comprise, in addition to the previously mentioned dielectric layer (also referred to as first dielectric layer), a second dielectric layer extending throughout the absorber layer. Furthermore, the second dielectric layer is arranged opposite the mentioned first dielectric layer with respect to the absorber layer.
关于上面所提到的电介质层的厚度和零或近零电场点,图1A是遍及Al反射体层延伸的ZnS电介质层的示意图。ZnS电介质层具有143nm的总厚度,并且针对具有500nm波长的入射电磁辐射,零或近零能量点出现在77nm处。换句话说,ZnS电介质层针对具有500nm波长的入射EMR,在相距Al反射体层77nm的距离处呈现零或近零电场。另外,图1B提供了针对许多不同的入射EMR波长的横跨ZnS电介质层的能量场的图解。如图中所述,电介质层针对500nm波长在77nm厚度处具有零电场,但是针对300、400、600和700nm的EMR波长在77nm处具有非零电场。Regarding the thickness of the dielectric layer and the point of zero or near zero electric field mentioned above, FIG. 1A is a schematic diagram of a ZnS dielectric layer extending across an Al reflector layer. The ZnS dielectric layer has a total thickness of 143 nm, and a point of zero or near zero energy occurs at 77 nm for incident electromagnetic radiation having a wavelength of 500 nm. In other words, the ZnS dielectric layer exhibits zero or near-zero electric field at a distance of 77 nm from the Al reflector layer for incident EMR having a wavelength of 500 nm. Additionally, Figure IB provides a graphical representation of the energy field across a ZnS dielectric layer for a number of different incident EMR wavelengths. As shown in the figure, the dielectric layer has a zero electric field at a thickness of 77 nm for a wavelength of 500 nm, but a non-zero electric field at 77 nm for EMR wavelengths of 300, 400, 600 and 700 nm.
不受理论的束缚,下面讨论针对电介质层(诸如图1A中所示的电介质层)的零或近零能量点厚度的计算。Without being bound by theory, calculations for zero or near-zero energy point thicknesses for dielectric layers, such as the dielectric layer shown in FIG. 1A , are discussed below.
参照图2,示出了在具有折射率ns的衬底或核心层2上的具有总厚度‘D’、增量厚度‘d’和折射率‘n’的电介质层4。入射光相对于直线6成角度θ射到电介质层4的外表面5上并以相同的角度从外表面5上反射,所述直线6垂直于外表面5。入射光透射通过外表面5并相对于直线6成角度θF进入电介质层4并且以角度θs射到衬底层2的表面3上。Referring to Figure 2, there is shown a dielectric layer 4 having a total thickness 'D', an incremental thickness 'd' and a refractive index 'n' on a substrate or core layer 2 having a refractive index ns . Incident light strikes the outer surface 5 of the dielectric layer 4 at an angle θ with respect to the straight line 6 , which is perpendicular to the outer surface 5 , and is reflected from the outer surface 5 at the same angle. Incident light is transmitted through the outer surface 5 and enters the dielectric layer 4 at an angle θ F with respect to the line 6 and strikes the surface 3 of the substrate layer 2 at an angle θ s .
对于单个电介质层,θs=θF并且当z=d时能量场/电场(E)可表示为E(z)。根据Maxwell方程,对于s偏振,电场可表示为:For a single dielectric layer, θ s =θ F and the energy field/electric field (E) when z=d can be expressed as E(z). According to Maxwell's equation, for s-polarization, the electric field can be expressed as:
并且对于p偏振可表示为:and for p-polarization can be expressed as:
其中并且λ是希望的待反射波长。此外,α=ns sinθs,其中‘s’与图1中的衬底相对应,并且作为z的函数是层的介电常数。因此,对于s偏振:in And λ is the desired wavelength to be reflected. Furthermore, α = n s sin θ s , where 's' corresponds to the substrate in Figure 1, and As a function of z is the dielectric constant of the layer. Therefore, for s-polarization:
|E(d)|2=|u(z)|2exp(2ikαy)|z=d (3)|E(d)| 2 =|u(z)| 2 exp(2ikαy)| z=d (3)
对于p偏振:For p-polarization:
要领会的是沿着电介质层4的Z方向的电场变化可以通过计算未知参量u(z)和v(z)来估算,其中所述计算可示为:It will be appreciated that the electric field variation along the Z direction of the dielectric layer 4 can be estimated by calculating the unknown parameters u(z) and v(z), wherein the calculation can be shown as:
当然,‘i’是-1的平方根。使用边界条件u|z=0=1,v|z=0=qs,则有下列关系式:Of course, 'i' is the square root of -1. Using the boundary conditions u| z=0 =1,v| z=0 =q s , then there are the following relations:
对于s偏振:qs=ns cosθs (6)For s-polarization: q s = n s cosθ s (6)
对于p偏振:qs=ns/cosθs (7)For p-polarization: q s = n s /cosθ s (7)
对于s偏振:q=n cosθF (8)For s-polarization: q = n cos θ F (8)
对于p偏振:q=n/cosθF (9)For p-polarization: q=n/cosθ F (9)
u(z)和v(z)可表示为:u(z) and v(z) can be expressed as:
以及as well as
所以,在的情况下,对于s偏振:So, in In the case of s-polarization:
并且,对于p偏振:And, for p-polarization:
其中:in:
α=nssinθs=n sinθF (15)α=n s sinθ s =n sinθ F (15)
并且and
因此对于θF=0或者垂直入射的简单情形,并且α=0:So for the simple case of θ F =0 or normal incidence, and α=0:
其考虑到了要求解的厚度‘d’,即电介质层内电场为零处的位置或定位。It takes into account the thickness 'd' to be solved for, i.e. the position or location within the dielectric layer where the electric field is zero.
现在参照图3,方程19被用来计算当暴露于具有434nm的波长的EMR时图1A中所示的ZnS电介质层中的零或近零电场点是在70nm处(而不是针对500nm波长的77nm)。另外,15nm厚的Cr吸收体层被插到相距Al反射体层70nm的厚度处以提供零或近零电场ZnS-Cr交界面。这种创造性的结构允许具有434nm波长的光穿过Cr-ZnS交界面,但是吸收不具有434nm波长的光。换句话说,Cr-ZnS交界面关于具有434nm波长的光具有零或近零电场,因此434nm的光穿过该交界面。然而,Cr-ZnS交界面对于不具有434nm波长的光则不具有零或近零电场,因此这样的光被Cr吸收体层和/或Cr-ZnS交界面吸收并且不被Al反射体层反射。Referring now to FIG. 3, Equation 19 is used to calculate that the point of zero or near-zero electric field in the ZnS dielectric layer shown in FIG. 1A is at 70 nm (instead of 77 nm for a wavelength of 500 nm) when exposed to EMR having a wavelength of 434 nm. ). Additionally, a 15 nm thick Cr absorber layer was inserted at a thickness of 70 nm from the Al reflector layer to provide a zero or near zero electric field ZnS-Cr interface. This inventive structure allows light with a wavelength of 434nm to pass through the Cr-ZnS interface, but absorbs light that does not have a wavelength of 434nm. In other words, the Cr-ZnS interface has zero or near-zero electric field with respect to light having a wavelength of 434 nm, so the 434 nm light passes through the interface. However, the Cr-ZnS interface has no zero or near-zero electric field for light not having a wavelength of 434nm, so such light is absorbed by the Cr absorber layer and/or the Cr-ZnS interface and not reflected by the Al reflector layer.
要领会的是,在所希望的434nm的+/-10nm之内的一定比例的光将穿过Cr-ZnS交界面。然而,还要领会的是,这种反射光的窄带,例如434+/-10nm,仍然向人眼提供了鲜明的结构色。It will be appreciated that a certain proportion of the light within +/- 10nm of the desired 434nm will pass through the Cr-ZnS interface. However, it is also to be appreciated that this narrow band of reflected light, eg 434 +/- 10nm, still provides vivid structural color to the human eye.
在图4中例示了图3中的多层叠层的Cr吸收体层的结果,其中示出了反射率百分比对被反射的EMR波长。如虚线所示,所述虚线与在没有Cr吸收体层的情况下图3所示的ZnS电介质层相对应,一个窄的反射峰出现在约400nm处,但是一个宽得多的峰出现在约550+nm处。另外,在500nm波长区域仍然有数量可观的光被反射。因此,出现了阻碍多层叠层具有或呈现结构色的双峰。The results for the Cr absorber layer of the multilayer stack in Fig. 3 are illustrated in Fig. 4, where the percent reflectance is shown versus reflected EMR wavelength. As shown by the dashed line corresponding to the ZnS dielectric layer shown in Fig. 3 without the Cr absorber layer, a narrow reflection peak appears at about 400 nm, but a much broader peak appears at about 550+nm. In addition, a considerable amount of light is still reflected in the 500nm wavelength region. Thus, a doublet occurs which prevents the multilayer stack from having or exhibiting a structural color.
相反,图4中的实线与在Cr吸收体层存在的情况下图3中所示的结构相对应。如图中所示,在大约434nm处出现尖锐的峰并且由Cr吸收体层提供了针对大于434nm的波长的反射率的急剧下降。要领会的是,由实线表现的尖锐的峰在视觉上显现为鲜明的颜色/结构色。此外,图4例示了测量反射峰或带的宽度的地方,即在最大反射波长的反射率的50%处确定带宽,也称为半高宽度(FWHM)。In contrast, the solid line in Figure 4 corresponds to the structure shown in Figure 3 in the presence of a Cr absorber layer. As shown in the figure, a sharp peak appears at about 434 nm and a sharp drop in reflectivity for wavelengths greater than 434 nm is provided by the Cr absorber layer. It will be appreciated that sharp peaks represented by solid lines appear visually as distinct/structural colors. Furthermore, Figure 4 illustrates where the width of the reflection peak or band is measured, ie the bandwidth is determined at 50% of the reflectance at the wavelength of maximum reflection, also called width at half maximum (FWHM).
关于图3中所示的多层结构的全方向表现,ZnS电介质层的厚度可被设计或设置为使得只有反射光的一次谐波被提供。要领会的是,这对于“蓝”色是足够的,但是“红”色的产生需要额外的考虑。例如,针对红色的角度独立性的控制困难,这是因为需要更厚的电介质层,这进而导致了高次谐波设计,即二次谐波和可能的三次谐波的出现是不可避免的。此外,深红色的色调空间非常窄。因此,红色的多层叠层具有更高的角方差(angular variance)。Regarding the omni-directional performance of the multilayer structure shown in Fig. 3, the thickness of the ZnS dielectric layer can be designed or arranged such that only the first harmonic of the reflected light is provided. It will be appreciated that this is sufficient for the "blue" color, but the generation of the "red" color requires additional consideration. For example, the control of angular independence for red is difficult because thicker dielectric layers are required, which in turn leads to higher harmonic designs where the presence of second and possibly third harmonics is unavoidable. Also, the tonal space of crimson is very narrow. Therefore, red multilayer stacks have higher angular variance.
为了克服针对红色的更高角方差,本申请公开了可提供角度独立的红颜色的独特的、新颖的设计/结构。例如,图5A例示了当电介质层的外表面被从0和45度观看时呈现针对入射白光的一次和二次谐波的电介质层。如该图形表示所示,由电介质层的厚度提供低的角度相关性(小的Δλc),然而,这种多层叠层具有蓝色(一次谐波)和红色(二次谐波)的组合并因此不适合所希望的“单红”色。所以,已经开发出了使用吸收体层来吸收不想要的谐波系的概念/结构。图5A还例示了针对给定反射峰的反射带中心波长(λc)的位置和当样本被从0和45度观看时中心波长的差量或偏移(Δλc)的示例。To overcome the higher angular variance for red, the present application discloses a unique, novel design/structure that can provide angle independent red color. For example, Figure 5A illustrates a dielectric layer exhibiting first and second harmonics for incident white light when the outer surface of the dielectric layer is viewed from 0 and 45 degrees. As shown in this graphical representation, the low angular dependence (small Δλ c ) is provided by the thickness of the dielectric layer, however, this multilayer stack has a combination of blue (first harmonic) and red (second harmonic) And thus not suitable for the desired "single red" color. Therefore, the concept/structure of using absorber layers to absorb unwanted harmonic systems has been developed. Figure 5A also illustrates examples of the location of the reflection band center wavelength (λ c ) and the difference or shift in center wavelength (Δλ c ) when the sample is viewed from 0 and 45 degrees for a given reflection peak.
现在转向图5B,用位于合适的电介质层厚度(例如,72nm)处的Cr吸收体层来吸收图5A中所示的二次谐波并提供了鲜明的蓝色。对于本发明更重要的是,图5C例示了通过用位于不同电介质层厚度(例如,125nm)处的Cr吸收体层吸收一次谐波来提供红色。然而,图5C还例示了通过多层叠层Cr吸收体层的使用仍然导致超过希望的角度相关性,即大于希望的Δλc。Turning now to FIG. 5B, a Cr absorber layer at a suitable dielectric layer thickness (eg, 72nm) is used to absorb the second harmonic shown in FIG. 5A and provide a vivid blue color. More importantly for the present invention, Figure 5C illustrates that the red color is provided by absorbing the first harmonic with a Cr absorber layer at a different dielectric layer thickness (eg, 125nm). However, FIG. 5C also illustrates that the use of Cr absorber layers through a multilayer stack still results in a more than desired angular dependence, ie greater than desired Δλ c .
要领会的是,与蓝色相比针对红色的λc中的相对较大的偏移是由于深红色色调空间非常窄以及Cr吸收体层吸收与非零电场相关的波长(即,当电场为零或近零时不吸收光)的事实。因此,图6A例示了对于不同入射角的光波长,零或非零点是不同的。这种因素导致了图6B中所示的角度相关的吸收率,即0°和45°吸收率曲线的差别。因此为了进一步改善多层叠层设计和角度独立性性能,使用了不管电场是否为零都吸收例如蓝光的吸收体层。It will be appreciated that the relatively large shift in λc for red compared to blue is due to the very narrow magenta hue space and the absorption of the Cr absorber layer at wavelengths associated with a non-zero electric field (i.e., when the electric field is zero or the fact that light is not absorbed when near zero). Thus, Figure 6A illustrates that zero or non-zero points are different for different incident angles of light wavelengths. This factor results in the angle-dependent absorbance shown in Figure 6B, ie the difference in the 0° and 45° absorbance curves. Therefore in order to further improve the multilayer stack design and angle independence performance absorber layers are used which absorb eg blue light irrespective of the electric field being zero.
具体地,图7A示出了具有遍及电介质ZnS层延伸的Cu吸收体层而非Cr吸收体层的多层叠层。图7B中显示了使用这种“彩色的”或“选择性的”吸收体层的结果,其展示了针对图7A中所示的多层叠层的0°和45°吸收率曲线的“紧凑”得多的集聚。因此,图6B和图7B之间的比较例示了当使用选择性吸收体层而不是使用非选择性吸收体层时在吸收率角度独立性方面的显著改善。In particular, Figure 7A shows a multilayer stack with a Cu absorber layer instead of a Cr absorber layer extending across the dielectric ZnS layer. The results of using such a "colorful" or "selective" absorber layer are shown in Figure 7B, which demonstrates the "compactness" of the 0° and 45° absorbance curves for the multilayer stack shown in Figure 7A Much more agglomeration. Thus, a comparison between Figure 6B and Figure 7B illustrates a significant improvement in angular independence of absorptivity when using a selective absorber layer rather than a non-selective absorber layer.
基于上面所述,设计和制造了概念多层叠层结构的证例。另外,对关于概念样本的证例的计算/仿真结果和实际的实验数据进行比较。具体地,并且如图8中的图表所示,产生了鲜明的红色(大于700nm的波长不能被人眼典型地看到)并且在计算/仿真光数据和根据实际样本获得的实验光数据之间获得了非常好的一致。换句话说,计算/仿真可以和/或被用于对根据本发明的一个或更多个实施例的多层叠层设计和/或现有技术的多层叠层的结果进行仿真。Based on the above, a proof of concept multilayer laminate structure was designed and fabricated. In addition, the calculation/simulation results on the proof of concept samples are compared with actual experimental data. Specifically, and as shown in the graph in Figure 8, a vivid red color is produced (wavelengths greater than 700 nm cannot typically be seen by the human eye) and between the calculated/simulated light data and the experimental light data obtained from real samples Very good agreement was obtained. In other words, calculations/simulations may and/or be used to simulate results of multilayer stack designs and/or prior art multilayer stacks according to one or more embodiments of the present invention.
在下面的表1中提供了仿真的和/或实际制作的多层叠层样本的列表。如表中所示,在此公开的创造性设计包括至少5个不同的层状结构。另外,根据许多不同的材料,样本被仿真和/或制成。提供了呈现高色度、低色调偏移和优秀的反射率的样本。此外,三层和五层样本具有120nm至200nm之间的总厚度;七层样本具有350nm至600nm之间的总厚度;九层样本具有440nm至500nm之间的总厚度;并且十一层样本具有600nm至660nm之间的总厚度。A list of simulated and/or actual fabricated multilayer stack samples is provided in Table 1 below. As shown in the table, the inventive designs disclosed herein include at least 5 different layered structures. In addition, samples are simulated and/or fabricated from many different materials. Samples showing high chroma, low hue shift, and excellent reflectivity are provided. In addition, the three-layer and five-layer samples have a total thickness between 120nm and 200nm; the seven-layer sample has a total thickness between 350nm and 600nm; the nine-layer sample has a total thickness between 440nm and 500nm; and the eleven-layer sample has a total thickness of Total thickness between 600nm and 660nm.
表1Table 1
关于实际的层顺序,图9以附图标记10例示了五层设计的一半。全方向反射体10具有反射体层100、遍及反射体层延伸100的电介质层110和遍及电介质层延伸110的吸收体层120。要领会的是,另一个电介质层和另一个吸收体层可以关于反射体层100相对地设置以提供五层设计。Regarding the actual layer sequence, FIG. 9 illustrates at 10 one half of a five-layer design. The omnidirectional reflector 10 has a reflector layer 100 , a dielectric layer 110 extending over the reflector layer 100 and an absorber layer 120 extending over the dielectric layer 110 . It is to be appreciated that another dielectric layer and another absorber layer may be positioned oppositely with respect to reflector layer 100 to provide a five layer design.
图10中的附图标记20例示了七层设计的一半,其中另一个电介质层130遍及吸收体层延伸120使得电介质层130与电介质层110关于吸收体层120被相对地设置。Reference numeral 20 in FIG. 10 illustrates one half of a seven-layer design, wherein a further dielectric layer 130 extends 120 across the absorber layer such that the dielectric layer 130 is disposed opposite to the dielectric layer 110 with respect to the absorber layer 120 .
图11例示了九层设计的一半,其中第二吸收体层105位于反射体层100和电介质层110之间。最后,图12例示了十一层设计的一半,其中另一个吸收体层140在电介质层130上面延伸并且又一个电介质层150在吸收体层140上面延伸。FIG. 11 illustrates one half of a nine-layer design in which the second absorber layer 105 is located between the reflector layer 100 and the dielectric layer 110 . Finally, FIG. 12 illustrates one half of an eleven-layer design with another absorber layer 140 extending over the dielectric layer 130 and a further dielectric layer 150 extending over the absorber layer 140 .
在图13中示出了具有根据本发明实施例的多层结构的多个色料的扫描电子显微镜(SEM)图像。图14是在显示多层结构的更高放大倍数下色料中的一个的SEM图像。这种色料被用来制作三种不同的红色颜料,所述红色颜料然后被施加到三块板上用于测试。图15A至15C是实际的已涂色的板的示意图,因为当按黑白方式印刷和复制时板的实际照片看起来是灰色/黑色的。图15A代表具有图15D中所示的颜色表上的36°色调的橙色,图15B代表具有26°色调的深红色并且图15C代表具有354°色调的亮粉色。此外,图15B中代表的深红色板具有44的亮度L*和67的色度C*。A scanning electron microscope (SEM) image of a plurality of colorants having a multilayer structure according to an embodiment of the present invention is shown in FIG. 13 . Figure 14 is a SEM image of one of the colorants at a higher magnification showing the multilayer structure. This colorant was used to make three different red pigments which were then applied to three panels for testing. Figures 15A to 15C are schematic illustrations of actual painted panels, as actual photographs of panels appear grey/black when printed and reproduced in black and white. FIG. 15A represents orange with a 36° hue on the color chart shown in FIG. 15D , FIG. 15B represents deep red with a 26° hue and FIG. 15C represents bright pink with a 354° hue. Furthermore, the magenta panel represented in Figure 15B has a lightness L* of 44 and a chromaticity C* of 67.
图15E是代表用于涂绘图15A至15C中所示的板的色料的十一层设计的示意图。关于各种层的示例性厚度,表2提供了相应的多层叠层/色料中的每一个的实际厚度。如表2中的厚度值所示,十一层设计的总厚度小于2微米并且可以小于1微米。Figure 15E is a schematic representation of the eleven layer design of the colorants used to coat the panels shown in Figures 15A to 15C. With regard to exemplary thicknesses for the various layers, Table 2 provides the actual thicknesses for each of the corresponding multilayer stacks/colorants. As shown by the thickness values in Table 2, the total thickness of the eleven layer design is less than 2 microns and can be less than 1 micron.
表2Table 2
要领会的是,七层设计和七层多层叠层可用来制作这种色料。在图16A至16D中示出了4种七层多层叠层的示例。图16A例示了七层叠层,其具有:(1)反射体层100;(2)一对电介质层110,其遍及反射体层延伸100并关于反射体层100相对地设置;(3)一对选择性吸收体层120a,其遍及所述一对电介质层110的外表面延伸;以及(4)一对电介质层130,其遍及所述一对选择性吸收体层120a的外表面延伸。It is to be appreciated that seven layer designs and seven layer multilayer stacks can be used to make this colorant. Four examples of seven-layer multilayer stacks are shown in Figures 16A to 16D. Figure 16A illustrates a seven-layer stack having: (1) a reflector layer 100; (2) a pair of dielectric layers 110 extending 100 across the reflector layer and disposed oppositely with respect to the reflector layer 100; (3) a pair of a selective absorber layer 120a extending across the outer surfaces of the pair of dielectric layers 110; and (4) a pair of dielectric layers 130 extending across the outer surfaces of the pair of selective absorber layers 120a.
自然地,电介质层110和选择性吸收体层120a的厚度为使得选择性吸收体层120a和电介质层110之间的交界面以及选择性吸收体层120a和电介质层130之间的交界面相对于图15D中所示的颜色图的粉色-红色-橙色区域中的希望的光波长(315°<色调<45°和/或550nm<λc<700nm)呈现零或近零电场。以这种方式,希望的红色光穿过层130-120a-110,从层100反射出去,并往回穿过层110-120a-130。相反,非红色光被选择性吸收体层120a吸收。此外,如上面所讨论的以及图7A至7B所示的,选择性吸收体层120a对于非红色光具有角度独立的吸收率。Naturally, the thickness of the dielectric layer 110 and the selective absorber layer 120a is such that the interface between the selective absorber layer 120a and the dielectric layer 110 and the interface between the selective absorber layer 120a and the dielectric layer 130 are relative to the Desired wavelengths of light (315°<hue<45° and/or 550nm< λc <700nm) in the pink-red-orange region of the color diagram shown in 15D exhibit zero or near-zero electric fields. In this manner, the desired red light passes through layers 130-120a-110, reflects off layer 100, and passes back through layers 110-120a-130. In contrast, non-red light is absorbed by selective absorber layer 120a. Furthermore, as discussed above and shown in Figures 7A-7B, the selective absorber layer 120a has an angle-independent absorbance for non-red light.
要领会的是,电介质层100和/或130的厚度为使得由多层叠层进行的红色光的反射是全方向的。由反射光的小的Δλc来测量或确定全方向反射。例如,在一些实例中,Δλc小于120nm。在其他实例中,Δλc小于100nm。在另一些其他实例中,Δλc小于80nm,优选为小于60nm,更优选为小于50nm,并且再更优选为小于40nm。It will be appreciated that the thickness of the dielectric layers 100 and/or 130 is such that the reflection of red light by the multilayer stack is omnidirectional. Omni-directional reflection is measured or determined from the small Δλ c of the reflected light. For example, in some instances, Δλ c is less than 120 nm. In other examples, Δλ c is less than 100 nm. In still other examples, Δλ c is less than 80 nm, preferably less than 60 nm, more preferably less than 50 nm, and even more preferably less than 40 nm.
全方向反射也可以通过低色调偏移来测量。例如,用根据本发明实施例的多层叠层制造的色料的色调偏移为30°或更小,如图17中所示(见Δθ1),并且在一些实例中色调偏移为25°或更小,优选为小于20°,更优选为小于15°并且再更优选为小于10°。相反,传统的色料呈现45°或更大的色调偏移(见Δθ2)。Omni-directional reflectance can also be measured by low hue shift. For example, tints made with multilayer stacks according to embodiments of the present invention had hue shifts of 30° or less, as shown in FIG. 17 (see Δθ 1 ), and in some instances, hue shifts of 25° or less, preferably less than 20°, more preferably less than 15° and even more preferably less than 10°. In contrast, conventional colorants exhibit a hue shift of 45° or more (see Δθ 2 ).
图16B例示了七层叠层,其具有:(1)选择性反射体层100a;(2)一对电介质层110,其遍及反射体层延伸100a并关于反射体层100a相对地设置;(3)一对选择性吸收体层120a,其遍及所述一对电介质层110的外表面延伸;以及(4)一对电介质层130,其遍及所述一对选择性吸收体层120a的外表面延伸。Figure 16B illustrates a seven-layer stack having: (1) a selective reflector layer 100a; (2) a pair of dielectric layers 110 extending 100a across the reflector layer and positioned oppositely with respect to the reflector layer 100a; (3) A pair of selective absorber layers 120a extending across the outer surfaces of the pair of dielectric layers 110; and (4) a pair of dielectric layers 130 extending across the outer surfaces of the pair of selective absorber layers 120a.
图16C例示了七层叠层,其具有:(1)选择性反射体层100a;(2)一对电介质层110,其遍及反射体层延伸100a并关于反射体层100a相对地设置;(3)一对非选择性吸收体层120,其遍及所述一对电介质层110的外表面延伸;以及(4)一对电介质层130,其遍及所述一对吸收体层120的外表面延伸。Figure 16C illustrates a seven-layer stack having: (1) a selective reflector layer 100a; (2) a pair of dielectric layers 110 extending 100a across the reflector layer and positioned oppositely with respect to the reflector layer 100a; (3) A pair of non-selective absorber layers 120 extending across the outer surfaces of the pair of dielectric layers 110 ; and (4) a pair of dielectric layers 130 extending across the outer surfaces of the pair of absorber layers 120 .
图16D例示了七层叠层,其具有:(1)反射体层100;(2)一对电介质层110,其遍及反射体层延伸100并关于反射体层100相对地设置;(3)一对吸收体层120,其遍及所述一对电介质层110的外表面延伸;以及(4)一对电介质层130,其遍及所述一对选择性吸收体层120的外表面延伸。Figure 16D illustrates a seven-layer stack having: (1) a reflector layer 100; (2) a pair of dielectric layers 110 extending 100 across the reflector layer and positioned oppositely with respect to the reflector layer 100; (3) a pair of An absorber layer 120 extending across the outer surfaces of the pair of dielectric layers 110 ; and (4) a pair of dielectric layers 130 extending across the outer surfaces of the pair of selective absorber layers 120 .
现在转向图18,针对在相对于反射体的表面成0和45°的角度暴露于白光时的七层设计全方向反射体显示反射率百分比对反射的EMR波长的曲线图。如该曲线图所示,0°和45°曲线都例示了由针对小于550nm波长的全方向反射体提供的非常低的反射率,例如小于10%。然而,如曲线所示,反射体在560至570nm之间的波长处提供了急剧的增加并在700nm处达到大约90%的最大值。要领会的是,曲线的右手侧(IR侧)的图的部分或区域代表由反射体提供的反射带的IR部分。Turning now to FIG. 18 , a graph of percent reflectance versus reflected EMR wavelength is shown for a seven layer design omnidirectional reflector when exposed to white light at angles of 0 and 45° relative to the reflector's surface. As shown in this graph, both the 0° and 45° curves illustrate the very low reflectance, eg, less than 10%, provided by the omnidirectional reflector for wavelengths less than 550 nm. However, as the curve shows, the reflector provides a sharp increase at wavelengths between 560 and 570 nm and reaches a maximum of approximately 90% at 700 nm. It will be appreciated that the portion or area of the graph on the right hand side (IR side) of the curve represents the IR portion of the reflection band provided by the reflector.
由全方向反射体提供的反射率的急剧增加的特征在于每个曲线的从550nm以下波长处的低反射率部分延伸直到高反射率部分(例如>70%)的UV侧边缘。UV侧边缘的线性部分200以相对于X轴大于60°的角度(β)倾斜,在反射率轴上具有大约40的长度L以及具有1.4的斜率。在一些实例中,线性部分以相对于X轴大于70°的角度倾斜,而在其他实例中β大于75°。此外,反射带具有小于200nm的可见FWHM,并且在一些实例中具有小于150nm的可见FWHM,并在其他实例中具有小于100nm的可见FWHM。另外,针对如图18中所示的可见反射带的中心波长λc被限定为这样的波长:其与反射带的UV侧边缘和在可见FWHM处的IR光谱的IR边缘之间的距离相等。The sharp increase in reflectivity provided by the omnidirectional reflector is characterized by the UV side edge of each curve extending from the low reflectivity portion at wavelengths below 550 nm up to the high reflectivity portion (eg >70%). The linear portion 200 of the UV side edge is inclined at an angle (β) greater than 60° with respect to the X-axis, has a length L of about 40 on the reflectivity axis and has a slope of 1.4. In some instances, the linear portion is inclined at an angle greater than 70° relative to the X-axis, while in other instances β is greater than 75°. Additionally, the reflection bands have a visible FWHM of less than 200 nm, and in some instances have a visible FWHM of less than 150 nm, and in other instances have a visible FWHM of less than 100 nm. In addition, the center wavelength λ c for the visible reflection band as shown in FIG. 18 is defined as a wavelength that is equidistant from the UV side edge of the reflection band and the IR edge of the IR spectrum at the visible FWHM.
要领会的是,术语“可见FWHM”指的是曲线的UV侧边缘和IR光谱范围的边缘之间的反射带的宽度,超出“可见FWHM”则由全方向反射体提供的反射率对人眼来说是不可见的。以这种方式,在此公开的创造性设计和多层叠层使用电磁辐射光谱的不可见的IR部分来提供鲜明的颜色或结构色。换句话说,在此公开的全方向反射体利用电磁辐射光谱的不可见的IR部分以便提供被反射的可见光的窄带,尽管事实上反射体可以反射延伸进入IR区域的电磁辐射的宽得多的带。It is to be appreciated that the term "visible FWHM" refers to the width of the reflection band between the UV side edge of the curve and the edge of the IR spectral range, beyond which the reflectivity provided by omnidirectional reflectors is not significant to the human eye. is invisible. In this way, the inventive designs and multilayer stacks disclosed herein use the invisible IR portion of the electromagnetic radiation spectrum to provide vivid or structural color. In other words, the omnidirectional reflectors disclosed herein utilize the invisible IR portion of the electromagnetic radiation spectrum in order to provide a narrow band of visible light that is reflected, despite the fact that the reflector may reflect a much broader band of electromagnetic radiation extending into the IR region. bring.
现在参照图19,针对在相对于反射体的表面成0和45°的角度暴露于白光时的另一种七层设计全方向反射体示出了反射率百分比对波长的图。另外,示出了由在此公开的全方向反射体提供的全方向特性的定义或表征。具体地,并且当由创造性的反射体提供的反射带具有最大值(即,峰)时,如图中所示,每个曲线具有中心波长λc,所述中心波长λc被限定为呈现或经历最大反射率的波长。术语最大的反射波长也可用于λc。Referring now to FIG. 19 , a graph of percent reflectance versus wavelength is shown for another seven layer design omnidirectional reflector when exposed to white light at angles of 0 and 45° relative to the reflector's surface. Additionally, a definition or characterization of the omnidirectional properties provided by the omnidirectional reflectors disclosed herein is shown. Specifically, and when the reflection band provided by the inventive reflector has a maximum (i.e., a peak), as shown in the figure, each curve has a center wavelength λ c defined to exhibit or The wavelength that experiences maximum reflectance. The term maximum reflection wavelength can also be used for λ c .
如图19中所示,当全方向反射体的外表面被从45°角(λc(45°))观察(例如外表面相对于观看该表面的人眼倾斜45°)时,相比于该表面被从0°的角度(λc(0°))即垂直于该表面观察的时候,存在λc的偏移或位移。这种λc的偏移(Δλc)提供了全方向反射体的全方向特性的量度。当然,零偏移,即根本没有偏移,是完美地全方向的反射体。然而,在此公开的全方向反射体可以提供小于100nm的Δλc,其对于人眼来说可以看起来好像该反射体的表面没有改变颜色,因此从实践角度来说该反射体是全方向的。在一些实例中,在此公开的全方向反射体可提供小于75nm的Δλc,在其他实例中可提供小于50nm的Δλc,并且在另一些实例中可提供小于25nm的Δλc,而在又一些实例中提供小于15nm的Δλc。可以通过针对反射体的实际反射率对波长的图,和/或在替代方案中,如果材料和层厚度为已知的话通过反射体的建模,来确定这种Δλc的偏移。As shown in FIG. 19, when the outer surface of the omnidirectional reflector is observed from a 45° angle (λ c (45°)) (for example, the outer surface is inclined at 45° relative to the human eye viewing the surface), compared to the When a surface is viewed from an angle of 0° (λ c (0°)), ie normal to the surface, there is an offset or displacement of λ c . This shift in λ c (Δλ c ) provides a measure of the omnidirectional properties of the omnidirectional reflector. Of course, zero offset, ie no offset at all, is a perfectly omnidirectional reflector. However, the omnidirectional reflectors disclosed herein can provide a Δλc of less than 100 nm, which can appear to the human eye as if the surface of the reflector has not changed color, and thus the reflector is practically omnidirectional . In some examples, the omnidirectional reflectors disclosed herein can provide a Δλ c of less than 75 nm, in other examples can provide a Δλ c of less than 50 nm, and in still other examples can provide a Δλ c of less than 25 nm, and in yet Some examples provide Δλ c of less than 15 nm. Such a shift in Δλc can be determined by a plot of the actual reflectivity versus wavelength for the reflector, and/or in the alternative, by modeling of the reflector if the material and layer thicknesses are known.
反射体的全方向特性的另一种定义或表征可以由针对一组给定的角度反射带的侧边缘的偏移来确定。例如,与针对从45°观察的全方向反射体的反射率(SL(45°))的UV侧边缘相比,针对从0°观察的同一反射体进行的反射率(SL(0°))的UV侧边缘的偏移或位移提供了该全方向反射体的全方向特性的量度。另外,例如针对提供了与图18中所示的反射带相似的反射带即具有与不在可见范围内的最大反射波长相对应的峰的反射带(见图18)的反射体,使用ΔSL作为全方向性的量度可优于使用Δλc。要领会的是,UV侧边缘的偏移(ΔSL)在可见FWHM中测量,和/或可以在可见FWHM中测量。Another definition or characterization of the omnidirectional properties of a reflector may be determined by the offset of the side edges of the reflective bands for a given set of angles. For example, the reflectance (S L (0°)) for an omnidirectional reflector viewed from 0° compared to the UV side edge of the reflectance ( SL (45°)) for the same reflector viewed from 0° The offset or displacement of the UV side edge of )) provides a measure of the omnidirectional properties of the omnidirectional reflector. In addition , for example, for a reflector that provides a reflection band similar to that shown in FIG. A measure of omnidirectionality may be better than using Δλ c . It is to be appreciated that the offset (ΔS L ) of the UV side edge is, and/or can be measured, in the visible FWHM.
当然,零偏移,即根本没有偏移(ΔSL=0nm),将表征完美地全方向的反射体。然而,在此公开的全方向反射体可以提供小于100nm的ΔSL,其对于人眼来说看起来好像该反射体的表面没有改变颜色,因此从实践角度来看该反射体是全方向的。在一些实例中,在此公开的全方向反射体可提供小于75nm的ΔSL,在其他实施例中可提供小于50nm的ΔSL,并且在另一些实例中可提供小于25nm的ΔSL,而在又一些实例中提供小于15nm的ΔSL。可以通过针对反射体的实际反射率对波长的图,和/或在替代方案中,如果材料和层厚度为已知的话通过反射体的建模,来确定这种ΔSL的偏移。Of course, zero offset, ie no offset at all (ΔS L =0 nm), would characterize a perfectly omnidirectional reflector. However, the omnidirectional reflectors disclosed herein can provide a ΔS L of less than 100 nm, which appears to the human eye as if the reflector's surface has not changed color, and thus is omnidirectional from a practical standpoint. In some examples, the omnidirectional reflectors disclosed herein can provide a ΔS L of less than 75 nm, in other embodiments can provide a ΔS L of less than 50 nm, and in still other examples can provide a ΔS L of less than 25 nm, while at Still other examples provide ΔS L of less than 15 nm. Such a shift in ΔS L can be determined by a plot of the actual reflectivity versus wavelength for the reflector, and/or in the alternative, by modeling of the reflector if the material and layer thicknesses are known.
用于生产在此公开的多层叠层的方法可以是本领域技术人员已知的任何方法或工艺,或者本领域技术人员尚未知的方法。典型的已知方法包括诸如溶胶凝胶处理(sol gel processing)、逐层处理(layer-by-layer processing)、旋转涂布等湿式方法。其他已知的干式方法包括化学气相沉积处理和诸如溅射、电子束沉积等物理气相沉积处理。Methods for producing the multilayer stacks disclosed herein may be any method or process known to, or not yet known to, those skilled in the art. Typical known methods include wet methods such as sol gel processing, layer-by-layer processing, spin coating, and the like. Other known dry methods include chemical vapor deposition processes and physical vapor deposition processes such as sputtering, electron beam deposition, and the like.
在此公开的多层叠层可用于几乎任何的色彩应用,诸如用于颜料的色料、施加到表面的薄膜等。The multilayer stacks disclosed herein can be used in virtually any color application, such as tints for pigments, films applied to surfaces, and the like.
上面的实例和实施例只是为了说明性的目的,并且变化、修改等对于本领域技术人员来说将是清楚的并落入本发明的范围。因此,本发明的范围由权利要求及其所有等同物来限定。The above examples and embodiments are for illustrative purposes only, and variations, modifications, etc. will be apparent to those skilled in the art and fall within the scope of the invention. Accordingly, the scope of the invention is defined by the claims and all equivalents thereof.
Claims (31)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/138,499 | 2013-12-23 | ||
US14/138,499 US9739917B2 (en) | 2007-08-12 | 2013-12-23 | Red omnidirectional structural color made from metal and dielectric layers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104730737A true CN104730737A (en) | 2015-06-24 |
CN104730737B CN104730737B (en) | 2019-10-25 |
Family
ID=53275536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410693385.4A Expired - Fee Related CN104730737B (en) | 2013-12-23 | 2014-11-26 | Omnidirectional structural color in red made of metal and dielectric layers |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6437817B2 (en) |
CN (1) | CN104730737B (en) |
DE (1) | DE102014119261B4 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106338787A (en) * | 2015-07-07 | 2017-01-18 | 丰田自动车工程及制造北美公司 | Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers |
CN107340556A (en) * | 2016-05-02 | 2017-11-10 | 丰田自动车工程及制造北美公司 | Omnidirectional's high chroma red structural color |
CN108957604A (en) * | 2018-09-27 | 2018-12-07 | 中国计量大学 | A kind of multilayered structure absorbed with selection |
CN110093583A (en) * | 2018-01-29 | 2019-08-06 | 蓝思科技(长沙)有限公司 | A kind of photochromic decorating film and preparation method thereof |
CN110568534A (en) * | 2019-09-10 | 2019-12-13 | 中国科学院上海技术物理研究所 | A structural color nano film with good angle robustness and its preparation method |
CN111175876A (en) * | 2015-07-07 | 2020-05-19 | 丰田自动车工程及制造北美公司 | Omnidirectional high chromatic red structural pigments with semiconductor absorber layers |
CN111257986A (en) * | 2015-07-07 | 2020-06-09 | 丰田自动车工程及制造北美公司 | Omnidirectional high chromatic red structural colorant with a combination of a semiconductor absorber layer and a dielectric absorber layer |
CN111433029A (en) * | 2017-09-29 | 2020-07-17 | 耐克创新有限合伙公司 | Structurally colored articles and methods for making and using structurally colored articles |
US11726239B2 (en) | 2014-04-01 | 2023-08-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Non-color shifting multilayer structures |
US11796724B2 (en) | 2007-08-12 | 2023-10-24 | Toyota Motor Corporation | Omnidirectional structural color made from metal and dielectric layers |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10788608B2 (en) | 2007-08-12 | 2020-09-29 | Toyota Jidosha Kabushiki Kaisha | Non-color shifting multilayer structures |
US10870740B2 (en) | 2007-08-12 | 2020-12-22 | Toyota Jidosha Kabushiki Kaisha | Non-color shifting multilayer structures and protective coatings thereon |
US11118062B2 (en) | 2017-12-06 | 2021-09-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | LiDAR reflecting dark colored pigments and vehicles comprising the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5214530A (en) * | 1990-08-16 | 1993-05-25 | Flex Products, Inc. | Optically variable interference device with peak suppression and method |
CN1313953A (en) * | 1998-11-24 | 2001-09-19 | 福来克斯产品公司 | Color shifting thin film pigments |
CN1423598A (en) * | 2000-01-21 | 2003-06-11 | 福来克斯产品公司 | Uptically variable security devices |
CN1449942A (en) * | 2002-04-05 | 2003-10-22 | 弗莱克斯产品公司 | Chromatic diffractive pigments and foils |
US20040166308A1 (en) * | 2003-02-13 | 2004-08-26 | Raksha Vladimir P. | Robust multilayer magnetic pigments and foils |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19915153A1 (en) * | 1999-02-15 | 2000-08-17 | Merck Patent Gmbh | Color interference pigments |
US6686042B1 (en) * | 2000-09-22 | 2004-02-03 | Flex Products, Inc. | Optically variable pigments and foils with enhanced color shifting properties |
JP2007271896A (en) * | 2006-03-31 | 2007-10-18 | Toray Ind Inc | Colored film |
US7903339B2 (en) | 2007-08-12 | 2011-03-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Narrow band omnidirectional reflectors and their use as structural colors |
US10690823B2 (en) * | 2007-08-12 | 2020-06-23 | Toyota Motor Corporation | Omnidirectional structural color made from metal and dielectric layers |
-
2014
- 2014-11-26 CN CN201410693385.4A patent/CN104730737B/en not_active Expired - Fee Related
- 2014-12-19 DE DE102014119261.3A patent/DE102014119261B4/en not_active Expired - Fee Related
- 2014-12-24 JP JP2014261063A patent/JP6437817B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5214530A (en) * | 1990-08-16 | 1993-05-25 | Flex Products, Inc. | Optically variable interference device with peak suppression and method |
CN1313953A (en) * | 1998-11-24 | 2001-09-19 | 福来克斯产品公司 | Color shifting thin film pigments |
CN1423598A (en) * | 2000-01-21 | 2003-06-11 | 福来克斯产品公司 | Uptically variable security devices |
CN1449942A (en) * | 2002-04-05 | 2003-10-22 | 弗莱克斯产品公司 | Chromatic diffractive pigments and foils |
US20040166308A1 (en) * | 2003-02-13 | 2004-08-26 | Raksha Vladimir P. | Robust multilayer magnetic pigments and foils |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11796724B2 (en) | 2007-08-12 | 2023-10-24 | Toyota Motor Corporation | Omnidirectional structural color made from metal and dielectric layers |
US11726239B2 (en) | 2014-04-01 | 2023-08-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Non-color shifting multilayer structures |
US12210174B2 (en) | 2014-04-01 | 2025-01-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | Non-color shifting multilayer structures |
CN111257986B (en) * | 2015-07-07 | 2022-05-31 | 丰田自动车工程及制造北美公司 | Omnidirectional high chroma red structural colorants with a combination of semiconductor absorber layer and dielectric absorber layer |
CN111175876A (en) * | 2015-07-07 | 2020-05-19 | 丰田自动车工程及制造北美公司 | Omnidirectional high chromatic red structural pigments with semiconductor absorber layers |
CN111257986A (en) * | 2015-07-07 | 2020-06-09 | 丰田自动车工程及制造北美公司 | Omnidirectional high chromatic red structural colorant with a combination of a semiconductor absorber layer and a dielectric absorber layer |
CN106338787A (en) * | 2015-07-07 | 2017-01-18 | 丰田自动车工程及制造北美公司 | Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers |
CN111175876B (en) * | 2015-07-07 | 2022-11-11 | 丰田自动车工程及制造北美公司 | Omnidirectional high chromatic red structural pigments with semiconductor absorber layers |
CN111458779A (en) * | 2016-05-02 | 2020-07-28 | 丰田自动车工程及制造北美公司 | Omnidirectional high chromatic red structural color |
CN107340556A (en) * | 2016-05-02 | 2017-11-10 | 丰田自动车工程及制造北美公司 | Omnidirectional's high chroma red structural color |
CN111433029A (en) * | 2017-09-29 | 2020-07-17 | 耐克创新有限合伙公司 | Structurally colored articles and methods for making and using structurally colored articles |
CN110093583A (en) * | 2018-01-29 | 2019-08-06 | 蓝思科技(长沙)有限公司 | A kind of photochromic decorating film and preparation method thereof |
CN110093583B (en) * | 2018-01-29 | 2024-01-30 | 蓝思科技(长沙)有限公司 | Photochromic decorative film and manufacturing method thereof |
CN108957604A (en) * | 2018-09-27 | 2018-12-07 | 中国计量大学 | A kind of multilayered structure absorbed with selection |
CN110568534A (en) * | 2019-09-10 | 2019-12-13 | 中国科学院上海技术物理研究所 | A structural color nano film with good angle robustness and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN104730737B (en) | 2019-10-25 |
JP6437817B2 (en) | 2018-12-12 |
JP2015120350A (en) | 2015-07-02 |
DE102014119261A1 (en) | 2015-06-25 |
DE102014119261B4 (en) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104730737B (en) | Omnidirectional structural color in red made of metal and dielectric layers | |
US9739917B2 (en) | Red omnidirectional structural color made from metal and dielectric layers | |
US12210174B2 (en) | Non-color shifting multilayer structures | |
US9612369B2 (en) | Red omnidirectional structural color made from metal and dielectric layers | |
US9658375B2 (en) | Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers | |
JP6655278B2 (en) | High chroma omnidirectional structure Color multilayer structure | |
JP6416714B2 (en) | Red omnidirectional structural color made from metal and dielectric layers | |
US20130265668A1 (en) | Omnidirectional structural color made from metal and dielectric layers | |
JP2016049777A5 (en) | ||
JP6817407B2 (en) | Omnidirectional high saturation red structural color with semiconductor absorber layer | |
CN107340556B (en) | Omnidirectional high chromatic red structural color | |
CN106338791B (en) | Omnidirectional high chromatic red structural colorant with a combination of a semiconductor absorber layer and a dielectric absorber layer | |
CN105372731B (en) | Red Omnidirectional Structural Pigment Made from Metal and Dielectric Layers | |
JP6985434B2 (en) | Omnidirectional high saturation red structural color with a combination of metal absorber layer and dielectric absorber layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200708 Address after: Aichi Prefecture, Japan Patentee after: Toyota Motor Corp. Address before: Kentucky, USA Co-patentee before: Toyota Motor Corp. Patentee before: Toyota Motor Engineering & Manufacturing North America, Inc. |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20191025 |
|
CF01 | Termination of patent right due to non-payment of annual fee |