CN106328802B - 一种压电双极型晶体管 - Google Patents
一种压电双极型晶体管 Download PDFInfo
- Publication number
- CN106328802B CN106328802B CN201610853624.7A CN201610853624A CN106328802B CN 106328802 B CN106328802 B CN 106328802B CN 201610853624 A CN201610853624 A CN 201610853624A CN 106328802 B CN106328802 B CN 106328802B
- Authority
- CN
- China
- Prior art keywords
- piezoelectric
- base area
- region
- semiconductor
- bipolar transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/60—Impurity distributions or concentrations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/86—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group II-VI materials, e.g. ZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/86—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group II-VI materials, e.g. ZnO
- H10D62/8603—Binary Group II-VI materials wherein cadmium is the Group II element, e.g. CdTe
Landscapes
- Bipolar Transistors (AREA)
Abstract
本发明公开了一种压电双极型晶体管,其包括依次设置在半导体基板上的为n型的发射区、为p型的基区和为n型的集电区;基区为压电半导体,发射区的掺杂浓度高于基区的掺杂浓度;基区与集电区之间形成有一npn结或pnp结;该压电双极型晶体管采用npn结或pnp结的结构,与现有技术中压电半导体pn结相比,能够在相同的应变下产生更大的电流增益,进而增大其信号的输出,从而大幅度提高应变传感灵敏度,可提高3到4个量级,或在同比灵敏度下大幅降低器件功耗,降低3‑4个量级;其基区为压电半导体,可通过向压电半导体施加外界应变力,在基区产生压电电荷,调控基区集电结多子空穴的浓度,增大晶体管的输出电流的变化,进而提高可控电流的灵敏度。
Description
技术领域
本发明涉及一种电流调控器件,具体涉及一种压电双极型晶体管。
背景技术
双极型晶体管是由两个背靠背PN结构成的具有电流放大作用的晶体三极管,其起源于1948年发明的点接触晶体三极管,50年代初发展成结型三极管,即现在所称的双极型晶体管;双极型晶体管有两种基本结构:PNP型和NPN型。在这3层半导体中,中间一层称基区,外侧两层分别称发射区和集电区;当基区注入少量电流时,在发射区和集电区之间就会形成较大的电流,这就是晶体管的放大效应;目前,现有技术中的双极型晶体管应力应变不能直接控制,压电PN结存在应力应变可控,但是电流灵敏度低等问题。
发明内容
本发明提供的压电双极型晶体管与现有技术中的压电PN结相比,其能在相同的外界应变下,提高可控电流的灵敏度,与双极型晶体管相比,可以实现应力应变直接控制晶体管电流变化。
为了达到上述发明目的,本发明采用的技术方案为:提供一种压电双极型晶体管,其包括依次设置在半导体基板上的为n型的发射区、为p型的基区和为n型的集电区;基区为压电半导体,发射区的掺杂浓度高于基区的掺杂浓度;基区与集电区之间的形成有一pn结或np结。
进一步地,发射区的为非压电半导体或压电系数与基区压电系数不同的压电半导体。
进一步地,集电区包括压电半导体和非压电半导体。
进一步地,由发射区注入基区中的电子数目大于基区中平衡电子的数目。
进一步地,发射区和基区之间的发射结上位于基区一侧边界处设有非平衡少子累积区。
进一步地,基区的宽度小于非平衡少子的扩散长度。
进一步地,基区与发射区之间形成有耗尽层。
进一步地,压电半导体的材质为ZnO,GaN,InN,GaAs,MoS2或CdS。
进一步地,发射区与基区相接触,基区与集电区相隔。
进一步地,半导体基板包括背面层、设置在背面层表面的埋入绝缘膜、设置在埋入绝缘膜表面的半导体层;发射区、基区和集电区位于半导体层上。
本发明的有益效果为:该压电双极型晶体管采用npn结或pnp结的结构,与现有技术中pn结相比,能够在相同的应变下产生更大的电流增益,进而增大其信号的输出;基区为压电半导体,可通过向压电半导体轴向施加外界应变力,产生压电电荷,减小基区集电结多子空穴的浓度,增加晶体管的输出电流,进而提高可控电流的灵敏度;发射区的掺杂浓度高于基区的掺杂浓度,使得晶体管具有较大的放大能力。
附图说明
图1为压电双极型晶体管的npn型结构示意图。
图2为压电双极型晶体管的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一种实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
为使本申请的目的、技术方案和优点更加清楚,以下结合附图及具体实施例,对本申请作进一步地详细说明。
在以下描述中,对“一个实施例”、“实施例”、“一个示例”、“示例”等等的引用表明如此描述的实施例或示例可以包括特定特征、结构、特性、性质、元素或限度,但并非每个实施例或示例都必然包括特定特征、结构、特性、性质、元素或限度。另外,重复使用短语“根据本申请的一个实施例”虽然有可能是指代相同实施例,但并非必然指代相同的实施例。
为简单起见,以下内容中省略了该技术领域技术人员所公知的技术常识。
根据本申请的一个实施例,提供一种压电双极型晶体管;如图1和图2所示,该压电双极型晶体管依次设置在半导体基板上的为n型的发射区、为p型的基区和为n型的集电区;基区为压电半导体,发射区的掺杂浓度高于基区的掺杂浓度,使得晶体管具有较大的放大能力;在基区与集电区之间的形成有一pn结或np结。
在具体实施中,可通过向压电半导体施加外界应变力,例如在纳米线结构压电双极型晶体管轴向施加应力,在基区产生压电电荷,调控基区集电结多子空穴的浓度,增大晶体管的输出电流的变化,进而提高可控电流的灵敏度。
该压电双极型晶体管采用npn结或pnp结的结构,与现有技术中压电半导体pn结相比,能够在相同的应变下产生更大的电流增益,进而增大其信号的输出,从而大幅度提高应变传感灵敏度,可以提高3到4个量级,或在同比灵敏度下大幅降低器件功耗,降低3-4个量级。
根据本申请的一个实施例,发射区的为非压电半导体或压电系数与基区压电系数不同的压电半导体,集电区包括压电半导体和非压电半导体;且由发射区注入基区中的电子数目大于基区中平衡电子的数目;发射区和基区之间的发射结上位于基区一侧边界处设有非平衡少子累积区。
在具体实施中,该压电双极型晶体管发射极电极发射时,在发射处,由于正向偏置,发射区向基区注入电子,同时基区向发射区注入空穴;为了使晶体管具有较大的放大能力,发射区的掺杂浓度高于基区的掺杂浓度,且优选发射区的掺杂浓度远高于基区的掺杂浓度。
因由发射区注入基区中的电子数目大于基区中平衡电子的数目,故在非平衡少子累积区会累积一定量的非平衡少子,此时,便形成了非平衡少子在基区的扩散运动。
根据本申请的一个实施例,基区的宽度小于非平衡少子的扩散长度,优选基区的宽度远小于非平衡少子的扩散长度;在具体实施中,扩散的电子一部分在扩散过程中与基区的多子空穴复合,由于基区的宽度小于非平衡少子的扩散长度,因此电子在基区复合较少,大部分电子均能扩散到集电结,使得晶体管有较大的电流放大能力。
在晶体管作用放大时,基区中的电子扩散到达该发射结上位于基区一侧边界处,集电结反偏,且反偏集电结中具有强电场,扩散到该边界的电子便立即被反偏集电结中的强电场扫至结电区,形成集电极电流。
该压电双极型晶体管的基区与发射区之间形成有耗尽层,发射区与基区相接触,基区与集电区相隔;在轴向施加外界应变力时,会在发射结耗尽层的p区产生正的压点电荷;压电半导体的材质为ZnO,GaN,InN,GaAs,MoS2或CdS,在具体实施中,ZnO等纤锌矿结构具有压电和半导体双重耦合特性。
该压电双极型晶体管的整体器件结构可以为微米结构和纳米结构,如微米线、微米膜、纳米线、纳米膜、纳米柱、纳米带、纳米螺旋等结构;半导体基板材质可以为有机材料等柔性材料。
如图1所示,在具体实施中,在轴向施加外界应变时候,在发射结耗尽层的p区产生正的压点电荷,导致基区集电结的多子浓度减少,进而影响电流Ib的变化,由于Ib是关于压点电荷的指数函数,而其输出电流Ic是电流Ib与共发射极放大系数β的乘积,故加大了其输出电流,大幅度提高应变传感灵敏度,或在同比灵敏度下大幅降低器件功耗。
如图2所示,根据本申请的一个实施例,半导体基板包括背面层、设置在背面层表面的埋入绝缘膜、设置在埋入绝缘膜表面的半导体层;发射区、基区和集电区位于半导体层上。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将使显而易见的,本文所定义的一般原理可以在不脱离发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制与本文所示的这些实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽的范围。
Claims (10)
1.一种压电双极型晶体管,其特征在于:包括依次设置在半导体基板上的为n型的发射区、为p型的基区和为n型的集电区;所述基区为压电半导体,所述发射区的掺杂浓度高于所述基区的掺杂浓度;所述基区与集电区之间的形成有一pn结或np结。
2.根据权利要求1所述的压电双极型晶体管,其特征在于:所述发射区的为非压电半导体或压电系数与所述基区压电系数不同的压电半导体。
3.根据权利要求1所述的压电双极型晶体管,其特征在于:所述集电区包括压电半导体和非压电半导体。
4.根据权利要求1所述的压电双极型晶体管,其特征在于:由所述发射区注入所述基区中的电子数目大于所述基区中平衡电子的数目。
5.根据权利要求1~4任一项所述的压电双极型晶体管,其特征在于:所述发射区和基区之间的发射结上位于基区一侧边界处设有非平衡少子累积区。
6.根据权利要求5所述的压电双极型晶体管,其特征在于:所述基区的宽度小于所述非平衡少子的扩散长度。
7.根据权利要求1或6所述的压电双极型晶体管,其特征在于:所述基区与所述发射区之间形成有耗尽层。
8.根据权利要求1所述的压电双极型晶体管,其特征在于:所述压电半导体的材质为ZnO,GaN,InN,GaAs,MoS2或CdS。
9.根据权利要求1所述的压电双极型晶体管,其特征在于:所述发射区与所述基区相接触,所述基区与所述集电区相隔。
10.根据权利要求1所述的压电双极型晶体管,其特征在于:所述半导体基板包括背面层、设置在所述背面层表面的埋入绝缘膜、设置在所述埋入绝缘膜表面的半导体层;所述发射区、基区和集电区位于所述半导体层上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610853624.7A CN106328802B (zh) | 2016-09-27 | 2016-09-27 | 一种压电双极型晶体管 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610853624.7A CN106328802B (zh) | 2016-09-27 | 2016-09-27 | 一种压电双极型晶体管 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106328802A CN106328802A (zh) | 2017-01-11 |
CN106328802B true CN106328802B (zh) | 2019-02-12 |
Family
ID=57820641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610853624.7A Active CN106328802B (zh) | 2016-09-27 | 2016-09-27 | 一种压电双极型晶体管 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106328802B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109920844A (zh) * | 2019-03-26 | 2019-06-21 | 电子科技大学 | 一种绝缘栅型压电场效应晶体管 |
CN114497347B (zh) * | 2022-04-15 | 2022-06-17 | 华中科技大学 | 一种压电pn结模块在声-电二极管中的应用 |
CN116314046B (zh) * | 2023-05-18 | 2023-07-21 | 华中科技大学 | 一种传输特性可调的压电三极管模块及其调控方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964359A (zh) * | 2009-07-24 | 2011-02-02 | 中芯国际集成电路制造(上海)有限公司 | 双极晶体管及其形成方法、虚拟接地电路 |
US20110204317A1 (en) * | 2010-02-19 | 2011-08-25 | Samsung Electronics Co., Ltd. | Electric energy generator |
WO2012169826A2 (ko) * | 2011-06-10 | 2012-12-13 | 동국대학교 산학협력단 | 나노와이어를 이용한 발전 장치 |
CN105609499A (zh) * | 2016-03-11 | 2016-05-25 | 成都海威华芯科技有限公司 | 一种GaN集成器件 |
-
2016
- 2016-09-27 CN CN201610853624.7A patent/CN106328802B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964359A (zh) * | 2009-07-24 | 2011-02-02 | 中芯国际集成电路制造(上海)有限公司 | 双极晶体管及其形成方法、虚拟接地电路 |
US20110204317A1 (en) * | 2010-02-19 | 2011-08-25 | Samsung Electronics Co., Ltd. | Electric energy generator |
WO2012169826A2 (ko) * | 2011-06-10 | 2012-12-13 | 동국대학교 산학협력단 | 나노와이어를 이용한 발전 장치 |
CN105609499A (zh) * | 2016-03-11 | 2016-05-25 | 成都海威华芯科技有限公司 | 一种GaN集成器件 |
Non-Patent Citations (2)
Title |
---|
"Piezotronics and piezo-phototronics-from single nanodevices to array of devices and then to integrated functional system";Wenzhuo Wu等;《Nano Today》;20131230;第8卷;第619-642页 * |
"Transverse piezoelectric field-effect based on single ZnO nanobelts";Ya Yang等;《Phsical Chemistry Chemical Physics》;20101031;第12卷;第12415-12419页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106328802A (zh) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100578790C (zh) | Bcd半导体器件及其制造方法 | |
CN102655206B (zh) | 电能产生器 | |
CN106328802B (zh) | 一种压电双极型晶体管 | |
Zhu et al. | Ultra-high sensitivity strain sensor based on piezotronic bipolar transistor | |
CN106409886B (zh) | 双极性半导体光电子器件的逻辑应用方法 | |
KR20240161235A (ko) | 트랜지스터 및 다이오드를 포함하는 회로 및 소자 | |
EP1229584A3 (en) | Semiconductor device and manufacturing method of the same | |
CN106449918B (zh) | 半导体异质结构光电子器件的逻辑应用方法 | |
KR101049797B1 (ko) | 고성능 과도전압 방호소자 및 그 제조방법 | |
CN207425906U (zh) | 一种光电晶体管 | |
CN103633128B (zh) | 双极npn晶体管及其制造方法 | |
CN107452790B (zh) | 一种功率半导体器件及其制作方法 | |
CN107046058A (zh) | 一种具有应变Si组合发射区的异质结双极晶体管及其制备方法 | |
CN202872672U (zh) | 一种离线低压直流输出电路及其晶片 | |
Iranmanesh et al. | Piezotronic bipolar junction transistor as a wearable energy harvester | |
JP6820224B2 (ja) | 窒化物半導体分極制御デバイス | |
CN206877995U (zh) | 一种过压保护设备 | |
JP2011523219A5 (zh) | ||
CN110838519B (zh) | 柔性ZnO/NiO/ZnO多功能三极管及其制备方法 | |
CN103730465B (zh) | 一种线性恒流器件及其制作方法 | |
CN103247675B (zh) | 具备光电转换和放大功能的异质结三极管 | |
CN104241265B (zh) | 静电放电保护结构 | |
CN107887486B (zh) | 一种光电晶体管及其制作方法 | |
JP5750723B2 (ja) | 半導体デバイスの増幅率の電流変化に対する変化の抑制方法、光電変換素子および半導体デバイスの製造方法 | |
CN207303108U (zh) | 一种功率半导体器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |