CN106229389A - A method for preparing a light-emitting diode on a metal gallium nitride composite substrate - Google Patents
A method for preparing a light-emitting diode on a metal gallium nitride composite substrate Download PDFInfo
- Publication number
- CN106229389A CN106229389A CN201610631817.8A CN201610631817A CN106229389A CN 106229389 A CN106229389 A CN 106229389A CN 201610631817 A CN201610631817 A CN 201610631817A CN 106229389 A CN106229389 A CN 106229389A
- Authority
- CN
- China
- Prior art keywords
- layer
- reaction chamber
- composite substrate
- gan
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 111
- 239000000758 substrate Substances 0.000 title claims abstract description 47
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 43
- 239000002184 metal Substances 0.000 title claims abstract description 43
- 239000002131 composite material Substances 0.000 title claims abstract description 42
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000004888 barrier function Effects 0.000 claims abstract description 26
- 239000012298 atmosphere Substances 0.000 claims abstract description 18
- 238000000137 annealing Methods 0.000 claims abstract description 7
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 61
- 230000000903 blocking effect Effects 0.000 claims description 33
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 26
- 230000035882 stress Effects 0.000 description 13
- 230000017525 heat dissipation Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体光电子技术领域,一种在金属氮化镓复合衬底上制备高亮度发光二极管的方法。The invention relates to the technical field of semiconductor optoelectronics, and relates to a method for preparing a high-brightness light-emitting diode on a metal gallium nitride composite substrate.
背景技术Background technique
LED的散热现在越来越为人们所重视,这是因为LED的光衰或其寿命是直接和其结温有关,散热不好结温就高,寿命就短,依照阿雷纽斯法则温度每降低10℃寿命会延长2倍。根据光衰和结温的关系,结温假如能够控制在65°C,那么其光衰至70%的寿命可以高达10万小时!但是,限于实际的LED灯的散热性能, LED灯具的寿命变成了一个影响其性能的主要问题。而且,结温不但影响长时间寿命,也还直接影响短时间的发光效率。比如结温为25度时的发光量为100%,那么结温上升至60度时,其发光量就只有90%;结温为100度时发光量就下降到80%;结温升至140度时发光量就只有70%。由此可见,改善LED灯的散热,控制结温是十分重要的事情。除此以外,LED的发热还会使得其光谱移动,色温升高,正向电流增大(恒压供电时),反向电流也增大,热应力增高,荧光粉环氧树脂老化加速等等种种问题。因此,LED的散热是LED灯具的设计中最为重要的一个问题。People are paying more and more attention to the heat dissipation of LEDs. This is because the light decay or life of LEDs is directly related to its junction temperature. If the heat dissipation is not good, the junction temperature will be high and the lifespan will be short. Lowering the life by 10°C will prolong the life by 2 times. According to the relationship between light decay and junction temperature, if the junction temperature can be controlled at 65°C, then the lifetime of light decay to 70% can be as high as 100,000 hours! However, limited to the heat dissipation performance of the actual LED lamp, the lifespan of the LED lamp has become a major issue affecting its performance. Moreover, the junction temperature not only affects the long-term lifetime, but also directly affects the short-term luminous efficiency. For example, when the junction temperature is 25 degrees, the luminescence is 100%, then when the junction temperature rises to 60 degrees, the luminescence is only 90%; when the junction temperature is 100 degrees, the luminescence drops to 80%; when the junction temperature rises to 140 When the temperature is high, the luminous amount is only 70%. It can be seen that it is very important to improve the heat dissipation of LED lamps and control the junction temperature. In addition, the heating of the LED will also cause its spectrum to shift, the color temperature will increase, the forward current will increase (when the power supply is constant), the reverse current will also increase, the thermal stress will increase, and the aging of the phosphor epoxy resin will be accelerated. and other issues. Therefore, the heat dissipation of LEDs is the most important issue in the design of LED lamps.
LED芯片的特点是在极小的体积内产生极高的热量。而LED本身的热容量很小,所以必须以最快的速度把这些热量传导出去,否则就会产生很高的结温。为了尽可能地把热量引出到芯片外面,人们在LED的芯片结构上进行了很多改进。为了改善LED芯片本身的散热,其最主要的改进就是采用导热性更好的衬底材料。早期的LED只是采用Si(硅)作为衬底。后来就改为蓝宝石作衬底。但是蓝宝石衬底的导热性能不太好,在100°C时约为25W/(m-K)。采用金属氮化镓复合衬底可以有效解决LED散热问题,然而由于金属衬底和氮化镓外延层之间存在较大的热失配,目前在金属氮化镓复合衬底上制备发光二极管的亮度不尽人意。LED chips are characterized by extremely high heat generation in an extremely small volume. The heat capacity of the LED itself is very small, so the heat must be conducted out at the fastest speed, otherwise a high junction temperature will be generated. In order to draw the heat out of the chip as much as possible, many improvements have been made on the chip structure of the LED. In order to improve the heat dissipation of the LED chip itself, the main improvement is to use a substrate material with better thermal conductivity. Early LEDs just used Si (silicon) as the substrate. Later it was changed to sapphire as the substrate. But the thermal conductivity of sapphire substrate is not very good, about 25W/(m-K) at 100°C. Metal gallium nitride composite substrates can effectively solve the heat dissipation problem of LEDs. However, due to the large thermal mismatch between the metal substrate and the GaN epitaxial layer, light-emitting diodes are currently fabricated on metal gallium nitride composite substrates. Brightness is less than satisfactory.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种散热性佳,提高发光效率的在金属氮化镓复合衬底上制备发光二极管的方法。The technical problem to be solved by the invention is to provide a method for preparing a light-emitting diode on a metal gallium nitride composite substrate with good heat dissipation and improved luminous efficiency.
为了解决上述技术问题,本发明采取以下方案:In order to solve the problems of the technologies described above, the present invention takes the following solutions:
一种在金属氮化镓复合衬底上制备发光二极管的方法,包括以下步骤:A method for preparing a light-emitting diode on a metal gallium nitride composite substrate, comprising the following steps:
步骤1,将金属氮化镓复合衬底放入MOCVD反应室中,在N2气氛、MOCVD反应室压力为300torr下,将MOCVD反应室升温至820-850℃,然后在820-850℃的温度范围内退火处理55~65s,接着以MOCVD反应室压力300torr、V/III摩尔比为500-1300,采用0.2微米/小时-1微米/小时的生长速率,生长厚度为200纳米的低温n型GaN应力释放层;Step 1, put the metal gallium nitride composite substrate into the MOCVD reaction chamber, raise the temperature of the MOCVD reaction chamber to 820-850°C under the N2 atmosphere and the pressure of the MOCVD reaction chamber at 300torr, and then set the temperature at 820-850°C Annealing within the range of 55-65s, followed by MOCVD chamber pressure of 300torr, V/III molar ratio of 500-1300, growth rate of 0.2μm/hour-1μm/hour, and growth of low-temperature n-type GaN with a thickness of 200nm stress relief layer;
步骤2,在N2气氛、750-850℃下,以V/III摩尔比为5000-10000,MOCVD反应室压力为300torr,生长3-10个周期的InxGa1-xN/GaN多量子阱有源区,其中,0<x≤0.3;Step 2, grow 3-10 cycles of In x Ga 1-x N/GaN multi-quantum in N 2 atmosphere, 750-850 ° C, with V/III molar ratio of 5000-10000 and MOCVD reaction chamber pressure of 300 Torr Well active area, where 0<x≤0.3;
步骤3,在N2气氛、850-950℃下,以V/III摩尔比为5000-10000、MOCVD反应室压力为100-300torr, 生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,Al组分0≤y1≤0.2,In组分0≤x1≤x;Step 3, grow p-type Al y1 In x1 Ga 1-y1 with a thickness of 30 nanometers under N 2 atmosphere at 850-950°C, with a V/III molar ratio of 5000-10000 and an MOCVD reaction chamber pressure of 100-300torr -x1 N electron blocking layer, Al composition 0≤y 1 ≤0.2, In composition 0≤x 1 ≤x;
步骤4,在H2气氛、950-1050℃下,以V/III摩尔比为2000-5000、MOCVD反应室压力为100torr,生长厚度为100-300nm的高温p型GaN层;Step 4, growing a high-temperature p-type GaN layer with a thickness of 100-300 nm in an H2 atmosphere at 950-1050° C. with a V/III molar ratio of 2000-5000 and a MOCVD reaction chamber pressure of 100 torr;
步骤5,在H2气氛、650-750℃下,以V/III摩尔比为5000-10000、MOCVD反应室压力为300torr,生长厚度为2-4nm的p型InGaN接触层;Step 5, growing a p-type InGaN contact layer with a thickness of 2-4 nm in an H2 atmosphere at 650-750° C., with a V/III molar ratio of 5000-10000 and an MOCVD reaction chamber pressure of 300 torr;
步骤6,将MOCVD反应室的温度降至20-30℃,结束生长,完成金属氮化镓复合衬底发光二极管外延层的生长,制备得到高亮度的金属氮化镓复合衬底发光二极管。In step 6, the temperature of the MOCVD reaction chamber is lowered to 20-30° C., the growth is terminated, and the growth of the epitaxial layer of the metal gallium nitride composite substrate light-emitting diode is completed, and a high-brightness metal gallium nitride composite substrate light-emitting diode is prepared.
所述步骤1中低温n型GaN应力释放层的Si掺杂浓度为1018-1019cm-3。The Si doping concentration of the low-temperature n-type GaN stress release layer in the step 1 is 10 18 -10 19 cm -3 .
所述步骤2中生长InxGa1-xN/GaN多量子阱有源区具体包括:The step 2 of growing the In x Ga 1-x N/GaN multi-quantum well active region specifically includes:
步骤2.1,在N2气氛、750-850℃下,以V/III摩尔比为5000-10000,MOCVD反应室压力为300torr,先生长3个周期的InxGa1-xN/GaN多量子阱有源区,其中,0<x≤0.3,InxGa1-xN阱层的厚度为2-4nm、GaN垒层厚度为8-20nm,其中GaN垒层的Si掺杂浓度为1017cm-3;Step 2.1, in N 2 atmosphere, 750-850°C, with the V/III molar ratio of 5000-10000, and the pressure of the MOCVD reaction chamber at 300torr, first grow the In x Ga 1-x N/GaN multiple quantum wells for 3 cycles In the active region, where 0<x≤0.3, the thickness of the In x Ga 1-x N well layer is 2-4nm, the thickness of the GaN barrier layer is 8-20nm, and the Si doping concentration of the GaN barrier layer is 10 17 cm -3 ;
步骤2.2,然后再继续生长7个周期的InxGa1-xN/GaN多量子阱有源区,其中,0<x≤0.3,InxGa1-xN阱层的厚度为2-4nm、GaN垒层厚度为8-20nm,其中GaN垒层为非掺层。Step 2.2, and then continue to grow the In x Ga 1-x N/GaN multi-quantum well active region for 7 cycles, wherein, 0<x≤0.3, the thickness of the In x Ga 1-x N well layer is 2-4nm 1. The thickness of the GaN barrier layer is 8-20nm, wherein the GaN barrier layer is a non-doped layer.
所述步骤3中生长p型Aly1Inx1Ga1-y1-x1N电子阻挡层具体包括:The step 3 of growing the p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer specifically includes:
步骤3.1,在N2气氛、850-950℃下,以V/III摩尔比为5000-10000、MOCVD反应室压力为100-300torr,先生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,该p型Aly1Inx1Ga1-y1-x1N电子阻挡层的Mg掺杂浓度相应的空穴浓度为1×1017cm-3,其中,Al组分0≤y1≤0.2,In组分0≤x1≤x;Step 3.1, in a N2 atmosphere at 850-950°C, with a V/III molar ratio of 5000-10000 and an MOCVD reaction chamber pressure of 100-300 torr, grow a p-type Al y1 In x1 Ga 1- y1-x1 N electron blocking layer, the Mg doping concentration of the p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer corresponds to a hole concentration of 1×10 17 cm -3 , where the Al component is 0 ≤y 1 ≤0.2, In composition 0≤x 1 ≤x;
步骤3.2,然后再继续生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,该p型Aly1Inx1Ga1-y1-x1N电子阻挡层的Mg掺杂浓度相应的空穴浓度为2×1017cm-3,其中,Al组分0≤y1≤0.2,In组分0≤x1≤x。Step 3.2, and then continue to grow a p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer with a thickness of 30 nm, the Mg doping of the p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer The hole concentration corresponding to the concentration is 2×10 17 cm -3 , wherein, the Al composition 0≤y 1 ≤0.2, and the In composition 0≤x 1 ≤x.
所述步骤4中的高温p型GaN层的Mg掺杂浓度为5×1017cm-3。The Mg doping concentration of the high temperature p-type GaN layer in step 4 is 5×10 17 cm −3 .
所述步骤5中的p型InGaN接触层Mg掺杂浓度为大于1018cm-3。The Mg doping concentration of the p-type InGaN contact layer in the step 5 is greater than 10 18 cm -3 .
所述步骤6具体为将MOCVD反应室的温度先降至700-750℃,然后采用纯氮气气氛进行退火处理5-20分钟,再降至20-30℃。The step 6 specifically includes lowering the temperature of the MOCVD reaction chamber to 700-750° C., then performing annealing treatment in a pure nitrogen atmosphere for 5-20 minutes, and then lowering the temperature to 20-30° C.
本发明通过在金属氮化镓复合衬底和多量子阱有源区之间外延低温应力释放层,有效缓解有源区压应力,提高有源区晶体质量。通过采用Si阶梯式掺杂量子垒层以及Mg掺杂浓度阶梯式变化的电子阻挡层,有效改善电子空穴在有源区的分布,提高金属氮化镓复合衬底发光二极管发光效率。The invention effectively alleviates the compressive stress of the active area and improves the crystal quality of the active area by epitaxially extending the low-temperature stress release layer between the metal gallium nitride composite substrate and the multi-quantum well active area. By adopting the Si step-doped quantum barrier layer and the electron blocking layer with a step-change Mg doping concentration, the distribution of electron holes in the active region is effectively improved, and the luminous efficiency of the metal gallium nitride composite substrate light-emitting diode is improved.
附图说明Description of drawings
附图1为本发明方法制备的发光二极管的剖面结构示意图。Accompanying drawing 1 is the schematic cross-sectional structure diagram of the light-emitting diode prepared by the method of the present invention.
具体实施方式detailed description
为了便于本领域技术人员的理解,下面结合附图和具体实施例对本发明作进一步的描述。In order to facilitate the understanding of those skilled in the art, the present invention will be further described below in conjunction with the drawings and specific embodiments.
本发明利用紧耦合垂直反应室MOCVD生长系统,在金属有机化合物气相外延反应室MOCVD反应室内进行生长,完成在金属氮化镓复合衬底上发光二极管外延层的生长。如附图1所示,该发光二极管外延层的结构由下往上依次为金属氮化镓复合衬底101、低温n型GaN应力释放层102、InxGa1-xN/GaN多量子阱有源区103、p型Aly1Inx1Ga1-y1-x1N电子阻挡层104、高温p型GaN层105、p型InGaN接触层106。在生长过程中,以三甲基镓(TMGa)、三乙基镓(TEGa)、三甲基铟(TMIn)、三甲基铝(TMAl)作为III族源,氨气(NH3)分别作为Ga、Al、In和N源,以硅烷(SiH4)作为n型掺杂剂,二茂镁(Cp2Mg)作为p型掺杂剂。The invention utilizes a close-coupled vertical reaction chamber MOCVD growth system to grow in a metal organic compound vapor phase epitaxy reaction chamber MOCVD reaction chamber to complete the growth of a light-emitting diode epitaxial layer on a metal gallium nitride composite substrate. As shown in Figure 1, the structure of the epitaxial layer of the light-emitting diode is, from bottom to top, metal gallium nitride composite substrate 101, low-temperature n-type GaN stress release layer 102, In x Ga 1-x N/GaN multiple quantum wells Active region 103 , p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer 104 , high-temperature p-type GaN layer 105 , and p-type InGaN contact layer 106 . During the growth process, trimethylgallium (TMGa), triethylgallium (TEGa), trimethylindium (TMIn), trimethylaluminum (TMAl) were used as Group III sources, and ammonia (NH 3 ) was used as Ga, Al, In and N sources, silane (SiH 4 ) as n-type dopant, and dimagnesocene (Cp 2 Mg) as p-type dopant.
下面以具体实施例对本发明作进一步的阐述。The present invention will be further elaborated below with specific examples.
实施例一Embodiment one
一种在金属氮化镓复合衬底上制备发光二极管的方法,包括以下步骤:A method for preparing a light-emitting diode on a metal gallium nitride composite substrate, comprising the following steps:
步骤1,将金属氮化镓复合衬底101放入MOCVD反应室中,在N2气氛、MOCVD反应室压力为300torr下,将MOCVD反应室升温至820℃,然后保持820℃的温度情况下进行退火处理55秒,接着以MOCVD反应室压力300torr、V/III摩尔比为500,采用0.2微米/小时的生长速率,生长厚度为200纳米的低温n型GaN应力释放层102,低温n型GaN应力释放层的Si掺杂浓度为1018cm-3。Step 1, put the metal gallium nitride composite substrate 101 into the MOCVD reaction chamber, raise the temperature of the MOCVD reaction chamber to 820°C under the N2 atmosphere and the pressure of the MOCVD reaction chamber at 300torr, and then carry out while maintaining the temperature at 820°C Annealing treatment for 55 seconds, followed by an MOCVD reaction chamber pressure of 300 torr, V/III molar ratio of 500, and a growth rate of 0.2 μm/hour to grow a low-temperature n-type GaN stress release layer 102 with a thickness of 200 nanometers. The low-temperature n-type GaN stress The Si doping concentration of the release layer is 10 18 cm -3 .
步骤2,在N2气氛、750-850℃下,以V/III摩尔比为5000-10000,MOCVD反应室压力为300torr,生长3-10个周期的InxGa1-xN/GaN多量子阱有源区103,其中,0<x≤0.3。Step 2, grow 3-10 cycles of In x Ga 1-x N/GaN multi-quantum in N 2 atmosphere, 750-850 ° C, with V/III molar ratio of 5000-10000 and MOCVD reaction chamber pressure of 300 Torr Well active region 103, where 0<x≤0.3.
该步骤2具体包括:步骤2.1,在N2气氛、750℃下,以V/III摩尔比为5000,MOCVD反应室压力为300torr,先生长3个周期的InxGa1-xN/GaN多量子阱有源区,其中, x为0.1,InxGa1-xN阱层的厚度为2nm、GaN垒层厚度为8nm,其中GaN垒层的Si掺杂浓度为1017cm-3。GtvbThis step 2 specifically includes: step 2.1, in a N2 atmosphere at 750°C, with a V/III molar ratio of 5000 and an MOCVD reaction chamber pressure of 300 torr, the In x Ga 1-x N/GaN poly In the quantum well active region, x is 0.1, the thickness of the In x Ga 1-x N well layer is 2 nm, the thickness of the GaN barrier layer is 8 nm, and the Si doping concentration of the GaN barrier layer is 10 17 cm -3 . Gtvb
步骤2.2,然后保持步骤2.1中的N2气氛、750℃下,以V/III摩尔比为5000,MOCVD反应室压力为300torr的情况下再继续生长7个周期的InxGa1-xN/GaN多量子阱有源区,其中, x为0.1,InxGa1-xN阱层的厚度为2nm、GaN垒层厚度为8nm,其中GaN垒层为非掺层。经过上述的生长,从而得到垒层Si的掺杂浓度呈阶梯式变化的InxGa1-xN/GaN多量子阱有源区。Step 2.2, and then keep the N2 atmosphere in step 2.1, at 750°C, with the V/III molar ratio of 5000, and the MOCVD reaction chamber pressure of 300torr, continue to grow In x Ga 1-x N/ The GaN multi-quantum well active region, wherein x is 0.1, the thickness of the In x Ga 1-x N well layer is 2nm, and the thickness of the GaN barrier layer is 8nm, wherein the GaN barrier layer is a non-doped layer. After the above growth, the In x Ga 1-x N/GaN multi-quantum well active region in which the doping concentration of the barrier layer Si changes stepwise is obtained.
步骤3,在N2气氛、850-950℃下,以V/III摩尔比为5000-10000、MOCVD反应室压力为100-300torr, 生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层(104),Al组分0≤y1≤0.2,In组分0≤x1≤x。Step 3, grow p-type Al y1 In x1 Ga 1-y1 with a thickness of 30 nanometers under N 2 atmosphere at 850-950°C, with a V/III molar ratio of 5000-10000 and an MOCVD reaction chamber pressure of 100-300torr -x1 N electron blocking layer (104), Al composition 0≤y 1 ≤0.2, In composition 0≤x 1 ≤x.
该步骤3具体包括:步骤3.1,在N2气氛、850℃下,以V/III摩尔比为5000、MOCVD反应室压力为100torr,先生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,该p型Aly1Inx1Ga1-y1-x1N电子阻挡层的Mg掺杂浓度相应的空穴浓度为1×1017cm-3,其中,Al组分y1为0,In组分x1为0。This step 3 specifically includes: step 3.1, in a N 2 atmosphere at 850°C, with a V/III molar ratio of 5000 and an MOCVD reaction chamber pressure of 100 torr, first grow p-type Al y1 In x1 Ga 1- y1-x1 N electron blocking layer, the Mg doping concentration of the p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer corresponds to a hole concentration of 1×10 17 cm -3 , wherein the Al composition y 1 is 0, In composition x 1 is 0.
步骤3.2,然后保持步骤3.1中的N2气氛、850℃下,以V/III摩尔比为5000、MOCVD反应室压力为100torr的情况下再继续生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,该p型Aly1Inx1Ga1-y1-x1N电子阻挡层的Mg掺杂浓度相应的空穴浓度为2×1017cm-3,其中,Al组分y1为0,In组分x1为0。经过上述生长,得到Mg掺杂浓度呈阶梯式变化的p型Aly1Inx1Ga1-y1- x1N电子阻挡层。Step 3.2, and then keep the N2 atmosphere in step 3.1, at 850°C, with the V/III molar ratio of 5000, and the pressure of the MOCVD reaction chamber at 100torr, continue to grow p-type Al y1 In x1 Ga with a thickness of 30 nanometers 1-y1-x1 N electron blocking layer, the Mg doping concentration of the p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer corresponds to a hole concentration of 2×10 17 cm -3 , where the Al group Component y 1 is 0, In component x 1 is 0. After the above growth, a p-type Al y1 In x1 Ga 1-y1- x1 N electron blocking layer with a stepwise change in Mg doping concentration is obtained.
步骤4,在H2气氛、950℃下,以V/III摩尔比为2000、MOCVD反应室压力为100torr,生长厚度为100nm的高温p型GaN层105,该高温p型GaN层的Mg掺杂浓度为5×1017cm-3。Step 4, grow a high-temperature p-type GaN layer 105 with a thickness of 100 nm in a H2 atmosphere at 950° C. with a V/III molar ratio of 2000 and a MOCVD reaction chamber pressure of 100 torr. The high-temperature p-type GaN layer is doped with Mg The concentration is 5×10 17 cm -3 .
步骤5,在H2气氛、650℃下,以V/III摩尔比为5000、MOCVD反应室压力为300torr,生长厚度为2nm的p型InGaN接触层106,该p型InGaN接触层Mg掺杂浓度为大于1018cm-3。Step 5, grow a p-type InGaN contact layer 106 with a thickness of 2nm in an H2 atmosphere at 650°C, with a V/III molar ratio of 5000 and an MOCVD reaction chamber pressure of 300torr. The p-type InGaN contact layer has a Mg doping concentration of is larger than 10 18 cm -3 .
步骤6,将MOCVD反应室的温度先降至700℃,然后采用纯氮气气氛进行退火处理5分钟,再降至20℃,完成金属氮化镓复合衬底发光二极管外延层的生长,制备得到高亮度的金属氮化镓复合衬底发光二极管。Step 6, the temperature of the MOCVD reaction chamber is first lowered to 700°C, then annealed in a pure nitrogen atmosphere for 5 minutes, and then lowered to 20°C to complete the growth of the epitaxial layer of the light-emitting diode on the metal gallium nitride composite substrate, and prepare a high Brightness of Metal GaN Composite Substrate Light Emitting Diodes.
实施例二Embodiment two
一种在金属氮化镓复合衬底上制备发光二极管的方法,包括以下步骤:A method for preparing a light-emitting diode on a metal gallium nitride composite substrate, comprising the following steps:
步骤1,将金属氮化镓复合衬底101放入MOCVD反应室中,在N2气氛、MOCVD反应室压力为300torr下,将MOCVD反应室升温至835℃,然后保持835℃的温度情况下进行退火处理60秒,接着以MOCVD反应室压力300torr、V/III摩尔比为900,采用0.6微米/小时的生长速率,生长厚度为200纳米的低温n型GaN应力释放层102,低温n型GaN应力释放层的Si掺杂浓度为1019cm-3。Step 1, put the metal gallium nitride composite substrate 101 into the MOCVD reaction chamber, raise the temperature of the MOCVD reaction chamber to 835° C. under the N2 atmosphere and the pressure of the MOCVD reaction chamber at 300 torr, and then proceed while maintaining the temperature at 835° C. Annealing for 60 seconds, followed by MOCVD chamber pressure of 300 torr, V/III molar ratio of 900, and a growth rate of 0.6 μm/hour, to grow a low-temperature n-type GaN stress release layer 102 with a thickness of 200 nanometers. The low-temperature n-type GaN stress The Si doping concentration of the release layer is 10 19 cm -3 .
步骤2,在N2气氛、750-850℃下,以V/III摩尔比为5000-10000,MOCVD反应室压力为300torr,生长3-10个周期的InxGa1-xN/GaN多量子阱有源区103,其中,0<x≤0.3。Step 2, grow In x Ga 1-x N/GaN multi-quantum for 3-10 cycles in N2 atmosphere at 750-850°C, with V/III molar ratio of 5000-10000 and MOCVD reaction chamber pressure of 300torr Well active region 103, where 0<x≤0.3.
该步骤2具体包括:步骤2.1,在N2气氛、800℃下,以V/III摩尔比为8000,MOCVD反应室压力为300torr,先生长3个周期的InxGa1-xN/GaN多量子阱有源区,其中, x为0.2,InxGa1-xN阱层的厚度为3nm、GaN垒层厚度为14nm,其中GaN垒层的Si掺杂浓度为1017cm-3。This step 2 specifically includes: step 2.1, in a N2 atmosphere at 800°C, with a V/III molar ratio of 8000 and an MOCVD reaction chamber pressure of 300 torr, grow In x Ga 1-x N/GaN poly In the quantum well active region, x is 0.2, the thickness of the In x Ga 1-x N well layer is 3 nm, the thickness of the GaN barrier layer is 14 nm, and the Si doping concentration of the GaN barrier layer is 10 17 cm -3 .
步骤2.2,然后再继续生长7个周期的InxGa1-xN/GaN多量子阱有源区,其中,x为0.2,InxGa1-xN阱层的厚度为3nm、GaN垒层厚度为14nm,其中GaN垒层为非掺层。经过上述的生长,从而得到垒层Si的掺杂浓度呈阶梯式变化的InxGa1-xN/GaN多量子阱有源区。Step 2.2, and then continue to grow 7 cycles of In x Ga 1-x N/GaN multiple quantum well active regions, where x is 0.2, the thickness of the In x Ga 1-x N well layer is 3nm, and the GaN barrier layer The thickness is 14nm, and the GaN barrier layer is a non-doped layer. After the above growth, the In x Ga 1-x N/GaN multi-quantum well active region in which the doping concentration of the barrier layer Si changes stepwise is obtained.
步骤3,在N2气氛、850-950℃下,以V/III摩尔比为5000-10000、MOCVD反应室压力为100-300torr, 生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层(104),Al组分0≤y1≤0.2,In组分0≤x1≤x。Step 3, grow p-type Al y1 In x1 Ga 1-y1 with a thickness of 30 nanometers under N 2 atmosphere at 850-950°C, with a V/III molar ratio of 5000-10000 and an MOCVD reaction chamber pressure of 100-300torr -x1 N electron blocking layer (104), Al composition 0≤y 1 ≤0.2, In composition 0≤x 1 ≤x.
该步骤3具体包括:步骤3.1,在N2气氛、900℃下,以V/III摩尔比为8000、MOCVD反应室压力为200torr,先生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,该p型Aly1Inx1Ga1-y1-x1N电子阻挡层的Mg掺杂浓度相应的空穴浓度为1×1017cm-3,其中,Al组分y1为0.1,In组分x1为0.1。This step 3 specifically includes: step 3.1, in a N 2 atmosphere at 900°C, with a V/III molar ratio of 8000 and an MOCVD reaction chamber pressure of 200 torr, grow a p-type Al y1 In x1 Ga 1- y1-x1 N electron blocking layer, the Mg doping concentration of the p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer corresponds to a hole concentration of 1×10 17 cm -3 , wherein the Al composition y 1 is 0.1 and In composition x 1 is 0.1.
步骤3.2,然后再继续生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,该p型Aly1Inx1Ga1-y1-x1N电子阻挡层的Mg掺杂浓度相应的空穴浓度为2×1017cm-3,其中,Al组分y1为0.1,In组分x1为0.1。经过上述生长,得到Mg掺杂浓度呈阶梯式变化的p型Aly1Inx1Ga1-y1- x1N电子阻挡层。Step 3.2, and then continue to grow a p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer with a thickness of 30 nm, the Mg doping of the p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer The hole concentration corresponding to the concentration is 2×10 17 cm -3 , wherein the Al composition y 1 is 0.1, and the In composition x 1 is 0.1. After the above growth, a p-type Al y1 In x1 Ga 1-y1- x1 N electron blocking layer with a stepwise change in Mg doping concentration is obtained.
步骤4,在H2气氛、1000℃下,以V/III摩尔比为3500、MOCVD反应室压力为100torr,生长厚度为200nm的高温p型GaN层105,该高温p型GaN层的Mg掺杂浓度为5×1017cm-3。Step 4, grow a high-temperature p-type GaN layer 105 with a thickness of 200 nm in an H2 atmosphere at 1000° C., with a V/III molar ratio of 3500 and an MOCVD reaction chamber pressure of 100 torr. The high-temperature p-type GaN layer is doped with Mg The concentration is 5×10 17 cm -3 .
步骤5,在H2气氛、700℃下,以V/III摩尔比为8000、MOCVD反应室压力为300torr,生长厚度为3nm的p型InGaN接触层106,该p型InGaN接触层Mg掺杂浓度为大于1018cm-3。Step 5, grow a p-type InGaN contact layer 106 with a thickness of 3nm in an H2 atmosphere at 700°C, with a V/III molar ratio of 8000 and an MOCVD reaction chamber pressure of 300torr. The p-type InGaN contact layer has a Mg doping concentration of is larger than 10 18 cm -3 .
步骤6,将MOCVD反应室的温度先降至720℃,然后采用纯氮气气氛进行退火处理10分钟,再降至25℃,完成金属氮化镓复合衬底发光二极管外延层的生长,制备得到高亮度的金属氮化镓复合衬底发光二极管。Step 6, the temperature of the MOCVD reaction chamber is first lowered to 720°C, then annealed in a pure nitrogen atmosphere for 10 minutes, and then lowered to 25°C to complete the growth of the epitaxial layer of the metal gallium nitride composite substrate light-emitting diode, and prepare a high Brightness of Metal GaN Composite Substrate Light Emitting Diodes.
实施例三Embodiment Three
一种在金属氮化镓复合衬底上制备发光二极管的方法,包括以下步骤:A method for preparing a light-emitting diode on a metal gallium nitride composite substrate, comprising the following steps:
步骤1,将金属氮化镓复合衬底101放入MOCVD反应室中,在N2气氛、MOCVD反应室压力为300torr下,将MOCVD反应室升温至850℃,然后保持850℃的温度情况下进行退火处理65秒,接着以MOCVD反应室压力300torr、V/III摩尔比为1300,采用1.0微米/小时的生长速率,生长厚度为200纳米的低温n型GaN应力释放层102,低温n型GaN应力释放层的Si掺杂浓度为1019cm-3。Step 1, put the metal gallium nitride composite substrate 101 into the MOCVD reaction chamber, raise the temperature of the MOCVD reaction chamber to 850°C under the atmosphere of N 2 and the pressure of the MOCVD reaction chamber at 300torr, and then keep the temperature at 850°C. Annealing for 65 seconds, followed by MOCVD chamber pressure of 300 torr, V/III molar ratio of 1300, and a growth rate of 1.0 μm/hour to grow a low-temperature n-type GaN stress release layer 102 with a thickness of 200 nanometers. The low-temperature n-type GaN stress The Si doping concentration of the release layer is 10 19 cm -3 .
步骤2,在N2气氛、750-850℃下,以V/III摩尔比为5000-10000,MOCVD反应室压力为300torr,生长3-10个周期的InxGa1-xN/GaN多量子阱有源区103,其中,0<x≤0.3。Step 2, grow 3-10 cycles of In x Ga 1-x N/GaN multi-quantum in N 2 atmosphere, 750-850 ° C, with V/III molar ratio of 5000-10000 and MOCVD reaction chamber pressure of 300 Torr Well active region 103, where 0<x≤0.3.
该步骤2具体包括:步骤2.1,在N2气氛、850℃下,以V/III摩尔比为10000,MOCVD反应室压力为300torr,先生长3个周期的InxGa1-xN/GaN多量子阱有源区,其中, x为0.3,InxGa1-xN阱层的厚度为4nm、GaN垒层厚度为20nm,其中GaN垒层的Si掺杂浓度为1017cm-3。This step 2 specifically includes: step 2.1, in a N2 atmosphere at 850°C, with a V/III molar ratio of 10,000 and an MOCVD reaction chamber pressure of 300 torr, the In x Ga 1-x N/GaN poly In the quantum well active region, x is 0.3, the thickness of the In x Ga 1-x N well layer is 4nm, the thickness of the GaN barrier layer is 20nm, and the Si doping concentration of the GaN barrier layer is 10 17 cm -3 .
步骤2.2,然后再继续生长7个周期的InxGa1-xN/GaN多量子阱有源区,其中,x为0.3,InxGa1-xN阱层的厚度为4nm、GaN垒层厚度为20nm,其中GaN垒层为非掺层。经过上述的生长,从而得到量子垒层Si的掺杂浓度呈阶梯式变化的InxGa1-xN/GaN多量子阱有源区。Step 2.2, and then continue to grow the In x Ga 1-x N/GaN multi-quantum well active region for 7 cycles, where x is 0.3, the thickness of the In x Ga 1-x N well layer is 4nm, and the GaN barrier layer The thickness is 20nm, and the GaN barrier layer is a non-doped layer. After the above growth, the In x Ga 1-x N/GaN multi-quantum well active region in which the doping concentration of the quantum barrier layer Si changes stepwise is obtained.
步骤3,在N2气氛、850-950℃下,以V/III摩尔比为5000-10000、MOCVD反应室压力为100-300torr, 生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层(104),Al组分0≤y1≤0.2,In组分0≤x1≤x。Step 3, grow p-type Al y1 In x1 Ga 1-y1 with a thickness of 30 nanometers under N 2 atmosphere at 850-950°C, with a V/III molar ratio of 5000-10000 and an MOCVD reaction chamber pressure of 100-300torr -x1 N electron blocking layer (104), Al composition 0≤y 1 ≤0.2, In composition 0≤x 1 ≤x.
该步骤3具体包括:步骤3.1,在N2气氛、950℃下,以V/III摩尔比为10000、MOCVD反应室压力为300torr,先生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,该p型Aly1Inx1Ga1-y1-x1N电子阻挡层的Mg掺杂浓度相应的空穴浓度为1×1017cm-3,其中,Al组分y1为0.2,In组分x1为0.3。This step 3 specifically includes: step 3.1, in a N 2 atmosphere at 950°C, with a V/III molar ratio of 10,000 and an MOCVD reaction chamber pressure of 300 torr, first grow p-type Al y1 In x1 Ga 1- y1-x1 N electron blocking layer, the Mg doping concentration of the p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer corresponds to a hole concentration of 1×10 17 cm -3 , wherein the Al composition y 1 is 0.2 and In composition x 1 is 0.3.
步骤3.2,然后再继续生长厚度为30纳米的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,该p型Aly1Inx1Ga1-y1-x1N电子阻挡层的Mg掺杂浓度相应的空穴浓度为2×1017cm-3,其中,Al组分y1为0.2,In组分x1为0.3。经过上述生长,得到Mg掺杂浓度呈阶梯式变化的p型Aly1Inx1Ga1-y1- x1N电子阻挡层。Step 3.2, and then continue to grow a p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer with a thickness of 30 nm, the Mg doping of the p-type Al y1 In x1 Ga 1-y1-x1 N electron blocking layer The hole concentration corresponding to the concentration is 2×10 17 cm -3 , wherein the Al composition y 1 is 0.2, and the In composition x 1 is 0.3. After the above growth, a p-type Al y1 In x1 Ga 1-y1- x1 N electron blocking layer with a stepwise change in Mg doping concentration is obtained.
步骤4,在H2气氛、1050℃下,以V/III摩尔比为5000、MOCVD反应室压力为100torr,生长厚度为300nm的高温p型GaN层105,该高温p型GaN层的Mg掺杂浓度为5×1017cm-3。Step 4, grow a high-temperature p-type GaN layer 105 with a thickness of 300 nm in an H2 atmosphere at 1050° C. with a V/III molar ratio of 5000 and an MOCVD reaction chamber pressure of 100 torr. The high-temperature p-type GaN layer is doped with Mg The concentration is 5×10 17 cm -3 .
步骤5,在H2气氛、750℃下,以V/III摩尔比为10000、MOCVD反应室压力为300torr,生长厚度为4nm的p型InGaN接触层106,该p型InGaN接触层Mg掺杂浓度为大于1018cm-3。Step 5, grow a p-type InGaN contact layer 106 with a thickness of 4 nm in an H2 atmosphere at 750° C. with a V/III molar ratio of 10,000 and an MOCVD reaction chamber pressure of 300 torr. The p-type InGaN contact layer has a Mg doping concentration of is larger than 10 18 cm -3 .
步骤6,将MOCVD反应室的温度先降至750℃,然后采用纯氮气气氛进行退火处理20分钟,再降至30℃,完成金属氮化镓复合衬底发光二极管外延层的生长,制备得到高亮度的金属氮化镓复合衬底发光二极管。In step 6, the temperature of the MOCVD reaction chamber is first lowered to 750°C, then annealed in a pure nitrogen atmosphere for 20 minutes, and then lowered to 30°C to complete the growth of the epitaxial layer of the light-emitting diode on the metal gallium nitride composite substrate, and prepare a high Brightness of Metal GaN Composite Substrate Light Emitting Diodes.
本发明通过在金属氮化镓复合衬底和多量子阱有源区之间外延低温应力释放层,有效缓解有源区压应力,提高有源区晶体质量。通过生长多周期的量子垒层Si的掺杂浓度呈阶梯式变化的InxGa1-xN/GaN多量子阱有源区,以及Mg掺杂浓度呈阶梯式变化的p型Aly1Inx1Ga1-y1-x1N电子阻挡层,有效改善电子空穴在有源区的分布,提高金属氮化镓复合衬底发光二极管发光效率。The invention effectively alleviates the compressive stress of the active area and improves the crystal quality of the active area by epitaxially extending the low-temperature stress release layer between the metal gallium nitride composite substrate and the multi-quantum well active area. The In x Ga 1-x N/GaN multi-quantum well active region with a stepwise change in the doping concentration of Si by growing multi-period quantum barrier layers, and the p-type Al y1 In x1 with a stepwise change in the Mg doping concentration The Ga 1-y1-x1 N electron blocking layer can effectively improve the distribution of electron holes in the active area, and improve the luminous efficiency of the metal gallium nitride composite substrate light-emitting diode.
以上所述的实施例仅为说明本发明的技术思想及特点,其描述较为具体和详细,其目的在于使本领域的普通技术人员能够了解本发明的内容并据以实施,因此不能仅以此来限定本发明的专利保护范围,并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,即凡依据本发明所揭示的精神所作的变化,仍应涵盖在本发明的专利保护范围内。The above-described embodiments are only to illustrate the technical ideas and characteristics of the present invention, and its description is more specific and detailed. Its purpose is to enable those of ordinary skill in the art to understand the content of the present invention and implement it accordingly. To limit the patent protection scope of the present invention, it should not be construed as limiting the scope of the present invention. It should be pointed out that for those skilled in the art, some modifications and improvements can be made without departing from the inventive concept of the present invention, that is, any changes made according to the spirit disclosed in the present invention should still be Covered within the scope of patent protection of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610631817.8A CN106229389B (en) | 2016-08-04 | 2016-08-04 | Method for preparing light-emitting diode on metal gallium nitride composite substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610631817.8A CN106229389B (en) | 2016-08-04 | 2016-08-04 | Method for preparing light-emitting diode on metal gallium nitride composite substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106229389A true CN106229389A (en) | 2016-12-14 |
CN106229389B CN106229389B (en) | 2018-06-19 |
Family
ID=57546977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610631817.8A Active CN106229389B (en) | 2016-08-04 | 2016-08-04 | Method for preparing light-emitting diode on metal gallium nitride composite substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106229389B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108899398A (en) * | 2018-05-28 | 2018-11-27 | 东莞理工学院 | Near ultraviolet L ED preparation method of quantum well structure with double gradients |
CN110137319A (en) * | 2019-05-21 | 2019-08-16 | 芜湖德豪润达光电科技有限公司 | LED epitaxial structure and preparation method thereof |
CN110739374A (en) * | 2019-10-25 | 2020-01-31 | 圆融光电科技股份有限公司 | A kind of growth method of light-emitting diode and light-emitting diode |
CN111697428A (en) * | 2020-06-16 | 2020-09-22 | 东莞理工学院 | Gallium nitride-based laser diode epitaxial structure and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001102315A (en) * | 1999-07-28 | 2001-04-13 | Sony Corp | Method for forming epitaxial layer |
CN1476046A (en) * | 2003-06-27 | 2004-02-18 | 中国科学院上海光学精密机械研究所 | ZnAl2O4/α-Al2O3Preparation method of composite substrate material |
US20050000407A1 (en) * | 2000-06-05 | 2005-01-06 | Sony Corporation | Semiconductor laser, semiconductor device and nitride series III-V group compound substrate, as well as manufacturing method thereof |
CN103219434A (en) * | 2012-01-18 | 2013-07-24 | 陈敏璋 | Composite substrate, manufacturing method thereof and light emitting component |
CN103305908A (en) * | 2012-03-14 | 2013-09-18 | 东莞市中镓半导体科技有限公司 | Composite substrate for GaN growth |
CN103305909A (en) * | 2012-03-14 | 2013-09-18 | 东莞市中镓半导体科技有限公司 | A method for preparing a composite substrate for GaN growth |
US20140054595A1 (en) * | 2006-04-07 | 2014-02-27 | Seoul Semiconductor Co., Ltd. | Composite substrate of gallium nitride and metal oxide |
CN104064648A (en) * | 2013-03-20 | 2014-09-24 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Etching method of group Ⅲ compound substrate |
-
2016
- 2016-08-04 CN CN201610631817.8A patent/CN106229389B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001102315A (en) * | 1999-07-28 | 2001-04-13 | Sony Corp | Method for forming epitaxial layer |
US20050000407A1 (en) * | 2000-06-05 | 2005-01-06 | Sony Corporation | Semiconductor laser, semiconductor device and nitride series III-V group compound substrate, as well as manufacturing method thereof |
CN1476046A (en) * | 2003-06-27 | 2004-02-18 | 中国科学院上海光学精密机械研究所 | ZnAl2O4/α-Al2O3Preparation method of composite substrate material |
US20140054595A1 (en) * | 2006-04-07 | 2014-02-27 | Seoul Semiconductor Co., Ltd. | Composite substrate of gallium nitride and metal oxide |
CN103219434A (en) * | 2012-01-18 | 2013-07-24 | 陈敏璋 | Composite substrate, manufacturing method thereof and light emitting component |
CN103305908A (en) * | 2012-03-14 | 2013-09-18 | 东莞市中镓半导体科技有限公司 | Composite substrate for GaN growth |
CN103305909A (en) * | 2012-03-14 | 2013-09-18 | 东莞市中镓半导体科技有限公司 | A method for preparing a composite substrate for GaN growth |
CN104064648A (en) * | 2013-03-20 | 2014-09-24 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Etching method of group Ⅲ compound substrate |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108899398A (en) * | 2018-05-28 | 2018-11-27 | 东莞理工学院 | Near ultraviolet L ED preparation method of quantum well structure with double gradients |
CN110137319A (en) * | 2019-05-21 | 2019-08-16 | 芜湖德豪润达光电科技有限公司 | LED epitaxial structure and preparation method thereof |
CN110739374A (en) * | 2019-10-25 | 2020-01-31 | 圆融光电科技股份有限公司 | A kind of growth method of light-emitting diode and light-emitting diode |
CN110739374B (en) * | 2019-10-25 | 2021-01-26 | 圆融光电科技股份有限公司 | Growth method of electron blocking layer in light emitting diode and light emitting diode |
CN111697428A (en) * | 2020-06-16 | 2020-09-22 | 东莞理工学院 | Gallium nitride-based laser diode epitaxial structure and preparation method thereof |
CN111697428B (en) * | 2020-06-16 | 2021-08-10 | 东莞理工学院 | Gallium nitride-based laser diode epitaxial structure and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106229389B (en) | 2018-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101359710B (en) | Manufacturing method of green light LED | |
CN101488550B (en) | Manufacturing method for LED in high In ingredient multiple InGaN/GaN quantum wells structure | |
CN103824909B (en) | A kind of epitaxy method improving GaN base LED luminosity | |
CN102306691B (en) | Method for raising light emitting diode luminescence efficiency | |
CN106328771B (en) | Method for extending crack-free high-crystal quality L ED epitaxial layer on metal gallium nitride composite substrate | |
CN103996769B (en) | LED epitaxial layer structures, growing method and the LED chip with the structure | |
CN105355737B (en) | SQW combination LED epitaxial structure of high-luminous-efficiency and preparation method thereof | |
CN106229390B (en) | Growth method of GaN-based light emitting diode chip | |
CN103515495B (en) | A method for growing GaN-based light-emitting diode chips | |
CN104051586A (en) | A GaN-based light-emitting diode epitaxial structure and its preparation method | |
CN102709424A (en) | Method for improving luminous efficiency of light-emitting diode | |
CN109119515A (en) | A kind of LED epitaxial slice and its manufacturing method | |
CN104576852A (en) | Stress regulation method for luminous quantum wells of GaN-based LED epitaxial structure | |
CN104716236A (en) | GaN-based LED epitaxial structure and growth method for improving luminous efficiency | |
CN108598233A (en) | A kind of LED outer layer growths method | |
CN106229389B (en) | Method for preparing light-emitting diode on metal gallium nitride composite substrate | |
CN104576853A (en) | Epitaxial method for improving GaN based LED chip current spreading | |
CN114883460A (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN103700745B (en) | A kind of high-brightness GaN-based light-emitting diode epitaxial growth method | |
CN111725371B (en) | LED epitaxial bottom layer structure and growth method thereof | |
CN105514237A (en) | GaN-based LED (Light-emitting Diode) epitaxial structure and production method thereof | |
CN204167348U (en) | A kind of LED epitaxial structure with high-quality InGaN/GaN active layer | |
CN108281519B (en) | A light-emitting diode epitaxial wafer and its manufacturing method | |
CN103337571A (en) | Epitaxial structure for improving wavelength concentration in GaN-based epitaxial wafer and growth method of epitaxial structure | |
CN106711298B (en) | A kind of light-emitting diode epitaxial growth method and light-emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |