CN106215179A - Immunogenic vaccine - Google Patents
Immunogenic vaccine Download PDFInfo
- Publication number
- CN106215179A CN106215179A CN201610602144.3A CN201610602144A CN106215179A CN 106215179 A CN106215179 A CN 106215179A CN 201610602144 A CN201610602144 A CN 201610602144A CN 106215179 A CN106215179 A CN 106215179A
- Authority
- CN
- China
- Prior art keywords
- glycolipopeptide
- epitope
- component
- peptide
- mucl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229960005486 vaccine Drugs 0.000 title claims description 85
- 230000002163 immunogen Effects 0.000 title claims description 50
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 234
- 150000002632 lipids Chemical class 0.000 claims abstract description 113
- 102000002068 Glycopeptides Human genes 0.000 claims description 130
- 108010015899 Glycopeptides Proteins 0.000 claims description 130
- 210000004027 cell Anatomy 0.000 claims description 109
- 102000002689 Toll-like receptor Human genes 0.000 claims description 99
- 108020000411 Toll-like receptor Proteins 0.000 claims description 99
- 239000002502 liposome Substances 0.000 claims description 96
- 239000000203 mixture Substances 0.000 claims description 95
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 claims description 91
- 235000001014 amino acid Nutrition 0.000 claims description 87
- 150000001413 amino acids Chemical class 0.000 claims description 85
- 239000003446 ligand Substances 0.000 claims description 75
- 210000002443 helper t lymphocyte Anatomy 0.000 claims description 73
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 67
- 235000018102 proteins Nutrition 0.000 claims description 61
- 102000004169 proteins and genes Human genes 0.000 claims description 61
- 108090000623 proteins and genes Proteins 0.000 claims description 61
- 102100034256 Mucin-1 Human genes 0.000 claims description 60
- 239000002671 adjuvant Substances 0.000 claims description 58
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 48
- 201000010099 disease Diseases 0.000 claims description 45
- 230000013595 glycosylation Effects 0.000 claims description 43
- 238000006206 glycosylation reaction Methods 0.000 claims description 42
- 239000000556 agonist Substances 0.000 claims description 36
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 claims description 33
- 230000015572 biosynthetic process Effects 0.000 claims description 32
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 31
- 235000000346 sugar Nutrition 0.000 claims description 30
- 229940044655 toll-like receptor 9 agonist Drugs 0.000 claims description 30
- 239000000126 substance Substances 0.000 claims description 25
- 210000004881 tumor cell Anatomy 0.000 claims description 24
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 claims description 23
- 102000043131 MHC class II family Human genes 0.000 claims description 21
- 108091054438 MHC class II family Proteins 0.000 claims description 21
- 238000011282 treatment Methods 0.000 claims description 20
- 239000008194 pharmaceutical composition Substances 0.000 claims description 18
- 239000002955 immunomodulating agent Substances 0.000 claims description 16
- 229940121354 immunomodulator Drugs 0.000 claims description 16
- 239000003814 drug Substances 0.000 claims description 15
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 claims description 15
- 206010006187 Breast cancer Diseases 0.000 claims description 14
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 14
- 108020004201 indoleamine 2,3-dioxygenase Proteins 0.000 claims description 12
- 102000006639 indoleamine 2,3-dioxygenase Human genes 0.000 claims description 12
- 208000026310 Breast neoplasm Diseases 0.000 claims description 11
- 239000003112 inhibitor Substances 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 11
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 10
- 239000004473 Threonine Substances 0.000 claims description 10
- 230000002584 immunomodulator Effects 0.000 claims description 10
- 239000002246 antineoplastic agent Substances 0.000 claims description 9
- 229940127089 cytotoxic agent Drugs 0.000 claims description 9
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 8
- 229940079593 drug Drugs 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 8
- 230000001404 mediated effect Effects 0.000 claims description 8
- 208000015181 infectious disease Diseases 0.000 claims description 7
- 125000003607 serino group Chemical class [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 6
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 claims description 6
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 claims description 6
- 229940111134 coxibs Drugs 0.000 claims description 6
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 claims description 6
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 6
- 102000043129 MHC class I family Human genes 0.000 claims description 5
- 108091054437 MHC class I family Proteins 0.000 claims description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 5
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 claims description 5
- 239000008103 glucose Substances 0.000 claims description 5
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 claims description 4
- 229940124597 therapeutic agent Drugs 0.000 claims description 4
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 3
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 claims description 3
- FDJKUWYYUZCUJX-AJKRCSPLSA-N N-glycoloyl-beta-neuraminic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@@H]1O[C@](O)(C(O)=O)C[C@H](O)[C@H]1NC(=O)CO FDJKUWYYUZCUJX-AJKRCSPLSA-N 0.000 claims description 3
- FDJKUWYYUZCUJX-UHFFFAOYSA-N N-glycolyl-beta-neuraminic acid Natural products OCC(O)C(O)C1OC(O)(C(O)=O)CC(O)C1NC(=O)CO FDJKUWYYUZCUJX-UHFFFAOYSA-N 0.000 claims description 3
- 238000004806 packaging method and process Methods 0.000 claims description 3
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 claims description 2
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 claims description 2
- 101100346929 Homo sapiens MUC1 gene Proteins 0.000 claims description 2
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 claims description 2
- 102000057860 human MUC1 Human genes 0.000 claims description 2
- 230000002265 prevention Effects 0.000 claims description 2
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 claims 2
- 101000831567 Homo sapiens Toll-like receptor 2 Proteins 0.000 claims 2
- 102100024333 Toll-like receptor 2 Human genes 0.000 claims 2
- 125000003473 lipid group Chemical group 0.000 claims 1
- 150000001720 carbohydrates Chemical class 0.000 abstract description 168
- 230000001225 therapeutic effect Effects 0.000 abstract description 9
- 230000024932 T cell mediated immunity Effects 0.000 abstract description 5
- 230000028996 humoral immune response Effects 0.000 abstract description 5
- 229940021747 therapeutic vaccine Drugs 0.000 abstract description 2
- 229940021993 prophylactic vaccine Drugs 0.000 abstract 1
- 235000014633 carbohydrates Nutrition 0.000 description 161
- 206010028980 Neoplasm Diseases 0.000 description 152
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 99
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 97
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 94
- 150000001875 compounds Chemical class 0.000 description 91
- 238000000034 method Methods 0.000 description 85
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 84
- 239000000427 antigen Substances 0.000 description 84
- 241000699670 Mus sp. Species 0.000 description 80
- 108091007433 antigens Proteins 0.000 description 74
- 102000036639 antigens Human genes 0.000 description 74
- 230000003053 immunization Effects 0.000 description 69
- 201000011510 cancer Diseases 0.000 description 62
- 102000004196 processed proteins & peptides Human genes 0.000 description 61
- 238000002649 immunization Methods 0.000 description 56
- 102000008228 Toll-like receptor 2 Human genes 0.000 description 54
- 108010060888 Toll-like receptor 2 Proteins 0.000 description 54
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 52
- 239000011347 resin Substances 0.000 description 49
- 229920005989 resin Polymers 0.000 description 49
- 108010028921 Lipopeptides Proteins 0.000 description 48
- 230000004044 response Effects 0.000 description 39
- 241000699666 Mus <mouse, genus> Species 0.000 description 38
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 38
- 238000002965 ELISA Methods 0.000 description 37
- 238000005859 coupling reaction Methods 0.000 description 37
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 37
- 241000282414 Homo sapiens Species 0.000 description 36
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 36
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 36
- 238000009472 formulation Methods 0.000 description 36
- 210000001744 T-lymphocyte Anatomy 0.000 description 34
- 102000004127 Cytokines Human genes 0.000 description 33
- 108090000695 Cytokines Proteins 0.000 description 33
- 230000027455 binding Effects 0.000 description 33
- 230000000890 antigenic effect Effects 0.000 description 32
- 239000002158 endotoxin Substances 0.000 description 32
- 210000002966 serum Anatomy 0.000 description 32
- 238000013456 study Methods 0.000 description 32
- 229920006008 lipopolysaccharide Polymers 0.000 description 31
- 229940046168 CpG oligodeoxynucleotide Drugs 0.000 description 30
- 108010008707 Mucin-1 Proteins 0.000 description 29
- 230000008878 coupling Effects 0.000 description 29
- 238000010168 coupling process Methods 0.000 description 29
- 238000003786 synthesis reaction Methods 0.000 description 29
- 230000028993 immune response Effects 0.000 description 28
- 230000004913 activation Effects 0.000 description 26
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 25
- 241000588724 Escherichia coli Species 0.000 description 23
- 241001465754 Metazoa Species 0.000 description 23
- 239000003153 chemical reaction reagent Substances 0.000 description 23
- 238000010790 dilution Methods 0.000 description 23
- 239000012895 dilution Substances 0.000 description 23
- 229940125904 compound 1 Drugs 0.000 description 22
- 125000005647 linker group Chemical group 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 21
- -1 Globo-H Chemical class 0.000 description 21
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 20
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 20
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 20
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 20
- 108010060804 Toll-Like Receptor 4 Proteins 0.000 description 19
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 19
- 229940022399 cancer vaccine Drugs 0.000 description 19
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 18
- 229930186217 Glycolipid Natural products 0.000 description 18
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 18
- 230000001419 dependent effect Effects 0.000 description 18
- 230000004048 modification Effects 0.000 description 18
- 238000012986 modification Methods 0.000 description 18
- 229920001542 oligosaccharide Polymers 0.000 description 17
- 150000002482 oligosaccharides Chemical class 0.000 description 17
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 16
- 102100026720 Interferon beta Human genes 0.000 description 16
- 229940126208 compound 22 Drugs 0.000 description 16
- 230000006698 induction Effects 0.000 description 16
- 239000002904 solvent Substances 0.000 description 16
- KUIFHYPNNRVEKZ-VIJRYAKMSA-N O-(N-acetyl-alpha-D-galactosaminyl)-L-threonine Chemical compound OC(=O)[C@@H](N)[C@@H](C)O[C@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1NC(C)=O KUIFHYPNNRVEKZ-VIJRYAKMSA-N 0.000 description 15
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 15
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 15
- 230000028327 secretion Effects 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 229940125575 vaccine candidate Drugs 0.000 description 15
- 108090000467 Interferon-beta Proteins 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 14
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 14
- 238000009566 cancer vaccine Methods 0.000 description 14
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 14
- 229940126214 compound 3 Drugs 0.000 description 14
- 230000016396 cytokine production Effects 0.000 description 14
- 210000004443 dendritic cell Anatomy 0.000 description 14
- 102000035122 glycosylated proteins Human genes 0.000 description 14
- 108091005608 glycosylated proteins Proteins 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 14
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 13
- 102000010168 Myeloid Differentiation Factor 88 Human genes 0.000 description 13
- 108010077432 Myeloid Differentiation Factor 88 Proteins 0.000 description 13
- 208000000474 Poliomyelitis Diseases 0.000 description 13
- 108010008038 Synthetic Vaccines Proteins 0.000 description 13
- 238000002835 absorbance Methods 0.000 description 13
- 210000000612 antigen-presenting cell Anatomy 0.000 description 13
- 230000021615 conjugation Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 13
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 13
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 12
- 102000014914 Carrier Proteins Human genes 0.000 description 12
- 108010078791 Carrier Proteins Proteins 0.000 description 12
- 102000003886 Glycoproteins Human genes 0.000 description 12
- 108090000288 Glycoproteins Proteins 0.000 description 12
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 230000005875 antibody response Effects 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 229940125782 compound 2 Drugs 0.000 description 12
- 238000001514 detection method Methods 0.000 description 12
- 238000010348 incorporation Methods 0.000 description 12
- 239000002773 nucleotide Substances 0.000 description 12
- 125000003729 nucleotide group Chemical group 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical compound CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 description 12
- 108010012236 Chemokines Proteins 0.000 description 11
- 102000019034 Chemokines Human genes 0.000 description 11
- 241001529936 Murinae Species 0.000 description 11
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 11
- 230000005859 cell recognition Effects 0.000 description 11
- 230000036755 cellular response Effects 0.000 description 11
- 229940126086 compound 21 Drugs 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 210000004408 hybridoma Anatomy 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 239000000178 monomer Substances 0.000 description 11
- 230000003389 potentiating effect Effects 0.000 description 11
- 238000000746 purification Methods 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 10
- 241000282412 Homo Species 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 230000005847 immunogenicity Effects 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 9
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 108010074328 Interferon-gamma Proteins 0.000 description 9
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 9
- 108010071384 Peptide T Proteins 0.000 description 9
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 9
- 102100033117 Toll-like receptor 9 Human genes 0.000 description 9
- 150000001412 amines Chemical group 0.000 description 9
- 150000004676 glycans Chemical class 0.000 description 9
- 210000000987 immune system Anatomy 0.000 description 9
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 9
- 210000002540 macrophage Anatomy 0.000 description 9
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 9
- 230000035800 maturation Effects 0.000 description 9
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 9
- 150000002772 monosaccharides Chemical class 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 230000001629 suppression Effects 0.000 description 9
- FZTIWOBQQYPTCJ-UHFFFAOYSA-N 4-[4-(4-carboxyphenyl)phenyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(O)=O)C=C1 FZTIWOBQQYPTCJ-UHFFFAOYSA-N 0.000 description 8
- 102100037850 Interferon gamma Human genes 0.000 description 8
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 8
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 239000012472 biological sample Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229940125898 compound 5 Drugs 0.000 description 8
- 239000012636 effector Substances 0.000 description 8
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 229920001184 polypeptide Polymers 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 238000004007 reversed phase HPLC Methods 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- OYRVWOGRRQDEQH-MLVLNPCWSA-N Gln-Tyr-Ile-Lys-Ala-Asn-Ser-Lys-Phe-Ile-Gly-Ile-Thr-Glu-Leu Chemical compound C([C@@H](C(=O)N[C@@H](C(C)CC)C(=O)NCC(=O)N[C@@H](C(C)CC)C(=O)N[C@@H](C(C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](N)CCC(N)=O)C(C)CC)C1=CC=CC=C1 OYRVWOGRRQDEQH-MLVLNPCWSA-N 0.000 description 7
- 241000725303 Human immunodeficiency virus Species 0.000 description 7
- 108090001030 Lipoproteins Proteins 0.000 description 7
- 102000004895 Lipoproteins Human genes 0.000 description 7
- OVRNDRQMDRJTHS-KEWYIRBNSA-N N-acetyl-D-galactosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-KEWYIRBNSA-N 0.000 description 7
- 238000005481 NMR spectroscopy Methods 0.000 description 7
- 235000021314 Palmitic acid Nutrition 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 235000012000 cholesterol Nutrition 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 230000003308 immunostimulating effect Effects 0.000 description 7
- 230000001976 improved effect Effects 0.000 description 7
- 238000001906 matrix-assisted laser desorption--ionisation mass spectrometry Methods 0.000 description 7
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 238000010647 peptide synthesis reaction Methods 0.000 description 7
- 150000003904 phospholipids Chemical class 0.000 description 7
- 229920001282 polysaccharide Polymers 0.000 description 7
- 239000005017 polysaccharide Substances 0.000 description 7
- 230000000638 stimulation Effects 0.000 description 7
- 230000004083 survival effect Effects 0.000 description 7
- 230000003442 weekly effect Effects 0.000 description 7
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 6
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 6
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 6
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 6
- 241000711549 Hepacivirus C Species 0.000 description 6
- 101000595548 Homo sapiens TIR domain-containing adapter molecule 1 Proteins 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 101500027983 Rattus norvegicus Octadecaneuropeptide Proteins 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 230000005867 T cell response Effects 0.000 description 6
- 102100036073 TIR domain-containing adapter molecule 1 Human genes 0.000 description 6
- MGSDFCKWGHNUSM-QVPNGJTFSA-N alpha-L-Fucp-(1->2)-beta-D-Galp-(1->3)-beta-D-GlcpNAc Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@@H]2[C@H]([C@H](O)O[C@H](CO)[C@H]2O)NC(C)=O)O[C@H](CO)[C@H](O)[C@@H]1O MGSDFCKWGHNUSM-QVPNGJTFSA-N 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 210000004602 germ cell Anatomy 0.000 description 6
- 210000002865 immune cell Anatomy 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 238000012417 linear regression Methods 0.000 description 6
- 210000001165 lymph node Anatomy 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 230000002018 overexpression Effects 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000013207 serial dilution Methods 0.000 description 6
- 238000001542 size-exclusion chromatography Methods 0.000 description 6
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 150000004044 tetrasaccharides Chemical class 0.000 description 6
- 241000283707 Capra Species 0.000 description 5
- 241000991587 Enterovirus C Species 0.000 description 5
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 5
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 5
- 239000007821 HATU Substances 0.000 description 5
- 239000007995 HEPES buffer Substances 0.000 description 5
- 108090000174 Interleukin-10 Proteins 0.000 description 5
- 108010065805 Interleukin-12 Proteins 0.000 description 5
- 102000013462 Interleukin-12 Human genes 0.000 description 5
- 108090001005 Interleukin-6 Proteins 0.000 description 5
- 102000004889 Interleukin-6 Human genes 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 5
- 206010027476 Metastases Diseases 0.000 description 5
- 241000588650 Neisseria meningitidis Species 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000000259 anti-tumor effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000001472 cytotoxic effect Effects 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 230000016784 immunoglobulin production Effects 0.000 description 5
- 210000005007 innate immune system Anatomy 0.000 description 5
- 230000003834 intracellular effect Effects 0.000 description 5
- 230000009401 metastasis Effects 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 150000003573 thiols Chemical class 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 4
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108020000946 Bacterial DNA Proteins 0.000 description 4
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 4
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 4
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 101000763579 Homo sapiens Toll-like receptor 1 Proteins 0.000 description 4
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 description 4
- 101000669406 Homo sapiens Toll-like receptor 6 Proteins 0.000 description 4
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 4
- 101000800483 Homo sapiens Toll-like receptor 8 Proteins 0.000 description 4
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- 206010062016 Immunosuppression Diseases 0.000 description 4
- 101100481579 Mus musculus Tlr11 gene Proteins 0.000 description 4
- 101100481580 Mus musculus Tlr12 gene Proteins 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 101710176384 Peptide 1 Proteins 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 102100027010 Toll-like receptor 1 Human genes 0.000 description 4
- 102100039357 Toll-like receptor 5 Human genes 0.000 description 4
- 102100039387 Toll-like receptor 6 Human genes 0.000 description 4
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 4
- 102100033110 Toll-like receptor 8 Human genes 0.000 description 4
- 230000001594 aberrant effect Effects 0.000 description 4
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 4
- 230000001588 bifunctional effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000006037 cell lysis Effects 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 4
- 150000002016 disaccharides Chemical class 0.000 description 4
- 235000013601 eggs Nutrition 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000036571 hydration Effects 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 230000036039 immunity Effects 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- 230000001506 immunosuppresive effect Effects 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 244000000010 microbial pathogen Species 0.000 description 4
- 230000003278 mimic effect Effects 0.000 description 4
- DAZSWUUAFHBCGE-KRWDZBQOSA-N n-[(2s)-3-methyl-1-oxo-1-pyrrolidin-1-ylbutan-2-yl]-3-phenylpropanamide Chemical compound N([C@@H](C(C)C)C(=O)N1CCCC1)C(=O)CCC1=CC=CC=C1 DAZSWUUAFHBCGE-KRWDZBQOSA-N 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- 208000024827 Alzheimer disease Diseases 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 3
- 229920002683 Glycosaminoglycan Polymers 0.000 description 3
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 description 3
- 241000282596 Hylobatidae Species 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- 229930182816 L-glutamine Natural products 0.000 description 3
- 101001054328 Mus musculus Interferon beta Proteins 0.000 description 3
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 3
- 108010084333 N-palmitoyl-S-(2,3-bis(palmitoyloxy)propyl)cysteinyl-seryl-lysyl-lysyl-lysyl-lysine Proteins 0.000 description 3
- 230000004989 O-glycosylation Effects 0.000 description 3
- 108010033276 Peptide Fragments Proteins 0.000 description 3
- 102000007079 Peptide Fragments Human genes 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 108010093965 Polymyxin B Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229940124614 TLR 8 agonist Drugs 0.000 description 3
- 102100024324 Toll-like receptor 3 Human genes 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 239000007640 basal medium Substances 0.000 description 3
- 230000031018 biological processes and functions Effects 0.000 description 3
- XFLVBMBRLSCJAI-UHFFFAOYSA-N biotin amide Natural products N1C(=O)NC2C(CCCCC(=O)N)SCC21 XFLVBMBRLSCJAI-UHFFFAOYSA-N 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000011260 co-administration Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000009169 immunotherapy Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 230000002687 intercalation Effects 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 210000002864 mononuclear phagocyte Anatomy 0.000 description 3
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000024 polymyxin B Polymers 0.000 description 3
- 229960005266 polymyxin b Drugs 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000007115 recruitment Effects 0.000 description 3
- 210000002027 skeletal muscle Anatomy 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 229940054269 sodium pyruvate Drugs 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229940031626 subunit vaccine Drugs 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 229960000814 tetanus toxoid Drugs 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- 239000002691 unilamellar liposome Substances 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- YMXHPSHLTSZXKH-RVBZMBCESA-N (2,5-dioxopyrrolidin-1-yl) 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoate Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)ON1C(=O)CCC1=O YMXHPSHLTSZXKH-RVBZMBCESA-N 0.000 description 2
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 2
- PZFZLRNAOHUQPH-DJBVYZKNSA-N (2r)-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-2-(hexadecanoylamino)propanoic acid Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H](C(O)=O)CSC[C@H](OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PZFZLRNAOHUQPH-DJBVYZKNSA-N 0.000 description 2
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 2
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 2
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- XVMSFILGAMDHEY-UHFFFAOYSA-N 6-(4-aminophenyl)sulfonylpyridin-3-amine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=N1 XVMSFILGAMDHEY-UHFFFAOYSA-N 0.000 description 2
- HCCNBKFJYUWLEX-UHFFFAOYSA-N 7-(6-methoxypyridin-3-yl)-1-(2-propoxyethyl)-3-(pyrazin-2-ylmethylamino)pyrido[3,4-b]pyrazin-2-one Chemical compound O=C1N(CCOCCC)C2=CC(C=3C=NC(OC)=CC=3)=NC=C2N=C1NCC1=CN=CC=N1 HCCNBKFJYUWLEX-UHFFFAOYSA-N 0.000 description 2
- OXEUETBFKVCRNP-UHFFFAOYSA-N 9-ethyl-3-carbazolamine Chemical compound NC1=CC=C2N(CC)C3=CC=CC=C3C2=C1 OXEUETBFKVCRNP-UHFFFAOYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 102100025027 E3 ubiquitin-protein ligase TRIM69 Human genes 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 108010000912 Egg Proteins Proteins 0.000 description 2
- 102000002322 Egg Proteins Human genes 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 229920002971 Heparan sulfate Polymers 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 101000830203 Homo sapiens E3 ubiquitin-protein ligase TRIM69 Proteins 0.000 description 2
- 101001018097 Homo sapiens L-selectin Proteins 0.000 description 2
- 101000763537 Homo sapiens Toll-like receptor 10 Proteins 0.000 description 2
- 101800000324 Immunoglobulin A1 protease translocator Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 102100033467 L-selectin Human genes 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 102000007298 Mucin-1 Human genes 0.000 description 2
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 2
- 101100481581 Mus musculus Tlr13 gene Proteins 0.000 description 2
- 101000648740 Mus musculus Tumor necrosis factor Proteins 0.000 description 2
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical group CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- RMINQIRDFIBNLE-NNRWGFCXSA-N O-[N-acetyl-alpha-neuraminyl-(2->6)-N-acetyl-alpha-D-galactosaminyl]-L-serine Chemical compound O1[C@H](OC[C@H](N)C(O)=O)[C@H](NC(=O)C)[C@@H](O)[C@@H](O)[C@H]1CO[C@@]1(C(O)=O)O[C@@H]([C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C1 RMINQIRDFIBNLE-NNRWGFCXSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 101710116435 Outer membrane protein Proteins 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 108010013639 Peptidoglycan Proteins 0.000 description 2
- 108010053210 Phycocyanin Proteins 0.000 description 2
- 241000276498 Pollachius virens Species 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 206010040070 Septic Shock Diseases 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 102100027009 Toll-like receptor 10 Human genes 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000033289 adaptive immune response Effects 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000005571 anion exchange chromatography Methods 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 2
- 208000035269 cancer or benign tumor Diseases 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000020411 cell activation Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 230000011748 cell maturation Effects 0.000 description 2
- 229940030156 cell vaccine Drugs 0.000 description 2
- 230000004700 cellular uptake Effects 0.000 description 2
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 230000006957 competitive inhibition Effects 0.000 description 2
- 229940125797 compound 12 Drugs 0.000 description 2
- 229940125833 compound 23 Drugs 0.000 description 2
- 229940125846 compound 25 Drugs 0.000 description 2
- 229940126545 compound 53 Drugs 0.000 description 2
- 230000009133 cooperative interaction Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 210000002969 egg yolk Anatomy 0.000 description 2
- 235000013345 egg yolk Nutrition 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- QEWYKACRFQMRMB-UHFFFAOYSA-N fluoroacetic acid Chemical compound OC(=O)CF QEWYKACRFQMRMB-UHFFFAOYSA-N 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000008348 humoral response Effects 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 229960001438 immunostimulant agent Drugs 0.000 description 2
- 239000003022 immunostimulating agent Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000015788 innate immune response Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 230000002101 lytic effect Effects 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- XELZGAJCZANUQH-UHFFFAOYSA-N methyl 1-acetylthieno[3,2-c]pyrazole-5-carboxylate Chemical compound CC(=O)N1N=CC2=C1C=C(C(=O)OC)S2 XELZGAJCZANUQH-UHFFFAOYSA-N 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 210000005134 plasmacytoid dendritic cell Anatomy 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000036303 septic shock Effects 0.000 description 2
- 150000003354 serine derivatives Chemical class 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229940126577 synthetic vaccine Drugs 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- 229940044616 toll-like receptor 7 agonist Drugs 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 230000029069 type 2 immune response Effects 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- OOKAZRDERJMRCJ-KOUAFAAESA-N (3r)-7-[(1s,2s,4ar,6s,8s)-2,6-dimethyl-8-[(2s)-2-methylbutanoyl]oxy-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl]-3-hydroxy-5-oxoheptanoic acid Chemical compound C1=C[C@H](C)[C@H](CCC(=O)C[C@@H](O)CC(O)=O)C2[C@@H](OC(=O)[C@@H](C)CC)C[C@@H](C)C[C@@H]21 OOKAZRDERJMRCJ-KOUAFAAESA-N 0.000 description 1
- DEVSOMFAQLZNKR-RJRFIUFISA-N (z)-3-[3-[3,5-bis(trifluoromethyl)phenyl]-1,2,4-triazol-1-yl]-n'-pyrazin-2-ylprop-2-enehydrazide Chemical compound FC(F)(F)C1=CC(C(F)(F)F)=CC(C2=NN(\C=C/C(=O)NNC=3N=CC=NC=3)C=N2)=C1 DEVSOMFAQLZNKR-RJRFIUFISA-N 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- WGFNXGPBPIJYLI-UHFFFAOYSA-N 2,6-difluoro-3-[(3-fluorophenyl)sulfonylamino]-n-(3-methoxy-1h-pyrazolo[3,4-b]pyridin-5-yl)benzamide Chemical compound C1=C2C(OC)=NNC2=NC=C1NC(=O)C(C=1F)=C(F)C=CC=1NS(=O)(=O)C1=CC=CC(F)=C1 WGFNXGPBPIJYLI-UHFFFAOYSA-N 0.000 description 1
- VVCMGAUPZIKYTH-VGHSCWAPSA-N 2-acetyloxybenzoic acid;[(2s,3r)-4-(dimethylamino)-3-methyl-1,2-diphenylbutan-2-yl] propanoate;1,3,7-trimethylpurine-2,6-dione Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O.CN1C(=O)N(C)C(=O)C2=C1N=CN2C.C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 VVCMGAUPZIKYTH-VGHSCWAPSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 1
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 1
- VDCRFBBZFHHYGT-IOSLPCCCSA-N 2-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-enyl-3h-purine-6,8-dione Chemical compound O=C1N(CC=C)C=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VDCRFBBZFHHYGT-IOSLPCCCSA-N 0.000 description 1
- MEOVPKDOYAIVHZ-UHFFFAOYSA-N 2-chloro-1-(1-methylpyrrol-2-yl)ethanol Chemical compound CN1C=CC=C1C(O)CCl MEOVPKDOYAIVHZ-UHFFFAOYSA-N 0.000 description 1
- 238000012573 2D experiment Methods 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- KJDSORYAHBAGPP-UHFFFAOYSA-N 4-(3,4-diaminophenyl)benzene-1,2-diamine;hydron;tetrachloride Chemical compound Cl.Cl.Cl.Cl.C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 KJDSORYAHBAGPP-UHFFFAOYSA-N 0.000 description 1
- HUDPLKWXRLNSPC-UHFFFAOYSA-N 4-aminophthalhydrazide Chemical compound O=C1NNC(=O)C=2C1=CC(N)=CC=2 HUDPLKWXRLNSPC-UHFFFAOYSA-N 0.000 description 1
- DQAZPZIYEOGZAF-UHFFFAOYSA-N 4-ethyl-n-[4-(3-ethynylanilino)-7-methoxyquinazolin-6-yl]piperazine-1-carboxamide Chemical compound C1CN(CC)CCN1C(=O)NC(C(=CC1=NC=N2)OC)=CC1=C2NC1=CC=CC(C#C)=C1 DQAZPZIYEOGZAF-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- RSIWALKZYXPAGW-NSHDSACASA-N 6-(3-fluorophenyl)-3-methyl-7-[(1s)-1-(7h-purin-6-ylamino)ethyl]-[1,3]thiazolo[3,2-a]pyrimidin-5-one Chemical compound C=1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)N=C2SC=C(C)N2C(=O)C=1C1=CC=CC(F)=C1 RSIWALKZYXPAGW-NSHDSACASA-N 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101001011741 Bos taurus Insulin Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- CIUUIPMOFZIWIZ-UHFFFAOYSA-N Bropirimine Chemical compound NC1=NC(O)=C(Br)C(C=2C=CC=CC=2)=N1 CIUUIPMOFZIWIZ-UHFFFAOYSA-N 0.000 description 1
- JQUCWIWWWKZNCS-LESHARBVSA-N C(C1=CC=CC=C1)(=O)NC=1SC[C@H]2[C@@](N1)(CO[C@H](C2)C)C=2SC=C(N2)NC(=O)C2=NC=C(C=C2)OC(F)F Chemical compound C(C1=CC=CC=C1)(=O)NC=1SC[C@H]2[C@@](N1)(CO[C@H](C2)C)C=2SC=C(N2)NC(=O)C2=NC=C(C=C2)OC(F)F JQUCWIWWWKZNCS-LESHARBVSA-N 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 1
- 108010065524 CD52 Antigen Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102000001327 Chemokine CCL5 Human genes 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 108010060123 Conjugate Vaccines Proteins 0.000 description 1
- 108091029430 CpG site Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- 206010015719 Exsanguination Diseases 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 108010040721 Flagellin Proteins 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- 102000000587 Glycerolphosphate Dehydrogenase Human genes 0.000 description 1
- 108010041921 Glycerolphosphate Dehydrogenase Proteins 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- 102100029966 HLA class II histocompatibility antigen, DP alpha 1 chain Human genes 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000864089 Homo sapiens HLA class II histocompatibility antigen, DP alpha 1 chain Proteins 0.000 description 1
- 101000930802 Homo sapiens HLA class II histocompatibility antigen, DQ alpha 1 chain Proteins 0.000 description 1
- 101000968032 Homo sapiens HLA class II histocompatibility antigen, DR beta 3 chain Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101001057749 Human cytomegalovirus (strain AD169) Uncharacterized protein IRL3 Proteins 0.000 description 1
- 101001057752 Human cytomegalovirus (strain AD169) Uncharacterized protein IRL4 Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 102100039879 Interleukin-19 Human genes 0.000 description 1
- 108050009288 Interleukin-19 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 229920000288 Keratan sulfate Polymers 0.000 description 1
- PNIWLNAGKUGXDO-UHFFFAOYSA-N Lactosamine Natural products OC1C(N)C(O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 PNIWLNAGKUGXDO-UHFFFAOYSA-N 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 241000222722 Leishmania <genus> Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- DINOPBPYOCMGGD-VEDJBHDQSA-N Man(a1-2)Man(a1-2)Man(a1-3)[Man(a1-2)Man(a1-3)[Man(a1-2)Man(a1-6)]Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc Chemical compound O[C@@H]1[C@@H](NC(=O)C)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO[C@@H]3[C@H]([C@@H](O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O)O3)O)O2)O)[C@@H](CO)O1 DINOPBPYOCMGGD-VEDJBHDQSA-N 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 108010059724 Micrococcal Nuclease Proteins 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- CZOGCRVBCLRHQJ-WHWAGLCYSA-N N-acetyl-alpha-neuraminyl-(2->6)-N-acetyl-alpha-D-galactosamine Chemical compound O[C@@H]1[C@H](O)[C@@H](NC(=O)C)[C@@H](O)O[C@@H]1CO[C@@]1(C(O)=O)O[C@@H]([C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C1 CZOGCRVBCLRHQJ-WHWAGLCYSA-N 0.000 description 1
- KDHGXIPKNZBOJK-UHFFFAOYSA-N N1(N=NC2=C1C=CC=C2)O[P](N1CCCC1)(N1CCCC1)N1CCCC1 Chemical compound N1(N=NC2=C1C=CC=C2)O[P](N1CCCC1)(N1CCCC1)N1CCCC1 KDHGXIPKNZBOJK-UHFFFAOYSA-N 0.000 description 1
- QOVYHDHLFPKQQG-NDEPHWFRSA-N N[C@@H](CCC(=O)N1CCC(CC1)NC1=C2C=CC=CC2=NC(NCC2=CN(CCCNCCCNC3CCCCC3)N=N2)=N1)C(O)=O Chemical compound N[C@@H](CCC(=O)N1CCC(CC1)NC1=C2C=CC=CC2=NC(NCC2=CN(CCCNCCCNC3CCCCC3)N=N2)=N1)C(O)=O QOVYHDHLFPKQQG-NDEPHWFRSA-N 0.000 description 1
- 241000588653 Neisseria Species 0.000 description 1
- 208000003788 Neoplasm Micrometastasis Diseases 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 241000772415 Neovison vison Species 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- REDMNGDGDYFZRE-WKWISIMFSA-N O-(N-acetyl-alpha-D-galactosaminyl)-L-serine Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OC[C@H](N)C(O)=O REDMNGDGDYFZRE-WKWISIMFSA-N 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 108091081548 Palindromic sequence Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 101800005149 Peptide B Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 230000010782 T cell mediated cytotoxicity Effects 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 108010055044 Tetanus Toxin Proteins 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 241000223105 Trypanosoma brucei Species 0.000 description 1
- 108091005906 Type I transmembrane proteins Proteins 0.000 description 1
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001251 acridines Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000007825 activation reagent Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000010398 acute inflammatory response Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 230000000240 adjuvant effect Effects 0.000 description 1
- 230000001780 adrenocortical effect Effects 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-N alpha-L-IdopA-(1->3)-beta-D-GalpNAc4S Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS(O)(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C(O)=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000011230 antibody-based therapy Methods 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229940090047 auto-injector Drugs 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- IXIBAKNTJSCKJM-BUBXBXGNSA-N bovine insulin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 IXIBAKNTJSCKJM-BUBXBXGNSA-N 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- 229950009494 bropirimine Drugs 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000015861 cell surface binding Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000014564 chemokine production Effects 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 229940125773 compound 10 Drugs 0.000 description 1
- 229940125961 compound 24 Drugs 0.000 description 1
- 229940125851 compound 27 Drugs 0.000 description 1
- 229940031670 conjugate vaccine Drugs 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000009109 curative therapy Methods 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- MCWXGJITAZMZEV-UHFFFAOYSA-N dimethoate Chemical compound CNC(=O)CSP(=S)(OC)OC MCWXGJITAZMZEV-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000012953 feeding on blood of other organism Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000007421 fluorometric assay Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 229960005219 gentisic acid Drugs 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 238000004340 gradient COSY Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 244000000013 helminth Species 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 1
- 229940099552 hyaluronan Drugs 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000037417 hyperactivation Effects 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- IAJILQKETJEXLJ-LECHCGJUSA-N iduronic acid Chemical compound O=C[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-LECHCGJUSA-N 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000005934 immune activation Effects 0.000 description 1
- 230000006058 immune tolerance Effects 0.000 description 1
- 230000001571 immunoadjuvant effect Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000000568 immunological adjuvant Substances 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 229940032219 immunotherapy vaccine Drugs 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 108091005434 innate immune receptors Proteins 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 230000011542 interferon-beta production Effects 0.000 description 1
- 230000014828 interferon-gamma production Effects 0.000 description 1
- 102000004114 interleukin 20 Human genes 0.000 description 1
- 108090000681 interleukin 20 Proteins 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 1
- KXCLCNHUUKTANI-RBIYJLQWSA-N keratan Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@H](COS(O)(=O)=O)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H]([C@@H](COS(O)(=O)=O)O[C@@H](O)[C@@H]3O)O)[C@H](NC(C)=O)[C@H]2O)COS(O)(=O)=O)O[C@H](COS(O)(=O)=O)[C@@H]1O KXCLCNHUUKTANI-RBIYJLQWSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- DOVBXGDYENZJBJ-ONMPCKGSSA-N lactosamine Chemical compound O=C[C@H](N)[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O DOVBXGDYENZJBJ-ONMPCKGSSA-N 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000013554 lipid monolayer Substances 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 229950005634 loxoribine Drugs 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 150000002669 lysines Chemical class 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 238000007898 magnetic cell sorting Methods 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 108010087904 neutravidin Proteins 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229940054441 o-phthalaldehyde Drugs 0.000 description 1
- VQWNELVFHZRFIB-UHFFFAOYSA-N odn 1826 Chemical compound O=C1NC(=O)C(C)=CN1C(O1)CC(O)C1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC1CC(N2C3=C(C(NC(N)=N3)=O)N=C2)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C3=NC=NC(N)=C3N=C2)OC1COP(O)(=O)OC1CC(N2C3=C(C(NC(N)=N3)=O)N=C2)OC1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC(C(O1)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(O)=O)CC1N1C=C(C)C(=O)NC1=O VQWNELVFHZRFIB-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 101800002712 p27 Proteins 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 208000021255 pancreatic insulinoma Diseases 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 102000007863 pattern recognition receptors Human genes 0.000 description 1
- 108010089193 pattern recognition receptors Proteins 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 229940023041 peptide vaccine Drugs 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- ZNSWGHZWUUFFKV-UHFFFAOYSA-N piperidine;pyridine Chemical compound C1CCNCC1.C1=CC=NC=C1 ZNSWGHZWUUFFKV-UHFFFAOYSA-N 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000002516 postimmunization Effects 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 208000030266 primary brain neoplasm Diseases 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 244000000040 protozoan parasite Species 0.000 description 1
- 244000079416 protozoan pathogen Species 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 229940126583 recombinant protein vaccine Drugs 0.000 description 1
- 229940124551 recombinant vaccine Drugs 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 125000005630 sialyl group Chemical group 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 206010040882 skin lesion Diseases 0.000 description 1
- 231100000444 skin lesion Toxicity 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000011476 stem cell transplantation Methods 0.000 description 1
- 239000012258 stirred mixture Substances 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000005556 structure-activity relationship Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000010741 sumoylation Effects 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- XDJCYKMWJCYQJM-UHFFFAOYSA-N tert-butyl n-(3-hydroxypropyl)carbamate Chemical compound CC(C)(C)OC(=O)NCCCO XDJCYKMWJCYQJM-UHFFFAOYSA-N 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229940118376 tetanus toxin Drugs 0.000 description 1
- JGVWCANSWKRBCS-UHFFFAOYSA-N tetramethylrhodamine thiocyanate Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(SC#N)C=C1C(O)=O JGVWCANSWKRBCS-UHFFFAOYSA-N 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 238000001551 total correlation spectroscopy Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000006433 tumor necrosis factor production Effects 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 230000005951 type IV hypersensitivity Effects 0.000 description 1
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55516—Proteins; Peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55577—Saponins; Quil A; QS21; ISCOMS
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/575—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6018—Lipids, e.g. in lipopeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/62—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
- A61K2039/627—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier characterised by the linker
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Mycology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oncology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
Abstract
本发明公开了用作治疗或预防疫苗的包含碳水化合物组分、脂质组分和MUC1肽组分的糖脂肽,其诱导体液免疫应答和细胞免疫应答两者。The present invention discloses glycolipopeptides comprising carbohydrate components, lipid components and MUCl peptide components for use as therapeutic or prophylactic vaccines, which induce both humoral and cellular immune responses.
Description
本申请是申请日为2011年6月10日,申请号为201180039067.0,发明名称为“免疫原性疫苗”的发明专利的分案申请。本申请要求于2010年6月11日提交的美国临时申请序列号61/354,076和于2010年12月30日提交的美国专利申请序列号13/002,180的利益,所述专利各自通过引用以其整体并入本文。This application is a divisional application of an invention patent with an application date of June 10, 2011, an application number of 201180039067.0, and an invention title of "immunogenic vaccine". This application claims the benefit of U.S. Provisional Application Serial No. 61/354,076, filed June 11, 2010, and U.S. Patent Application Serial No. 13/002,180, filed December 30, 2010, each of which is incorporated by reference in its entirety Incorporated into this article.
政府权利声明Statement of Government Rights
本发明在由美国国立卫生研究院(National Institutes of Health)的美国国家癌症研究所(National Cancer Institute)授予的补助号R01 CA088986下由政府支持进行。美国政府在本发明中拥有一定权利。This invention was made with Government support under Grant No. R01 CA088986 awarded by the National Cancer Institute, National Institutes of Health. The US Government has certain rights in this invention.
背景background
大量肿瘤相关碳水化合物抗原(TACA)以糖脂和糖蛋白的形式在人癌细胞上表达。致癌转化细胞的共同特征是寡糖例如Globo-H、LewisY和Tn抗原的过表达。众多研究已显示这种异常糖基化可以促进转移,且因此它与癌症患者的弱存活率强烈关联。A large number of tumor-associated carbohydrate antigens (TACAs) are expressed on human cancer cells in the form of glycolipids and glycoproteins. A common feature of oncogenically transformed cells is the overexpression of oligosaccharides such as Globo-H, Lewis Y and Tn antigens. Numerous studies have shown that this aberrant glycosylation can promote metastasis, and thus it is strongly associated with poor survival of cancer patients.
作为这些肿瘤相关碳水化合物抗原的特征的差异表达致使其成为用于免疫疗法和癌症疫苗开发的有吸引力的靶。近来,几个一流研究已尝试利用肿瘤相关碳水化合物的差异表达用于开发癌症疫苗(例如Raghupathi,1996,Cancer Immunol;43:152-157;Musselli等人,2001,J Cancer Res Clin Oncol;127:R20-R26;Sabbatini等人,2000,IntJ Cancer;87:79-85;Lo-Man等人,2004,Cancer Res;64:4987-4994;Kagan等人,2005,Immunol Immunother;54:424-430)。The differential expression that characterizes these tumor-associated carbohydrate antigens makes them attractive targets for immunotherapy and cancer vaccine development. Recently, several leading studies have attempted to exploit the differential expression of tumor-associated carbohydrates for the development of cancer vaccines (e.g. Raghupathi, 1996, Cancer Immunol; 43:152-157; Musselli et al., 2001, J Cancer Res Clin Oncol; 127: R20-R26; Sabbatini et al., 2000, IntJ Cancer; 87:79-85; Lo-Man et al., 2004, Cancer Res; 64:4987-4994; Kagan et al., 2005, Immunol Immunother; ).
碳水化合物抗原在人免疫缺陷病毒(HIV)——获得性免疫缺陷综合征(AIDS)的成因剂的表面上也是丰富的。丙型肝炎病毒(HCV)也已知含有碳水化合物抗原。Carbohydrate antigens are also abundant on the surface of the human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). Hepatitis C virus (HCV) is also known to contain carbohydrate antigens.
对于大多数免疫原(包括碳水化合物),抗体产生取决于两个类型的淋巴细胞B细胞和辅助T细胞的协同相互作用。然而,碳水化合物单独不能激活辅助T细胞,并且因此特征在于弱免疫原性。低亲和力IgM抗体的形成和IgG抗体的不存在体现这种有限的免疫原性。已证明难以克服表征这些抗原的免疫耐受。For most immunogens (including carbohydrates), antibody production depends on the cooperative interaction of two types of lymphocytes, B cells and helper T cells. However, carbohydrates alone are unable to activate helper T cells and are therefore characterized as weakly immunogenic. This limited immunogenicity is reflected in the formation of low-affinity IgM antibodies and the absence of IgG antibodies. The immune tolerance that characterizes these antigens has proven difficult to overcome.
在激活辅助T细胞的努力中,研究者已使碳水化合物抗原与外源载体蛋白质缀合,所述外源载体蛋白质例如匙孔血蓝蛋白(KLH)或去毒破伤风类毒素(TT)。载体蛋白质增强碳水化合物对于免疫系统的呈递,且供应可以激活T辅助细胞的T表位(一般为12-15个氨基酸的肽片段)。In efforts to activate helper T cells, researchers have conjugated carbohydrate antigens to exogenous carrier proteins such as keyhole limpet hemocyanin (KLH) or detoxified tetanus toxoid (TT). The carrier protein enhances the presentation of carbohydrates to the immune system and supplies T epitopes (typically 12-15 amino acid peptide fragments) that can activate T helper cells.
然而,碳水化合物与载体蛋白质的缀合具有几个新问题。缀合化学难以控制,导致产生具有可以影响免疫应答的再现性的在组成和结构方面的含糊性的缀合物。此外,外源载体蛋白质可以引发强B细胞应答,其依次又可以导致针对碳水化合物表位的抗体应答的抑制。当采用自身抗原例如肿瘤相关碳水化合物时,后者特别成问题。此外,用于使碳水化合物与蛋白质缀合的接头可以自身是免疫原性的,导致表位抑制。关于在疫苗中基于脂质和碳水化合物的佐剂/载体的综述,还参见McGeary等人(J. Peptide Sci. 9(7):405-418,2003)。However, the conjugation of carbohydrates to carrier proteins presents several new problems. Conjugation chemistry is difficult to control, resulting in conjugates with compositional and structural ambiguities that can affect the reproducibility of immune responses. Furthermore, exogenous carrier proteins can elicit strong B cell responses, which in turn can lead to suppression of antibody responses to carbohydrate epitopes. The latter is particularly problematic when employing self-antigens such as tumor-associated carbohydrates. Furthermore, linkers used to conjugate carbohydrates to proteins may themselves be immunogenic, leading to epitope suppression. See also McGeary et al. (J. Peptide Sci. 9(7):405-418, 2003) for a review of lipid and carbohydrate based adjuvants/carriers in vaccines.
并不令人惊讶地,用碳水化合物-蛋白质缀合物癌症疫苗的几个临床试验未能在所有患者中诱导足够强的辅助T细胞应答。因此,需要开发可替代策略用于呈递肿瘤相关碳水化合物表位,其将导致更有效的向IgG抗体的类别转换。这些策略可以证明对于基于其他碳水化合物表位(特别是来自致病病毒例如HIV和HCV的那些)的疫苗开发也是有用的。Not surprisingly, several clinical trials with carbohydrate-protein conjugate cancer vaccines have failed to induce sufficiently strong helper T cell responses in all patients. Therefore, there is a need to develop alternative strategies for presenting tumor-associated carbohydrate epitopes that will lead to more efficient class switching to IgG antibodies. These strategies may prove useful for the development of vaccines based on other carbohydrate epitopes as well, especially those from pathogenic viruses such as HIV and HCV.
发明概述Summary of the invention
本发明包括在受试者中生成抗体依赖性细胞介导的细胞毒性(ADCC)的方法,该方法包括用糖脂肽(glycolipopeptide)免疫接种受试者,所述糖脂肽包括:包括B细胞表位的至少一种糖基化MUC1糖肽组分;包括MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分。在一些方面,ADCC是天然杀伤(NK)细胞介导的。在一些方面,ADCC裂解肿瘤细胞。在一些方面,肿瘤细胞是乳腺癌细胞或上皮癌细胞。在一些方面,ADCC裂解表达MUC1肽序列的细胞。在一些方面,MUC1肽是异常糖基化的。The invention includes a method of generating antibody-dependent cell-mediated cytotoxicity (ADCC) in a subject, the method comprising immunizing the subject with a glycolipepeptide comprising: B cells at least one glycosylated MUCl glycopeptide component of the epitope; at least one peptide component comprising an MHC class II-restricted helper T cell epitope; and at least one lipid component. In some aspects, ADCC is natural killer (NK) cell mediated. In some aspects, ADCC lyses tumor cells. In some aspects, the tumor cells are breast cancer cells or epithelial cancer cells. In some aspects, ADCC lyses cells expressing the MUCl peptide sequence. In some aspects, the MUCl peptide is abnormally glycosylated.
本发明包括治疗受试者中的癌症的方法,该方法包括用糖脂肽免疫接种受试者,所述糖脂肽包括:包括B细胞表位的至少一种糖基化MUC1糖肽组分;包括MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分。The present invention includes a method of treating cancer in a subject comprising immunizing the subject with a glycolipopeptide comprising: at least one glycosylated MUC1 glycopeptide component comprising a B cell epitope ; at least one peptide component comprising an MHC class II restricted helper T cell epitope; and at least one lipid component.
本发明包括减少受试者中的肿瘤负荷的方法,该方法包括用糖脂肽免疫接种受试者,所述糖脂肽包括:包括B细胞表位的至少一种糖基化MUC1糖肽组分;包括MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分。The present invention includes a method of reducing tumor burden in a subject, the method comprising immunizing the subject with a glycolipid peptide comprising: at least one glycosylated MUC1 glycopeptide set comprising a B cell epitope components; at least one peptide component comprising an MHC class II restricted helper T cell epitope; and at least one lipid component.
本发明包括预防受试者中的肿瘤复发的方法,该方法包括用糖脂肽免疫接种受试者,所述糖脂肽包括:包括B细胞表位的至少一种糖基化MUC1糖肽组分;包括MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分。The present invention includes a method of preventing tumor recurrence in a subject, the method comprising immunizing the subject with a glycolipid peptide comprising: at least one glycosylated MUC1 glycopeptide panel comprising a B cell epitope components; at least one peptide component comprising an MHC class II restricted helper T cell epitope; and at least one lipid component.
本发明包括预防受试者中的癌症的方法,该方法包括用糖脂肽免疫接种受试者,所述糖脂肽包括:包括B细胞表位的至少一种糖基化MUC1糖肽组分;包括MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分。The present invention includes a method of preventing cancer in a subject comprising immunizing the subject with a glycolipid peptide comprising: at least one glycosylated MUC1 glycopeptide component comprising a B cell epitope ; at least one peptide component comprising an MHC class II restricted helper T cell epitope; and at least one lipid component.
在本发明的方法的一些方面,癌症或肿瘤是乳腺癌或上皮癌。In some aspects of the methods of the invention, the cancer or tumor is breast cancer or epithelial cancer.
在本发明的方法的一些方面,癌症或肿瘤表达异常糖基化的MUC1。In some aspects of the methods of the invention, the cancer or tumor expresses aberrantly glycosylated MUCl.
本发明包括在受试者中生成针对MUC1表达细胞的细胞毒性T细胞应答的方法,该方法包括用糖脂肽免疫接种受试者,所述糖脂肽包括:包括B细胞表位的至少一种糖基化MUC1糖肽组分;包括MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分。在一些方面,MUC1表达细胞是肿瘤细胞。The present invention includes a method of generating a cytotoxic T cell response against MUCl expressing cells in a subject, the method comprising immunizing the subject with a glycolipid peptide comprising at least one B cell epitope comprising: a glycosylated MUCl glycopeptide component; at least one peptide component comprising an MHC class II-restricted helper T cell epitope; and at least one lipid component. In some aspects, the MUCl expressing cells are tumor cells.
本发明包括促进在受试者中的抗MUC1抗体类别转换的方法,该方法包括用糖脂肽免疫接种受试者,所述糖脂肽包括:包括B细胞表位的至少一种糖基化MUC1糖肽组分;包括MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分。The invention includes a method of promoting class switching of an anti-MUCl antibody in a subject comprising immunizing the subject with a glycolipid peptide comprising at least one glycosylation comprising a B cell epitope a MUCl glycopeptide component; at least one peptide component comprising an MHC class II-restricted helper T cell epitope; and at least one lipid component.
本发明包括免疫接种受试者的方法,该方法包括用糖脂肽免疫接种受试者,所述糖脂肽包括:包括B细胞表位的至少一种糖基化MUC1糖肽组分;包括MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分;其中在受试者中诱导特异性结合在肿瘤细胞上表达的MUC1蛋白质的IgG亚型抗体。The present invention includes a method of immunizing a subject comprising immunizing the subject with a glycolipopeptide comprising: at least one glycosylated MUC1 glycopeptide component comprising a B cell epitope; comprising at least one peptide component of an MHC class II-restricted helper T cell epitope; and at least one lipid component; wherein antibodies of the IgG subtype that specifically bind to a MUC1 protein expressed on tumor cells are induced in the subject .
在本发明的方法的一些方面,包括B细胞表位的糖基化MUC1糖肽组分包括在一个或多个丝氨酸和/或苏氨酸残基上的糖基化。In some aspects of the methods of the invention, the glycosylated MUCl glycopeptide component comprising the B cell epitope comprises glycosylation on one or more serine and/or threonine residues.
在本发明的方法的一些方面,包括B细胞表位的糖基化MUC1糖肽组分包括用选自下述的糖残基进行的糖基化:GalNAc、GlcNAc、Gal、NANA、NGNA、岩藻糖、甘露糖和葡萄糖。In some aspects of the methods of the invention, the glycosylated MUCl glycopeptide component comprising a B cell epitope comprises glycosylation with a sugar residue selected from the group consisting of: GalNAc, GlcNAc, Gal, NANA, NGNA, Rock Alcohol, Mannose and Glucose.
在本发明的方法的一些方面,糖脂肽包括图19中所示的那些之一。In some aspects of the methods of the invention, the glycolipopeptide comprises one of those shown in FIG. 19 .
在本发明的方法的一些方面,包括B细胞表位的糖基化MUC1糖肽组分是I类MHC限制性表位。In some aspects of the methods of the invention, the glycosylated MUCl glycopeptide component comprising the B cell epitope is an MHC class I restricted epitope.
在本发明的方法的一些方面,包括B细胞表位的糖基化MUC1糖肽组分和/或包括MHC II类限制性辅助T细胞表位的肽组分包括人MUC1肽序列。In some aspects of the methods of the invention, the glycosylated MUCl glycopeptide component comprising B cell epitopes and/or the peptide component comprising MHC class II restricted helper T cell epitopes comprises human MUCl peptide sequences.
在本发明的方法的一些方面,包括B细胞表位的糖基化MUC1糖肽组分和/或包括MHC II类限制性辅助T细胞表位的肽组分包括与受试者的内源MUC1序列同源的氨基酸序列。In some aspects of the methods of the invention, the glycosylated MUCl glycopeptide component comprising B-cell epitopes and/or the peptide component comprising MHC class II-restricted helper T-cell epitopes is included in a mixture with the subject's endogenous MUCl Amino acid sequences with sequence homology.
在本发明的方法的一些方面,包括B细胞表位的糖基化MUC1糖肽组分和/或包括MHC II类限制性辅助T细胞表位的肽组分包括MUC1蛋白质序列的约5–30个氨基酸,所述MUC1蛋白质序列包括MUC1蛋白质的胞外区,且包括糖基化的一个或多个丝氨酸或苏氨酸残基。In some aspects of the methods of the invention, the glycosylated MUCl glycopeptide component comprising B cell epitopes and/or the peptide component comprising MHC class II restricted helper T cell epitopes comprises about 5-30% of the MUCl protein sequence amino acids, the MUCl protein sequence includes the extracellular region of the MUCl protein, and includes one or more glycosylated serine or threonine residues.
在本发明的方法的一些方面,包括B细胞肽表位的MUC1糖肽组分包括与SAPDTRPAP(SEQ ID NO:20)、TSAPDTRPAP (SEQ ID NO:21)、SAPDTRPL (SEQ ID NO:22)或TSAPDTRPL(SEQ ID NO:23)具有至少约50%序列同一性的氨基酸序列。在一些方面,氨基酸序列包括在一个或多个丝氨酸和/或苏氨酸残基上的糖基化。在本发明的方法的一些方面,包括B细胞肽表位的MUC1糖肽组分包括SAPDTRPAP (SEQ ID NO:20)、TSAPDTRPAP (SEQ ID NO:21)、SAPDTRPL (SEQ ID NO:22)或TSAPDTRPL(SEQ ID NO:23)。在一些方面,氨基酸序列包括在一个或多个丝氨酸和/或苏氨酸残基上的糖基化。In some aspects of the methods of the invention, the MUCl glycopeptide component comprising a B-cell peptide epitope is comprised of a combination with SAPDTRPAP (SEQ ID NO: 20), TSAPDRPAP (SEQ ID NO: 21), SAPDTRPL (SEQ ID NO: 22) or TSAPDTRPL (SEQ ID NO: 23) has an amino acid sequence with at least about 50% sequence identity. In some aspects, the amino acid sequence includes glycosylation on one or more serine and/or threonine residues. In some aspects of the methods of the invention, the MUCl glycopeptide component comprising a B cell peptide epitope comprises SAPDTRPAP (SEQ ID NO:20), TSAPDTRAP (SEQ ID NO:21), SAPDTRPL (SEQ ID NO:22) or TSAPDTRPL (SEQ ID NO: 23). In some aspects, the amino acid sequence includes glycosylation on one or more serine and/or threonine residues.
在本发明的方法的一些方面,脂质组分包括一条或多条脂质链、一个或多个半胱氨酸残基和一个或多个赖氨酸残基。In some aspects of the methods of the invention, the lipid component comprises one or more lipid chains, one or more cysteine residues, and one or more lysine residues.
在本发明的方法的一些方面,脂质组分包括Toll样受体(TLR)配体。在一些方面,Toll样受体(TLR)配体包括TLR2配体。在一些方面,TLR2配体包括Pam3CysSK4。In some aspects of the methods of the invention, the lipid component includes a Toll-like receptor (TLR) ligand. In some aspects, Toll-like receptor (TLR) ligands include TLR2 ligands. In some aspects, the TLR2 ligand includes Pam3CysSK4.
在本发明的方法的一些方面,脂质组分包括TLR9激动剂Pam3CysSK4。在本发明的方法的一些方面,脂质组分包括脂质佐剂。在一些方面,脂质佐剂包括脂质化氨基酸(LAA)。In some aspects of the methods of the invention, the lipid component includes the TLR9 agonist Pam3CysSK4. In some aspects of the methods of the invention, the lipid component includes a lipid adjuvant. In some aspects, lipid adjuvants include lipidated amino acids (LAAs).
在本发明的方法的一些方面,包括MHC II类限制性辅助T细胞表位的肽组分包括脊髓灰质炎病毒序列KLFAVWKITYKDT (SEQ ID NO:3)。In some aspects of the methods of the invention, the peptide component comprising an MHC class II restricted helper T cell epitope comprises the poliovirus sequence KLFAVWKITYKDT (SEQ ID NO:3).
在本发明的方法的一些方面,包括MHC II类限制性辅助T细胞表位的肽组分包括T细胞泛DR表位PADRE序列AKFVAAWTLKAAA (SEQ ID NO:24)或FVAAWTLKAAA (SEQ ID NO:25)。In some aspects of the methods of the invention, the peptide component comprising an MHC class II restricted helper T cell epitope comprises a T cell pan DR epitope PADRE sequence AKFVAAWTLKAAA (SEQ ID NO:24) or FVAAWTLKAAA (SEQ ID NO:25) .
在本发明的方法的一些方面,包括MHC II类限制性辅助T细胞表位的肽组分包括MUC1衍生的MHC II类限制性辅助T细胞肽表位。在一些方面,MUC1衍生的B细胞肽表位和MUC1衍生的MHC II类限制性辅助T细胞肽表位包括邻接氨基酸序列。在一些方面,邻接氨基酸序列是在一个或多个苏氨酸和/或丝氨酸残基上糖基化的。In some aspects of the methods of the invention, the peptide component comprising an MHC class II restricted helper T cell epitope comprises a MUCl derived MHC class II restricted helper T cell peptide epitope. In some aspects, the MUCl-derived B-cell peptide epitope and the MUCl-derived MHC class II-restricted helper T-cell peptide epitope comprise contiguous amino acid sequences. In some aspects, the contiguous amino acid sequence is glycosylated on one or more threonine and/or serine residues.
在本发明的方法的一些方面,MUC1衍生的B细胞肽表位和MUC1衍生的MHC II类限制性辅助T细胞肽表位包括邻接氨基酸序列。在一些方面,邻接氨基酸序列包括与氨基酸序列APGSTAPPAHGVTSA (SEQ ID NO:26)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:27)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:28)或APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:29)具有至少约50%序列同一性的序列。在一些方面,邻接氨基酸序列包括氨基酸序列APGSTAPPAHGVTSA (SEQ ID NO:26)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:27)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:28)或APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:29)。在一些方面,邻接氨基酸序列是在一个或多个苏氨酸和/或丝氨酸残基上糖基化的。在本发明的方法的一些方面,糖脂肽作为脂质体施用。在一些方面,糖脂肽的脂质组分促进脂质体形成。In some aspects of the methods of the invention, the MUCl-derived B-cell peptide epitope and the MUCl-derived MHC class II-restricted helper T-cell peptide epitope comprise contiguous amino acid sequences. In some aspects, the contiguous amino acid sequence comprises at least about 50 Sequences with % sequence identity. In some aspects, the contiguous amino acid sequence comprises the amino acid sequence APGSTAPPAHGVTSA (SEQ ID NO: 26), APGSTAPPAHGVTSAPDTRPL (SEQ ID NO: 27), APGSTAPPAHGVTSAPDTRPL (SEQ ID NO: 28), or APGSTAPPAHGVTSAPDTRPL (SEQ ID NO: 29). In some aspects, the contiguous amino acid sequence is glycosylated at one or more threonine and/or serine residues. In some aspects of the methods of the invention, the glycolipopeptide is administered as liposomes. In some aspects, the lipid component of the glycolipopeptide promotes liposome formation.
在本发明的方法的一些方面,该方法包括进一步施用免疫调节剂。在一些方面,施用包含糖脂肽和免疫调节剂的组合物。在一些方面,免疫调节剂共价连接至糖脂肽。在一些方面,免疫调节剂包括TLR激动剂。在一些方面,TLR激动剂包括TLR9激动剂。在一些方面,TLR9激动剂包括CpG。在一些方面,免疫调节剂是TLR9激动剂、COX-2抑制剂、GM-CSF、吲哚胺2,3-双加氧酶(IDO)的抑制剂、化学治疗剂或其组合。In some aspects of the methods of the invention, the methods comprise further administering an immunomodulator. In some aspects, a composition comprising a glycolipopeptide and an immunomodulator is administered. In some aspects, the immunomodulatory agent is covalently linked to the glycolipopeptide. In some aspects, immunomodulators include TLR agonists. In some aspects, TLR agonists include TLR9 agonists. In some aspects, the TLR9 agonist comprises CpG. In some aspects, the immunomodulator is a TLR9 agonist, a COX-2 inhibitor, GM-CSF, an inhibitor of indoleamine 2,3-dioxygenase (IDO), a chemotherapeutic agent, or a combination thereof.
本发明包括糖脂肽,其包含:包括B细胞表位的至少一种糖基化MUC1糖肽组分;包括MUC1衍生的MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分。在本发明的糖脂肽的一些方面,包括B细胞表位的糖基化的MUC1糖肽组分包括在一个或多个丝氨酸和/或苏氨酸残基上的糖基化。The invention includes glycolipopeptides comprising: at least one glycosylated MUCl glycopeptide component comprising a B-cell epitope; at least one peptide component comprising a MUCl-derived MHC class II-restricted helper T-cell epitope; and at least one lipid component. In some aspects of the glycolipopeptides of the invention, the glycosylated MUCl glycopeptide component comprising the B-cell epitope comprises glycosylation on one or more serine and/or threonine residues.
在本发明的糖脂肽的一些方面,包括B细胞表位的糖基化MUC1糖肽组分包括用糖残基进行的糖基化,所述糖残基包括GAlNAc、GlcNAc、Gal、NANA、NGNA、岩藻糖、甘露糖或葡萄糖。In some aspects of the glycolipopeptides of the invention, the glycosylated MUC1 glycopeptide component comprising the B cell epitope comprises glycosylation with sugar residues including GAlNAc, GlcNAc, Gal, NANA, NGNA, fucose, mannose or glucose.
在本发明的糖脂肽的一些方面,包括B细胞表位的糖基化MUC1糖肽组分是I类MHC限制性表位。In some aspects of the glycolipopeptides of the invention, the glycosylated MUCl glycopeptide component comprising the B cell epitope is an MHC class I restricted epitope.
在本发明的糖脂肽的一些方面,包括B细胞表位的糖基化MUC1糖肽组分和/或包括MHC II类限制性辅助T细胞表位的肽组分包括人MUC1肽序列。In some aspects of the glycolipopeptides of the invention, the glycosylated MUCl glycopeptide component comprising B-cell epitopes and/or the peptide component comprising MHC class II-restricted helper T-cell epitopes comprises human MUCl peptide sequences.
在本发明的糖脂肽的一些方面,包括B细胞表位的糖脂肽和/或包括MHC II类限制性辅助T细胞表位的肽组分包括MUC1蛋白质序列的约5–30个氨基酸,所述MUC1蛋白质序列包括MUC1蛋白质的胞外区,且包括糖基化的一个或多个丝氨酸或苏氨酸残基。In some aspects of the glycolipopeptides of the invention, the glycolipopeptide comprising a B-cell epitope and/or the peptide component comprising an MHC class II-restricted helper T-cell epitope comprises about 5-30 amino acids of the MUC1 protein sequence, The MUCl protein sequence includes the extracellular region of the MUCl protein and includes glycosylated one or more serine or threonine residues.
在本发明的糖脂肽的一些方面,包括B细胞表位的糖基化MUC1糖肽组分包括与SAPDTRPAP (SEQ ID NO:20)、TSAPDTRPAP (SEQ ID NO:21)、SAPDTRPL (SEQ ID NO:22)或TSAPDTRPL(SEQ ID NO:23)具有至少约50%序列同一性的氨基酸序列。在一些方面,包括B细胞表位的糖基化MUC1糖肽组分包括在一个或多个丝氨酸和/或苏氨酸残基上的糖基化。In some aspects of the glycolipopeptides of the invention, the glycosylated MUC1 glycopeptide component comprising a B-cell epitope comprises a combination with SAPDTRPAP (SEQ ID NO:20), TSAPDTRAP (SEQ ID NO:21), SAPDTRPL (SEQ ID NO :22) or TSAPDTRPL (SEQ ID NO: 23) amino acid sequences having at least about 50% sequence identity. In some aspects, a glycosylated MUCl glycopeptide component comprising a B cell epitope comprises glycosylation on one or more serine and/or threonine residues.
在本发明的糖脂肽的一些方面,包括B细胞表位的糖基化MUC1糖肽组分包括SAPDTRPAP (SEQ ID NO:20)、TSAPDTRPAP (SEQ ID NO:21)、SAPDTRPL (SEQ ID NO:22)或TSAPDTRPL(SEQ ID NO:23)。在一些方面,包括B细胞表位的糖基化MUC1糖肽组分包括在一个或多个丝氨酸和/或苏氨酸残基上的糖基化。In some aspects of the glycolipopeptides of the invention, the glycosylated MUC1 glycopeptide component comprising a B cell epitope comprises SAPDTRPAP (SEQ ID NO:20), TSAPDTRAP (SEQ ID NO:21), SAPDTRPL (SEQ ID NO: 22) or TSAPDTRPL (SEQ ID NO: 23). In some aspects, a glycosylated MUCl glycopeptide component comprising a B cell epitope comprises glycosylation on one or more serine and/or threonine residues.
在本发明的糖脂肽的一些方面,脂质组分包括一条或多条脂质链、一个或多个半胱氨酸残基和一个或多个赖氨酸残基。In some aspects of the glycolipopeptides of the invention, the lipid component includes one or more lipid chains, one or more cysteine residues, and one or more lysine residues.
在本发明的糖脂肽的一些方面,脂质组分包括Toll样受体(TLR)配体。在一些方面,Toll样受体(TLR)配体包括TLR2配体。在一些方面,TLR2配体包括Pam3CysSK4。In some aspects of the glycolipopeptides of the invention, the lipid component includes a Toll-like receptor (TLR) ligand. In some aspects, Toll-like receptor (TLR) ligands include TLR2 ligands. In some aspects, the TLR2 ligand includes Pam3CysSK4 .
在本发明的糖脂肽的一些方面,脂质组分包括脂质佐剂。在一些方面,脂质佐剂包括脂质化氨基酸(LAA)。In some aspects of the glycolipopeptides of the invention, the lipid component includes a lipid adjuvant. In some aspects, lipid adjuvants include lipidated amino acids (LAAs).
在本发明的糖脂肽的一些方面,MUC1衍生的B细胞肽表位和MUC1衍生的MHC II类限制性辅助T细胞肽表位包括邻接氨基酸序列。In some aspects of the glycolipopeptides of the invention, the MUCl-derived B-cell peptide epitope and the MUCl-derived MHC class II-restricted helper T-cell peptide epitope comprise contiguous amino acid sequences.
在本发明的糖脂肽的一些方面,邻接氨基酸序列包括与氨基酸序列APGSTAPPAHGVTSA (SEQ ID NO:26)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:27)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:28)或APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:29)具有至少50%序列同一性的序列。在一些方面,邻接氨基酸序列是在一个或多个苏氨酸和/或丝氨酸残基上糖基化的。In some aspects of the glycolipopeptides of the invention, the contiguous amino acid sequence comprises the amino acid sequence APGSTAPPAHGVTSA (SEQ ID NO:26), APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:27), APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:28) or APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:28) or APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:28). :29) Sequences having at least 50% sequence identity. In some aspects, the contiguous amino acid sequence is glycosylated on one or more threonine and/or serine residues.
在本发明的糖脂肽的一些方面,邻接氨基酸序列包括氨基酸序列APGSTAPPAHGVTSA (SEQ ID NO:26)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:27)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:28)或APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:29)。在一些方面,邻接氨基酸序列是在一个或多个苏氨酸和/或丝氨酸残基上糖基化的。In some aspects of the glycolipopeptides of the invention, the contiguous amino acid sequence comprises the amino acid sequence APGSTAPPAHGVTSA (SEQ ID NO:26), APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:27), APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:28) or APGSTAPPAHGVTSAPDTRPL (SEQ ID NO: 29). In some aspects, the contiguous amino acid sequence is glycosylated on one or more threonine and/or serine residues.
在本发明的糖脂肽的一些方面,糖脂肽包括图19中所示的那些中的任一种。在一些方面,氨基酸序列是在一个或多个苏氨酸和/或丝氨酸残基上糖基化的。In some aspects of the glycolipopeptides of the invention, the glycolipopeptides include any of those shown in FIG. 19 . In some aspects, the amino acid sequence is glycosylated on one or more threonine and/or serine residues.
在一些方面,糖脂肽进一步包括共价连接的免疫调节剂。在一些方面,免疫调节剂包括TLR9激动剂、COX-2抑制剂、GM-CSF、吲哚胺2,3-双加氧酶(IDO)的抑制剂、化学治疗剂或其组合。In some aspects, the glycolipopeptide further includes a covalently linked immunomodulator. In some aspects, immunomodulators include TLR9 agonists, COX-2 inhibitors, GM-CSF, inhibitors of indoleamine 2,3-dioxygenase (IDO), chemotherapeutic agents, or combinations thereof.
本发明包括药物组合物,其包含:如本文描述的糖脂肽和药学可接受的载体。The present invention includes pharmaceutical compositions comprising: a glycolipopeptide as described herein and a pharmaceutically acceptable carrier.
本发明包括包含脂质体的组合物,所述脂质体包括如本文描述的糖脂肽。在一些方面,糖脂肽的脂质组分促进脂质体形成。在一些方面,组合物进一步包含免疫调节剂。在一些方面,免疫调节剂包括TLR激动剂。在一些方面,TLR激动剂包括TLR9激动剂。在一些方面,TLR9激动剂包括CpG。The invention includes compositions comprising liposomes comprising a glycolipopeptide as described herein. In some aspects, the lipid component of the glycolipopeptide promotes liposome formation. In some aspects, the composition further comprises an immunomodulator. In some aspects, immunomodulators include TLR agonists. In some aspects, TLR agonists include TLR9 agonists. In some aspects, the TLR9 agonist comprises CpG.
在一些方面,免疫调节剂包括TLR9激动剂、COX-2抑制剂、GM-CSF、吲哚胺2,3-双加氧酶(IDO)的抑制剂、化学治疗剂或其组合。In some aspects, immunomodulators include TLR9 agonists, COX-2 inhibitors, GM-CSF, inhibitors of indoleamine 2,3-dioxygenase (IDO), chemotherapeutic agents, or combinations thereof.
本发明包括免疫原性疫苗,其包括如本文描述的糖脂肽或如本文描述的组合物。The invention includes an immunogenic vaccine comprising a glycolipopeptide as described herein or a composition as described herein.
本发明包括如本文描述的糖脂肽或如本文描述的组合物用于制造治疗或预防感染、疾病或病症的药物的用途。The invention includes the use of a glycolipopeptide as described herein or a composition as described herein for the manufacture of a medicament for treating or preventing an infection, disease or condition.
本发明包括试剂盒,其包含:如本文描述的糖脂肽;包装;和使用说明书。The invention includes a kit comprising: a glycolipopeptide as described herein; packaging; and instructions for use.
除非另有说明,“一个”、“一种”、“所述”和“至少一个”可互换使用且意指一个或超过一个。"A", "an", "the" and "at least one" are used interchangeably and mean one or more than one unless stated otherwise.
附图简述Brief description of the drawings
图1显示了本发明的示例性糖脂肽。Figure 1 shows exemplary glycolipopeptides of the invention.
图2显示了用于特异性抗MUC-1抗体的流式细胞术分析。对MCF-7 (A)和SK-MEL-28(B)细胞测试反应性。在用3免疫接种前(血清对照;空心峰)和后(实心峰)评估血清(1:50稀释的)的荧光强度。Figure 2 shows flow cytometric analysis for specific anti-MUC-1 antibodies. Reactivity was tested on MCF-7 (A) and SK-MEL-28 (B) cells. The fluorescence intensity of sera (diluted 1:50) was assessed before (serum control; open peaks) and after (closed peaks) immunization with 3.
图3显示了在用LPS和合成化合物刺激后,通过鼠巨噬细胞的TNF-α产生。使鼠RAWγNO(-)细胞如所示地与增加浓度的大肠杆菌(E. coli) LPS (■),1 (●),Pam2CysSK4 (▼),2 (♦),Pam3CysSK4 (▲)或3(□)一起温育5.5小时。Figure 3 shows TNF-[alpha] production by murine macrophages after stimulation with LPS and synthetic compounds. Mouse RAWγNO(-) cells were incubated with increasing concentrations of Escherichia coli ( E. coli ) LPS (■), 1 (●), Pam 2 CysSK 4 (▼), 2 (♦), Pam 3 CysSK 4 ( ▲) or 3 (□) were incubated together for 5.5 hours.
图4显示了TLR配体对细胞摄取的作用。Figure 4 shows the effect of TLR ligands on cellular uptake.
图5显示了合成抗原的化学结构。Figure 5 shows the chemical structure of the synthetic antigen.
图6显示了在用合成化合物21-24、大肠杆菌LPS和大肠杆菌脂质A刺激后,通过鼠巨噬细胞的TNF-α和IFN-β产生。使鼠264.7 RAW γNO(-)细胞如所示地与增加浓度的21-24、大肠杆菌LPS或大肠杆菌脂质A一起温育5.5小时。使用ELISA测量细胞上清液中的TNF-α(A)和IFN-β (B)。数据代表平均值± SD(n=3)。Figure 6 shows TNF-[alpha] and IFN-[beta] production by murine macrophages after stimulation with synthetic compounds 21-24, E. coli LPS and E. coli lipid A. Murine 264.7 RAW γNO(-) cells were incubated for 5.5 hours with increasing concentrations of 21-24, E. coli LPS or E. coli lipid A as indicated. TNF-α (A) and IFN-β (B) in cell supernatants were measured using ELISA. Data represent mean ± SD (n=3).
图7显示了关于特异性抗MUC1抗体的细胞识别分析。对MCF7细胞测试血清反应性。在用21 (A)、22/23 (B)或22/24 (C)4次免疫接种后的血清样品的系列稀释液与MCF7细胞一起温育。在与FITC标记的抗小鼠IgG抗体一起温育后,在细胞裂解产物中评估荧光强度。用免疫接种前血清和与对照SK-MEL-28细胞一起温育的血清样品观察不到相对于本底的荧光(图9中所示)。AU指示任意荧光单位。Figure 7 shows the analysis of cell recognition for specific anti-MUCl antibodies. Serum reactivity was tested on MCF7 cells. Serial dilutions of serum samples after four immunizations with 21 (A), 22/23 (B) or 22/24 (C) were incubated with MCF7 cells. Fluorescence intensity was assessed in cell lysates after incubation with FITC-labeled anti-mouse IgG antibody. No fluorescence relative to background was observed with pre-immunization serum and serum samples incubated with control SK-MEL-28 cells (shown in Figure 9). AU indicates arbitrary fluorescence units.
图8显示了在用21、22、22/23、22/24和25/26的4次免疫接种后,ELISA抗MUC1和抗T表位抗体滴度。将ELISA板用BSA-MI-MUC-1缀合物(A-F)或中性抗生物素蛋白(neutravidin)-生物素-T表位(G)包被,并且通过线性回归分析,绘制与吸光度相比的稀释度而测定滴度。滴度定义为获得相对于正常对照小鼠血清而言光密度为0.1或更大的最高稀释度。每个数据点代表在4次免疫接种后个体小鼠的滴度,并且水平线指示五只小鼠的组的平均值。Figure 8 shows ELISA anti-MUCl and anti-T epitope antibody titers after 4 immunizations with 21, 22, 22/23, 22/24 and 25/26. ELISA plates were coated with BSA-MI-MUC-1 conjugates (A-F) or neutravidin-biotin-T epitope (G) and plotted against absorbance by linear regression analysis. The titer was determined by the ratio of the dilution. Titer was defined as the highest dilution to obtain an optical density of 0.1 or greater relative to normal control mouse serum. Each data point represents the titer of an individual mouse after 4 immunizations, and horizontal lines indicate the mean of a group of five mice.
图9显示了关于特异性抗MUC-1抗体的细胞识别分析。对MCF7和SK-MEL-28细胞测试血清反应性。在用21、22/23或22/24的4次免疫接种后的血清样品(1:30稀释的)与MCF7和SK-MEL-28细胞一起温育。在与FITC标记的抗小鼠IgG抗体一起温育后,在细胞裂解产物中评估荧光强度。还显示的是培养基、缀合物和小鼠(正常对照小鼠血清)对照。数据代表平均值± SD(n=3)。AU指示任意荧光单位。Figure 9 shows cell recognition assays for specific anti-MUC-1 antibodies. Serum reactivity was tested on MCF7 and SK-MEL-28 cells. Serum samples (diluted 1:30) after 4 immunizations with 21, 22/23 or 22/24 were incubated with MCF7 and SK-MEL-28 cells. Fluorescence intensity was assessed in cell lysates after incubation with FITC-labeled anti-mouse IgG antibody. Also shown are media, conjugate and mouse (normal control mouse serum) controls. Data represent mean ± SD (n=3). AU indicates arbitrary fluorescence units.
图10显示了化合物22。Figure 10 shows compound 22.
图11显示了化合物23。Figure 11 shows compound 23.
图12显示了化合物25。Figure 12 shows compound 25.
图13显示了化合物26。Figure 13 shows compound 26.
图14显示了化合物27。Figure 14 shows compound 27.
图15显示了完全合成的三组分免疫原的结构。Figure 15 shows the structure of the fully synthetic three-component immunogen.
图16:合成抗原1、2、3、4和5的化学结构。Figure 16: Chemical structures of synthetic antigens 1, 2, 3, 4 and 5.
图17:通过三组分疫苗减少MUC1.Tg小鼠的MMT肿瘤负荷。MUC1.Tg小鼠用作为对照的空脂质体(EL)或含有1、2、3、4 + 5或5(25 μg,含有3 μg碳水化合物)的脂质体进行免疫接种。合成抗原1、2、3、4和5的化学结构如图16中显示的。在用MUC1表达MMT肿瘤细胞(1×106个细胞)的肿瘤攻击前,给予三次两周一次的免疫接种,随后为一周后的一次加强。在最后一次注射后7天处死动物,并且测定肿瘤湿重。数据呈现为对照(用空脂质体疫苗接种的小鼠)的百分比。每个数据点代表个体小鼠,并且水平线指示小鼠组的平均值。Figure 17: Reduction of MMT tumor burden in MUC1.Tg mice by three-component vaccine. MUC1.Tg mice were immunized with empty liposomes (EL) or liposomes containing 1, 2, 3, 4 + 5 or 5 (25 μg with 3 μg carbohydrate) as controls. The chemical structures of synthetic antigens 1, 2, 3, 4 and 5 are shown in FIG. 16 . Three biweekly immunizations were given before tumor challenge with MUCl expressing MMT tumor cells ( 1 x 106 cells), followed by a booster one week later. Animals were sacrificed 7 days after the last injection, and tumor wet weights were determined. Data are presented as percentage of control (mice vaccinated with empty liposomes). Each data point represents an individual mouse, and the horizontal line indicates the mean of the group of mice.
图18A和18B:抗体依赖性细胞介导的细胞毒性(ADCC)的诱导。肿瘤细胞Yac-MUC1(图18A)和C57mg.MUC1 (图18B)用铬标记2小时,且随后与得自小鼠的血清(1:50稀释的)一起在37℃温育30分钟,所述小鼠如所示地用空脂质体(EL)或含有1、2、3、4 + 5或5的脂质体在有或没有(NT)肿瘤诱导的情况下免疫接种。合成抗原1、2、3、4和5的化学结构如图16中显示的。随后使肿瘤细胞与效应细胞(NK细胞KY-1克隆)一起温育4小时。效应物与靶比是50:1。自发释放低于完全释放的15%。每个数据点代表个体小鼠,并且水平线指示小鼠组的平均值。Figures 18A and 18B: Induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Tumor cells Yac-MUC1 ( FIG. 18A ) and C57mg.MUC1 ( FIG. 18B ) were labeled with chromium for 2 hours and then incubated with serum from mice (diluted 1:50) at 37° C. for 30 minutes. Mice were immunized with empty liposomes (EL) or liposomes containing 1, 2, 3, 4+5 or 5 with or without (NT) tumor induction as indicated. The chemical structures of synthetic antigens 1, 2, 3, 4 and 5 are shown in FIG. 16 . Tumor cells were then incubated with effector cells (NK cell KY-1 clone) for 4 hours. The effector to target ratio was 50:1. Spontaneous release was less than 15% of complete release. Each data point represents an individual mouse, and the horizontal line indicates the mean of the group of mice.
图19A至19C:细胞应答。图19A测定在MUC1.Tg小鼠中的产生IFN-γ的CD8+ T细胞。针对MUC1特异性IFN-γ斑点形成分析CD8+ T细胞,所述CD8+ T细胞从如所示地用空脂质体(EL)或含有1、2、3、4 + 5或5的脂质体在有或没有(NT)肿瘤诱导的情况下免疫接种的小鼠的淋巴结中分离。合成抗原1、2、3、4和5的化学结构如图16中显示的。每个数据点代表个体小鼠,并且水平线指示小鼠组的平均值。图19B测定在MUC1.Tg小鼠中的CD8+细胞毒性T细胞的诱导。从如所示地用空脂质体(EL)或含有1、2、3、4 + 5或5的脂质体在有或没有(NT)肿瘤诱导的情况下免疫接种的小鼠的淋巴结中分离CD8+ T细胞,并且使CD8+ T细胞在无任何体外刺激的情况下经历51Cr释放测定。对于1 (NT)、1、3、4 + 5和5将用MUC1(Tn)肽6 (SAPDT(Tn)RPAP)(SEQ ID NO:26)脉冲的DC用作靶,和对于2将用MUC1肽7 (SAPDTRPAP) (SEQ IDNO:20)脉冲的DC用作靶或对于EL将用空脂质体脉冲的DC用作靶。效应物与靶比是100:1,因为CTL在体外不进行刺激。自发释放低于完全释放的15%。每个数据点代表个体小鼠,并且水平线指示小鼠组的平均值。图19C测定CD8+ T细胞的表位需求。小鼠用含有1或2的脂质体进行免疫接种。通过细胞分选获得表达低水平CD62L的淋巴结衍生的T细胞,并且在对于1用糖肽6或对于2用肽7脉冲的DC的存在下培养14天。在暴露于用(糖)肽6-9脉冲的DC后,分析所得细胞的CD8+IFNγ+ T细胞的存在情况。肽6是SEQ ID NO:26,肽7是SEQ ID NO:20,肽8是SEQ ID NO:27,并且肽9是SEQ ID NO:29。Figures 19A to 19C: Cellular responses. Figure 19A measures IFN-γ producing CD8 + T cells in MUCl.Tg mice. CD8 + T cells from either empty liposomes (EL) or lipids containing 1, 2, 3, 4+5, or 5 were analyzed for MUCl-specific IFN-γ puncta formation . Bodies were isolated from lymph nodes of mice immunized with or without (NT) tumor induction. The chemical structures of synthetic antigens 1, 2, 3, 4 and 5 are shown in FIG. 16 . Each data point represents an individual mouse, and the horizontal line indicates the mean of the group of mice. Figure 19B measures the induction of CD8 + cytotoxic T cells in MUCl.Tg mice. From lymph nodes of mice immunized with empty liposomes (EL) or liposomes containing 1, 2, 3, 4 + 5, or 5 with or without (NT) tumor induction as indicated CD8 + T cells were isolated and subjected to51Cr release assay without any in vitro stimulation. DCs pulsed with MUCl(Tn) peptide 6 (SAPDT(Tn)RPAP) (SEQ ID NO: 26) were used as targets for 1 (NT), 1, 3, 4+5 and 5, and for 2 with MUCl Peptide 7 (SAPDTRPAP) (SEQ ID NO:20) pulsed DCs were used as targets or DCs pulsed with empty liposomes for EL were used as targets. The effector to target ratio was 100:1 because CTLs were not stimulated in vitro. Spontaneous release was less than 15% of complete release. Each data point represents an individual mouse, and the horizontal line indicates the mean of the group of mice. Figure 19C determines the epitope requirement of CD8 + T cells. Mice were immunized with liposomes containing 1 or 2. Lymph node-derived T cells expressing low levels of CD62L were obtained by cell sorting and cultured for 14 days in the presence of DC pulsed with glycopeptide 6 for 1 or peptide 7 for 2. After exposure to DC pulsed with (glyco)peptide 6-9, the resulting cells were analyzed for the presence of CD8 + IFNγ + T cells. Peptide 6 is SEQ ID NO:26, Peptide 7 is SEQ ID NO:20, Peptide 8 is SEQ ID NO:27, and Peptide 9 is SEQ ID NO:29.
图20A至20H:在如所示地在有或没有(NT)肿瘤诱导的情况下用1、2、3、4 + 5或5的三次(图20A)或四次(图20B-H)免疫接种后的ELISA抗MUC1和抗辅助T表位(helper T-epitope)抗体滴度。合成抗原1、2、3、4和5的化学结构如图16中显示的。将ELISA板用BSA-MI-MUC-1(Tn)缀合物(图20A-G)或中性抗生物素蛋白-生物素-辅助T表位(图20H)包被,并且通过线性回归分析绘制与吸光度相比的稀释度,而测定滴度。滴度定义为获得相对于正常对照小鼠血清而言光密度为0.1或更大的最高稀释度。每个时间点代表在四次免疫接种后个体小鼠的滴度,并且水平线指示小鼠组的平均值。Figures 20A to 20H: Three (Figure 20A) or four (Figure 20B-H) immunizations with 1, 2, 3, 4+5 or 5 with or without (NT) tumor induction as indicated ELISA anti-MUC1 and anti-helper T-epitope antibody titers after inoculation. The chemical structures of synthetic antigens 1, 2, 3, 4 and 5 are shown in FIG. 16 . ELISA plates were coated with BSA-MI-MUC-1(Tn) conjugate (Figure 20A-G) or neutravidin-biotin-helper T epitope (Figure 20H) and analyzed by linear regression The titer is determined by plotting the dilution compared to the absorbance. Titer was defined as the highest dilution to obtain an optical density of 0.1 or greater relative to normal control mouse serum. Each time point represents the titer of an individual mouse after four immunizations, and the horizontal line indicates the mean of the group of mice.
图21A和21B:通过MUC1(Tn) 6、未糖基化的MUC1 7和Tn单体,与BSA-MI-MUC1(Tn)缀合物的抗体结合的竞争性抑制。Figures 21A and 21B: Competitive inhibition of antibody binding to BSA-MI-MUCl(Tn) conjugates by MUCl(Tn) 6, unglycosylated MUCl 7 and Tn monomer.
化合物6和7的序列显示于图19中。将ELISA板用BSA-MI-MUC1(Tn)缀合物包被。将稀释以在不存在抑制剂的情况下获得在ELISA中约1的OD的在用1 (图21A)和2 (图21B)免疫接种后的血清样品,首先与6、7或Tn单体(0-500 μM终浓度)混合,并且随后应用于包被的微量滴定板。光密度值针对用单独的血清(0 μM抑制剂,100%)获得的光密度值标准化。数据报道为小鼠组(n=7)的平均值±s.e.m。The sequences of compounds 6 and 7 are shown in FIG. 19 . ELISA plates were coated with BSA-MI-MUCl(Tn) conjugate. Serum samples after immunization with 1 ( FIG. 21A ) and 2 ( FIG. 21B ) diluted to obtain an OD of about 1 in ELISA in the absence of inhibitors were first reacted with 6, 7 or Tn monomer ( 0-500 μM final concentration) and then applied to the coated microtiter plate. Optical density values were normalized to those obtained with serum alone (0 μM inhibitor, 100%). Data are reported as mean±s.e.m for groups of mice (n=7).
图22A至22J:在用装载有化合物1、2或3或大肠杆菌LPS的脂质体制剂刺激24小时后,通过树突状细胞的细胞因子产生。合成抗原1、2或3的化学结构显示于图16中。使原代树突状小鼠细胞如所示的与增加浓度的装载有化合物1、2或3或大肠杆菌LPS的脂质体制剂一起温育24小时。使用ELISA测量在细胞上清液中的TNF-α (图22A)、IFN-β (图22B)、RANTES(图22C)、IL-6 (图22D)、细胞外IL-1β (图22E和图22F)、IL-10 (图22G)、IP-10 (图22H)、IL-12 p70 (图22I)和IL-12/23 p40 (图22J)。对于ATP处理后的IL-1β分泌的估计,在与诱导物一起温育24小时后,将细胞与ATP(5 mM)一起温育30分钟。数据报道为一式三份处理的平均值± SD。Figures 22A to 22J: Cytokine production by dendritic cells after 24 hours of stimulation with liposome formulations loaded with compound 1, 2 or 3 or E. coli LPS. The chemical structures of synthetic antigens 1, 2 or 3 are shown in FIG. 16 . Primary dendritic mouse cells were incubated for 24 hours with increasing concentrations of liposome formulations loaded with Compound 1, 2 or 3 or E. coli LPS as indicated. TNF-α (Fig. 22A), IFN-β (Fig. 22B), RANTES (Fig. 22C), IL-6 (Fig. 22D), extracellular IL-1β (Fig. 22E and Fig. 22F), IL-10 (FIG. 22G), IP-10 (FIG. 22H), IL-12 p70 (FIG. 22I) and IL-12/23 p40 (FIG. 22J). For estimation of IL-1β secretion after ATP treatment, cells were incubated with ATP (5 mM) for 30 min after 24 h incubation with inducer. Data are reported as mean ± SD of triplicate treatments.
图23:在用化合物2 (Pam3CysSK4-T辅助细胞表位(T helper ep.) (脊髓灰质炎)-MUC1 (未糖基化的));化合物1 (Pam3CysSK4-T辅助细胞表位(脊髓灰质炎)- MUC1(Tn));化合物1加上CpG (CpG 寡脱氧核苷酸(CpG ODN)));化合物5 (Pam3CysSK4)加上化合物4 (T辅助细胞表位(脊髓灰质炎)- MUC1(Tn));化合物5;化合物3 (Pam3CysSK4-T辅助细胞表位(脊髓灰质炎));化合物3加上CpG;EL(空脂质体)加上CpG;或EL的制剂免疫接种的MUC1.Tg小鼠中以克(gm)表示的肿瘤重量。合成抗原1、2、3、4和5的化学结构如图16和26中显示的。Figure 23: Using compound 2 (Pam 3 CysSK 4 -T helper epitope (T helper ep.) (polio)-MUC1 (unglycosylated)); compound 1 (Pam 3 CysSK 4 -T helper Cellular epitope (polio) - MUC1(Tn)); compound 1 plus CpG (CpG oligodeoxynucleotide (CpG ODN))); compound 5 (Pam 3 CysSK 4 ) plus compound 4 (T helper Epitope (Polio) - MUC1(Tn)); Compound 5; Compound 3 (Pam 3 CysSK 4 -T helper epitope (Polio)); Compound 3 plus CpG; EL (empty liposome) Tumor weight in grams (gm) in MUCl.Tg mice immunized with formulations plus CpG; or EL. The chemical structures of synthetic antigens 1, 2, 3, 4 and 5 are shown in Figures 16 and 26 .
图24:得自MUC1.Tg小鼠的CD8+细胞的细胞毒性活性,所述MUC1.Tg小鼠用化合物2(Pam3CysSK4-T辅助细胞表位(脊髓灰质炎)- MUC1 (未糖基化的));化合物1 (Pam3CysSK4-T辅助细胞表位(脊髓灰质炎)- MUC1(Tn));化合物1加上CpG (CpG 寡脱氧核苷酸(CpGODN)));化合物5 (Pam3CysSK4)加上化合物4 (T辅助细胞表位(脊髓灰质炎)- MUC1(Tn));化合物5;化合物3 (Pam3CysSK4-T辅助细胞表位(脊髓灰质炎));化合物3加上CpG;EL (空脂质体)加上CpG;或EL的制剂免疫接种。合成抗原1、2、3、4和5的化学结构如图16和26中显示的。Figure 24: Cytotoxic activity of CD8+ cells from MUC1.Tg mice treated with compound 2 (Pam 3 CysSK 4 -T helper cell epitope (poliomyelitis)-MUC1 (unglycosylated Compound 1 (Pam 3 CysSK 4 -T helper epitope (polio)-MUC1(Tn)); Compound 1 plus CpG (CpG oligodeoxynucleotide (CpGODN))); Compound 5 (Pam 3 CysSK 4 ) plus compound 4 (T helper epitope (polio)-MUC1(Tn)); compound 5; compound 3 (Pam 3 CysSK 4 -T helper epitope (polio)) ; compound 3 plus CpG; EL (empty liposome) plus CpG; or EL formulation immunizations. The chemical structures of synthetic antigens 1, 2, 3, 4 and 5 are shown in Figures 16 and 26 .
图25:得自MUC1.Tg小鼠的CD8+ T细胞的IFN-γ产生的测定,所述MUC1.Tg小鼠用化合物2 (Pam3CysSK4-T辅助细胞表位(脊髓灰质炎)- MUC1(未糖基化的));化合物1(Pam3CysSK4-T辅助细胞表位(脊髓灰质炎)- MUC1(Tn));化合物1加上CpG (CpG 寡脱氧核苷酸(CpG ODN)));化合物5 (Pam3CysSK4)加上化合物4 (T辅助细胞表位(脊髓灰质炎)-MUC1(Tn));化合物5;化合物3 (Pam3CysSK4-T辅助细胞表位(脊髓灰质炎));化合物3加上CpG;EL(空脂质体)加上CpG;或EL的制剂免疫接种。合成抗原1、2、3、4和5的化学结构如图16和26中显示的。Figure 25: Determination of IFN-γ production by CD8+ T cells from MUC1.Tg mice treated with compound 2 (Pam 3 CysSK 4 -T helper cell epitope (poliomyelitis)-MUC1 (unglycosylated)); compound 1 (Pam 3 CysSK 4 -T helper epitope (polio)-MUC1(Tn)); compound 1 plus CpG (CpG oligodeoxynucleotide (CpG ODN) )); compound 5 (Pam 3 CysSK 4 ) plus compound 4 (T helper epitope (polio)-MUC1(Tn)); compound 5; compound 3 (Pam 3 CysSK 4 -T helper epitope ( Polio)); Compound 3 plus CpG; EL (empty liposome) plus CpG; or EL for formulation immunization. The chemical structures of synthetic antigens 1, 2, 3, 4 and 5 are shown in Figures 16 and 26 .
图26:化合物1 (Pam3CysSK4-T辅助细胞(T-helper)-MUC1)、化合物2(Pam3CysSK4-T辅助细胞)、LAA-T辅助细胞-MUC1和LAA-T辅助细胞的结构。Figure 26: Compound 1 (Pam 3 CysSK 4 -T helper cell (T-helper)-MUC1), compound 2 (Pam 3 CysSK 4 -T helper cell), LAA-T helper cell-MUC1 and LAA-T helper cell structure.
图27:免疫接种方案。Figure 27: Immunization scheme.
图28:三组分疫苗减少肿瘤负荷。用含有化合物1 (Pam3CysSK4-T辅助细胞-MUC1)、化合物2 (Pam3CysSK4-T辅助细胞)、LAA-T辅助细胞-MUC1或LAA-T辅助细胞(25 μg,含有3 μg碳水化合物)的脂质体或用作为对照的空脂质体免疫接种MUC1.Tg小鼠。在用MUC1表达MMT肿瘤细胞(1×106个细胞)的肿瘤攻击前,给予三次两周一次的免疫接种,随后为一周后的一次加强。在最后一次注射后7天处死动物,并且测定肿瘤湿重。数据呈现为对照(用空脂质体疫苗接种的小鼠)的百分比。每个数据点代表个体小鼠,并且水平线指示小鼠组的平均值。Figure 28: Three-component vaccine reduces tumor burden. Cells containing compound 1 (Pam 3 CysSK 4 -T helper-MUC1), compound 2 (Pam 3 CysSK 4 -T helper), LAA-T helper-MUC1 or LAA-T helper (25 μg, containing 3 μg Carbohydrate) liposomes or MUCl.Tg mice were immunized with empty liposomes as a control. Three biweekly immunizations were given before tumor challenge with MUCl expressing MMT tumor cells ( 1 x 106 cells), followed by a booster one week later. Animals were sacrificed 7 days after the last injection, and tumor wet weights were determined. Data are presented as percentage of control (mice vaccinated with empty liposomes). Each data point represents an individual mouse, and the horizontal line indicates the mean of the group of mice.
图29:通过疫苗诱导MUC1特异性细胞毒性CD8 T细胞。从如所示地用空脂质体或含有化合物1 (Pam3CysSK4-T辅助细胞-MUC1)、化合物2 (Pam3CysSK4-T辅助细胞)、LAA-T辅助细胞-MUC1或LAA-T辅助细胞的脂质体在肿瘤诱导的情况下免疫接种的小鼠的淋巴结中分离CD8+ T细胞,并且使CD8+ T细胞在无任何体外刺激的情况下经历51Cr释放测定。用Tn-MUC1肽(SAPDT(Tn)RPAP) (SEQ ID NO:26)或空脂质体脉冲的DC用作靶。效应物与靶比是100:1,因为CTL在体外不进行刺激。自发释放低于完全释放的15%。每个数据点代表个体。合成抗原1、2、3、4和5的化学结构如图16和26中显示的。Figure 29: Induction of MUCl-specific cytotoxic CD8 T cells by vaccine. Liposomes were prepared with empty liposomes as indicated or containing compound 1 (Pam 3 CysSK 4 -T helper-MUC1), compound 2 (Pam 3 CysSK 4 -T helper), LAA-T helper-MUC1 or LAA- Liposomes of T Helper Cells CD8 + T cells were isolated from the lymph nodes of mice immunized with tumor induction, and the CD8 + T cells were subjected to 51Cr release assays without any in vitro stimulation. DCs pulsed with Tn-MUCl peptide (SAPDT(Tn)RPAP) (SEQ ID NO:26) or empty liposomes were used as targets. The effector to target ratio was 100:1 because CTLs were not stimulated in vitro. Spontaneous release was less than 15% of complete release. Each data point represents an individual. The chemical structures of synthetic antigens 1, 2, 3, 4 and 5 are shown in Figures 16 and 26 .
图30:三组分疫苗引发强抗体滴度。在四次免疫接种后的ELISA抗MUC1和抗T表位抗体滴度。抗MUC1和抗T表位抗体滴度作为四到七只小鼠的组的中值呈现。对于抗MUC1抗体滴度,将ELISA板用BSA-MI-MUC-1(Tn)缀合物包被,或对于抗T辅助细胞表位抗体滴度,将ELISA板用中性抗生物素蛋白-生物素-T表位包被。利用对与吸光度相比的稀释度的标绘通过线性回归分析测定滴度。滴度定义为获得相对于正常对照小鼠血清而言光密度为0.1或更大的最高稀释度。Figure 30: Three-component vaccine elicits strong antibody titers. ELISA anti-MUCl and anti-T epitope antibody titers after four immunizations. Anti-MUCl and anti-T epitope antibody titers are presented as median values for groups of four to seven mice. For anti-MUC1 antibody titers, ELISA plates were coated with BSA-MI-MUC-1(Tn) conjugate, or for anti-T helper epitope antibody titers, ELISA plates were coated with neutravidin- Biotin-T epitope coating. Titers were determined by linear regression analysis using a plot of dilution versus absorbance. Titer was defined as the highest dilution to obtain an optical density of 0.1 or greater relative to normal control mouse serum.
图31:抗体在抗体依赖性细胞毒性(ADCC)方面是有效的。C57mg.MUC1乳房肿瘤细胞用铬标记两小时,且随后与对照血清(MUC1.Tg)或得自荷有MMT肿瘤的小鼠的血清(1:50稀释的)一起在37℃温育30分钟(min),所述小鼠如所示地用空脂质体或含有化合物1(Pam3CysSK4-T辅助细胞-MUC1)、化合物2 (Pam3CysSK4-T辅助细胞)、LAA-T辅助细胞-MUC1和LAA-T辅助细胞的脂质体免疫接种。随后使肿瘤细胞与效应细胞(KY-1细胞-NK克隆)一起温育四小时。效应物与靶比是50:1。自发释放低于完全释放的15%。每个数据点代表个体小鼠,并且水平线指示小鼠组的平均值。合成抗原1、2、3、4和5的化学结构如图16和26中显示的。Figure 31 : Antibodies are effective in antibody-dependent cellular cytotoxicity (ADCC). C57 mg.MUC1 mammary tumor cells were labeled with chromium for two hours and then incubated with control serum (MUC1.Tg) or serum from MMT tumor-bearing mice (diluted 1:50) at 37°C for 30 minutes ( min), the mice were treated with empty liposomes as indicated or containing compound 1 (Pam 3 CysSK 4 -T helper-MUC1), compound 2 (Pam 3 CysSK 4 -T helper), LAA-T helper Liposome immunization of cells-MUC1 and LAA-T helper cells. Tumor cells were then incubated with effector cells (KY-1 cells-NK clones) for four hours. The effector to target ratio was 50:1. Spontaneous release was less than 15% of complete release. Each data point represents an individual mouse, and the horizontal line indicates the mean of the group of mice. The chemical structures of synthetic antigens 1, 2, 3, 4 and 5 are shown in Figures 16 and 26 .
图32:人MUC1的前导序列,其中Rankpep研究结果突出显示。串联重复的起始序列是有下划线的。虚线显示了显示与I-Ab的结合的RANKPEP得分的15聚体。指定了显示与H2-Db (dddd)或H2-Kb (kkkk)的结合或与两者(bbbb)的非种系选择性(promiscuous)结合的RANKPEP得分的9聚体。Figure 32: Leader sequence of human MUC1 with Rankpep study results highlighted. The starting sequence of the tandem repeat is underlined. Dashed lines show 15mers showing RANKPEP scores for binding to IAb. 9mers showing RANKPEP scores for binding to H2- Db (dddd) or H2-Kb (kkkk) or non-germline-selective (promiscuous) binding to both (bbbb) are assigned.
图33A和33B:将小鼠用图33A中所述的肽免疫接种,并且通过细胞分选获得表达低水平CD62L的淋巴结衍生的T细胞,并且在用免疫接种肽脉冲的DC的存在下培养14天。在暴露用y轴上所列出的肽脉冲的DC后,针对CD4+IFNγ+和CD8+IFNγ+ T细胞的存在情况通过细胞内细胞因子分析所得到的细胞(图33B)。Figures 33A and 33B: Mice were immunized with the peptides described in Figure 33A, and lymph node-derived T cells expressing low levels of CD62L were obtained by cell sorting and cultured in the presence of DC pulsed with the immunization peptide for 14 sky. After exposure to DCs pulsed with the peptides listed on the y-axis, the resulting cells were analyzed by intracellular cytokines for the presence of CD4 + IFNγ + and CD8 + IFNγ + T cells ( FIG. 33B ).
图34:利用人MUC1 T辅助细胞序列的合成构建体。Figure 34: Synthetic constructs utilizing human MUCl T helper cell sequences.
图35显示了完全合成的三组分免疫原52和53和用于其制备的试剂63-65的结构。Figure 35 shows the structures of the fully synthetic three-component immunogens 52 and 53 and the reagents 63-65 used for their preparation.
图36显示了在用52和53的4次免疫接种后的ELISA抗GSTPVS(β-O-GlcNAc)SANM(68)抗体滴度。将ELISA板用BSA-MI-GSTPVS(β-O-GlcNAc)SANM(BSA-MI-66)缀合物包被,并且通过线性回归分析绘制与吸光度相比的稀释度,测定(a)总IgG、(b) IgG1、(c) IgG2a、(d) IgG2b、(e) IgG3和(f) IgM滴度。滴度定义为获得相对于正常对照小鼠血清而言光密度为0.1或更大的最高稀释度。每个数据点代表在4次免疫接种后个体小鼠的滴度,并且水平线指示五只小鼠的组的平均值。Figure 36 shows ELISA anti-GSTPVS(β- O -GlcNAc)SANM (68) antibody titers after 4 immunizations with 52 and 53. (a) Total IgG was determined by coating ELISA plates with BSA-MI-GSTPVS(β- O- GlcNAc)SANM(BSA-MI-66) conjugate and plotting dilutions versus absorbance by linear regression analysis , (b) IgG1, (c) IgG2a, (d) IgG2b, (e) IgG3 and (f) IgM titers. Titer was defined as the highest dilution to obtain an optical density of 0.1 or greater relative to normal control mouse serum. Each data point represents the titer of an individual mouse after 4 immunizations, and horizontal lines indicate the mean of a group of five mice.
图37显示了化合物52。Figure 37 shows compound 52.
图38显示了化合物53。Figure 38 shows compound 53.
图39显示了化合物63。Figure 39 shows compound 63.
图40显示了化合物64。Figure 40 shows compound 64.
图41显示了化合物65。Figure 41 shows compound 65.
图42显示了化合物66。Figure 42 shows compound 66.
图43显示了化合物67;SEQ ID NO:12。Figure 43 shows compound 67; SEQ ID NO:12.
图44显示了化合物68。Figure 44 shows compound 68.
图45显示了化合物69;SEQ ID NO:11。Figure 45 shows Compound 69; SEQ ID NO:11.
图46显示了化合物70。Figure 46 shows compound 70.
说明性实施方案的描述Description of Illustrative Embodiments
本发明的糖脂肽包含至少一个B表位、至少一个T表位和脂质组分。在优选实施方案中,糖脂肽基本上由三种主要组分组成:含有B表位的至少一种碳水化合物组分;含有辅助T表位的至少一种肽组分;和至少一种脂质组分。示例性碳水化合物、肽和脂质组分在本文中以及例如本文引用的参考文献中描述,所述参考文献包括Koganty等人,于2006年3月30日公开的美国专利公开20060069238;还参见Koganty等人,1996,Drug Disc Today;1(5):190-198。三种组分是直接或间接共价连接的,以形成单个糖脂肽分子。间接连接涉及任选的接头组分“L”的使用,以将两种或更多种主要组分连接在一起。三种主要组分可以以任何次序连接在一起(直接或间接地)。例如,脂质和碳水化合物组分可以各自共价连接至肽组分,以形成糖脂肽。可替代地,脂质组分和肽组分可以各自共价连接至碳水化合物组分。同样地,碳水化合物组分和肽组分可以各自共价连接至脂质组分。或者,所有三种组分可以这样连接,使得三种组分各自共价连接至其他两种组分中的每一种。分子间交联也是可能的,如下文更详细地描述的。The glycolipopeptide of the present invention comprises at least one B epitope, at least one T epitope and a lipid component. In a preferred embodiment, the glycolipopeptide consists essentially of three major components: at least one carbohydrate component containing a B epitope; at least one peptide component containing a helper T epitope; and at least one lipid qualitative components. Exemplary carbohydrate, peptide, and lipid components are described herein and, for example, in references cited herein, including Koganty et al., US Patent Publication 20060069238, published March 30, 2006; see also Koganty et al., 1996, Drug Disc Today; 1(5):190-198. The three components are directly or indirectly covalently linked to form a single glycolipeptide molecule. Indirect linkage involves the use of an optional linker component "L" to link two or more major components together. The three main components can be linked together (directly or indirectly) in any order. For example, lipid and carbohydrate components can each be covalently linked to a peptide component to form a glycolipopeptide. Alternatively, the lipid component and the peptide component may each be covalently linked to the carbohydrate component. Likewise, the carbohydrate component and the peptide component can each be covalently linked to the lipid component. Alternatively, all three components may be linked such that each of the three components is covalently linked to each of the other two components. Intermolecular crosslinking is also possible, as described in more detail below.
在优选实施方案中,本发明的糖脂肽含有一种碳水化合物组分、一种肽组分和一种脂质组分。在另一个实施方案中,糖脂肽含有多种碳水化合物组分,其可以是相同的或可以是不同的。同样地,在另一个实施方案中,糖脂肽含有多种肽组分,其可以是相同的或可以是不同的。进一步地,在另一个实施方案中,糖脂肽含有多种脂质组分,其可以是相同的或可以是不同的。因此,本发明的糖脂肽的多个实施方案可以含有一种或多种碳水化合物组分、一种或多种肽组分和/或一种或多种脂质组分。例如,“多个抗原性糖肽(multipleantigenic glycopeptides)”的观念(Bay等人,美国专利号6,676,946,2004年1月13日,Bay等人;WO 98/43677,1998年10月8日公开,Bay等人)可以适合于在本发明中使用。高抗原密度可以使用延伸的肽“臂”(本发明的糖脂肽的肽组分)与之附着的核心例如聚赖氨酸核心实现,所述肽臂以聚簇呈现来展示糖脂肽的碳水化合物抗原组分。糖脂肽的脂质组分可以同样自赖氨酸核心延伸,特别是在其中肽组分经由非末端氨基酸与赖氨酸核心附着的实施方案中。高抗原密度还可以通过使用脂质体作为递送载体来达到,如实施例2和3中例示的。另外或可替代地,可任选交联糖脂肽,以形成多分子复合物,从而增加抗原密度。In preferred embodiments, the glycolipid peptides of the invention contain a carbohydrate component, a peptide component and a lipid component. In another embodiment, the glycolipopeptide contains multiple carbohydrate components, which may be the same or may be different. Likewise, in another embodiment, the glycolipopeptide contains multiple peptide components, which may be the same or may be different. Further, in another embodiment, the glycolipopeptide contains multiple lipid components, which may be the same or may be different. Accordingly, various embodiments of the glycolipopeptides of the invention may contain one or more carbohydrate components, one or more peptide components, and/or one or more lipid components. For example, the concept of "multiple antigenic glycopeptides" (Bay et al., U.S. Patent No. 6,676,946, January 13, 2004, Bay et al.; WO 98/43677, published October 8, 1998 Bay et al) may be suitable for use in the present invention. High antigen density can be achieved using a core, such as a polylysine core, to which are attached extended peptide "arms" (peptide components of the glycolipopeptides of the invention), which are presented in clusters to display the Carbohydrate Antigen Component. The lipid component of the glycolipopeptide may also extend from the lysine core, particularly in embodiments where the peptide component is attached to the lysine core via a non-terminal amino acid. High antigen density can also be achieved by using liposomes as delivery vehicles, as exemplified in Examples 2 and 3. Additionally or alternatively, glycolipopeptides may optionally be cross-linked to form multimolecular complexes, thereby increasing antigen density.
糖脂肽的多种碳水化合物、肽和脂质组分可以在结构上衍生自或基于在天然存在的生物学分子中发现的那些和/或可以模拟在天然存在的生物学分子中发现的那些。糖脂肽组分优选含有等同于或类似于活生物中发现的那些的分子结构或结构的部分(包括表位)。典型地,虽然糖脂肽的组分衍生自、在结构上基于和/或模拟天然存在的结构,但它们是使用例如化学或体外酶促方法合成制备的。在一些实施方案中,可通过形成相同或相似表位的不同化学结构(具有不同的键合次序或模式),在本发明的糖脂肽中形成由分子元件在天然存在的抗原中形成的表位,所述分子元件在空间中是紧密的但就化学键合而言彼此远离。The various carbohydrate, peptide and lipid components of glycolipopeptides may be structurally derived from or based on and/or may mimic those found in naturally occurring biological molecules . The glycolipopeptide fraction preferably contains molecular structures or portions of structures (including epitopes) identical or similar to those found in living organisms. Typically, although components of glycolipopeptides are derived from, structurally based on and/or mimic naturally occurring structures, they are prepared synthetically using, for example, chemical or in vitro enzymatic methods. In some embodiments, epitopes formed by molecular elements in naturally occurring antigens can be formed in glycolipopeptides of the invention by forming different chemical structures (with different bonding orders or patterns) of the same or similar epitopes. position, the molecular elements are close together in space but distant from each other in terms of chemical bonding.
本发明的三组分糖脂肽可以视为盒,其中碳水化合物组分、肽组分和脂质组分各自独立地选择用于包括在糖脂肽中。形成糖脂肽的如本文描述的碳水化合物组分、肽组分和脂质组分的任何组合(即混合和匹配)被本发明所包括。The three-component glycolipopeptides of the invention can be viewed as cassettes, wherein the carbohydrate component, the peptide component, and the lipid component are each independently selected for inclusion in the glycolipeptide. Any combination (ie, mixing and matching) of carbohydrate components, peptide components, and lipid components as described herein to form glycolipopeptides is encompassed by the present invention.
碳水化合物组分carbohydrate composition
糖脂肽的碳水化合物组分可以是含有碳水化合物的任何组分。合适碳水化合物组分的例子包括寡糖、多糖和单糖,和糖基化生物分子(糖缀合物),例如糖蛋白、糖肽、糖脂、糖基化氨基酸、DNA或RNA。含有一个或多个碳水化合物部分以及肽或氨基酸的糖基化肽(糖肽)和糖基化氨基酸作为本发明的糖脂肽的碳水化合物组分是特别优选的。糖肽的例子是CD52,其在基本上所有人淋巴细胞上表达且据信在人免疫系统中起重要作用。糖基化氨基酸的例子是Tn抗原。应当理解当碳水化合物组分是糖肽时,糖肽的肽部分任选包括T表位以及B表位,并且因此可以充当糖脂肽的肽组分。含有T表位和B表位的糖肽有时称为具有“B-T”表位或“T-B”表位。存在于本发明的糖脂肽上的B表位和T表位可以重叠或可以不重叠。在优选实施方案中,T表位、B表位和/或T-B表位衍生自MUC1多肽序列,包括但不限于人MUC1多肽序列。The carbohydrate component of the glycolipopeptide can be any component that contains carbohydrates. Examples of suitable carbohydrate components include oligosaccharides, polysaccharides and monosaccharides, and glycosylated biomolecules (glycoconjugates), such as glycoproteins, glycopeptides, glycolipids, glycosylated amino acids, DNA or RNA. Glycosylated peptides (glycopeptides) and glycosylated amino acids containing one or more carbohydrate moieties as well as peptides or amino acids are particularly preferred as the carbohydrate component of the glycolipopeptides of the invention. An example of a glycopeptide is CD52, which is expressed on lymphocytes of essentially all humans and is believed to play an important role in the human immune system. An example of a glycosylated amino acid is the Tn antigen. It is understood that when the carbohydrate component is a glycopeptide, the peptide portion of the glycopeptide optionally includes a T epitope as well as a B epitope, and thus may serve as the peptide component of the glycolipopeptide. Glycopeptides containing a T epitope and a B epitope are sometimes referred to as having a "B-T" epitope or a "T-B" epitope. The B epitopes and T epitopes present on the glycolipopeptides of the present invention may or may not overlap. In preferred embodiments, the T epitope, B epitope and/or T-B epitope is derived from a MUCl polypeptide sequence, including but not limited to a human MUCl polypeptide sequence.
本发明的糖脂肽的碳水化合物组分包括含有一个或多个糖单体的碳水化合物。例如,碳水化合物可以包括单糖、二糖或三糖;它可以包括寡糖或多糖。寡糖是含有两个或更多个糖且特征在于充分确定的结构的寡聚糖。充分确定的结构的特征在于单体的特定身份、次序、连接位置(包括分支点)和连接立体化学(α,β),并且因此充分确定的结构具有确定的分子量和组成。寡糖通常含有约2-约20个或更多个糖单体。另一方面,多糖是不具有充分确定的结构的多聚糖;身份、次序、连接位置(包括分支点)和/或连接立体化学可在分子间不同。多糖通常含有比寡糖更大数目的单体组分,且因此具有更高的分子量。如本文所使用的术语“聚糖”包括寡糖和多糖在内,并且包括分支和未分支聚合物。当碳水化合物组分含有具有三个或更多个糖单体的碳水化合物时,碳水化合物可以是直链或它可以是支链。在优选实施方案中,碳水化合物组分含有小于约15个糖单体;更优选含有小于约10个糖单体。The carbohydrate component of the glycolipopeptides of the invention includes carbohydrates containing one or more sugar monomers. For example, a carbohydrate may include monosaccharides, disaccharides, or trisaccharides; it may include oligosaccharides or polysaccharides. Oligosaccharides are oligosaccharides that contain two or more sugars and are characterized by a well-defined structure. A well-defined structure is characterized by the specific identity, order, location of attachment (including branch points), and attachment stereochemistry (α, β) of the monomers, and thus has a defined molecular weight and composition. Oligosaccharides generally contain from about 2 to about 20 or more sugar monomers. A polysaccharide, on the other hand, is a polysaccharide that does not have a well-defined structure; the identity, sequence, position of attachment (including branch points), and/or attachment stereochemistry may vary between molecules. Polysaccharides generally contain a greater number of monomer components than oligosaccharides, and thus have a higher molecular weight. The term "glycan" as used herein is inclusive of oligosaccharides and polysaccharides, and includes branched and unbranched polymers. When the carbohydrate component contains carbohydrates having three or more sugar monomers, the carbohydrate may be straight chain or it may be branched. In preferred embodiments, the carbohydrate component contains less than about 15 sugar monomers; more preferably less than about 10 sugar monomers.
糖脂肽的碳水化合物组分包括含有B表位的碳水化合物。应当理解碳水化合物可以与B表位是同延的,或碳水化合物可以包括B表位在内,或碳水化合物可以仅包括B表位的部分(即B表位可以另外包含糖脂肽的其他部分,例如肽组分、脂质组分和/或接头组分)。包括B表位的糖肽的例子是糖基化肽MUC-1 (在本文中也称为MUC1)。因此,“包含”B表位的碳水化合物或碳水化合物组分应理解为意指包含存在于糖脂肽上的B表位的全部或部分的碳水化合物或碳水化合物组分。The carbohydrate component of the glycolipopeptide includes carbohydrates containing B epitopes. It will be appreciated that the carbohydrate may be coextensive with the B epitope, or that the carbohydrate may include the B epitope, or that the carbohydrate may include only part of the B epitope (i.e., the B epitope may additionally include other portions of the glycolipopeptide , such as peptide components, lipid components and/or linker components). An example of a glycopeptide comprising a B epitope is the glycosylated peptide MUC-1 (also referred to herein as MUC1). Thus, a carbohydrate or carbohydrate component "comprising" a B epitope is understood to mean a carbohydrate or carbohydrate component comprising all or part of the B epitope present on the glycolipopeptide.
B表位可以是天然存在的表位或非天然存在的表位。优选地,碳水化合物的两个或更多个糖单体相互作用,以形成充当B表位的构象表位。B表位是由B细胞识别的表位。含有B表位的任何抗原性碳水化合物可以用作碳水化合物组分,而无限制。在优选实施方案中,B表位衍生自MUC1多肽序列,包括但不限于人MUC1多肽序列。B epitopes may be naturally occurring epitopes or non-naturally occurring epitopes. Preferably, two or more sugar monomers of a carbohydrate interact to form a conformational epitope that acts as a B epitope. B epitopes are epitopes recognized by B cells. Any antigenic carbohydrate containing a B epitope can be used as the carbohydrate component without limitation. In preferred embodiments, the B epitope is derived from a MUCl polypeptide sequence, including but not limited to a human MUCl polypeptide sequence.
可以用作本发明的糖脂肽的组分的非天然存在的碳水化合物包括糖模拟物(glycomimetics),其是模拟糖例如单糖、二糖或寡糖的形状和特征的分子(参见例如,Barchi,2000,Current Pharmaceutical Design;6(4):485-501;Martinez-Grau等人,1998,Chemical Society Reviews;27(2):155-162;Schweizer,2002, AngewandteChemie-International Edition;41(2):230-253)。糖模拟物可以改造为供应所需B表位且潜在提供更大的代谢稳定性。Non-naturally occurring carbohydrates that may be used as components of the glycolipopeptides of the invention include glycomimetics, which are molecules that mimic the shape and characteristics of sugars such as monosaccharides, disaccharides, or oligosaccharides (see, e.g., Barchi, 2000, Current Pharmaceutical Design; 6(4):485-501; Martinez-Grau et al., 1998, Chemical Society Reviews; 27(2):155-162; Schweizer, 2002, Angewandte Chemie-International Edition; 41(2 ):230-253). Glycomimetics can be engineered to supply desired B epitopes and potentially provide greater metabolic stability.
在另一个实施方案中,碳水化合物组分含有自身抗原的全部或部分。自身抗原是通常存在于动物体内的抗原。它们可以视为“自身分子”,例如存在于动物细胞中或上的分子,或在动物血液中循环的蛋白质如胰岛素。自身抗原的例子是衍生自动物的癌细胞的含碳水化合物组分,例如肿瘤相关碳水化合物抗原(TACA)。通常,此类自身抗原显示出低免疫原性。例子包括肿瘤相关碳水化合物B表位例如Ley抗原(癌症相关四糖;例如Fucα(1,2)-Galβ(1,4)-[Fucα(1,3)]-GlcNAc);Globo-H抗原(例如L-Fucα(1,2)-Galβ(1,3)-GalNAcβ(1,3)-Galα(1,4)-Galβ(1,4)-Glu);T抗原(例如Galβ(1,3)-GalNAcα-O-Ser/Thr);STn抗原(唾液酸基Tn,例如NeuAcα(2,6)-GalNAcα-O-Ser/Thr);和Tn抗原(例如α-GalNAc-O-Ser/Thr)。自身抗原的另一个例子是衍生自人多态性上皮粘蛋白(PEM)的乳腺肿瘤相关MUC-1的串联重复的糖肽,所述PEM是上皮粘蛋白(Baldus等人,Crit. Rev. Clin. Lab. Sci.,41(2):189-231(2004))。MUC-1糖肽包含至少一个Tn和/或唾液酸基Tn(唾液酸基α-6 GalNAc或"STn")表位,其优选连接至苏氨酸(T-Tn或T-STn)。In another embodiment, the carbohydrate component contains all or part of an autoantigen. Autoantigens are antigens that are normally present in the body of an animal. They can be considered "self molecules," such as those present in or on an animal's cells, or proteins such as insulin that circulate in an animal's blood. Examples of self-antigens are carbohydrate-containing components of cancer cells derived from animals, such as tumor-associated carbohydrate antigens (TACA). Typically, such self-antigens show low immunogenicity. Examples include tumor-associated carbohydrate B epitopes such as Le y antigen (cancer-associated tetrasaccharide; e.g. Fucα(1,2)-Galβ(1,4)-[Fucα(1,3)]-GlcNAc); Globo-H antigen (e.g. L-Fucα(1,2)-Galβ(1,3)-GalNAcβ(1,3)-Galα(1,4)-Galβ(1,4)-Glu); T antigen (e.g. Galβ(1, 3)-GalNAcα-O-Ser/Thr); STn antigen (sialyl Tn, such as NeuAcα(2,6)-GalNAcα-O-Ser/Thr); and Tn antigen (such as α-GalNAc-O-Ser/ Thr). Another example of an autoantigen is a glycopeptide derived from the tandem repeats of breast tumor-associated MUC-1 derived from human polymorphic epithelial mucin (PEM) (Baldus et al., Crit. Rev. Clin . Lab. Sci., 41(2):189-231(2004)). The MUC-1 glycopeptide comprises at least one Tn and/or sialyl Tn (sialyl alpha-6 GalNAc or "STn") epitope, preferably linked to threonine (T-Tn or T-STn).
在优选实施方案中,碳水化合物组分包括糖基化MUC1糖肽,其在MUC1衍生的氨基酸肽序列的一个或多个丝氨酸和/或苏氨酸残基上糖基化。此类MUC1衍生的氨基酸序列包括但不限于本文描述的任何MUC1序列。In a preferred embodiment, the carbohydrate component comprises a glycosylated MUCl glycopeptide which is glycosylated on one or more serine and/or threonine residues of the MUCl derived amino acid peptide sequence. Such MUCl-derived amino acid sequences include, but are not limited to, any of the MUCl sequences described herein.
可以用作糖脂肽的组分的示例性肿瘤相关碳水化合物抗原(TACA)的结构包括但不限于显示于方案1和2中的结构。Structures of exemplary tumor-associated carbohydrate antigens (TACAs) that can be used as components of glycolipopeptides include, but are not limited to, those shown in Schemes 1 and 2.
方案1plan 1
应当指出在方案1中所示的Tn、STn和TF结构(单体、三聚体、聚簇的)都显示具有苏氨酸残基。相应丝氨酸类似物也是合适结构。在Tn3、STn3、TF3及其各自的簇的情况下,包括在主链的苏氨酸/丝氨酸组成中具有差异的所有可能的同和异类似物。It should be noted that the Tn, STn and TF structures (monomer, trimer, clustered) shown in Scheme 1 are all shown with threonine residues. The corresponding serine analogs are also suitable structures. In the case of Tn3, STn3, TF3 and their respective clusters, all possible homo- and iso-analogues that differ in the threonine/serine composition of the backbone are included.
方案2Scenario 2
用于在糖脂肽的碳水化合物组分中使用的另一种自身抗原是包含共价连接至单糖的氨基酸或肽的糖肽。优选地,单糖是N-乙酰葡糖胺(GlcNAc)或N-乙酰半乳糖胺(GalNAc)。优选的糖肽自身抗原是β-N-乙酰葡糖胺(β-O-GlcNAc)修饰的肽。优选地,单糖O联至多肽的丝氨酸或苏氨酸。还适合于用作自身抗原的是相关硫醇(S联)和氨基(N联)类似物。单糖优选经由β连接连接至肽,但它可以是α连接。在特别优选的实施方案中,本发明的糖脂肽的碳水化合物组分(当作为糖肽配制时,其可以与肽组分同延)含有由O-GlcNAc修饰的TPVSS (SEQID NO:10)氨基酸序列。含有β-GlcNAc修饰的糖肽作为B表位的碳水化合物的例子显示为图15中的化合物52 (O联)和53 (S联)。Another type of autoantigen for use in the carbohydrate component of glycolipopeptides is a glycopeptide comprising an amino acid or peptide covalently linked to a monosaccharide. Preferably, the monosaccharide is N -acetylglucosamine (GlcNAc) or N -acetylgalactosamine (GalNAc). Preferred glycopeptide autoantigens are β- N -acetylglucosamine (β- O -GlcNAc) modified peptides. Preferably, the monosaccharide is O -linked to a serine or threonine of the polypeptide. Also suitable for use as self-antigens are related thiol ( S -link) and amino ( N -link) analogs. The monosaccharide is preferably attached to the peptide via a beta linkage, but it could be an alpha linkage. In a particularly preferred embodiment, the carbohydrate component of the glycolipopeptide of the invention (which may be coextensive with the peptide component when formulated as a glycopeptide) contains TPVSS (SEQ ID NO: 10) modified by O -GlcNAc amino acid sequence. Examples of carbohydrates containing β-GlcNAc modified glycopeptides as B epitopes are shown as compounds 52 ( O -link) and 53 ( S -link) in FIG. 15 .
在另一个实施方案中,碳水化合物组分含有来自微生物的碳水化合物抗原(通常为聚糖)的全部或部分,所述微生物优选致病微生物,例如病毒(例如存在于gp120上的碳水化合物,衍生自HIV病毒的糖蛋白)、革兰氏阴性或革兰氏阳性菌(例如衍生自流感嗜血菌(Haemophilus influenzae)、肺炎链球菌(Streptococcus pneumoniae)或脑膜炎奈瑟氏球菌(Neisseria meningitides)的碳水化合物)、真菌(例如1,3-β联聚糖)、寄生性原生动物(例如在原生动物寄生虫例如利什曼原虫属(Leishmania)和布鲁斯锥虫(Trypanosoma brucei)中发现的GPI锚)或蠕虫。优选地,微生物是致病微生物。In another embodiment, the carbohydrate component contains all or part of carbohydrate antigens (usually glycans) from microorganisms, preferably pathogenic microorganisms, such as viruses (such as carbohydrates present on gp120, derived from Glycoproteins from HIV virus), Gram-negative or Gram-positive bacteria (such as those derived from Haemophilus influenzae , Streptococcus pneumoniae or Neisseria meningitides ) carbohydrates), fungi (e.g. 1,3-β-linked glycans), parasitic protozoa (e.g. GPI anchors found in protozoan parasites such as Leishmania and Trypanosoma brucei ) or worms. Preferably, the microorganism is a pathogenic microorganism.
来自病毒病原体的示例性聚糖来自HIV-1 gp120的Man9,显示于方案3中。An exemplary glycan from a viral pathogen is shown in Scheme 3 from Man9 of HIV-1 gp120.
方案3Option 3
示例性HIV碳水化合物和糖肽抗原在Wang等人,Current Opinion in Drug Disc. &Develop.,9(2):194-206(2006)中描述,并且包括天然存在的HIV碳水化合物和糖肽,以及基于天然存在的HIV碳水化合物和糖肽的合成碳水化合物和糖肽。Exemplary HIV carbohydrate and glycopeptide antigens are described in Wang et al., Current Opinion in Drug Disc. & Develop., 9(2):194-206 (2006), and include naturally occurring HIV carbohydrates and glycopeptides, and Synthetic carbohydrates and glycopeptides based on naturally occurring HIV carbohydrates and glycopeptides.
示例性HCV碳水化合物和糖肽抗原在Koppel等人 Cellular Microbiology 2005;7(2):157-165和Goffard等人 J. of Virology 2005;79(13):8400-8409中描述,并且包括天然存在的HCV碳水化合物和糖肽,以及基于天然存在的HCV碳水化合物和糖肽的合成碳水化合物和糖肽。Exemplary HCV carbohydrate and glycopeptide antigens are described in Koppel et al. Cellular Microbiology 2005; 7 (2):157-165 and Goffard et al . J. of Virology 2005; 79 (13):8400-8409 and include naturally occurring HCV carbohydrates and glycopeptides, and synthetic carbohydrates and glycopeptides based on naturally occurring HCV carbohydrates and glycopeptides.
来自细菌病原体的示例性聚糖显示于方案4中。Exemplary glycans from bacterial pathogens are shown in Scheme 4.
方案4Option 4
来自原生动物病原体的示例性聚糖显示于方案5中。Exemplary glycans from protozoan pathogens are shown in Scheme 5.
方案5Option 5
来自真菌病原体的示例性聚糖显示于方案6中。Exemplary glycans from fungal pathogens are shown in Scheme 6.
方案6Option 6
来自蠕虫病原体的示例性聚糖显示于方案7中。Exemplary glycans from helminth pathogens are shown in Scheme 7.
方案7Option 7
本领域技术人员应当理解虽然众多抗原性碳水化合物结构是已知的,但存在许多更多的抗原性碳水化合物结构,因为迄今为止仅鉴定了小部分抗原性或免疫原性碳水化合物。迄今发现的许多碳水化合物抗原的例子可参见:Kuberan等人,Curr. Org. Chem,4,653-677(2000);Ouerfelli等人,Expert Rev. Vaccines 4(5):677-685(2005);Hakomori等人,Chem. Biol. 4,97-104(1997);Hakomori,Acta Anat. 161,79-90(1998);Croce和Segal-Eiras,Drugs of Today 38(11):759-768(2002);Mendonca-Previato等人,Curr Opin.Struct. Biol. 15(5):499-505(2005);Jones,Anais da Academia Brasileira deCiencias 77(2):293-324(2005);Goldblatt,J. Med. Microbiol. 47(7):563-567(1998);Diekman等人,Immunol. Rev.,171:203-211,1999;Nyame等人,Arch. Biochem.Biophys.,426(2):182-200,2004;Pier,Expert Rev. Vaccines,4(5):645-656,2005;Vliegenthart,FEBS Lett.,580(12):2945-2950,Sp. Iss.,2006;Ada等人,Clin.Microbiol. Inf.,9(2):79-85,2003;Fox等人,J. Microbiol. Meth.,54(2):143-152,2003;Barber等人,J. Reprod. Immunol.,46(2):103-124,2000;和Sorensen,Persp. DrugDisc. Design,5:154-160,1996。衍生自哺乳动物或传染性生物的任何抗原性碳水化合物可以用作本发明的糖脂肽的碳水化合物组分,而无限制。Those skilled in the art will appreciate that while numerous antigenic carbohydrate structures are known, many more exist because only a small fraction of antigenic or immunogenic carbohydrates have been identified to date. Examples of many carbohydrate antigens discovered so far can be found in: Kuberan et al., Curr. Org. Chem, 4, 653-677 (2000); Ouerfelli et al., Expert Rev. Vaccines 4(5):677-685 (2005) ; Hakomori et al., Chem. Biol. 4, 97-104 (1997); Hakomori, Acta Anat. 161, 79-90 (1998); Croce and Segal-Eiras, Drugs of Today 38 (11): 759-768 ( 2002); Mendonca-Previato et al., Curr Opin. Struct. Biol. 15(5):499-505(2005); Jones, Anais da Academia Brasileira de Ciencias 77(2):293-324(2005); Goldblatt, J .Med.Microbiol.47(7):563-567(1998); Diekman et al., Immunol. Rev., 171:203-211, 1999; Nyame et al., Arch.Biochem.Biophys., 426(2): 182-200, 2004; Pier, Expert Rev. Vaccines, 4(5):645-656, 2005; Vliegenthart, FEBS Lett., 580(12):2945-2950, Sp. Iss., 2006; Ada et al., Clin. Microbiol. Inf., 9(2): 79-85, 2003; Fox et al., J. Microbiol. Meth., 54(2): 143-152, 2003; Barber et al., J. Reprod. Immunol. , 46(2): 103-124, 2000; and Sorensen, Persp. Drug Disc. Design, 5: 154-160, 1996. Any antigenic carbohydrate derived from mammals or infectious organisms can be used as the carbohydrate component of the glycolipopeptide of the present invention without limitation.
肽组分peptide component
糖脂肽的肽组分包括T表位,优选辅助T表位。肽组分可以是任何含肽结构,并且可以含有天然存在的和/或非天然存在的氨基酸和/或氨基酸类似物(例如D-氨基酸)。肽组分可以来自微生物,例如病毒、细菌、真菌和原生动物。T表位因此可以构成病毒抗原的全部或部分。可替代或另外地,T表位可以来自哺乳动物,且任选构成自身抗原的全部或部分。例如,T表位可以是在癌细胞上过表达的糖肽的部分。当本发明的糖脂肽的肽组分是糖肽时,肽组分也可以包括B表位的全部或部分,如本文其他地方描述的。更一般地,应当理解糖脂肽的肽组分可以与T表位是同延的,或肽组分可以包括T表位在内,或肽组分可以包括仅部分T表位(即,T表位可以另外包含糖脂肽的其他部分,例如碳水化合物组分、脂质组分和/或接头组分)。因此,“包含”T表位的肽或肽组分应理解为意指包含存在于糖脂肽上的T表位的全部或部分的肽或肽组分。The peptide component of the glycolipopeptide includes a T epitope, preferably a helper T epitope. The peptide component may be any peptide-containing structure, and may contain naturally occurring and/or non-naturally occurring amino acids and/or amino acid analogs (eg, D-amino acids). The peptide component can be derived from microorganisms such as viruses, bacteria, fungi and protozoa. T epitopes may thus constitute all or part of the viral antigen. Alternatively or additionally, the T epitope may be from a mammal and optionally constitutes all or part of an autoantigen. For example, a T epitope can be part of a glycopeptide that is overexpressed on cancer cells. When the peptide component of the glycolipopeptide of the invention is a glycopeptide, the peptide component may also include all or part of the B epitope, as described elsewhere herein. More generally, it is understood that the peptide component of the glycolipopeptide may be coextensive with the T epitope, or that the peptide component may include the T epitope, or that the peptide component may include only part of the T epitope (i.e., T An epitope may additionally comprise other parts of a glycolipopeptide, such as a carbohydrate component, a lipid component and/or a linker component). Thus, a peptide or peptide component "comprising" a T-epitope is understood to mean a peptide or peptide component comprising all or part of the T-epitope present on the glycolipopeptide.
肽组分可以含有例如小于约50个氨基酸和/或氨基酸类似物、小于约40个氨基酸和/或氨基酸类似物、小于约30个氨基酸和/或氨基酸类似物、或小于约20个氨基酸和/或氨基酸类似物。肽组分可以含有例如约9-约50个氨基酸和/或氨基酸类似物、约9-约40个氨基酸和/或氨基酸类似物、约9-约30个氨基酸和/或氨基酸类似物、或约9-约20个氨基酸和/或氨基酸类似物。肽组分可以含有例如约9、约10、约11、约12、约13、约14、约15、约16、约17、约18、约19、约20、约21、约22、约23、约24、约25、约30、约35、约40、约45、约50、约55、约60、约65、约70、或约80 个氨基酸和/或氨基酸类似物,或这些引用大小的任何范围。The peptide component may contain, for example, less than about 50 amino acids and/or amino acid analogs, less than about 40 amino acids and/or amino acid analogs, less than about 30 amino acids and/or amino acid analogs, or less than about 20 amino acids and/or or amino acid analogs. The peptide component may contain, for example, about 9 to about 50 amino acids and/or amino acid analogs, about 9 to about 40 amino acids and/or amino acid analogs, about 9 to about 30 amino acids and/or amino acid analogs, or about 9 to about 20 amino acids and/or amino acid analogs. The peptide component may contain, for example, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23 , about 24, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, or about 80 amino acids and/or amino acid analogs, or these quoted sizes any range of .
肽组分的例子包括通用辅助T肽QYIKANSKFIGITEL ("QYI") (SEQ ID NO:1)、通用辅助T肽YAFKYARHANVGRNAFELFL ("YAF") (SEQ ID NO:2)、衍生自脊髓灰质炎病毒的鼠辅助T肽KLFAVWKITYKDT ("KLF") (SEQ ID NO:3)和泛DR结合(PADRE)肽(PCT WO 95/07707;Alexander等人,Immunity 1:751-761(1994);Alexander等人,J. Immunol. 2000年2月1日;164(3):1625-33;美国专利号6,413,935 (Sette等人,2002年7月2日))。Examples of peptide components include the universal helper T peptide QYIKANSKFIGITEL ("QYI") (SEQ ID NO:1), the universal helper T peptide YAFKYARHANVGRNAFELFL ("YAF") (SEQ ID NO:2), murine Helper T peptide KLFAVWKITYKDT ("KLF") (SEQ ID NO:3) and pan DR binding (PADRE) peptide (PCT WO 95/07707; Alexander et al., Immunity 1:751-761 (1994); Alexander et al., J . Immunol. 2000 Feb 1;164(3):1625-33; US Patent No. 6,413,935 (Sette et al., 2002 Jul 2)).
用于在本发明的糖脂肽中使用的免疫原性肽组分包括通用(简并或“非种系选择性”)辅助T细胞肽,其是在许多主要组织相容性复合物(MHC)单元型的个体中是免疫原性的肽。众多通用辅助T细胞肽结构是已知的;然而,应当理解将在未来鉴定另外的通用T表位,包括具有相似或甚至更高效力的一些通用T表位,并且此类肽非常适合于用作本发明的糖脂肽的肽组分。Immunogenic peptide components for use in the glycolipopeptides of the invention include universal (degenerate or "non-germline-selective") helper T cell peptides, which are found in many major histocompatibility complex (MHC ) haplotype are immunogenic peptides. Numerous universal helper T cell peptide structures are known; however, it is understood that additional universal T epitopes will be identified in the future, including some with similar or even higher potency, and that such peptides are well suited for use in As the peptide component of the glycolipopeptide of the present invention.
用于在糖脂肽中使用的示例性T细胞肽包括但不限于:Exemplary T cell peptides for use in glycolipopeptides include, but are not limited to:
合成的非天然PADRE肽DAla-Lys-Cha-Val-Ala-Ala-Trp-Thr-Leu-Lys-Ala-Ala-DAla,包括由Alexander等人在Immunity,第1卷,751-761,1994中描述的所有类似物;Synthetic non-natural PADRE peptide DAla-Lys-Cha-Val-Ala-Ala-Trp-Thr-Leu-Lys-Ala-Ala-DAla, included by Alexander et al. in Immunity, Vol. 1, 751-761, 1994 All analogs described;
衍生自破伤风毒素的肽,例如(TT830-843) QYIKANSKFIGITEL (SEQ ID NO:1)、(TT1084-1099) VSIDKFRIFCKANPK (SEQ ID NO:4)、(TT1174-1189) LKFIIKRYTPNNEIDS(SEQ ID NO:5)、(TT1064-1079) IREDNNITLKLDRCNN (SEQ ID NO:6)和(TT947-967)FNNFTVSFWLRVPKVSASHLE (SEQ ID NO:7);Peptides derived from tetanus toxin, for example (TT830-843) QYIKANSKFIGITEL (SEQ ID NO:1), (TT1084-1099) VSIDKFRIFCKANPK (SEQ ID NO:4), (TT1174-1189) LKFIIKRYTPNNEIDS (SEQ ID NO:5) , (TT1064-1079) IREDNNITLKLDRCNN (SEQ ID NO:6) and (TT947-967)FNNFTVSFWLRVPKVSASHLE (SEQ ID NO:7);
衍生自脊髓灰质炎病毒的肽,例如KLFAVWKITYKDT (SEQ ID NO:3);A peptide derived from poliovirus, such as KLFAVWKITYKDT (SEQ ID NO:3);
衍生自脑膜炎奈瑟氏球菌的肽,例如YAFKYARHANVGRNAFELFL (SEQ ID NO:8);和A peptide derived from Neisseria meningitidis, such as YAFKYARHANVGRNAFELFL (SEQ ID NO: 8); and
衍生自恶性疟原虫(P. falsiparum) CSP的肽,例如EKKIAKMEKASSVFNVNN (SEQ IDNO:9)。A peptide derived from the CSP of P. falsiparum , eg, EKKIAKMEKASSVFNVNN (SEQ ID NO:9).
糖脂肽的肽组分含有T表位。T表位是由T细胞识别的表位。T表位可以引发CD4+应答,从而刺激辅助T细胞的产生;和/或它可以引发CD8+应答,从而刺激细胞毒性淋巴细胞的产生。优选地,T表位是刺激辅助T细胞产生的表位(例如辅助T细胞表位或Th表位),其进而使得针对由本发明糖脂肽的碳水化合物组分供应的B表位的体液应答成为可能。The peptide component of the glycolipopeptide contains a T epitope. T epitopes are epitopes recognized by T cells. A T epitope can elicit a CD4+ response, thereby stimulating the generation of helper T cells; and/or it can elicit a CD8+ response, thereby stimulating the generation of cytotoxic lymphocytes. Preferably, the T epitope is an epitope that stimulates helper T cell production (e.g. helper T cell epitope or Th epitope), which in turn causes a humoral response to the B epitope supplied by the carbohydrate component of the glycolipopeptide of the invention become possible.
应当理解本发明的糖脂肽可以含有多个T表位,其可以是相同或不同的。进一步地,T表位可以存在于碳水化合物组分和/或脂质组分上(例如,在包括糖肽和/或糖脂作为碳水化合物和/或脂质组分的实施方案中),附加于或代替肽组分。It should be understood that the glycolipopeptides of the invention may contain multiple T epitopes, which may be the same or different. Further, the T epitope may be present on the carbohydrate component and/or the lipid component (e.g., in embodiments comprising glycopeptides and/or glycolipids as the carbohydrate and/or lipid component), additionally in or in place of the peptide component.
在一些实施方案中,B表位和T表位是同源的;即,它们衍生自相同生物。例如,在适合于用作针对微生物病原体的疫苗的糖脂肽中,T表位加上B表位可以是存在于微生物病原体中的表位。在另一个实施方案中,B表位和T表位是异源的;即,它们不衍生自相同生物。例如,适合于用作抗癌疫苗的糖脂肽可具有来自癌细胞的B细胞表位,但具有来自细菌或病毒的T细胞表位。In some embodiments, the B and T epitopes are homologous; that is, they are derived from the same organism. For example, in a glycolipopeptide suitable for use as a vaccine against a microbial pathogen, the T epitope plus the B epitope may be the epitopes present in the microbial pathogen. In another embodiment, the B and T epitopes are heterologous; that is, they are not derived from the same organism. For example, a glycolipopeptide suitable for use as an anticancer vaccine may have B-cell epitopes from cancer cells, but T-cell epitopes from bacteria or viruses.
在本发明的免疫原性疫苗的优选实施方案中,T表位或B表位可以衍生自MUC1多肽。在一些实施方案中,T表位和B表位都衍生自MUC1多肽。MUC1 (在人中的MUC1和在非人物种中的Muc1)是在多种粘膜表面衬里的上皮细胞以及造血细胞中表达的重糖基化的I型跨膜蛋白质。人MUC1由细胞质信号肽、28氨基酸跨膜结构域和由二十个氨基酸的可变数目的串联重复组成的胞外结构域组成。每个重复含有5个潜在O-糖基化位点。MUC1与在粘膜位点上的几种腺癌相关,并且在超过90%的乳腺癌中过表达,且与卵巢、肺、结肠和胰腺癌相关。肿瘤相关MUC1是异常糖基化的,产生截短的碳水化合物结构。In a preferred embodiment of the immunogenic vaccine of the invention, the T epitope or B epitope may be derived from a MUCl polypeptide. In some embodiments, both the T epitope and the B epitope are derived from a MUCl polypeptide. MUCl (MUCl in humans and Mucl in non-human species) is a heavily glycosylated type I transmembrane protein expressed in epithelial cells lining various mucosal surfaces, as well as in hematopoietic cells. Human MUCl consists of a cytoplasmic signal peptide, a 28 amino acid transmembrane domain, and an extracellular domain consisting of a variable number of tandem repeats of twenty amino acids. Each repeat contains 5 potential O-glycosylation sites. MUCl is associated with several adenocarcinomas at mucosal sites, is overexpressed in more than 90% of breast cancers, and is associated with ovarian, lung, colon and pancreatic cancers. Tumor-associated MUCl is aberrantly glycosylated, producing truncated carbohydrate structures.
MUC1肽序列可以包括人或小鼠MUC1序列。MUC1肽序列可以包括MUC1串联重复序列。此类MUC1串联重复序列可以含有B表位和辅助T表位两者。The MUCl peptide sequence may comprise a human or mouse MUCl sequence. The MUCl peptide sequence may comprise a MUCl tandem repeat. Such MUCl tandem repeats may contain both B and helper T epitopes.
MUC1序列可以是同源的,从而是自身抗原。MUC1序列可以包括来自人或小鼠MUC1肽的一个、两个、三个、四个、五个、六个或更多个氨基酸改变。MUC1序列可以是不规则变化的,包括一个、两个、三个、四个或更多个氨基酸改变,以增强MUC1肽在I类和/或II类主要组织相容性复合物(MHC)蛋白质上的结合。人MHC在本文中也称为HLA复合物。MUC1序列可以包括来自MUC1蛋白质的胞外区的序列。MUC1序列可以包括负责I类MHC限制的序列。MUC1序列可以包括负责II类MHC限制和/或结合的序列。在一些实施方案中,此类I类和II类限制序列可以是在免疫原性疫苗构建体中的邻接氨基酸序列。MHC限制序列包括但不限于例如本文描述的那些中的任一种和图16、19和32-34中表示的那些中的任一种。The MUCl sequence may be homologous and thus be an autoantigen. The MUCl sequence may include one, two, three, four, five, six or more amino acid changes from the human or mouse MUCl peptide. The MUCl sequence can be irregularly varied, including one, two, three, four or more amino acid changes to enhance the MUCl peptide in class I and/or class II major histocompatibility complex (MHC) proteins on the combination. Human MHC is also referred to herein as the HLA complex. The MUCl sequence may include sequence from the extracellular region of the MUCl protein. The MUCl sequence may include sequences responsible for MHC class I restriction. The MUCl sequence may include sequences responsible for MHC class II restriction and/or binding. In some embodiments, such Class I and Class II restriction sequences may be contiguous amino acid sequences in an immunogenic vaccine construct. MHC restriction sequences include, but are not limited to, eg, any of those described herein and any of those represented in Figures 16, 19, and 32-34.
MUC1序列可以包括一个或多个丝氨酸或苏氨酸残基,其是糖基化的,例如在一个、二个、三个、四个或更多个此类残基上是糖基化的。此类糖基化可以代表正常组织的糖基化模式,或此类糖基化可以反映异常糖基化。MUC1序列可以含有一个或多个B表位和/或辅助T表位。The MUCl sequence may comprise one or more serine or threonine residues which are glycosylated, for example at one, two, three, four or more such residues. Such glycosylation may represent normal tissue glycosylation patterns, or such glycosylation may reflect abnormal glycosylation. The MUCl sequence may contain one or more B epitopes and/or helper T epitopes.
MUC1序列可以包括MUC1蛋白质序列的约5-约30个氨基酸。MUC1序列可以包括MUC1蛋白质序列的小于约50个氨基酸和/或氨基酸类似物、小于约40个氨基酸和/或氨基酸类似物、小于约30个氨基酸和/或氨基酸类似物、或小于约20个氨基酸和/或氨基酸类似物。MUC1序列可以包括例如约9-约50个氨基酸和/或氨基酸类似物、约9-约40个氨基酸和/或氨基酸类似物、约9-约30个氨基酸和/或氨基酸类似物或约9-约20个氨基酸和/或氨基酸类似物。肽组分可以含有例如MUC1蛋白质序列的约9、约10、约11、约12、约13、约14、约15、约16、约17、约18、约19、约20、约21、约22、约23、约24、约25、约30、约35、约40、约45、约50、约55、约60、约65、约70或约80个氨基酸和/或氨基酸类似物,或这些引用大小的任何范围。The MUCl sequence can include about 5 to about 30 amino acids of the MUCl protein sequence. The MUCl sequence may comprise less than about 50 amino acids and/or amino acid analogs, less than about 40 amino acids and/or amino acid analogs, less than about 30 amino acids and/or amino acid analogs, or less than about 20 amino acids of the MUCl protein sequence and/or amino acid analogs. The MUCl sequence may comprise, for example, about 9 to about 50 amino acids and/or amino acid analogs, about 9 to about 40 amino acids and/or amino acid analogs, about 9 to about 30 amino acids and/or amino acid analogs or about 9- About 20 amino acids and/or amino acid analogs. The peptide component may contain, for example, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70 or about 80 amino acids and/or amino acid analogs, or Any range of sizes for these references.
MUC1序列可以包括显示与人MUC1序列约50%、约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%、约95%或约96%、约97%、约98%或约99%序列同一性的序列。The MUCl sequence can comprise about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about A sequence of 96%, about 97%, about 98%, or about 99% sequence identity.
MUC1序列可以包括本文描述的任何MUC1序列,例如包括但不限于图16、19、33A、33B和34中表示的那些中的任一种。例如MUC1序列可以包括SAPDTRPAP (SEQ ID NO:20)、TSAPDTRPAP (SEQ ID NO:21)、SAPDTRPL (SEQ ID NO:22)、TSAPDTRPL (SEQ ID NO:23)、APGSTAPPAHGVTSA (SEQ ID NO:26)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:27)、APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:28)或APGSTAPPAHGVTSAPDTRPL (SEQ ID NO:29)、其中X是L、A或AP的SKKKKGAPGSTAPPAHGVTSAPDTRPX (SEQ ID NO:30)、SKKKKGSTAPPAHGVTSAPDTRPAP (SEQ ID NO:31)、SKKKKGSLSYTNPAVAAATASNL (SEQ ID NO:32)、SKKKKGCKLFAVWKITYKDTGTSAPDTRPAP (SEQ ID NO:33)、SKKKKGCKLFAVWKITYKDT (SEQID NO:34)、GGKLFAVWKITYKDTGTSAPDTRPAP (SEQ ID NO:35)或APGSTAPPAHGVTSAPDTRPAP(SEQ ID NO:28)。还包括的是这样的MUC1序列,其与这些序列具有约50%、约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%、约95%或约96%、约97%、约98%或约99%序列同一性。还包括的是在一个、二个、三个、四个或更多个丝氨酸或苏氨酸残基的任何组合上糖基化的MUC1序列。The MUCl sequence may comprise any MUCl sequence described herein, for example including but not limited to any of those represented in FIGS. 16 , 19 , 33A, 33B and 34 . For example a MUCl sequence may include SAPDTRPAP (SEQ ID NO:20), TSAPDRPAP (SEQ ID NO:21), SAPDTRPL (SEQ ID NO:22), TSAPDTRPL (SEQ ID NO:23), APGSTAPPAHGVTSA (SEQ ID NO:26), APGSTAPPAHGVTSAPPDTRPL (SEQ ID NO:27), APGSTAPPAHGVTSAPPDTRPL (SEQ ID NO:28) or APGSTAPPAHGVTSAPPDTRPL (SEQ ID NO:29), SKKKKGAPGSTAPPAHGVTSAPDTRPX (SEQ ID NO:30) where X is L, A or AP, SKKKKGSEAPPAHGVTSAPPDAP (NO:30) : 31), SKKKKGSLSYTNPAVAAATASNL (SEQ ID NO: 32), SKKKKGCKLFAVWKITYKDTGTSAPDTRPAP (SEQ ID NO: 33), SKKKKGCKLFAVWKITYKDT (SEQ ID NO: 34), GGKLFAVWKITYKDTGTSAPDTRPAP (SEQ ID NO: 35) or APGVTSAPDTRPAP (SEQ ID NO: 35). Also included are MUCl sequences that share about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, About 95%, or about 96%, about 97%, about 98%, or about 99% sequence identity. Also included are MUCl sequences that are glycosylated at any combination of one, two, three, four or more serine or threonine residues.
脂质组分Lipid composition
最初假定具有仅两种主要组分即碳水化合物组分和肽组分的糖肽会有效引发动物中的免疫应答。辅助T细胞表位预期诱导T细胞依赖性免疫应答,导致针对肿瘤相关碳水化合物B表位例如Ley和Tn的IgG抗体的产生。然而,在一些应用中,未发现二组分疫苗是非常有效的。推测B细胞和辅助T细胞表位缺乏提供用于树突状细胞(DC)成熟的合适“危险信号”的能力。为了补救这个问题,将脂质组分包含在化合物中,导致产生本发明的糖脂肽。It was initially assumed that glycopeptides with only two major components, carbohydrate and peptide, would effectively elicit an immune response in animals. Helper T-cell epitopes are expected to induce T-cell-dependent immune responses, resulting in the production of IgG antibodies directed against tumor-associated carbohydrate B epitopes such as Le y and Tn. However, in some applications, two-component vaccines have not been found to be very effective. It is speculated that B-cell and T-helper epitopes lack the ability to provide suitable "danger signals" for dendritic cell (DC) maturation. To remedy this problem, a lipid component is included in the compounds, resulting in the glycolipopeptides of the invention.
脂质组分可以是任何含脂质组分,例如脂肽、脂肪酸、磷脂、类固醇或脂质化氨基酸和糖脂例如脂质A衍生物。优选地,脂质组分是非抗原性的;即,它不引发针对脂质组分的特定区的抗体。然而,脂质组分可以是且优选的确充当免疫佐剂。脂质组分可以充当多表位糖脂肽的载体或递送系统。它帮助糖脂肽掺入囊泡或脂质体内,以促进糖脂肽递送至靶细胞,并且它增强靶细胞例如树突状细胞的摄取。进一步地脂质组分刺激细胞因子的产生。The lipid component can be any lipid-containing component, such as lipopeptides, fatty acids, phospholipids, steroids or lipidated amino acids and glycolipids such as lipid A derivatives. Preferably, the lipid component is non-antigenic; that is, it does not elicit antibodies against specific regions of the lipid component. However, the lipid component can and preferably does act as an immune adjuvant. The lipid component can serve as a carrier or delivery system for the polyepitopic glycolipopeptide. It facilitates the incorporation of glycolipopeptides into vesicles or liposomes to facilitate delivery of glycolipopeptides to target cells, and it enhances uptake by target cells such as dendritic cells. Further lipid components stimulate cytokine production.
用于在本发明的糖脂肽中使用的一类优选脂质组分包含多种Toll样受体(TLR)的分子配体。存在Toll样受体的许多已知亚类(例如TLR1、TLR2、TRL3、TLR4、TLR5、TLR6、TLR7、TLR8、TLR9、TLR10、TLR11、TLR12、TLR13、TLR14、TLR15和TLR16)。关于在Toll样受体之间的关系和进化的综述,参见Roach等人,PNAS 2005,102:9577-9582;关于在疫苗接种中的TLR信号转导的讨论,参见Duin等人,TRENDS Immunol.,2006,27:49-55。One class of preferred lipid components for use in the glycolipopeptides of the invention comprises various molecular ligands for Toll-like receptors (TLRs). There are many known subclasses of Toll-like receptors (eg, TLR1, TLR2, TRL3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, TLR13, TLR14, TLR15, and TLR16). For a review of the relationship and evolution among Toll-like receptors, see Roach et al., PNAS 2005, 102:9577-9582; for a discussion of TLR signaling in vaccination, see Duin et al., TRENDS Immunol. , 2006, 27:49-55.
TLR是由微生物的特定组分和某些宿主分子激活的模式识别受体家族。它们构成针对许多病原体的第一线防御,并且在先天性免疫系统的功能中起关键作用。在哺乳动物中的TLR首先在1997年鉴定,并且已估计大多数哺乳动物物种具有十到十五类Toll样受体。已知TLR包括:TLR1 (TLR1配体包括三酰基脂蛋白);TLR2 (TLR2配体包括脂蛋白、革兰氏阳性肽聚糖、脂磷壁酸、真菌和病毒糖蛋白);TLR3 (TLR3配体包括如在某些病毒中发现的双链RNA,和聚I:C);TLR4 (TLR4配体包括脂多糖和病毒糖蛋白);TLR5 (TLR5配体包括鞭毛蛋白);TLR6 (TLR6配体包括二酰基脂蛋白);TLR7 (TLR7配体包括小的合成免疫改性剂(例如咪喹莫特、R-848、洛索立宾和溴匹立明)和单链RNA);TLR8 (TLR8配体包括小的合成化合物和单链RNA);和TLR9 (TLR9配体包括未甲基化的CpG DNA基序)。参见例如,通过Akira,"Mammalian Toll-like receptors," Curr Opin Immunol 2003;15(1):5-11和Akira和Hemmi,"Recognition of pathogen-associated molecular patterns by TLR family,"Immunol Lett 2003;85(2):85-95的综述。TLRs are a family of pattern recognition receptors activated by specific components of microorganisms and certain host molecules. They constitute the first line of defense against many pathogens and play a key role in the function of the innate immune system. TLRs in mammals were first identified in 1997, and it has been estimated that most mammalian species have ten to fifteen classes of Toll-like receptors. Known TLRs include: TLR1 (TLR1 ligands include triacyl lipoproteins); TLR2 (TLR2 ligands include lipoproteins, Gram-positive peptidoglycan, lipoteichoic acid, fungal and viral glycoproteins); TLR3 (TLR3 ligands TLR4 (TLR4 ligands include lipopolysaccharide and viral glycoproteins); TLR5 (TLR5 ligands include flagellin); TLR6 (TLR6 ligands including diacyl lipoproteins); TLR7 (TLR7 ligands include small synthetic immune modifiers (such as imiquimod, R-848, loxoribine, and bropirimine) and single-stranded RNA); TLR8 (TLR8 Ligands include small synthetic compounds and single-stranded RNA); and TLR9 (TLR9 ligands include unmethylated CpG DNA motifs). See, e.g., by Akira, "Mammalian Toll-like receptors," Curr Opin Immunol 2003;15(1):5-11 and Akira and Hemmi, "Recognition of pathogen-associated molecular patterns by TLR family," Immunol Lett 2003;85 (2): A review of 85-95.
特别优选的是与TLR2和TLR4相互作用的脂质组分。TLR2涉及来自革兰氏阳性和革兰氏阴性菌以及支原体和酵母的广泛多样的微生物分子的识别。TLR2配体包括脂聚糖、脂多糖、脂磷壁酸和肽聚糖。TLR4识别革兰氏阴性脂多糖(LPS)和脂质A——其毒性部分。TLR配体是例如自Apotech和InvivoGen广泛商购可得的。优选地,脂质组分是促进糖脂肽通过抗原呈递细胞的摄取的TLR配体(参见实施例3)。Particularly preferred are lipid components that interact with TLR2 and TLR4. TLR2 is involved in the recognition of a wide variety of microbial molecules from Gram-positive and Gram-negative bacteria, as well as Mycoplasma and yeast. TLR2 ligands include lipoglycans, lipopolysaccharides, lipoteichoic acid, and peptidoglycan. TLR4 recognizes Gram-negative lipopolysaccharide (LPS) and lipid A, its toxic moiety. TLR ligands are widely commercially available eg from Apotech and InvivoGen. Preferably, the lipid component is a TLR ligand that facilitates the uptake of glycolipopeptides by antigen presenting cells (see Example 3).
用于用作本发明的糖脂肽的脂质组分的合适脂质包括PamCys型脂质结构,例如衍生自Pam3Cys (S-[(R)-2,3-二棕榈酰氧基-丙基]-N-棕榈酰-(R)-半胱氨酸)和Pam2Cys (S-[(R)-2,3-二棕榈酰氧基-丙基]-(R)-半胱氨酸)的那些,Pam2Cys缺乏Pam3Cys的N-棕榈酰基。Pam3Cys和Pam2Cys衍生自大肠杆菌的主要脂蛋白的免疫活性N末端序列。这类脂质也包括Pam3CysSK4 (N-棕榈酰-S-[(R)-2,3-双(棕榈酰氧基)-丙基]-(R)–半胱氨酰-(S)-丝氨酰-(S)-赖氨酸-(S)-赖氨酸-(S)-赖氨酸-(S)-赖氨酸)和Pam2CysSK4 (S-[(R)-2,3-双(棕榈酰氧基)-丙基]-(R)–半胱氨酰-(S)-丝氨酰-(S)-赖氨酸-(S)-赖氨酸-(S)-赖氨酸-(S)-赖氨酸(lysyne)),其缺乏Pam3CysSK4的N-棕榈酰基;应当理解在这些结构中的赖氨酸数目可以是0、1、2、3、4、5或更多(即Kn,其中n = 0、1、2、3、4、5或更多)。在一些实施方案中,脂质组分包括一条或多条脂质链、一个或多个半胱氨酸残基和一个或多个赖氨酸残基。Suitable lipids for use as the lipid component of the glycolipopeptides of the invention include PamCys-type lipid structures, for example derived from Pam 3 Cys ( S -[( R )-2,3-dipalmitoyloxy- Propyl] -N -palmitoyl-( R )-cysteine) and Pam 2 Cys ( S -[( R )-2,3-dipalmitoyloxy-propyl]-( R )-cysteine amino acid), Pam 2 Cys lacks the N-palmitoyl group of Pam 3 Cys. Pam 3 Cys and Pam 2 Cys are derived from the immunologically active N-terminal sequence of the major lipoprotein of E. coli. This class of lipids also includes Pam 3 CysSK 4 ( N -palmitoyl- S -[( R )-2,3-bis(palmitoyloxy)-propyl]-( R )–cysteinyl-( S )-seryl-( S )-lysine-( S )-lysine-( S )-lysine-( S )-lysine) and Pam 2 CysSK 4 ( S -[( R ) -2,3-bis(palmitoyloxy)-propyl]-( R )-cysteinyl-( S )-seryl-( S )-lysine-( S )-lysine- ( S )-lysine-( S )-lysine (lysine)), which lacks the N-palmitoyl group of Pam 3 CysSK4; it is understood that the number of lysines in these structures can be 0, 1, 2, 3, 4, 5 or more (ie K n , where n = 0, 1, 2, 3, 4, 5 or more). In some embodiments, the lipid component includes one or more lipid chains, one or more cysteine residues, and one or more lysine residues.
另一个优选类别的脂质包括脂质A (LpA)类型的脂质,例如衍生自大肠杆菌、鼠伤寒沙门氏菌(S. typhimurium)和脑膜炎奈瑟氏球菌的脂质A。脂质A可以通过接头附着至糖脂肽的碳水化合物组分(含有B表位)和/或肽组分(含有T表位),所述接头例如连接至异头中心或异头磷酸酯,C-4’磷酸酯或C-6’位置。磷酸酯可经修饰例如以包括一个或多个磷酸乙醇胺二酯。示例性脂质A衍生物在例如Caroff等人,2002,Microbes Infect;4:915-926;Raetz等人,2002,Annu Rev Biochem;71:635-700;和Dixon等人,2005,J Dent Res;84:584-595中描述。Another preferred class of lipids includes lipids of the lipid A (LpA) type, such as lipid A derived from Escherichia coli, S. typhimurium and Neisseria meningitidis. Lipid A can be attached to the carbohydrate component (containing the B epitope) and/or the peptide component (containing the T epitope) of the glycolipopeptide via a linker, for example linked to the anomeric center or to the anomeric phosphate, C-4' phosphate or C-6' position. Phosphate esters can be modified, for example, to include one or more phosphoethanolamine diesters. Exemplary lipid A derivatives are described, for example, in Caroff et al., 2002, Microbes Infect; 4:915-926; Raetz et al., 2002, Annu Rev Biochem; 71:635-700; and Dixon et al., 2005, J Dent Res ;84:584-595 described in.
在一些实施方案中,脂质组分是脂质化氨基酸。在一些实施方案中,脂质TLR2激动剂组分的脂质方面被不同类别的佐剂化合物取代,例如TLR4激动剂、TLR7激动剂、TLR8激动剂或TLR9激动剂。在一些实施方案中,激动剂是TLR9激动剂 CpG。In some embodiments, the lipid component is a lipidated amino acid. In some embodiments, the lipid aspect of the lipid TLR2 agonist component is replaced by a different class of adjuvant compounds, such as TLR4 agonists, TLR7 agonists, TLR8 agonists, or TLR9 agonists. In some embodiments, the agonist is the TLR9 agonist CpG.
下文在方案8中是用于掺入本发明的糖脂肽内的示例性免疫原性脂质。在第一行中的第一个结构是Pam3CysSKn;在第一行中的第二个结构是Pam2CysSKn;并且最后4个结构是脂质A衍生物。Below in Scheme 8 are exemplary immunogenic lipids for incorporation into the glycolipid peptides of the invention. The first structure in the first row is Pam3CysSKn ; the second structure in the first row is Pam2CysSKn ; and the last 4 structures are lipid A derivatives.
方案8Option 8
在结构上基于Pam3Cys的脂质对于用作脂质组分是特别优选的。Pam3Cys衍生自大肠杆菌的主要脂蛋白的免疫活性N末端序列。这些脂肽是有力的免疫佐剂。近期研究已显示Pam3Cys通过与Toll样受体2 (TLR2)的相互作用发挥其活性。Lipids based on Pam3Cys in structure are particularly preferred for use as lipid components. Pam 3 Cys is derived from the immunologically active N -terminal sequence of the major lipoprotein of E. coli. These lipopeptides are potent immune adjuvants. Recent studies have shown that Pam 3 Cys exerts its activity through the interaction with Toll-like receptor 2 (TLR2).
不受理论束缚,认为在脂质组分和TLR之间的相互作用导致促炎细胞因子和趋化因子的产生,其进而刺激抗原呈递细胞(APC),从而起始辅助T细胞发育和激活。TLR配体与B和T表位的共价连接确保细胞因子在其中疫苗与免疫细胞相互作用的位点上产生。这导致细胞因子的高局部浓度,促进有关免疫细胞的成熟。脂肽促进抗原呈递细胞和B淋巴细胞的选择性靶向和摄取。另外,脂肽促进糖脂肽掺入脂质体内。脂质体作为疫苗设计中的载体已吸引关注,这是由于其低固有免疫原性,从而避免不希望有的载体诱导的免疫应答。Without being bound by theory, it is believed that interactions between lipid components and TLRs result in the production of proinflammatory cytokines and chemokines, which in turn stimulate antigen presenting cells (APCs), thereby initiating helper T cell development and activation. Covalent attachment of TLR ligands to B and T epitopes ensures that cytokines are produced at the sites where the vaccine interacts with immune cells. This results in high local concentrations of cytokines, promoting maturation of the involved immune cells. Lipopeptides facilitate selective targeting and uptake by antigen-presenting cells and B lymphocytes. In addition, lipopeptides facilitate the incorporation of glycolipopeptides into liposomes. Liposomes have attracted attention as carriers in vaccine design due to their low intrinsic immunogenicity, thereby avoiding undesired carrier-induced immune responses.
本发明的免疫原性疫苗可以例如通过化学选择性连接、更特别地天然化学连接(NCL)合成,如WO 2007/146070和美国专利公开2009/0196916A1中描述的。简言之,疫苗的一种或多种个别组分在脂质结构内包埋或溶解,所述脂质结构例如脂质单层、脂质双层、脂质体、微团、薄膜、乳状液、基质或凝胶。在连接反应中使用的反应物可以包括碳水化合物组分、肽组分、脂质组分或其缀合物或组合。设计或选择这些反应物以包含所需抗原性或免疫原性特征,例如本发明的免疫原性疫苗的T表位或B表位。Immunogenic vaccines of the invention can be synthesized, for example, by chemoselective ligation, more particularly native chemical ligation (NCL), as described in WO 2007/146070 and US Patent Publication 2009/0196916A1. Briefly, one or more individual components of the vaccine are entrapped or dissolved within lipid structures such as lipid monolayers, lipid bilayers, liposomes, micelles, films, milky liquid, matrix or gel. Reactants used in the ligation reaction may include carbohydrate components, peptide components, lipid components, or conjugates or combinations thereof. These reactants are designed or selected to contain the desired antigenic or immunogenic characteristics, eg, T epitopes or B epitopes of the immunogenic vaccines of the invention.
任选接头Optional connector
一个或多个接头(“L”)任选用于糖脂肽的三种组分的装配。在一个实施方案中,接头是双功能接头,其具有在两个不同位置中的官能团(优选在第一个和第二个末端上),以便将三种组分中的两种共价连接在一起。双功能接头可以是同功能的(即含有两个等同的官能团)或异功能的(即含有两个不同的官能团)。在另一个实施方案中,接头是三功能的(异功能或同功能),并且可以将糖脂肽的所有三种组分连接在一起。合适的官能团具有针对下述中的任一种的反应性或包含下述中的任一种:氨基、醇、羧酸、硫氢基、链烯烃、炔烃、叠氮化物、硫酯、酮、醛或肼。氨基酸例如半胱氨酸可以构成接头。One or more linkers ("L") are optionally used for assembly of the three components of the glycolipopeptide. In one embodiment, the linker is a bifunctional linker having functional groups in two different positions (preferably on the first and second ends) to covalently link two of the three components in Together. Bifunctional linkers can be homofunctional (ie, contain two equivalent functional groups) or heterofunctional (ie, contain two different functional groups). In another embodiment, the linker is trifunctional (heterofunctional or homofunctional) and can link together all three components of the glycolipopeptide. Suitable functional groups are reactive toward or comprise any of the following: amino, alcohol, carboxylic acid, sulfhydryl, alkene, alkyne, azide, thioester, ketone , aldehyde or hydrazine. Amino acids such as cysteine may constitute linkers.
双功能接头在方案9中例示。A bifunctional linker is exemplified in Scheme 9.
方案9Option 9
图1显示了示例性完全合成的本发明的糖脂肽,其含有基于碳水化合物的B表位、肽T表位和脂肽。图1中所示的化合物含有充当B表位的L-甘油-D-甘露-庚糖,已鉴定为人T细胞的MHC II类限制识别位点且衍生自脑膜炎奈瑟氏球菌的外膜蛋白质的肽序列YAFKYARHANVGRNAFELFL (SEQ ID NO:2),和脂肽S-2-3[二棕榈酰氧基]-(R/S)-丙基-N-棕榈酰-R-半胱氨酸(Pam3Cys)。如本文其他地方指出的,脂肽Pam3Cys和有关化合物Pam3CysSK4是高度有效的B细胞和巨噬细胞激活物。Figure 1 shows an exemplary fully synthetic glycolipopeptide of the invention containing a carbohydrate-based B epitope, a peptide T epitope, and a lipopeptide. The compound shown in Figure 1 contains L-glycerol-D-mannose-heptose serving as the B epitope, identified as an MHC class II restricted recognition site for human T cells and derived from the outer membrane protein of Neisseria meningitidis The peptide sequence YAFKYARHANVGRNAFELFL (SEQ ID NO:2), and the lipopeptide S-2-3[dipalmitoyloxy]-(R/S)-propyl-N-palmitoyl-R-cysteine (Pam 3 Cys). As noted elsewhere herein, the lipopeptide Pam3Cys and the related compound Pam3CysSK4 are highly potent activators of B cells and macrophages .
如实施例中例示的,制备糖脂肽的方法也被本发明所包括。优选地,用于制备糖脂肽的方法利用化学合成,导致产生完全合成的糖脂肽。在利用一个或多个接头的实施方案中,任选接头组分是官能化的,以便促进主要组分之一与主要组分中的另一种的共价连接。例如,接头可以在每个末端上用硫醇反应基团例如马来酰亚胺或溴乙酰基官能化,并且将待连接的组分修饰为包括反应性硫醇。用于连接化学的其他选项包括天然化学连接、Staudinger连接和Huisgen连接(也称为“点击化学”)。实施例2举例说明碳水化合物组分(在那种情况下为寡糖)和肽组分可如何用含硫醇接头官能化。优选地,如果使用的话,那么接头组分是非抗原性的。As exemplified in the Examples, methods of preparing glycolipopeptides are also encompassed by the present invention. Preferably, the method for preparing the glycolipopeptide utilizes chemical synthesis, resulting in a fully synthetic glycolipeptide. In embodiments utilizing one or more linkers, optionally the linker components are functionalized so as to facilitate covalent attachment of one of the main components to another of the main components. For example, the linker can be functionalized on each end with a thiol-reactive group, such as maleimide or bromoacetyl, and the components to be attached are modified to include the reactive thiol. Other options for ligation chemistry include native chemical ligation, Staudinger ligation, and Huisgen ligation (also known as "click chemistry"). Example 2 illustrates how carbohydrate components (in that case oligosaccharides) and peptide components can be functionalized with thiol-containing linkers. Preferably, the linker component, if used, is non-antigenic.
本发明的糖脂肽能够在哺乳动物中生成免疫应答。糖脂肽是抗原性的,因为它可以生成体液应答,导致B细胞的激活和抗体(免疫球蛋白)例如IgM的产生。另外,糖脂肽是免疫原性的,因为它可以生成细胞应答;例如,它促进T细胞特别是辅助T细胞的激活,T细胞在包括IgG的产生在内的更复杂抗体应答的生成中也是有帮助的。最后,在动物中引发的免疫应答包括抗碳水化合物抗体的产生。The glycolipopeptides of the invention are capable of generating an immune response in a mammal. Glycolipid peptides are antigenic because they generate a humoral response leading to activation of B cells and production of antibodies (immunoglobulins) such as IgM. In addition, glycolipopeptides are immunogenic because they generate cellular responses; for example, they promote the activation of T cells, especially helper T cells, which are also involved in the generation of more complex antibody responses including IgG production helpful. Finally, the immune response elicited in animals includes the production of anti-carbohydrate antibodies.
在本发明的另一个实施方案中,免疫原性疫苗是二组分疫苗,其包含共价连接的至少一种肽组分和至少一种佐剂组分。肽组分包括T表位,优选MUC1起源的辅助T表位,包括但不限于本文描述的那些中的任一种。虽然疫苗的这个实施方案可能不能生成针对特定B表位的特异性免疫性,但它显示出抗肿瘤性质。二组分疫苗的例子是共价连接至辅助T表位的Pam3CysSK4;参见例如,实施例8中的化合物3。在一个实施方案中,免疫原性疫苗的佐剂组分包含toll样受体(TLR)配体。至少15种不同的哺乳动物TLR是已知的(例如TLR1、TLR2、TLR3、TLR4、TLR5、TLR6、TLR7、TLR8、TLR9、TLR10、TLR11、TLR12、TLR13、TLR14和TLR15),并且其配体显示出显著的结构变化。一些TLR配体在本文中描述,但应当理解此类列表不以任何方式限制本发明。在一些实施方案中,二组分免疫原性疫苗可以配制用于作为组合物施用,所述组合物进一步包含另外的试剂,例如免疫调节剂、佐剂、TLR激动剂和/或赋形剂。TLR配体是技术人员众所周知的。它们可以采取脂肽、糖脂、脂蛋白、碳水化合物、小有机分子、核酸例如单或双链DNA或RNA的形式,并且已知许多TLR配体充当免疫刺激剂。免疫刺激性TLR配体的一个例子是TLR2配体,包括但不限于本文描述的那些中的任一种。另一个例子是通常称为“CpG”的TLR9配体。这种化合物是含有CpG基序的免疫刺激性寡脱氧核苷酸(ODN)。CpG基序被TLR9识别为配体(Rothenfusser等人,2002,Human immunology 63(12):1111-1119)。优选地,CpG ODN是未甲基化的。CpG ODN是短的单链DNA分子,其含有胞嘧啶(“C”核苷酸)随后为鸟嘌呤(“G”核苷酸)。“p”一般指DNA的磷酸二酯主链。任选地,CpG基序可以修饰为含有硫代磷酸酯(PS)主链,以便保护ODN不被核酸酶例如DNA酶降解(Dalpke等人,2002,Immunology 106(1):102-12)。CpG ODN通常的长度范围为约18个核苷酸到约28个核苷酸。任选地,它们含有回文序列。用于在本发明中使用的CpG的一个例子是5'-TCCATGACGTTCCTGACGTT-3' (SEQ ID NO:36)。存在于脊椎动物DNA中的CpG基序由于转录调节机制所致通常是甲基化的(Sulewska等人,2007,Folia Histochemica etCytobiologica 45(3):149-158)。未甲基化的CpG基序已显示充当免疫刺激剂(Weiner等人,1997,Proc. Natl. Acad. Sci. USA,94:10833-10837)。CpG已用于研究中以增强肿瘤免疫(Nierkens等人,2009,PLoS One. 4(12):e8368;Cooper等人,2004,J. Clin.Immunol. 24(6):693-701;Leichman等人,2005,J. Clin. Oncol. 2005 ASCO AnnualMeeting Proceedings. 23(16S):7039)。In another embodiment of the invention, the immunogenic vaccine is a two-component vaccine comprising at least one peptide component and at least one adjuvant component covalently linked. The peptide component includes a T epitope, preferably a helper T epitope of MUCl origin, including but not limited to any of those described herein. Although this embodiment of the vaccine may not be able to generate specific immunity against a particular B epitope, it exhibits antitumor properties. An example of a two-component vaccine is Pam3CysSK4 covalently linked to a helper T epitope; see eg, Compound 3 in Example 8. In one embodiment, the adjuvant component of the immunogenic vaccine comprises a toll-like receptor (TLR) ligand. At least 15 different mammalian TLRs are known (e.g., TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, TLR13, TLR14, and TLR15), and their ligands show significant structural changes. Some TLR ligands are described herein, but it is understood that such listing does not limit the invention in any way. In some embodiments, two-component immunogenic vaccines may be formulated for administration as compositions further comprising additional agents such as immunomodulators, adjuvants, TLR agonists, and/or excipients. TLR ligands are well known to the skilled person. They can take the form of lipopeptides, glycolipids, lipoproteins, carbohydrates, small organic molecules, nucleic acids such as single- or double-stranded DNA or RNA, and many TLR ligands are known to act as immunostimulants. An example of an immunostimulatory TLR ligand is a TLR2 ligand, including but not limited to any of those described herein. Another example is the TLR9 ligand commonly referred to as "CpG". This compound is an immunostimulatory oligodeoxynucleotide (ODN) containing a CpG motif. CpG motifs are recognized by TLR9 as ligands (Rothenfusser et al., 2002, Human immunology 63(12):1111-1119). Preferably, the CpG ODN is unmethylated. CpG ODNs are short single-stranded DNA molecules that contain cytosine ("C" nucleotide) followed by guanine ("G" nucleotide). "p" generally refers to the phosphodiester backbone of DNA. Optionally, the CpG motif can be modified to contain a phosphorothioate (PS) backbone in order to protect the ODN from degradation by nucleases such as DNase (Dalpke et al., 2002, Immunology 106(1):102-12). CpG ODNs typically range in length from about 18 nucleotides to about 28 nucleotides. Optionally, they contain palindromic sequences. An example of a CpG for use in the present invention is 5'-TCCATGACGTTCCTGACGTT-3' (SEQ ID NO: 36). CpG motifs present in vertebrate DNA are often methylated due to transcriptional regulatory mechanisms (Sulewska et al., 2007, Folia Histochemica et Cytobiologica 45(3):149-158). Unmethylated CpG motifs have been shown to act as immunostimulants (Weiner et al., 1997, Proc. Natl. Acad. Sci. USA, 94:10833-10837). CpGs have been used in research to enhance tumor immunity (Nierkens et al., 2009, PLoS One. 4(12):e8368; Cooper et al., 2004, J. Clin. Immunol. 24(6):693-701; Leichman et al. People, 2005, J. Clin. Oncol. 2005 ASCO Annual Meeting Proceedings. 23(16S):7039).
许多CpG ODN是商购可得的。例如,CpG ODN可以作为A型、B型或C型分子通过InvivoGen (San Diego,CA)购买。这些类别基于结构差异及其免疫刺激活性(Krug等人,2001. Eur J Immunol,31(7):2154-63;Marshall等人,2005 DNA Cell Biol. 24(2):63-72;Martinson等人,2006,Immunology 120:526-535)。Many CpG ODNs are commercially available. For example, CpG ODNs can be purchased through InvivoGen (San Diego, CA) as Type A, Type B, or Type C molecules. These categories are based on structural differences and their immunostimulatory activity (Krug et al., 2001. Eur J Immunol, 31(7):2154-63; Marshall et al., 2005 DNA Cell Biol. 24(2):63-72; Martinson et al. People, 2006, Immunology 120:526-535).
在另一个实施方案中,免疫原性疫苗的佐剂组分是如本文描述的脂质组分(还参见WO 2007/079448、美国专利公开2009/0041836 A1和WO 2010/002478)。一些TLR配体例如TLR2的配体也构成脂质组分,但免疫原性疫苗的脂质组分并不限于TLR配体;即脂质组分可以是可以充当佐剂的任何合适的免疫原性或抗原性脂质,例如脂质化氨基酸(“LAA”)。In another embodiment, the adjuvant component of the immunogenic vaccine is a lipid component as described herein (see also WO 2007/079448, US Patent Publication 2009/0041836 Al and WO 2010/002478). Some TLR ligands, such as those of TLR2, also constitute the lipid component, but the lipid component of an immunogenic vaccine is not limited to TLR ligands; i.e., the lipid component can be any suitable immunogen that can act as an adjuvant Antigenic or antigenic lipids, such as lipidated amino acids ("LAA").
在另一个方面,本发明的糖脂肽用于产生多克隆或单克隆抗体,其识别碳水化合物组分和肽组分中的任一种或两者。本发明包含制备所述抗体的方法,以及抗体自身和产生本发明的单克隆抗体的杂交瘤。In another aspect, the glycolipopeptides of the invention are used to generate polyclonal or monoclonal antibodies that recognize either or both of the carbohydrate component and the peptide component. The invention includes methods of making the antibodies, as well as the antibodies themselves and hybridomas that produce the monoclonal antibodies of the invention.
用于在生产抗体中使用的本发明的免疫原性糖脂肽可以含有本文描述的任何碳水化合物组分,而无限制。优选地,它含有糖肽作为其碳水化合物组分。糖肽包括糖基化肽序列,其包括碳水化合物部分例如糖。糖可以是单糖、寡糖或多糖。优选地,用于生成抗体的糖脂肽的碳水化合物组分含有如上所述的自身抗原。有利地,即使碳水化合物组分例如糖肽是弱抗原性的(例如自身抗原),碳水化合物组分与肽组分和脂质组分的共价连接也产生显著免疫原性的糖脂肽。The immunogenic glycolipopeptides of the invention for use in the production of antibodies may contain any of the carbohydrate components described herein without limitation. Preferably, it contains glycopeptides as its carbohydrate component. Glycopeptides include glycosylated peptide sequences that include carbohydrate moieties such as sugars. Sugars can be monosaccharides, oligosaccharides or polysaccharides. Preferably, the carbohydrate component of the glycolipopeptide used to generate antibodies contains an autoantigen as described above. Advantageously, covalent attachment of carbohydrate components to peptide and lipid components results in significantly immunogenic glycolipopeptides even if the carbohydrate components, such as glycopeptides, are weakly antigenic (eg, self-antigens).
结合糖脂肽的本发明的抗体优选结合B表位,其包括糖部分,并且在优选实施方案中包括形成糖肽的肽的至少一部分。优选的抗体与用作碳水化合物组分的糖肽结合,但不与单独的脱糖基化肽或糖残基结合。Antibodies of the invention that bind glycolipopeptides preferably bind a B epitope, which includes a sugar moiety and, in a preferred embodiment, at least a portion of a peptide forming a glycopeptide. Preferred antibodies bind to glycopeptides used as carbohydrate components, but not to individual deglycosylated peptides or sugar residues.
当用于生成抗体时,本发明的糖脂肽成功生成高亲和力IgG抗体。这对于具有弱抗原性碳水化合物组分例如自身抗原的糖脂肽的实施方案是尤其令人惊讶和出乎意料的。多克隆或单克隆抗体因此优选是IgG同种型抗体。不受理论束缚,认为本发明的糖脂肽是优良抗原(与非脂质化糖肽相比较),因为它刺激细胞因子的局部产生,上调共刺激蛋白质,增强通过巨噬细胞和树突状细胞的摄取和/或避免表位抑制。When used to generate antibodies, the glycolipopeptides of the present invention successfully generate high affinity IgG antibodies. This is especially surprising and unexpected for embodiments of glycolipopeptides with weakly antigenic carbohydrate components such as self-antigens. Polyclonal or monoclonal antibodies are therefore preferably IgG isotype antibodies. Without being bound by theory, it is believed that the glycolipopeptides of the present invention are superior antigens (compared to non-lipidated glycopeptides) because they stimulate local production of cytokines, upregulate co-stimulatory proteins, and enhance passage through macrophages and dendritic cells. Cellular uptake and/or avoidance of epitope inhibition.
本发明的抗体包括但不限于识别B表位的那些,所述B表位含有O-GlcNAc、O-GalNAc、O-甘露糖或其他糖修饰。可被本发明的抗体识别的其他B表位包括含有糖胺聚糖的片段的那些,糖胺聚糖例如肝素、硫酸类肝素、硫酸软骨素、硫酸皮肤素、硫酸角质素、乙酰透明质酸和一般的任何糖胺聚糖。在通过重复二糖单位形成的糖胺聚糖的情况下,B表位可以含有一个或多个二糖单位。被本发明的抗体识别的B表位可以含有戊糖、己糖或包括酸的其他糖部分,包括但不限于葡糖醛酸、艾杜糖醛酸、透明质酸、葡萄糖、半乳糖、半乳糖胺、葡糖胺等。本发明的抗体优选使用本发明的糖脂肽作为免疫原产生,其中碳水化合物组分含有目的B表位。天然存在的B表位的类似物例如含有N联或S联结构的那些或糖模拟物,可以用作碳水化合物组分,例如以使得糖脂肽免疫原更加代谢稳定。Antibodies of the invention include, but are not limited to, those that recognize B epitopes that contain O -GlcNAc, O -GalNAc, O -mannose, or other sugar modifications. Other B epitopes that may be recognized by the antibodies of the invention include those containing fragments of glycosaminoglycans such as heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, hyaluronan and any glycosaminoglycan in general. In the case of glycosaminoglycans formed by repeating disaccharide units, the B epitope may contain one or more disaccharide units. B epitopes recognized by the antibodies of the invention may contain pentoses, hexoses, or other sugar moieties including acids, including but not limited to glucuronic acid, iduronic acid, hyaluronic acid, glucose, galactose, galactose, Lactosamine, Glucosamine, etc. The antibodies of the invention are preferably produced using the glycolipopeptides of the invention as immunogens, wherein the carbohydrate component contains the B epitope of interest. Analogs of naturally occurring B epitopes, such as those containing N-linked or S-linked structures, or glycomimetics, may be used as carbohydrate components, for example, to render the glycolipopeptide immunogen more metabolically stable.
使用本发明的糖脂肽产生的抗体有利地包括高亲和力IgG抗体,其识别广谱糖蛋白。因此,即使使用本发明的糖脂肽作为免疫原产生的抗体对于用作碳水化合物组分的糖肽是特异性的,它们也可以结合广谱糖蛋白。对于含有目的B表位组分的糖基化肽或蛋白质具有相对广泛选择性的抗体在本文中被称为“泛特异性”抗体。本发明的多克隆或单克隆抗体可以是泛特异性或位点特异性的。如该术语在本文中使用的,泛特异性抗体是这样的抗体,其特异性识别所选B表位例如含有O-GlcNAc的B表位,但对于含有该B表位的蛋白质和肽具有相对广泛的选择性。泛特异性抗体因此能够结合含有目的B表位的多种不同的糖基化蛋白质或肽,尽管它不一定结合含有所选B表位的所有糖基化蛋白质或肽。Antibodies generated using the glycolipopeptides of the invention advantageously include high affinity IgG antibodies that recognize a broad spectrum of glycoproteins. Therefore, even though antibodies raised using the glycolipopeptides of the present invention as immunogens are specific for the glycopeptide used as the carbohydrate component, they can bind a broad spectrum of glycoproteins. Antibodies with relatively broad selectivity for glycosylated peptides or proteins containing the B-epitope component of interest are referred to herein as "pan-specific" antibodies. The polyclonal or monoclonal antibodies of the invention can be pan-specific or site-specific. As the term is used herein, a pan-specific antibody is an antibody that specifically recognizes a selected B epitope, such as a B epitope containing O -GlcNAc, but has relative specificity for proteins and peptides containing that B epitope. Wide range of options. A pan-specific antibody is thus capable of binding a variety of different glycosylated proteins or peptides containing the B epitope of interest, although it does not necessarily bind all glycosylated proteins or peptides containing the B epitope of choice.
不预期受理论束缚,被本发明的泛特异性抗体识别的不同糖蛋白可以共享在糖基化位点上的基本上相似或等同的(糖)肽序列(即一级序列)或基本上相似的二级或三级结构,从而导致广谱结合靶被该抗体识别。由抗体与之结合的O-GlcNAc修饰的糖蛋白共享的二级或三级表位结构可以有利地维持在糖脂肽免疫原中,如由识别广谱糖蛋白的IgG抗体的成功产生证明的。Without intending to be bound by theory, different glycoproteins recognized by pan-specific antibodies of the invention may share substantially similar or identical (glyco)peptide sequences (i.e. primary sequences) or substantially similar secondary or tertiary structure, resulting in a broad spectrum of binding targets recognized by the antibody. Secondary or tertiary epitope structures shared by O -GlcNAc-modified glycoproteins to which antibodies bind can be favorably maintained in glycolipopeptide immunogens, as demonstrated by the successful generation of IgG antibodies that recognize a broad spectrum of glycoproteins .
优选地,本发明的抗体结合具有包含O-GlcNAc、O-GalNAc或其他糖修饰的表位的多种糖基化蛋白质或肽,但不能可检测地结合不含有该糖的蛋白质或肽。更优选地,抗体结合具有包含O-GlcNAc、O-GalNAc或其他糖修饰的表位的蛋白质或肽,但不会可检测地结合不含有O-GlcNAc、O-GalNAc或其他糖修饰的相同蛋白质或肽。Preferably, the antibodies of the invention bind various glycosylated proteins or peptides with epitopes comprising O -GlcNAc, O -GalNAc, or other sugar modifications, but cannot detectably bind proteins or peptides that do not contain such sugars. More preferably, the antibody binds to a protein or peptide having an epitope comprising O -GlcNAc, O -GalNAc, or other sugar modification, but does not detectably bind to the same protein that does not contain O -GlcNAc, O -GalNAc, or other sugar modification or peptides.
优选多克隆或单克隆抗体的例子是结合含有O-GlcNAc单糖残基的糖肽的多克隆或单克隆抗体。在特别优选的实施方案中,抗体具有对于O-GlcNAc修饰的蛋白质相对广泛的选择性。例如,许多目的蛋白质具有由O-GlcNAc修饰的TPVSS (SEQ ID NO:10)序列,并且优选的单克隆抗体识别这个和/或相似的糖基化肽序列。对O-GlcNAc修饰的序列特异的优选单克隆抗体的例子包括由杂交瘤细胞系1F5.D6、9D1.E4、18B10.C7和5H11.H6产生的单克隆抗体。这些单克隆抗体使用化合物52和/或53作为免疫原产生。因此,在一个实施方案中,本发明的抗体结合化合物52或化合物53的碳水化合物组分。杂交瘤细胞系1F5.D6、9D1.E4和18B10.C7于2008年7月1日保藏于美国典型培养物保藏中心(ATCC),10801 UniversityBlvd.,Manassas,VA,20110-2209,USA,并且分别指定ATCC保藏号PTA-9339、PTA-9340和PTA-9341。本发明包括杂交瘤细胞系以及它们所产生的单克隆抗体。Examples of preferred polyclonal or monoclonal antibodies are polyclonal or monoclonal antibodies that bind to glycopeptides containing O -GlcNAc monosaccharide residues. In particularly preferred embodiments, the antibody has a relatively broad selectivity for O -GlcNAc modified proteins. For example, many proteins of interest have the sequence TPVSS (SEQ ID NO: 10) modified with O -GlcNAc, and preferred monoclonal antibodies recognize this and/or similar glycosylated peptide sequences. Examples of preferred monoclonal antibodies specific for O -GlcNAc modified sequences include monoclonal antibodies produced by the hybridoma cell lines 1F5.D6, 9D1.E4, 18B10.C7 and 5H11.H6. These monoclonal antibodies were raised using compounds 52 and/or 53 as immunogens. Thus, in one embodiment, an antibody of the invention binds the carbohydrate component of Compound 52 or Compound 53. The hybridoma cell lines 1F5.D6, 9D1.E4 and 18B10.C7 were deposited in the American Type Culture Collection (ATCC) on July 1, 2008, 10801 University Blvd., Manassas, VA, 20110-2209, USA, and respectively Assigned ATCC deposit numbers PTA-9339, PTA-9340 and PTA-9341. The invention includes hybridoma cell lines and the monoclonal antibodies they produce.
优选多克隆或单克隆抗体的另一个例子是结合硫酸类肝素片段的那种。Another example of a preferred polyclonal or monoclonal antibody is one that binds a heparan sulfate fragment.
应当理解具有临床意义或兴趣的任何碳水化合物或糖肽可以作为本发明的糖脂肽的碳水化合物和/或肽组分掺入,且用于根据本发明的方法生成多克隆和单克隆抗体。此类碳水化合物和肽包括具有医学和兽医学兴趣的那些,以及具有其他商业或研究应用的那些。应当理解本发明的单克隆和多克隆抗体并不限于识别任何特定配体的那些,但包括而不限于且仅作为例子,针对任何类型的肿瘤相关碳水化合物抗原(TACA)和衍生自任何微生物的任何糖的抗体。It is understood that any carbohydrate or glycopeptide of clinical significance or interest may be incorporated as the carbohydrate and/or peptide component of the glycolipopeptides of the invention and used to generate polyclonal and monoclonal antibodies according to the methods of the invention. Such carbohydrates and peptides include those of medical and veterinary interest, as well as those of other commercial or research applications. It should be understood that the monoclonal and polyclonal antibodies of the invention are not limited to those recognizing any particular ligand, but include, without limitation and by way of example only, directed against any type of tumor-associated carbohydrate antigen (TACA) and derived from any microorganism. Antibodies to any sugar.
概言之,使用本发明的糖脂肽制备本发明的单克隆抗体在产生对于其碳水化合物或糖肽抗原具有高亲和力的单克隆IgG抗体中是令人惊讶地有效的,即使当抗原是弱抗原性的时。这打开了产生对于研究、诊断和治疗免疫有关疾病或具有自身免疫或炎性组分的疾病有用的抗体的大门,所述疾病包括癌症、II型糖尿病、变态反应、哮喘、克罗恩(Crohn's)病、阿尔茨海默氏病、肌营养不良、微生物感染等。例如识别O-GlcNAc修饰的糖蛋白的本发明的单克隆抗体远远优于商购可得的抗体,例如CTD110.6 (Covance ResearchProducts,Inc.)。本发明的糖脂肽可以使用模块合成进行装配,其中脂质、肽和碳水化合物组分根据所需应用进行选择。此外,本发明的糖脂肽是用于产生泛特异性抗体特别是泛特异性单克隆IgG抗体的显著有效的抗原,所述抗体识别含有O联单糖例如O-GlcNAc的糖基化肽和蛋白质。In summary, the preparation of the monoclonal antibodies of the present invention using the glycolipopeptides of the present invention is surprisingly effective in producing monoclonal IgG antibodies with high affinity for their carbohydrate or glycopeptide antigens, even when the antigens are weak when antigenic. This opens the door to the generation of antibodies useful for the study, diagnosis and treatment of immune-related diseases or diseases with an autoimmune or inflammatory component, including cancer, type II diabetes, allergies, asthma, Crohn's ) disease, Alzheimer's disease, muscular dystrophy, microbial infection, etc. For example, monoclonal antibodies of the invention that recognize O -GlcNAc modified glycoproteins are far superior to commercially available antibodies, such as CTD110.6 (Covance Research Products, Inc.). The glycolipopeptides of the invention can be assembled using modular synthesis in which lipid, peptide and carbohydrate components are selected according to the desired application. Furthermore, the glycolipopeptides of the present invention are remarkably effective antigens for the generation of pan-specific antibodies, particularly pan-specific monoclonal IgG antibodies, which recognize glycosylated peptides containing O -linked monosaccharides such as O -GlcNAc and protein.
本发明的抗体和通过本发明的方法产生的那些是用于鉴定和表征蛋白质、肽和与多种疾病状态相关的其他生物分子的重要研究工具。例如,本发明的泛特异性抗体可以用于自复杂生物样品的获取(pull down)糖蛋白。这种方法可以用于检测和鉴定迄今未知与特定病症或疾病状态相关的蛋白质,从而鉴定潜在的治疗或诊断靶。在一个实施方案中,本发明的抗体可以在使得抗体能够结合多种糖基化蛋白质或糖基化肽并检测抗体-蛋白质结合的条件下与生物样品接触。任选地,该方法可以包括分离糖基化蛋白质或糖基化肽。该方法可以进一步包括鉴定在多种糖基化蛋白质或糖基化肽内的一种或多种蛋白质或肽。糖基化蛋白质和肽的鉴定可以提供探究糖基化的作用及其在多种生物过程中的生物牵涉的机会。例如,蛋白质或肽的糖基化可以涉及许多生物过程,包括但不限于转录、翻译、信号转导、遍在蛋白途径、细胞内囊泡的顺行运输和翻译后修饰(例如SUMO化和磷酸化)。用于鉴定蛋白质或肽的方法是本领域众所周知的,并且可以包括但不限于诸如质谱法和埃德曼(Edman)降解等技术。The antibodies of the invention and those produced by the methods of the invention are important research tools for the identification and characterization of proteins, peptides and other biomolecules associated with various disease states. For example, pan-specific antibodies of the invention can be used to pull down glycoproteins from complex biological samples. This approach can be used to detect and identify proteins that have not been hitherto associated with a particular disorder or disease state, thereby identifying potential therapeutic or diagnostic targets. In one embodiment, an antibody of the invention can be contacted with a biological sample under conditions such that the antibody is capable of binding a variety of glycosylated proteins or glycosylated peptides and detecting antibody-protein binding. Optionally, the method may include isolating glycosylated proteins or glycosylated peptides. The method may further comprise identifying one or more proteins or peptides within the plurality of glycosylated proteins or glycosylated peptides. The identification of glycosylated proteins and peptides can provide an opportunity to investigate the role of glycosylation and its biological involvement in a variety of biological processes. For example, glycosylation of proteins or peptides can be involved in many biological processes including but not limited to transcription, translation, signal transduction, ubiquitin pathway, anterograde trafficking of intracellular vesicles, and post-translational modifications such as SUMOylation and phosphorylation change). Methods for identifying proteins or peptides are well known in the art and may include, but are not limited to, techniques such as mass spectrometry and Edman degradation.
本发明的泛特异性抗体也可以用于鉴定在疾病状态中具有改变的糖基化的蛋白质或肽。O-GlcNAc修饰与多种疾病状态相关。例如,在骨骼肌和胰腺糖肽中O-GlcNAc修饰的增加与II型糖尿病的发展关联,而在神经糖肽中O-GlcNAc修饰的减少与阿尔茨海默氏病的发作关联(Dias和Hart;Mol. BioSyst. 3:766-772(2007))。因此,在O-GlcNAc修饰的水平方面的改变的检测可以用作诊断或预后工具。另外,此类蛋白质或肽的糖基化状态可以与疾病状态关联。用于鉴定具有与疾病状态关联的改变糖基化的蛋白质或肽的方法包括使本发明的抗体与具有已知疾病状态的第一生物样品一起温育,和在使得抗体能够结合在第一样品内的多种糖基化蛋白质和肽和在第二样品内的多种糖基化蛋白质和肽的条件下,使抗体与具有非患病状态的第二生物样品一起温育,独立地从所述样品中分离糖基化蛋白质和糖基化肽,并且鉴定所述糖基化蛋白质和糖基化肽。该方法可以进一步包括比较在第一样品中鉴定的糖基化蛋白质和糖基化肽与在第二样品中的糖基化蛋白质和糖基化肽,其中显示在第一和第二样品之间的糖基化状态中的变化的蛋白质或肽指示糖基化蛋白质或糖基化肽与疾病状态相关。在糖基化和疾病状态之间的关联包括相对于非患病状态具有增加或减少的糖基化的疾病状态。此外,疾病状态可以显示出糖基化,而非疾病状态显示糖基化的完全不存在,或相反地,疾病状态可以显示糖基化的完全不存在,而无疾病显示出糖基化的存在。在每个例子中,蛋白质或肽视为在疾病状态中具有差异或改变的糖基化。使用本发明的抗体检测糖基化的存在情况或过表达和检测糖基化水平中的变化的方法先前已得到描述。The pan-specific antibodies of the invention can also be used to identify proteins or peptides with altered glycosylation in disease states. O -GlcNAc modification is associated with various disease states. For example, increased O -GlcNAc modification in skeletal muscle and pancreatic glycopeptides is associated with the development of type II diabetes, whereas decreased O -GlcNAc modification in neuroglycopeptides is associated with the onset of Alzheimer's disease (Dias and Hart ; Mol. BioSyst. 3:766-772 (2007)). Therefore, detection of changes in the level of O -GlcNAc modification can be used as a diagnostic or prognostic tool. Additionally, the glycosylation state of such proteins or peptides can be correlated with disease states. The method for identifying a protein or peptide having altered glycosylation associated with a disease state comprises incubating an antibody of the invention with a first biological sample having a known disease state, and, after enabling the antibody to bind to the first biological sample, Incubating the antibody with a second biological sample having a non-diseased state, independently from Glycosylated proteins and glycosylated peptides are isolated from the sample, and the glycosylated proteins and glycosylated peptides are identified. The method can further comprise comparing the glycosylated proteins and glycosylated peptides identified in the first sample to the glycosylated proteins and glycosylated peptides in the second sample, wherein the glycosylated proteins and glycosylated peptides identified between the first and second samples A protein or peptide with a change in glycosylation state between indicates that the glycosylated protein or glycosylated peptide is associated with the disease state. An association between glycosylation and a disease state includes a disease state having increased or decreased glycosylation relative to a non-diseased state. Furthermore, a disease state can show glycosylation while a non-disease state shows the complete absence of glycosylation, or conversely a disease state can show the complete absence of glycosylation while a non-disease state shows the presence of glycosylation . In each instance, the protein or peptide was considered to have differential or altered glycosylation in the disease state. Methods for detecting the presence or overexpression of glycosylation and detecting changes in glycosylation levels using the antibodies of the invention have been described previously.
本发明的抗体在诊断或治疗应用中是广泛有用的,如本文其他地方更详细地描述的。比较分析可以对两种或更多种不同的生物样品进行。例如,大规模免疫沉淀可以对治疗干预前和后的样品执行,或随着时间过去执行,以监控疾病的进展,或比较正常样品与来自怀疑患有特征在于蛋白质糖基化中的变化的疾病、感染或病症的患者的样品。The antibodies of the invention are broadly useful in diagnostic or therapeutic applications, as described in more detail elsewhere herein. Comparative analysis can be performed on two or more different biological samples. For example, large-scale immunoprecipitation can be performed on samples before and after therapeutic intervention, or over time, to monitor disease progression, or to compare normal samples with those from a disease suspected to be characterized by changes in protein glycosylation. , a sample from a patient with an infection or disorder.
在一个实施方案中,本发明包括诊断受试者中的疾病状态的存在情况的方法。该方法包括使来自受试者的生物样品与本发明的抗体一起温育,并且检测抗体与在疾病状态中具有差异糖基化的蛋白质或肽的结合。检测抗体结合的方法先前已得到描述。在其中糖基化在疾病状态中完全不存在的情况下,抗体与蛋白质或肽的结合的缺乏指示受试者具有疾病状态。在其中糖基化存在于疾病状态中但在非疾病状态中完全不存在的情况下,抗体与蛋白质或肽的结合指示受试者中疾病状态的存在。任选地,该方法可以进一步包括使第二个非患病的生物样品与本发明的抗体一起温育,检测抗体与蛋白质或肽的结合,并且比较在第一个和第二个样品中的抗体结合。In one embodiment, the invention includes a method of diagnosing the presence of a disease state in a subject. The method comprises incubating a biological sample from a subject with an antibody of the invention, and detecting binding of the antibody to a protein or peptide having differential glycosylation in a disease state. Methods for detecting antibody binding have been described previously. In cases where glycosylation is completely absent in the disease state, the lack of binding of the antibody to the protein or peptide indicates that the subject has the disease state. In cases where glycosylation is present in the disease state but completely absent in the non-disease state, binding of the antibody to the protein or peptide is indicative of the presence of the disease state in the subject. Optionally, the method may further comprise incubating a second non-diseased biological sample with the antibody of the invention, detecting binding of the antibody to the protein or peptide, and comparing the binding of the antibody to the protein or peptide in the first and second sample. Antibody binding.
另外,对于其中糖基化存在于疾病状态和非疾病状态两者中,但在疾病状态中改变(即增加或减少)的蛋白质和肽,该方法可以进一步包括定量第一个样品中的抗体结合水平,定量第二个非患病样品中的抗体结合水平,并且比较所述结合水平。与非患病样品相比较,在第一个样品中的抗体结合的变化指示受试者中感染、疾病或病症的存在情况。Additionally, for proteins and peptides in which glycosylation is present in both disease states and non-disease states, but is altered (i.e., increased or decreased) in the disease state, the method may further comprise quantifying antibody binding in the first sample level, quantify the level of antibody binding in a second non-diseased sample, and compare the binding levels. A change in antibody binding in the first sample compared to a non-diseased sample is indicative of the presence of an infection, disease or condition in the subject.
对于本发明的抗体的制备,可以使用提供通过培养中的连续细胞系产生抗体分子的任何技术。例如,可以使用最初由Kohler和Milstein (256 Nature 495-497(1975))开发的杂交瘤技术。还参见Ausubel等人,Antibodies:a Laboratory Manual,(Harlow & Lane编辑,Cold Spring Harbor Lab. 1988);Current Protocols in Immunology,(Colligan等人,编辑,Greene Pub. Assoc. & Wiley Interscience N.Y.,1992-1996)。For the production of the antibodies of the invention, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. For example, the hybridoma technology originally developed by Kohler and Milstein (256 Nature 495-497 (1975)) can be used. See also Ausubel et al., Antibodies: a Laboratory Manual, (Harlow & Lane ed., Cold Spring Harbor Lab. 1988); Current Protocols in Immunology, (Colligan et al., ed., Greene Pub. Assoc. & Wiley Interscience N.Y., 1992- 1996).
本发明还提供了产生单克隆抗体、优选针对其抗原具有高度特异性和亲和力的单克隆抗体的杂交瘤细胞系。本发明进一步包括杂交瘤细胞系的变体和突变体。此类细胞系可以使用已知方法人工产生且仍具有原材料的特有性质。例如,它们可以仍然能够产生根据本发明的抗体或其衍生物,并将其分泌到周围介质内。任选地,杂交瘤细胞系可以自发出现。杂交瘤细胞系的克隆和亚克隆应理解为杂交瘤,其通过反复克隆由起始克隆产生,且仍具有起始克隆的主要特征。The invention also provides hybridoma cell lines that produce monoclonal antibodies, preferably monoclonal antibodies with high specificity and affinity for their antigens. The invention further includes variants and mutants of the hybridoma cell lines. Such cell lines can be artificially produced using known methods and still possess the characteristic properties of the starting material. For example, they may still be capable of producing antibodies according to the invention or derivatives thereof and secreting them into the surrounding medium. Optionally, hybridoma cell lines can arise spontaneously. Clones and subclones of hybridoma cell lines are to be understood as hybridomas which have been produced by iterative cloning from a starting clone and which still possess the main characteristics of the starting clone.
抗体可以通过用本发明的糖脂肽免疫接种在动物宿主中引发,或可以通过免疫细胞的体外免疫接种(致敏)形成。抗体也可以在重组系统中产生,其中合适的细胞系用合适的抗体编码DNA进行转化、转染、感染或转导。可替代地,抗体可以通过纯化的重链和轻链的生物化学重构进行构建。Antibodies can be elicited in animal hosts by immunization with the glycolipopeptides of the invention, or can be formed by in vitro immunization (sensitization) of immune cells. Antibodies can also be produced in recombinant systems, where appropriate cell lines are transformed, transfected, infected or transduced with appropriate antibody-encoding DNA. Alternatively, antibodies can be constructed by biochemical remodeling of purified heavy and light chains.
一旦抗体分子已由动物产生、化学合成或重组表达,它就可以通过本领域已知用于纯化免疫球蛋白分子的任何方法进行纯化,例如通过层析(例如离子交换、亲和力特别是在蛋白A后通过对特定抗原的亲和力、和分筛柱层析)、离心、差异溶解度或通过用于纯化蛋白质的任何其他标准技术。此外,本发明的抗体或其片段可以融合至本领域已知的异源多肽序列,以促进纯化。Once an antibody molecule has been produced in an animal, chemically synthesized, or recombinantly expressed, it can be purified by any method known in the art for the purification of immunoglobulin molecules, such as by chromatography (e.g., ion exchange, affinity, especially protein A followed by affinity for a specific antigen, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique used to purify proteins. In addition, antibodies or fragments thereof of the invention may be fused to heterologous polypeptide sequences known in the art to facilitate purification.
在优选实施方案中,单克隆抗体识别和/或结合存在于本发明的糖脂肽的碳水化合物组分或肽组分上的抗原。在特别优选的实施方案中,单克隆抗体结合存在于碳水化合物组分的所选特征上的抗原。所选特征的例子包括在糖肽上的修饰例如O-GlcNAc。其他修饰包括但不限于GalNAc及其他糖修饰。In a preferred embodiment, the monoclonal antibody recognizes and/or binds an antigen present on the carbohydrate component or the peptide component of the glycolipopeptide of the invention. In particularly preferred embodiments, the monoclonal antibody binds an antigen present on a selected feature of the carbohydrate component. Examples of selected features include modifications on glycopeptides such as O -GlcNAc. Other modifications include, but are not limited to, GalNAc and other sugar modifications.
术语“抗体”以最广泛的含义使用,且特别涵盖单克隆抗体(包括全长单克隆抗体)和抗体片段,只要它们显示出所需生物活性。“抗体片段”包含全长抗体的部分,一般为其抗原结合区或可变区。抗体片段的例子包括但不限于Fab、Fab'和Fv片段;双抗体;线性抗体;和单链抗体分子。如本文使用的术语“单克隆抗体”指高度特异性的、针对单个抗原位点的抗体。如本文使用的术语“抗体”还包括天然存在的抗体以及非天然存在的抗体,包括例如单链抗体,嵌合、双功能和人源化抗体,以及其抗原结合片段。此类非天然存在的抗体可以使用固相肽合成进行构建,可以重组产生且可以例如通过筛选由可变重链和可变轻链组成的组合文库获得,如由Huse等人(Science 246:1275-1281(1989))描述的。这些及其他制备功能抗体的方法是本领域技术人员众所周知的(Winter和Harris,Immunol. Today 14:243-246(1993);Ward等人,Nature 341:544-546(1989);Harlow和Lane,同上,1988);Hilyard等人,Protein Engineering:A practical approach(IRL Press 1992);Borrabeck,Antibody Engineering,第2版(Oxford University Press 1995))。The term "antibody" is used in the broadest sense and specifically covers monoclonal antibodies (including full-length monoclonal antibodies) and antibody fragments so long as they exhibit the desired biological activity. "Antibody fragment" comprises a portion of a full-length antibody, typically its antigen-binding or variable region. Examples of antibody fragments include, but are not limited to, Fab, Fab', and Fv fragments; diabodies; linear antibodies; and single-chain antibody molecules. The term "monoclonal antibody" as used herein refers to a highly specific antibody directed against a single antigenic site. The term "antibody" as used herein also includes naturally occurring antibodies as well as non-naturally occurring antibodies including, for example, single chain antibodies, chimeric, bifunctional and humanized antibodies, and antigen-binding fragments thereof. Such non-naturally occurring antibodies can be constructed using solid-phase peptide synthesis, can be produced recombinantly and can be obtained, for example, by screening combinatorial libraries consisting of variable heavy and variable light chains, as described by Huse et al. (Science 246:1275 -1281 (1989)) described. These and other methods of making functional antibodies are well known to those skilled in the art (Winter and Harris, Immunol. Today 14:243-246 (1993); Ward et al., Nature 341:544-546 (1989); Harlow and Lane, Id., 1988); Hilyard et al., Protein Engineering: A practical approach (IRL Press 1992); Borrabeck, Antibody Engineering, 2nd ed. (Oxford University Press 1995)).
在所有哺乳动物物种中,抗体肽含有恒定(即高度保守的)区和可变区,并且在后者内,存在互补决定区(CDR),和由在重或轻链的可变区内但在CDR外的氨基酸序列构成的所谓的“构架区”。优选地,本发明的单克隆抗体已是人源化的。如本文使用的,术语“人源化”抗体指其中非人(通常来自小鼠或大鼠) CDR从非人免疫球蛋白的重和轻可变链转移到以下可变区内的抗体,所述可变区设计为含有在人IgG中的构架区内发现的许多氨基酸残基。小鼠/人嵌合抗体至人源化抗体的相似转换先前已得到描述。用于克隆鼠免疫球蛋白可变结构域的一般技术例如由Orlandi等人,Proc. Nat'l Acad. Sci. USA 86:3833(1989)的出版物描述,所述文献通过引用以其整体并入。用于产生人源化MAbs的技术例如由Jones等人,Nature 321:522(1986),Riechmann等人,Nature 332:323(1988),Verhoeyen等人,Science 239:1534(1988),和Singer等人,J. Immun. 150:2844(1993)描述,所述文献各自在此通过引用并入。In all mammalian species, antibody peptides contain constant (i.e., highly conserved) and variable regions, and within the latter, there are complementarity determining regions (CDRs), and The amino acid sequences outside the CDRs constitute the so-called "framework regions". Preferably, the monoclonal antibodies of the invention have been humanized. As used herein, the term "humanized" antibody refers to an antibody in which non-human (usually from mouse or rat) CDRs have been transferred from the heavy and light variable chains of a non-human immunoglobulin into the following variable regions, so The variable regions are designed to contain many of the amino acid residues found within the framework regions of human IgG. Similar conversion of mouse/human chimeric antibodies to humanized antibodies has been described previously. General techniques for cloning murine immunoglobulin variable domains are described, for example, by the publication of Orlandi et al., Proc. Nat'l Acad. Sci. USA 86:3833 (1989), which is incorporated by reference in its entirety. enter. Techniques for generating humanized MAbs are described, for example, by Jones et al., Nature 321:522 (1986), Riechmann et al., Nature 332:323 (1988), Verhoeyen et al., Science 239:1534 (1988), and Singer et al. Al, J. Immun. 150:2844 (1993), each of which is hereby incorporated by reference.
使用识别和/或结合糖脂肽的组分的单克隆抗体的方法也由本发明包含。关于本发明的单克隆抗体的用途包括但不限于诊断、治疗和研究用途。在优选实施方案中,单克隆抗体可以用于诊断目的。因为O-GlcNAc修饰与多种疾病状态相关,所以O-GlcNAc修饰的水平中的变化的检测可以解释为此类疾病发作的早期指示物。例如,在骨骼肌和胰腺糖肽中O-GlcNAc修饰的增加与II型糖尿病的发展关联,而在神经糖肽中O-GlcNAc修饰的减少与阿尔茨海默氏病的发作关联(Dias和Hart,Mol. BioSyst. 3:766-772(2007);Lefebvre等人,Exp. Rev. Proteomics 2(2):265-275(2005))。因此,相对于非疾病对照样品,鉴定在骨骼肌组织的样品中O-GlcNAc量的增加可以指示II型糖尿病的发展。Methods using monoclonal antibodies that recognize and/or bind components of the glycolipopeptide are also encompassed by the invention. Uses for the monoclonal antibodies of the invention include, but are not limited to, diagnostic, therapeutic, and research uses. In preferred embodiments, monoclonal antibodies may be used for diagnostic purposes. Because O -GlcNAc modification is associated with various disease states, detection of changes in the level of O -GlcNAc modification can be interpreted as an early indicator of the onset of such diseases. For example, increased O -GlcNAc modification in skeletal muscle and pancreatic glycopeptides is associated with the development of type II diabetes, whereas decreased O -GlcNAc modification in neuroglycopeptides is associated with the onset of Alzheimer's disease (Dias and Hart , Mol. BioSyst. 3:766-772 (2007); Lefebvre et al., Exp. Rev. Proteomics 2(2):265-275 (2005)). Therefore, identifying an increase in the amount of O -GlcNAc in a sample of skeletal muscle tissue relative to a non-disease control sample can be indicative of the development of type II diabetes.
应当理解本发明的单克隆和多克隆抗体并不限于识别任何特定配体的那些,但包括而不限于且仅作为例子,针对任何类型的肿瘤相关碳水化合物抗原(TACA)和衍生自任何微生物的任何糖的抗体。本发明的抗体在诊断或治疗应用中是广泛有用的。It should be understood that the monoclonal and polyclonal antibodies of the invention are not limited to those recognizing any particular ligand, but include, without limitation and by way of example only, directed against any type of tumor-associated carbohydrate antigen (TACA) and derived from any microorganism. Antibodies to any sugar. The antibodies of the invention are broadly useful in diagnostic or therapeutic applications.
本发明的抗体可以用于检测特定蛋白质或特定修饰的存在情况或过表达。用于检测的技术是本领域已知的,并且包括但不限于蛋白质印迹、斑点印迹、免疫沉淀、凝集、ELISA测定、免疫ELISA测定、组织成像、质谱法、免疫组织化学、和对多种组织或体液的流式细胞术,和多种夹心测定。参见例如,在此通过引用并入的美国专利号5,876,949。Antibodies of the invention can be used to detect the presence or overexpression of specific proteins or specific modifications. Techniques for detection are known in the art and include, but are not limited to, Western blot, dot blot, immunoprecipitation, agglutination, ELISA assay, immunoELISA assay, tissue imaging, mass spectrometry, immunohistochemistry, and detection of various tissue or flow cytometry of body fluids, and a variety of sandwich assays. See, eg, US Patent No. 5,876,949, incorporated herein by reference.
为了检测O-GlcNAc修饰的糖肽的水平的变化,本发明的单克隆抗体可以用许多已知可检测标记中的任一种共价或非共价标记,所述可检测标记例如荧光、放射性或酶促物质,如本领域已知的。可替代地,将对本发明的单克隆抗体特异的次级抗体用已知的可检测标记进行标记,并用于在上述技术中检测O-GlcNAc特异性抗体。To detect changes in the levels of O -GlcNAc modified glycopeptides, the monoclonal antibodies of the invention can be covalently or non-covalently labeled with any of a number of known detectable labels, such as fluorescent, radioactive or enzymatic substances, as known in the art. Alternatively, secondary antibodies specific for the monoclonal antibodies of the invention are labeled with a known detectable label and used to detect O -GlcNAc specific antibodies in the techniques described above.
优选的可检测标记包括生色染料。在最常用的那些中有3-氨基-9-乙基咔唑(AEC)和3,3’-二氨基联苯胺四盐酸盐(DAB)。这些可以使用光学显微镜检查进行检测。还优选的是荧光标记。在最常用的荧光标记化合物中有异硫氰酸荧光素(例如FITC和TRITC)、吲哚三羰花青(Idotricarbocyanines)(例如Cy5和Cy7)、罗丹明、藻红蛋白、藻蓝蛋白、别藻蓝蛋白、邻苯二醛和荧光胺。还可以使用化学发光和生物发光化合物,例如鲁米诺、异鲁米诺、theromatic吖啶酯、咪唑、吖啶盐、草酸酯、萤光素、萤光素酶和水母发光蛋白。当荧光标记的抗体暴露于合适波长的光时,由于它的荧光可以检测到它的存在。还优选的是放射性标记。对于标记本发明的抗体特别有用的放射性同位素包括3H、125I、131I、35S、32P和14C。放射性同位素可以通过此类方法进行检测,如使用γ计数器、闪烁计数器或通过放射自显影术。可以用于可检测标记抗体和可以例如通过分光光度计测量、荧光测定或目视方法检测的酶包括但不限于苹果酸脱氢酶、葡萄球菌核酸酶、δ-5-类固醇异构酶、酵母乙醇脱氢酶、α-甘油磷酸脱氢酶、磷酸丙糖异构酶、辣根过氧化物酶、碱性磷酸酶、天冬酰胺酶、葡萄糖氧化酶、β-半乳糖苷酶、核糖核酸酶、尿素酶、过氧化氢酶、6-磷酸葡糖脱氢酶、葡糖淀粉酶和乙酰胆碱酯酶。标记和检测抗体的其他方法是本领域已知的且在本发明的范围内。Preferred detectable labels include chromogenic dyes. Among the most commonly used are 3-amino-9-ethylcarbazole (AEC) and 3,3'-diaminobenzidine tetrahydrochloride (DAB). These can be detected using light microscopy. Also preferred are fluorescent labels. Among the most commonly used fluorescently labeled compounds are fluorescein isothiocyanate (such as FITC and TRITC), indoletricarbocyanines (such as Cy5 and Cy7), rhodamine, phycoerythrin, phycocyanin, Phycocyanin, o-phthalaldehyde and fluorescamine. Chemiluminescent and bioluminescent compounds such as luminol, isoluminol, theromatic acridine can also be used Ester, imidazole, acridine Salt, Oxalate, Luciferin, Luciferase and Aequorin. When a fluorescently labeled antibody is exposed to light of the appropriate wavelength, its presence can be detected due to its fluorescence. Also preferred are radioactive labels. Radioisotopes that are particularly useful for labeling the antibodies of the invention include3H , 125I , 131I , 35S , 32P and14C . Radioactive isotopes can be detected by such methods as using gamma counters, scintillation counters or by autoradiography. Enzymes that can be used to detectably label antibodies and can be detected, for example, by spectrophotometric measurements, fluorometric assays, or visual methods include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast Alcohol dehydrogenase, α-glycerophosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, β-galactosidase, ribonucleic acid enzymes, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholinesterase. Other methods of labeling and detecting antibodies are known in the art and are within the scope of the present invention.
包括TLR激动剂、T辅助细胞表位和糖基化MUC1表位(B/T细胞表位)的本发明的三组分免疫原性疫苗显示出许多优点。糖基化B/T细胞表位可以是比非糖基化表位更有效的。疫苗引发引发的强细胞裂解性T细胞应答,裂解表达MUC1的细胞。通常通过CD4+和CD8+ T细胞的干扰素γ分泌指示T细胞细胞应答的激活。进一步地,B细胞应答的激活通过Ig类别转换和在诱导表达MUC1的细胞(肿瘤细胞和YAC细胞两者)的ADCC (抗体依赖性细胞介导的细胞毒性)方面有效的抗体的产生来指示。因此,基于MUC1的三组分免疫原性癌症疫苗双重引发体液和细胞免疫应答,包括抗体形成、干扰素γ产生和细胞毒性活性,获得优良的治疗结果。在一些实施方案中,第二种TLR激动剂的添加进一步增加有效性,例如显示出减少的肿瘤负荷、增加的IFN-γ产生和增加的T细胞介导的细胞毒性。The three-component immunogenic vaccine of the present invention comprising a TLR agonist, a T helper epitope and a glycosylated MUCl epitope (B/T cell epitope) shows many advantages. Glycosylated B/T cell epitopes may be more potent than non-glycosylated epitopes. The vaccine elicited a strong cytolytic T-cell response that lysed MUCl-expressing cells. Activation of T cell cellular responses is usually indicated by interferon gamma secretion by CD4+ and CD8+ T cells. Further, activation of B cell responses was indicated by Ig class switching and the production of antibodies effective in inducing ADCC (antibody-dependent cell-mediated cytotoxicity) of MUCl-expressing cells (both tumor cells and YAC cells). Thus, the MUC1-based three-component immunogenic cancer vaccine dually elicited humoral and cellular immune responses, including antibody formation, interferon-γ production, and cytotoxic activity, leading to excellent therapeutic outcomes. In some embodiments, the addition of a second TLR agonist further increases effectiveness, eg, exhibits reduced tumor burden, increased IFN-γ production, and increased T cell-mediated cytotoxicity.
本发明包括通过用本文描述的一种或多种免疫原性疫苗构建体免疫接种受试者,在受试者中生成抗体依赖性细胞介导的细胞毒性(ADCC)的方法。在一些方面,ADCC是天然杀伤(NK)细胞介导的。在一些方面,ADCC裂解肿瘤细胞。在一些方面,肿瘤细胞是乳腺癌细胞或上皮癌细胞。在一些方面,ADCC裂解表达MUC1肽序列的细胞。在一些方面,MUC1肽是异常糖基化的。The invention includes methods of generating antibody-dependent cell-mediated cytotoxicity (ADCC) in a subject by immunizing the subject with one or more immunogenic vaccine constructs described herein. In some aspects, ADCC is natural killer (NK) cell mediated. In some aspects, ADCC lyses tumor cells. In some aspects, the tumor cells are breast cancer cells or epithelial cancer cells. In some aspects, ADCC lyses cells expressing the MUCl peptide sequence. In some aspects, the MUCl peptide is abnormally glycosylated.
本发明包括通过用本文描述的一种或多种免疫原性疫苗构建体免疫接种受试者,在受试者中治疗癌症、减少肿瘤负荷、预防肿瘤复发和/或预防癌症的方法。在本发明的方法的一些方面,癌症或肿瘤是乳腺癌或上皮癌。在本发明的方法的一些方面,癌症或肿瘤表达异常糖基化的MUC1。The invention includes methods of treating cancer, reducing tumor burden, preventing tumor recurrence, and/or preventing cancer in a subject by immunizing the subject with one or more immunogenic vaccine constructs described herein. In some aspects of the methods of the invention, the cancer or tumor is breast cancer or epithelial cancer. In some aspects of the methods of the invention, the cancer or tumor expresses aberrantly glycosylated MUCl.
本发明包括通过用本文描述的一种或多种免疫原性疫苗构建体免疫接种受试者,在受试者中生成针对MUC1表达细胞的细胞毒性T细胞应答,生成抗MUC 1抗体,和/或促进抗MUC1抗体类别转换的方法。在一些方面,MUC1表达细胞是肿瘤细胞。在本发明的方法的一些方面,癌症或肿瘤表达异常糖基化的MUC1。The invention comprises generating in a subject a cytotoxic T cell response against MUCl expressing cells, generating anti-MUCl antibodies, and/or by immunizing the subject with one or more immunogenic vaccine constructs described herein, and/or Or a method of promoting class switching of anti-MUC1 antibodies. In some aspects, the MUCl expressing cells are tumor cells. In some aspects of the methods of the invention, the cancer or tumor expresses aberrantly glycosylated MUCl.
本发明包括用糖脂肽免疫接种受试者的方法,所述糖脂肽包括包含B细胞表位的至少一种糖基化MUC1糖肽组分;包括MHC II类限制性辅助T细胞表位的至少一种肽组分;和至少一种脂质组分。在一些方面,在受试者中诱导特异性结合在肿瘤细胞上表达的MUC1蛋白质的IgG亚型的抗体。因为它是抗原性和免疫原性的,所以本发明的糖脂肽非常适合于在免疫治疗药物组合物中使用。本发明因此包括药物组合物,其包含本发明的糖脂肽以及药学可接受的载体。在优选实施方案中,药物组合物含有脂质体,例如基于磷脂的脂质体,并且糖脂肽由于非共价相互作用例如疏水作用所致而掺入脂质体内。可替代地,糖脂肽可以共价连接至脂质体的组分。脂质体制剂可以包括具有相同或不同B表位、相同或不同T细胞表位和/或相同或不同脂质组分的糖脂肽。The present invention includes methods of immunizing a subject with a glycolipid peptide comprising at least one glycosylated MUCl glycopeptide component comprising a B cell epitope; including an MHC class II restricted helper T cell epitope at least one peptide component; and at least one lipid component. In some aspects, antibodies of the IgG subtype that specifically bind to the MUCl protein expressed on the tumor cells are induced in the subject. Because it is antigenic and immunogenic, the glycolipopeptide of the invention is well suited for use in immunotherapeutic pharmaceutical compositions. The present invention therefore includes pharmaceutical compositions comprising the glycolipopeptides of the present invention together with a pharmaceutically acceptable carrier. In a preferred embodiment, the pharmaceutical composition comprises liposomes, such as phospholipid-based liposomes, and the glycolipid peptides are incorporated within the liposomes due to non-covalent interactions, such as hydrophobic interactions. Alternatively, glycolipopeptides can be covalently linked to liposome components. Liposomal formulations may include glycolipopeptides with the same or different B epitopes, the same or different T cell epitopes, and/or the same or different lipid components.
本发明的三组分免疫原性疫苗具有共价连接的至少一种碳水化合物组分、至少一种肽组分和至少一种佐剂组分。三组分免疫原性疫苗含有B表位和T表位,优选辅助T表位。通常地,碳水化合物组分包括B表位,并且肽组分含有T表位。B表位可以进一步包括T表位。然而,这些表位可以重叠,并且单个糖肽例如MUC-1糖肽可以包括B表位和T表位两者。The three-component immunogenic vaccines of the invention have covalently linked at least one carbohydrate component, at least one peptide component and at least one adjuvant component. The three-component immunogenic vaccine contains a B epitope and a T epitope, preferably a helper T epitope. Typically, the carbohydrate component includes the B epitope and the peptide component contains the T epitope. B epitopes may further include T epitopes. However, these epitopes may overlap, and a single glycopeptide, such as the MUC-1 glycopeptide, may include both B and T epitopes.
本发明的糖脂肽容易地配制为用于兽医或人用途的药物组合物。药物组合物任选包含赋形剂或稀释剂,其作为载体是药学可接受的且与糖脂肽相容的。术语“药学可接受的载体”指这样的一种或多种载体,其在与组合物的其他成分相容且对于其接受者或糖脂肽无害的意义上是“可接受的”。合适的赋形剂包括例如水、盐水、右旋糖、甘油、乙醇等及其组合。此外,需要时,药物组合物可以含有微量辅助物质例如湿润剂或乳化剂、pH缓冲剂、盐和/或佐剂,其增强免疫刺激组合物的有效性。对于经口施用,糖脂肽可以与植物或动物起源的蛋白质或油混合。制备和使用此类药物组合物的方法也包括在本发明中。The glycolipopeptides of the invention are readily formulated as pharmaceutical compositions for veterinary or human use. The pharmaceutical composition optionally comprises excipients or diluents which are pharmaceutically acceptable as carriers and compatible with the glycolipopeptide. The term "pharmaceutically acceptable carrier" refers to one or more carriers that are "acceptable" in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipient thereof or the glycolipopeptide. Suitable excipients include, for example, water, saline, dextrose, glycerol, ethanol, and the like, and combinations thereof. Furthermore, if desired, the pharmaceutical compositions can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, salts and/or adjuvants, which enhance the effectiveness of the immunostimulatory composition. For oral administration, the glycolipopeptides may be mixed with proteins or oils of vegetable or animal origin. Methods of making and using such pharmaceutical compositions are also included in the invention.
本发明的药物组合物可以施用于任何受试者,包括人和驯养动物(例如猫和犬)。在优选实施方案中,药物组合物可用作疫苗,并含有在受试者中有效诱导免疫应答的量的糖脂肽。本发明的糖脂肽疫苗的剂量、用于疫苗接种的时间表等可通过本领域技术人员容易地测定。疫苗可以使用任何方便的方法施用于受试者,优选胃肠外(例如经由肌内、真皮内或皮下注射)或经由经口或鼻施用。取决于待疫苗接种的动物类型、其年龄和重量,减毒病毒的免疫原性和施用方式,待施用的有用剂量将改变。The pharmaceutical compositions of the present invention can be administered to any subject, including humans and domesticated animals (eg, cats and dogs). In a preferred embodiment, the pharmaceutical composition is useful as a vaccine and contains a glycolipopeptide in an amount effective to induce an immune response in a subject. The dose of the glycolipopeptide vaccine of the present invention, the schedule for vaccination, etc. can be easily determined by those skilled in the art. The vaccine may be administered to a subject using any convenient method, preferably parenterally (eg, via intramuscular, intradermal or subcutaneous injection) or via oral or nasal administration. The useful dose to be administered will vary depending on the type of animal to be vaccinated, its age and weight, the immunogenicity of the attenuated virus and the mode of administration.
本发明的三组分或二组分免疫原性疫苗可以单独或一起施用。另外,因为二组分疫苗作为佐剂是有用的,所以它可以施用以增强其他癌症治疗,例如化学治疗、放射治疗或其他类型的免疫治疗。The three-component or two-component immunogenic vaccines of the invention can be administered alone or together. Additionally, because the bicomponent vaccine is useful as an adjuvant, it can be administered to enhance other cancer treatments, such as chemotherapy, radiation therapy, or other types of immunotherapy.
在一种治疗方法中,至少一种TLR配体与本发明的三组分免疫原性疫苗和/或二组分免疫原性疫苗一起共施用。共施用的TLR配体作为另外的佐剂施用。示例性TLR配体在本文中描述。任何TLR配体可以与免疫原性疫苗共施用。优选地,TLR2或TLR9配体例如CpG ODN与免疫原性疫苗共施用。当免疫原性疫苗含有TLR配体例如共价连接的TLR2配体作为共价连接的佐剂组分时,应当理解共施用的TLR配体例如共施用的TLR9配体可以不同于共价连接的TLR配体。In one method of treatment, at least one TLR ligand is co-administered with a three-component immunogenic vaccine and/or a two-component immunogenic vaccine of the invention. Co-administered TLR ligands are administered as additional adjuvants. Exemplary TLR ligands are described herein. Any TLR ligand can be co-administered with the immunogenic vaccine. Preferably, a TLR2 or TLR9 ligand such as a CpG ODN is co-administered with the immunogenic vaccine. When an immunogenic vaccine contains a TLR ligand, such as a covalently linked TLR2 ligand, as a covalently linked adjuvant component, it is understood that the co-administered TLR ligand, such as a co-administered TLR9 ligand, may be different from the covalently linked TLR ligands.
治疗方法可以涉及三组分疫苗、二组分疫苗和/或共施用的TLR配体的任何组合的施用,如按照待治疗的病况所需的或如按照卫生保健专家指示的。The method of treatment may involve the administration of any combination of three-component vaccines, two-component vaccines, and/or co-administered TLR ligands, as required by the condition to be treated or as directed by a healthcare professional.
将佐剂包含在药物组合物中是任选的。佐剂包括例如明矾、QS-21和TLR激动剂。TLR激动剂包括但不限于本文描述的任何TLR激动剂。优选的TLR激动剂包括TLR2激动剂、TLR4激动剂、TLR7激动剂、TLR8激动剂和TLR9激动剂。TLR9通过未甲基化的含CpG序列激活,所述序列包括在细菌DNA或合成寡核苷酸(ODN)中发现的那些。此类未甲基化的含CpG序列以高频率存在于细菌DNA中,但在哺乳动物DNA中是罕见的。因此,未甲基化的CpG序列使微生物DNA与哺乳动物DNA区分。参见例如,Janeway和Medzhitov,2002,Ann Rev Immunol;20:197;Barton和Medzhitov,2002,Curr Top Microbiol Immunol;270:81;Medzhitov,2001,Nat Rev Immunol;1:135;Heine和Lein,2003,Int Arch Allergy Immunol;130:180;Modlin,2002,Ann Allergy Asthma Immunol;88:543;和Dunne和O'Neill,2003,Sci. STKE2003:re3。The inclusion of adjuvants in pharmaceutical compositions is optional. Adjuvants include, for example, alum, QS-21 and TLR agonists. TLR agonists include, but are not limited to, any of the TLR agonists described herein. Preferred TLR agonists include TLR2 agonists, TLR4 agonists, TLR7 agonists, TLR8 agonists and TLR9 agonists. TLR9 is activated by unmethylated CpG-containing sequences, including those found in bacterial DNA or synthetic oligonucleotides (ODNs). Such unmethylated CpG-containing sequences are present at high frequency in bacterial DNA but are rare in mammalian DNA. Thus, unmethylated CpG sequences distinguish microbial DNA from mammalian DNA. See, eg, Janeway and Medzhitov, 2002, Ann Rev Immunol; 20:197; Barton and Medzhitov, 2002, Curr Top Microbiol Immunol; 270:81; Medzhitov, 2001, Nat Rev Immunol; 1:135; Heine and Lein, 2003, Int Arch Allergy Immunol; 130:180; Modlin, 2002, Ann Allergy Asthma Immunol; 88:543; and Dunne and O'Neill, 2003, Sci. STKE2003:re3.
TLR9激动剂可以是微生物DNA的制剂,所述DNA包括但不限于大肠杆菌DNA、无内毒素大肠杆菌DNA、或来自大肠杆菌K12的无内毒素细菌DNA。TLR9激动剂可以是从细菌中分离的,例如与细菌来源分离的;合成的,例如通过用于多核苷酸的化学合成的标准方法产生的;通过标准重组方法产生,随后从细菌来源中分离的;或前述的组合。在许多实施方案中,TLR激动剂是纯化的,并且是例如至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约98%、至少约99%纯的或更高纯度的。The TLR9 agonist may be a preparation of microbial DNA including, but not limited to, E. coli DNA, endotoxin-free E. coli DNA, or endotoxin-free bacterial DNA from E. coli K12. TLR9 agonists can be isolated from bacteria, e.g., from a bacterial source; synthetic, e.g., produced by standard methods for chemical synthesis of polynucleotides; produced by standard recombinant methods, and subsequently isolated from a bacterial source ; or a combination of the foregoing. In many embodiments, the TLR agonist is purified and is, for example, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98% , at least about 99% pure or higher.
TLR9激动剂可以是含有未甲基化的CpG基序的合成寡核苷酸,在本文中也称为“CpG寡脱氧核苷酸”、“ CpGODN”或“ODN”(参见例如,Hemmi等人 "A Toll-like receptorrecognizes bacterial DNA," Nature 2000;408:740-745)。至少三个类型的免疫刺激性CpG-ODN已得到描述。A (或D)型ODN优先激活类浆细胞树突状细胞(pDC),以产生IFN?,而B(或K)型ODN诱导B细胞的增殖以及IgM和IL-6的分泌。已生成合并称为A和B型两者的特征的另一个类型,并将其称为C型。本发明的TLR9激动剂可以包括已得到描述的至少三种类型的刺激性ODN (A型、B型和C型)中的任一种。A TLR9 agonist can be a synthetic oligonucleotide containing an unmethylated CpG motif, also referred to herein as a "CpG oligodeoxynucleotide", "CpGODN" or "ODN" (see, e.g., Hemmi et al. "A Toll-like receptor recognizes bacterial DNA," Nature 2000; 408: 740-745). At least three types of immunostimulatory CpG-ODNs have been described. A (or D) type ODN preferentially activates plasmacytoid dendritic cells (pDC) to produce IFN?, while B (or K) type ODN induces the proliferation of B cells and the secretion of IgM and IL-6. Another type that incorporates features called both Type A and Type B has been generated and called Type C. The TLR9 agonists of the present invention may comprise any of at least three types of stimulatory ODNs (Type A, Type B and Type C) that have been described.
CpG-寡脱氧核苷酸TLR9激动剂包含CpG基序。CpG基序包含CpG二核苷酸的5'侧的两个碱基和3'侧的两个碱基。CpG-寡脱氧核苷酸可以通过用于多核苷酸的化学合成的标准方法产生。CpG-寡脱氧核苷酸可以例如在商业上购自Coley Pharmaceuticals(Wellesley,MA)、Axxora,LLC(San Diego,CA)或InVivogen,(San Diego,CA)。CpG-寡脱氧核苷酸TLR9激动剂可以包括广泛范围的DNA主链、修饰和取代。CpG-oligodeoxynucleotide TLR9 agonists comprise a CpG motif. A CpG motif comprises two bases on the 5' side and two bases on the 3' side of a CpG dinucleotide. CpG-oligodeoxynucleotides can be produced by standard methods for chemical synthesis of polynucleotides. CpG-oligodeoxynucleotides can be purchased commercially, eg, from Coley Pharmaceuticals (Wellesley, MA), Axxora, LLC (San Diego, CA) or InVivogen, (San Diego, CA). CpG-oligodeoxynucleotide TLR9 agonists can include a wide range of DNA backbones, modifications and substitutions.
在本发明的一些方面,TLR9激动剂是包含核苷酸序列5' CG 3'的核酸。在本发明的一些方面,TLR9激动剂是包含核苷酸序列5'-嘌呤-嘌呤-胞嘧啶-鸟嘌呤-嘧啶-嘧啶-3'的核酸。在本发明的其他方面,TLR9激动剂是包含核苷酸序列5'-嘌呤-TCG -嘧啶-嘧啶-3'的核酸。在本发明的一些方面,TLR9激动剂是包含核苷酸序列5'-(TGC)n-3'的核酸。在本发明的其他方面,TLR9激动剂是包含序列5'-TCGNN-3'的核酸,其中N是任何核苷酸。In some aspects of the invention, the TLR9 agonist is a nucleic acid comprising the nucleotide sequence 5' CG 3'. In some aspects of the invention, the TLR9 agonist is a nucleic acid comprising the nucleotide sequence 5'-purine-purine-cytosine-guanine-pyrimidine-pyrimidine-3'. In other aspects of the invention, the TLR9 agonist is a nucleic acid comprising the nucleotide sequence 5'-purine-TCG-pyrimidine-pyrimidine-3'. In some aspects of the invention, the TLR9 agonist is a nucleic acid comprising the nucleotide sequence 5'-(TGC)n-3'. In other aspects of the invention, the TLR9 agonist is a nucleic acid comprising the sequence 5'-TCGNN-3', where N is any nucleotide.
在一些方面,TLR9激动剂可以具有长度约5-约200、约10-约100、约12-约50、约15-约25、约5-约15、约5-约10或约5-约7个核苷酸的序列。在一些方面,TLR9激动剂的长度可小于约15、小于约12、小于约10或小于约8个核苷酸。In some aspects, the TLR9 agonist can have a length of about 5 to about 200, about 10 to about 100, about 12 to about 50, about 15 to about 25, about 5 to about 15, about 5 to about 10, or about 5 to about A sequence of 7 nucleotides. In some aspects, the TLR9 agonist can be less than about 15, less than about 12, less than about 10, or less than about 8 nucleotides in length.
TLR9激动剂包括但不限于美国专利号6,194,388;6,207,646;6,239,116;6,339,068;和6,406,705、6,426,334和6,476,000以及公开的美国专利申请US 2002/0086295、US2003/0212028和US 2004/0248837中描述的那些中的任一种。TLR9 agonists include, but are not limited to, those described in any of U.S. Patent Nos. 6,194,388; 6,207,646; 6,239,116; 6,339,068; A sort of.
在一些方面,TLR激动剂可以是更大的核苷酸构建体(例如质粒载体、病毒载体或其他此类构建体)的部分。广泛多样的质粒和病毒载体是本领域已知的,并且无需在此处详细阐述。大量此类载体已在多种出版物中描述。参见例如,Current Protocols inMolecular Biology,(F. M. Ausubel,等人,编辑,1987及更新版)。许多此类载体是商购可得的。In some aspects, a TLR agonist can be part of a larger nucleotide construct such as a plasmid vector, viral vector, or other such construct. A wide variety of plasmid and viral vectors are known in the art and need not be elaborated here. A large number of such vectors have been described in various publications. See, eg, Current Protocols in Molecular Biology, (F. M. Ausubel, et al., eds., 1987 and later). Many such vectors are commercially available.
本发明的免疫原性疫苗可以与一种或多种另外的治疗剂一起施用。另外的治疗处理包括但不限于手术切除、放射治疗、化学治疗、激素治疗、抗肿瘤疫苗、基于抗体的治疗、全身照射、骨髓移植、外周血干细胞移植和化学治疗剂(在本文中也称为“抗肿瘤化学治疗剂”)的施用。抗肿瘤化学治疗剂包括但不限于环磷酰胺、甲氨蝶呤、5-氟尿嘧啶、多柔比星、长春新碱、异环磷酰胺、顺铂、吉西他滨、白消安(也称为1,4-丁二醇二甲烷磺酸酯或BU)、ara-C (也称为1-β-D-阿糖呋喃糖胞嘧啶或阿糖胞苷)、阿霉素、丝裂霉素、环磷酰胺、甲氨蝶呤及其组合。TLR激动剂的施用可以在另外的化学治疗剂施用前、过程中和/或后发生。另外的治疗剂包括例如一种或多种细胞因子、抗生素、抗微生物剂、抗病毒剂例如AZT、ddI或ddC,及其组合。使用的细胞因子包括但不限于IL-1α、IL-1β、IL-2、IL-3、IL-4、IL-6、IL-8、IL-9、IL-10、IL-12、IL-18、IL-19、IL-20、IFN-α、IFN-β、IFN-γ、肿瘤坏死因子(TNF)、转化生长因子-β (TGF-β)、粒细胞集落刺激因子(G-CSF)、巨噬细胞集落刺激因子(M-CSF)、粒细胞-巨噬细胞集落刺激因子(GM-CSF))(美国专利号5,478,556、5,837,231和5,861,159)、或Flt-3配体(Shurin等人,Cell Immunol. 1997;179:174-184)。抗肿瘤疫苗包括但不限于肽疫苗、全细胞疫苗、遗传修饰的全细胞疫苗、重组蛋白质疫苗或基于通过重组病毒载体对肿瘤相关抗原的表达的疫苗。另外的治疗剂可以是免疫调节剂,例如TLR4激动剂、TLR 8激动剂、TLR9激动剂、COX-2抑制剂、GM-CSF、吲哚胺2,3-双加氧酶(IDO)的抑制剂、化学治疗剂或其组合。Immunogenic vaccines of the invention may be administered with one or more additional therapeutic agents. Additional therapeutic treatments include, but are not limited to, surgical resection, radiation therapy, chemotherapy, hormone therapy, antitumor vaccines, antibody-based therapy, total body irradiation, bone marrow transplantation, peripheral blood stem cell transplantation, and chemotherapeutic agents (also referred to herein as Administration of "anti-tumor chemotherapeutic agents"). Antineoplastic chemotherapeutic agents include, but are not limited to, cyclophosphamide, methotrexate, 5-fluorouracil, doxorubicin, vincristine, ifosfamide, cisplatin, gemcitabine, busulfan (also known as 1, 4-Butanediol dimethanesulfonate or BU), ara-C (also known as 1-β-D-arabinofuranosylcytosine or cytarabine), doxorubicin, mitomycin, cyclic Phosphamide, methotrexate, and combinations thereof. Administration of the TLR agonist can occur before, during and/or after administration of the additional chemotherapeutic agent. Additional therapeutic agents include, for example, one or more cytokines, antibiotics, antimicrobials, antivirals such as AZT, ddI or ddC, and combinations thereof. Cytokines used include, but are not limited to, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-8, IL-9, IL-10, IL-12, IL- 18. IL-19, IL-20, IFN-α, IFN-β, IFN-γ, tumor necrosis factor (TNF), transforming growth factor-β (TGF-β), granulocyte colony-stimulating factor (G-CSF) , macrophage colony stimulating factor (M-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF)) (US Pat. Nos. 5,478,556, 5,837,231 and 5,861,159), or Flt-3 ligand (Shurin et al., Cell Immunol. 1997; 179:174-184). Anti-tumor vaccines include, but are not limited to, peptide vaccines, whole cell vaccines, genetically modified whole cell vaccines, recombinant protein vaccines, or vaccines based on the expression of tumor-associated antigens by recombinant viral vectors. Additional therapeutic agents may be immunomodulators such as TLR4 agonists, TLR8 agonists, TLR9 agonists, COX-2 inhibitors, GM-CSF, inhibition of indoleamine 2,3-dioxygenase (IDO) agents, chemotherapeutic agents, or combinations thereof.
如指出的,药物组合物作为疫苗是有用的。疫苗可以是预防或保护性疫苗。同样地,疫苗可以是在疾病或病症例如癌症形成后施用的治疗疫苗。因此,本发明包含包括如本文描述的糖脂肽的疫苗,包括抗微生物(例如抗病毒或抗菌)和抗癌疫苗。As noted, the pharmaceutical compositions are useful as vaccines. Vaccines can be prophylactic or protective. Likewise, a vaccine may be a therapeutic vaccine administered after a disease or condition, such as cancer, has developed. Accordingly, the invention encompasses vaccines comprising glycolipopeptides as described herein, including antimicrobial (eg, antiviral or antibacterial) and anticancer vaccines.
可以有效治疗或预防的癌症包括但不限于前列腺癌、膀胱癌、结肠癌、乳腺癌、黑素瘤、胰腺癌、肺癌、白血病、淋巴瘤、肉瘤、卵巢癌、卡波西肉瘤、霍奇金病(Hodgkin'sDisease)、非霍奇金淋巴瘤、多发性骨髓瘤、成神经细胞瘤、横纹肌肉瘤、原发性血小板增多症、原发性巨球蛋白血症、小细胞肺癌、原发性脑瘤、胃癌、恶性胰腺胰岛素瘤(malignantpancreatic insulanoma)、恶性类癌、恶化前皮肤病损、睾丸癌、淋巴瘤、甲状腺癌、成神经细胞瘤、食管癌、泌尿生殖道癌、恶性血钙过多、宫颈癌、子宫内膜癌、肾上腺皮质癌和上皮细胞起源的癌症。如本文使用的,“肿瘤”指在哺乳动物中发现的所有类型的癌症、赘生物或恶性肿瘤。Cancers that can be effectively treated or prevented include, but are not limited to, prostate cancer, bladder cancer, colon cancer, breast cancer, melanoma, pancreatic cancer, lung cancer, leukemia, lymphoma, sarcoma, ovarian cancer, Kaposi's sarcoma, Hodgkin's Hodgkin's Disease, non-Hodgkin's lymphoma, multiple myeloma, neuroblastoma, rhabdomyosarcoma, essential thrombocythemia, primary macroglobulinemia, small cell lung cancer, primary Brain tumor, gastric cancer, malignant pancreatic insulinoma, malignant carcinoid, premalignant skin lesions, testicular cancer, lymphoma, thyroid cancer, neuroblastoma, esophageal cancer, genitourinary tract cancer, malignant hypercalcemia Cancers of cervical, endometrial, adrenocortical, and epithelial origin. As used herein, "tumor" refers to all types of cancer, neoplasm or malignancy found in mammals.
肿瘤的治疗功效可以通过本领域众所周知的多种参数中的任一种进行评估。这包括但不限于测定肿瘤大小的减少,测定肿瘤的生长、传播、侵袭力、血管化、血管生成和/或转移的抑制,测定任何转移病灶的生长、传播、侵袭力和/或血管化的抑制,和/或测定针对肿瘤抗原的增加的迟发型超敏反应。治疗功效也可以通过下述方式进行评估:测定受试者中复发的延迟或肿瘤进展的延迟,或测定受试者的存活率例如在治疗后一或五年时增加的存活率。如本文使用的,复发是在其明显停止后肿瘤或赘生物的恢复,例如白血病的恢复。The efficacy of treatment of a tumor can be assessed by any of a variety of parameters well known in the art. This includes, but is not limited to, measuring reduction in tumor size, measuring tumor growth, dissemination, invasiveness, vascularization, angiogenesis, and/or inhibition of metastasis, measuring the growth, dissemination, invasiveness, and/or vascularization of any metastatic lesions Inhibiting, and/or measuring increased delayed-type hypersensitivity to tumor antigens. Efficacy of treatment can also be assessed by determining delay in relapse or delay in tumor progression in a subject, or determining survival of a subject, eg, increased survival at one or five years following treatment. As used herein, relapse is the return of a tumor or neoplasm after its apparent cessation, such as the return of leukemia.
本发明的糖脂肽也可以用于被动免疫接种方法中。例如,糖脂肽可以施用于宿主动物,例如兔、小鼠、大鼠、鸡或山羊,以在宿主动物中生成抗体产生。用于在宿主动物中产生多克隆抗体的方案是众所周知的。包含在糖脂肽中的一种或多种T表位任选选择为与抗体在其中产生的宿主动物的相应T表位相同或相似。从动物中分离抗体,随后预防或治疗上施用于哺乳动物受试者,优选人受试者,以治疗或预防疾病或感染。针对本发明的糖脂肽的单克隆抗体可以从依照标准实验室方案制备的杂交瘤中分离;它们还可以使用重组技术例如噬菌体展示产生。此类抗体对于被动免疫接种也是有用的。任选地,抗糖脂肽单克隆抗体是人抗体或人源化抗体。包含在用于产生多克隆或单克隆抗体的糖脂肽中的一种或多种B表位根据预期治疗目的进行选择。本发明包含多克隆和单克隆抗糖脂肽抗体,以及其制备和使用方法。The glycolipopeptides of the invention can also be used in passive immunization methods. For example, a glycolipopeptide can be administered to a host animal, such as a rabbit, mouse, rat, chicken, or goat, to generate antibody production in the host animal. Protocols for the production of polyclonal antibodies in host animals are well known. The one or more T epitopes contained in the glycolipopeptide are optionally selected to be identical or similar to the corresponding T epitopes of the host animal in which the antibody was raised. Antibodies are isolated from animals and then administered prophylactically or therapeutically to a mammalian subject, preferably a human subject, to treat or prevent a disease or infection. Monoclonal antibodies directed against glycolipopeptides of the invention can be isolated from hybridomas prepared according to standard laboratory protocols; they can also be produced using recombinant techniques such as phage display. Such antibodies are also useful for passive immunization. Optionally, the anti-glycolipid peptide monoclonal antibody is a human antibody or a humanized antibody. The one or more B epitopes contained in the glycolipopeptides used to generate polyclonal or monoclonal antibodies are selected according to the intended therapeutic purpose. The invention encompasses polyclonal and monoclonal anti-glycolipid peptide antibodies, and methods of making and using them.
相应地,还由本发明提供的是药物组合物,其包含本发明的单克隆或多克隆抗体以及药学可接受的载体。优选地,单克隆抗体是人源化抗体。人源化抗体更优选用于在人疾病或病症的治疗中使用,因为当引入人宿主内时,人源化抗体更不可能诱导免疫应答,特别是变应性应答。如指出的,药物组合物任选包含赋形剂或稀释剂,其作为载体是药学可接受的和与单克隆抗体相容,可以施用于任何受试者,包括人和驯养动物(例如猫和犬)。制备和使用此类药物组合物的方法也包括在本发明中。Accordingly, also provided by the present invention are pharmaceutical compositions comprising a monoclonal or polyclonal antibody of the present invention and a pharmaceutically acceptable carrier. Preferably, the monoclonal antibodies are humanized antibodies. Humanized antibodies are more preferred for use in the treatment of human diseases or disorders because humanized antibodies are less likely to induce an immune response, especially an allergic response, when introduced into a human host. As noted, the pharmaceutical compositions optionally comprise excipients or diluents that are pharmaceutically acceptable as carriers and compatible with the monoclonal antibodies, and can be administered to any subject, including humans and domesticated animals (e.g., cats and dog). Methods of making and using such pharmaceutical compositions are also included in the invention.
致癌转化细胞的共同特征是寡糖例如Globo-H、LewisY和Tn抗原的过表达。任选地,包含本发明的单克隆或多克隆抗体以及药学可接受的载体的本发明药物组合物,可以用于靶向包含过表达此类寡糖的致癌转化细胞的肿瘤。例如,缀合至化学治疗分子的抗体可以用于将化学治疗分子递送至肿瘤。A common feature of oncogenically transformed cells is the overexpression of oligosaccharides such as Globo-H, Lewis Y and Tn antigens. Optionally, a pharmaceutical composition of the invention comprising a monoclonal or polyclonal antibody of the invention and a pharmaceutically acceptable carrier can be used to target tumors comprising oncogenically transformed cells overexpressing such oligosaccharides. For example, antibodies conjugated to chemotherapeutic molecules can be used to deliver chemotherapeutic molecules to tumors.
本发明的另一种药物组合物可包含可影响蛋白质活性的化合物(例如抗体、配体、小分子或肽)以及药学可接受的载体。化合物对蛋白质的作用可包括但不限于激动、拮抗、抑制或增强蛋白质的正常生物过程。优选地,化合物是结合蛋白质上的表位的抗体,所述蛋白质包含O-糖基化位点。优选地,O-糖基化位点是O-GlcNAc位点。众多研究已显示这种异常糖基化可以促进转移,因此它与癌症患者的弱存活率强烈关联。因此,影响异常糖基化蛋白质的活性的能力可以使得能够预防异常活性。Another pharmaceutical composition of the present invention may comprise a compound (such as an antibody, ligand, small molecule or peptide) that can affect the activity of a protein and a pharmaceutically acceptable carrier. The effect of a compound on a protein may include, but is not limited to, agonizing, antagonizing, inhibiting or enhancing the normal biological process of the protein. Preferably, the compound is an antibody that binds an epitope on a protein comprising O -glycosylation sites. Preferably, the O -glycosylation site is an O -GlcNAc site. Numerous studies have shown that this aberrant glycosylation can promote metastasis and thus it is strongly associated with poor survival of cancer patients. Thus, the ability to affect the activity of abnormally glycosylated proteins may enable the prevention of abnormal activity.
治疗有效浓度和量可通过在已知体外和体内系统(包括但不限于本文描述的那些中的任一种)中测试化合物,凭经验对本文描述的每种应用进行测定,随后可以由其外推用于人或其他动物的剂量。治疗功效可以通过本领域众所周知的多种参数中的任一种进行评估。这包括但不限于肿瘤大小的减少,CD8+ T细胞活性的增加,和/或增加的存活时间。Therapeutically effective concentrations and amounts can be determined empirically for each application described herein by testing the compound in known in vitro and in vivo systems, including but not limited to any of those described herein, and can then be determined from its in vitro Dosages for use in humans or other animals. The efficacy of treatment can be assessed by any of a variety of parameters well known in the art. This includes, but is not limited to, reduction in tumor size, increase in CD8 + T cell activity, and/or increased survival time.
如本文其他地方指出的,已惊讶地发现Toll样受体(TLR)配体共价连接至包含碳水化合物组分(含有B表位)和肽组分(含有T表位)的糖肽,增强糖肽通过靶细胞的摄取和内在化(参见实施例3)。因此鉴定的表征为脂质的TLR配体是用于在本发明的糖脂肽中使用的优选的脂质组分。本发明因此进一步提供了用于鉴定TLR配体优选脂质配体的方法,其包括使候选化合物与含有Toll样受体(TLR)的靶细胞接触,和测定候选化合物是否结合TLR(即,是否是TLR配体)。优选地,候选化合物通过TLR由靶细胞内在化。通过与TLR的结合和任选地通过内在化到靶细胞内鉴定的含脂质的TLR配体预期是免疫原性的,且非常适合于用作本发明的糖脂肽的脂质组分。本发明因此还包含糖脂肽,其包括使用本发明的方法鉴定的一种或多种含脂质的TLR配体作为脂质组分。As noted elsewhere herein, it has surprisingly been found that Toll-like receptor (TLR) ligands are covalently linked to glycopeptides comprising a carbohydrate component (containing a B epitope) and a peptide component (containing a T epitope), enhancing Uptake and internalization of glycopeptides by target cells (see Example 3). Thus identified TLR ligands characterized as lipids are preferred lipid components for use in the glycolipopeptides of the invention. The present invention thus further provides a method for identifying a TLR ligand, preferably a lipid ligand, comprising contacting a candidate compound with a target cell containing a Toll-like receptor (TLR), and determining whether the candidate compound binds the TLR (i.e., whether are TLR ligands). Preferably, the candidate compound is internalized by the target cell via TLRs. Lipid-containing TLR ligands identified by binding to TLRs and optionally by internalization into target cells are expected to be immunogenic and are well suited for use as the lipid component of the glycolipeptides of the invention. The present invention thus also encompasses glycolipopeptides comprising, as a lipid component, one or more lipid-containing TLR ligands identified using the methods of the present invention.
本发明还包括诊断试剂盒。由本发明提供的试剂盒可以含有本发明的抗体、优选单克隆抗体,和合适的缓冲液(例如Tris、磷酸盐、碳酸盐等),从而致使试剂盒用户能够鉴定O-GlcNAc修饰。用户随后可以根据需要可检测地标记抗体。可替代地,由本发明提供的试剂盒可以含有在溶液中的抗体,优选在猝灭缓冲液中冷冻的或呈粉末形式(如通过冻干法)的抗体。可以缀合至可检测标记或未缀合的抗体与缓冲液一起包括在试剂盒中,所述缓冲液可以任选还包括稳定剂、杀生物剂、惰性蛋白质例如血清白蛋白等。一般地,这些材料将以基于活性抗体的量的小于5重量%存在,且通常以再次基于抗体浓度的至少约0.001重量%的总量存在。任选地,试剂盒可以包括惰性增量剂或赋形剂,以稀释活性成分,其中赋形剂可以以总组合物的约1重量%-99重量%存在。在优选实施方案中,由试剂盒提供的抗体是可检测标记的,使得结合的抗体是可检测的。可检测标记可以是放射性标记、酶促标记、荧光标记等。任选地,试剂盒可以含有本发明的未缀合的单克隆抗体,和进一步含有能够结合一级抗体的次级抗体。当能够结合一级抗体的次级抗体在测定中采用时,这通常存在于分开的小瓶中。次级抗体通常缀合至可检测标记和以与上文描述的抗体制剂类似的方式配制。试剂盒一般还包括包装和一组使用说明书。The invention also includes diagnostic kits. Kits provided by the invention may contain antibodies of the invention, preferably monoclonal antibodies, and suitable buffers (eg Tris, phosphate, carbonate, etc.), thereby enabling kit users to identify O -GlcNAc modifications. The user can then detectably label the antibody as desired. Alternatively, the kits provided by the invention may contain the antibody in solution, preferably frozen in quenching buffer or in powder form (eg by lyophilization). Antibodies, which may be conjugated to a detectable label or unconjugated, are included in the kit together with a buffer which may optionally further include stabilizers, biocides, inert proteins such as serum albumin, and the like. Generally, these materials will be present in a total amount of less than 5% by weight based on the amount of active antibody, and usually at least about 0.001% by weight, again based on the concentration of the antibody. Optionally, the kit may include inert extenders or excipients to dilute the active ingredients, wherein the excipients may be present at about 1% to 99% by weight of the total composition. In preferred embodiments, the antibodies provided by the kit are detectably labeled such that bound antibodies are detectable. Detectable labels can be radioactive labels, enzymatic labels, fluorescent labels, and the like. Optionally, the kit may contain an unconjugated monoclonal antibody of the invention, and further contain a secondary antibody capable of binding the primary antibody. When a secondary antibody capable of binding the primary antibody is employed in the assay, this is usually present in a separate vial. Secondary antibodies are typically conjugated to a detectable label and formulated in a manner similar to the antibody preparations described above. Kits generally also include packaging and a set of instructions for use.
如本文使用的,术语“受试者”包括但不限于人和非人脊椎动物。非人脊椎动物包括家畜动物、伴侣动物和实验室动物。非人受试者还包括非人灵长类动物以及啮齿类动物,例如但不限于大鼠或小鼠。非人受试者还包括但不限于鸡、马、牛、猪、山羊、犬、猫、豚鼠、仓鼠、貂和兔。如本文使用的,术语“受试者”、“个体”、“患者”和“宿主”可互换使用。在优选实施方案中,受试者是哺乳动物,特别是人。As used herein, the term "subject" includes, but is not limited to, humans and non-human vertebrates. Non-human vertebrates include livestock animals, companion animals, and laboratory animals. Non-human subjects also include non-human primates as well as rodents such as, but not limited to, rats or mice. Non-human subjects also include, but are not limited to, chickens, horses, cows, pigs, goats, dogs, cats, guinea pigs, hamsters, mink, and rabbits. As used herein, the terms "subject", "individual", "patient" and "host" are used interchangeably. In a preferred embodiment, the subject is a mammal, especially a human.
如本文使用的,“在体外”是在细胞培养中,“在体内”是在受试者的体内。As used herein, "in vitro" is in cell culture and "in vivo" is within the body of a subject.
如本文使用的,“处理”或“治疗”包括治疗和预防处理。治疗疾病或病况应意指干预此类疾病或病况,以便预防或减慢疾病或病况的发展、预防或减慢疾病或病况的进展、停止疾病或病况的进展、或消除疾病或病况。As used herein, "treatment" or "treatment" includes both curative and prophylactic treatments. Treating a disease or condition shall mean interfering with such a disease or condition in order to prevent or slow the development of the disease or condition, prevent or slow the progression of the disease or condition, halt the progression of the disease or condition, or eliminate the disease or condition.
如本文使用的,术语“药学可接受的载体”指一种或多种相容的固体或液体填充剂、稀释剂或包封物质,其适合于施用于人或其他脊椎动物。As used herein, the term "pharmaceutically acceptable carrier" refers to one or more compatible solid or liquid fillers, diluents or encapsulating substances, which are suitable for administration to humans or other vertebrates.
如本文使用的,当用于描述化合物时,术语“分离的”应意指从化合物在自然界中出现于其中的天然环境中取出。在一个实施方案中,分离的意指从细胞的非核酸分子中取出。As used herein, the term "isolated" when used to describe a compound shall mean removed from the natural environment in which the compound occurs in nature. In one embodiment, isolated means removed from cells other than nucleic acid molecules.
当提供值的范围时,应当理解除非上下文另有明确说明,在该范围上限和下限之间的每个居中值至下限单位的十分之一,以及在该所述范围中的任何其他所述值或居中值均包含在本发明内。这些更小范围的上限和下限可以独立地包括在更小范围内,并且也包含在本发明内,受所述范围中的任何具体排除的限制管辖。当所述范围包括限制中的一个或两个时,排除那些所包括限制中的任一或两者的范围也包括在本发明中。When a range of values is provided, it is understood that unless the context clearly dictates otherwise, each intervening value between the upper and lower limits of that range, to the tenth of the unit of the lower limit, and any other stated value in that stated range Values or intermediate values are included in the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
在一些实施方案中,“有效量”是导致至少一种病理学参数减少的量。因此,例如,与未接受治疗的个体中的参数的预期减少相比较,有效达到至少约10%、至少约15%、至少约20%或至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%或至少约95%减少的量。In some embodiments, an "effective amount" is an amount that results in a reduction of at least one pathological parameter. Thus, for example, effective to achieve at least about 10%, at least about 15%, at least about 20%, or at least about 25%, at least about 30%, at least about 35% compared to the expected reduction of the parameter in an individual not receiving treatment , at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85% , at least about 90% or at least about 95% reduced amount.
实施例Example
本发明通过下述实施例举例说明。应当理解具体例子、材料、量和程序应依照如本文阐述的本发明的范围和精神广泛解释。The invention is illustrated by the following examples. It should be understood that specific examples, materials, amounts and procedures are to be interpreted broadly in accordance with the scope and spirit of the invention as set forth herein.
实施例1Example 1
针对基于完全合成的碳水化合物的抗癌疫苗:含有肿瘤相关Tn抗原的脂质化糖肽的合成和免疫学评价Targeting fully synthetic carbohydrate-based anticancer vaccines: synthesis and immunological evaluation of lipidated glycopeptides containing tumor-associated Tn antigens
在这个实施例中,通过聚合物支持和溶液相化学的组合制备了完全合成的候选癌症疫苗,其由肿瘤相关Tn抗原、肽T表位和脂肽Pam3Cys组成。糖脂肽掺入脂质体内给出能够在小鼠中引发T细胞依赖性抗体应答的制剂。In this example, a fully synthetic cancer vaccine candidate consisting of tumor-associated Tn antigen, peptide T epitope and lipopeptide Pam 3 Cys was prepared by a combination of polymer support and solution phase chemistry. Incorporation of glycolipid peptides into liposomes gives formulations capable of eliciting T cell-dependent antibody responses in mice.
致癌转化细胞的共同特征是寡糖例如Globo-H、LewisY和Tn抗原的过表达(Lloyd,Am. J Clin. Pathol. 1987,87,129;Feizi等人,Trends in Biochem. Sci. 1985,10,24-29;Springer,J. Mol. Med. 1997,75,594-602;Hakomori,Acta Anat. 1998,161,79-90)。众多研究已显示这种异常糖基化可以促进转移(Sanders等人,Mol. Pathol. 1999,52,174-178),因此它的表达与癌症患者的弱存活率强烈关联。A common feature of oncogenically transformed cells is the overexpression of oligosaccharides such as Globo-H, Lewis Y and Tn antigens (Lloyd, Am. J Clin. Pathol. 1987, 87, 129; Feizi et al., Trends in Biochem. Sci. 1985, 10, 24-29; Springer, J. Mol. Med. 1997, 75, 594-602; Hakomori, Acta Anat. 1998, 161, 79-90). Numerous studies have shown that this aberrant glycosylation can promote metastasis (Sanders et al., Mol. Pathol. 1999, 52, 174-178), so its expression is strongly correlated with poor survival of cancer patients.
几个一流研究已利用肿瘤相关碳水化合物的差异表达用于开发癌症疫苗(Ragupathi,Cancer Immunol. 1996,43,152-157;Musselli等人,J Cancer Res. Clin.Oncol. 2001,127,R20-R26)。然而,碳水化合物不能激活辅助T淋巴细胞已使其作为疫苗的用途变复杂(Kuberan等人,Current Organic Chemistry 2000,4,653-677)。对于大多数免疫原(包括碳水化合物),抗体产生依赖于两类淋巴细胞B细胞和辅助T细胞的协同相互作用(Jennings等人,Neoglycoconjugates,preparation and application,Academic,SanDiego,1994)。糖单独不能激活辅助T细胞,因此具有有限的免疫原性。低亲和力IgM抗体的形成和IgG抗体的不存在显现这种有限的免疫原性。Several first-rate studies have exploited differential expression of tumor-associated carbohydrates for the development of cancer vaccines (Ragupathi, Cancer Immunol. 1996, 43, 152-157; Musselli et al., J Cancer Res. Clin. Oncol. 2001, 127, R20- R26). However, the inability of carbohydrates to activate helper T lymphocytes has complicated their use as vaccines (Kuberan et al., Current Organic Chemistry 2000, 4, 653-677). For most immunogens, including carbohydrates, antibody production relies on the cooperative interaction of two types of lymphocytes, B cells and helper T cells (Jennings et al., Neoglycoconjugates, preparation and application, Academic, San Diego, 1994). Sugar alone cannot activate helper T cells and therefore has limited immunogenicity. The formation of low affinity IgM antibodies and the absence of IgG antibodies manifests this limited immunogenicity.
为了克服碳水化合物的T细胞独立性质,过去研究已集中于糖与外源载体蛋白质(例如匙孔血蓝蛋白(KLH)、去毒破伤风类毒素)的缀合。在这种方法中,载体蛋白质增强碳水化合物向免疫系统的呈递,并且提供可以激活T辅助细胞的T表位(12-15个氨基酸的肽片段)。To overcome the T cell independent nature of carbohydrates, past studies have focused on conjugation of carbohydrates to exogenous carrier proteins (eg keyhole limpet hemocyanin (KLH), detoxified tetanus toxoid). In this approach, the carrier protein enhances the presentation of carbohydrates to the immune system and provides T epitopes (peptide fragments of 12-15 amino acids) that can activate T helper cells.
然而,碳水化合物与载体蛋白质的缀合具有几个问题。一般而言,缀合化学难以控制,导致产生具有可以影响免疫应答的再现性的在组成和结构方面的含糊性的缀合物(Anderson等人,J. Immunol. 1989,142,2464-2468)。此外,外源载体蛋白质可以引发强B细胞应答,其可以导致针对碳水化合物表位的抗体应答的抑制。当采用自身抗原例如肿瘤相关碳水化合物时,后者是更大的问题。此外,用于碳水化合物与蛋白质的缀合的接头可以是免疫原性的,导致表位抑制(Buskas等人,Chem. Eur. J. 2004,10,3517-3523)。并不令人惊讶地,用碳水化合物-蛋白质缀合物癌症疫苗的几个临床试验未能在所有患者中诱导足够强的辅助T细胞应答(Sabbatini等人,Int. J. Cancer 2000,87,79-85)。因此,需要开发可替代策略用于呈递肿瘤相关碳水化合物表位,其将导致更有效的向IgG抗体的类别转换(Keil等人,Angew. Chem. Int. Ed. 2001,40,366-369;Angew. Chem. 2001,113,379-382;Toyokuni等人,Bioorg. & Med. Chem. 1994,2,1119-1132;Lo-Man等人,Cancer Res.2004,64,4987-4994;Kagan等人,Cancer Immunol. Immunother. 2005,54,424-430;Reichel等人,Chem. Commun. 1997,21,2087-2088)。However, the conjugation of carbohydrates to carrier proteins has several problems. In general, conjugation chemistry is difficult to control, leading to conjugates with compositional and structural ambiguities that can affect the reproducibility of the immune response (Anderson et al., J. Immunol. 1989, 142, 2464-2468) . Furthermore, exogenous carrier proteins can elicit strong B cell responses, which can lead to suppression of antibody responses to carbohydrate epitopes. The latter is a greater problem when employing self-antigens such as tumor-associated carbohydrates. Furthermore, linkers used for the conjugation of carbohydrates to proteins can be immunogenic, leading to epitope suppression (Buskas et al., Chem. Eur. J. 2004, 10, 3517-3523). Not surprisingly, several clinical trials with carbohydrate-protein conjugate cancer vaccines failed to induce sufficiently strong helper T cell responses in all patients (Sabbatini et al., Int. J. Cancer 2000, 87, 79-85). Therefore, there is a need to develop alternative strategies for the presentation of tumor-associated carbohydrate epitopes that will lead to more efficient class switching to IgG antibodies (Keil et al., Angew. Chem. Int. Ed. 2001, 40, 366-369; Angew. Chem. 2001, 113, 379-382; Toyokuni et al., Bioorg. & Med. Chem. 1994, 2, 1119-1132; Lo-Man et al., Cancer Res. 2004, 64, 4987-4994; Kagan et al. Human, Cancer Immunol. Immunother. 2005, 54, 424-430; Reichel et al., Chem. Commun. 1997, 21, 2087-2088).
此处,我们报道了结构上充分确定的完全合成的抗癌疫苗候选物(化合物9)的合成和免疫学评价,所述抗癌疫苗候选物构成集中和有效的T细胞依赖性免疫应答所需的最低限度结构特征。疫苗候选物由肿瘤相关Tn抗原、肽T表位YAFKYARHANVGRNAFELFL(YAF)(SEQ ID NO:2)和脂肽S-[(R)-2,3-二棕榈酰氧基-丙基]-N-棕榈酰-(R)-半胱氨酸(Pam3Cys)组成。充当B表位的Tn抗原在乳腺、结肠和前列腺的人上皮肿瘤细胞的表面上过表达。这种抗原不存在于正常细胞上,并且因此致使其成为用于免疫治疗的极佳靶。为了克服碳水化合物抗原的T细胞独立性质,掺入YAF肽。这个20氨基酸肽序列衍生自脑膜炎奈瑟氏球菌的外膜蛋白质,且已鉴定为用于人T细胞的MHC II类限制位点(Wiertz等人,J. Exp.Med. 1992,176,79-88)。设想这种辅助T细胞表位会诱导T细胞依赖性免疫应答,导致针对Tn抗原的IgG抗体的产生。合并的B细胞和辅助T细胞表位缺乏提供用于树突状细胞(DC)成熟的合适“危险信号”的能力(Medzhitov等人,Science 2002,296,298-300)。因此,掺入衍生自大肠杆菌的主要脂蛋白的免疫活性N末端序列的脂肽Pam3Cys (Braun,Biochim.Biophys. Acta 1975,415,335-377)。这种脂肽已识别为有力的免疫佐剂(Weismuller等人,Physiol. Chem. 1983,364,593),并且近期研究已显示它通过与Toll样受体-2(TLR-2)的相互作用发挥其活性(Aliprantis等人,Science 1999,285,736-73)。这种相互作用导致促炎细胞因子和趋化因子的产生,其进而刺激抗原呈递细胞(APC),从而起始辅助T细胞发育和激活(Werling等人,Vet. Immunol. Immunopathol. 2003,91,1-12)。脂肽还促进抗原掺入脂质体内。脂质体作为疫苗设计中的载体已吸引关注(Kersten等人,Biochim.Biophys. Acta 1995,1241,117-138),这是由于其低的固有免疫原性,从而避免不希望有的载体诱导的免疫应答。Here, we report the synthesis and immunological evaluation of a structurally well-defined, fully synthetic anticancer vaccine candidate (compound 9) that constitutes the complex required for a focused and efficient T cell-dependent immune response. minimum structural features. The vaccine candidate consists of tumor-associated Tn antigen, peptide T epitope YAFKYARHANVGRNAFELFL (YAF) (SEQ ID NO: 2) and lipopeptide S -[(R)-2,3-dipalmitoyloxy-propyl]-N- Palmitoyl-(R)-cysteine (Pam 3 Cys) composition. The Tn antigen serving as the B epitope is overexpressed on the surface of human epithelial tumor cells of the breast, colon and prostate. This antigen is not present on normal cells and thus makes it an excellent target for immunotherapy. To overcome the T cell independent nature of carbohydrate antigens, YAF peptides were incorporated. This 20 amino acid peptide sequence is derived from the outer membrane protein of Neisseria meningitidis and has been identified as an MHC class II restriction site for human T cells (Wiertz et al., J. Exp. Med. 1992, 176, 79 -88). It is hypothesized that such helper T-cell epitopes induce a T-cell-dependent immune response, leading to the production of IgG antibodies against Tn antigens. Combined B-cell and T-helper epitopes lack the ability to provide a suitable "danger signal" for dendritic cell (DC) maturation (Medzhitov et al., Science 2002, 296, 298-300). Thus, the lipopeptide Pam 3 Cys was incorporated from the immunologically active N -terminal sequence of the major lipoprotein derived from E. coli (Braun, Biochim. Biophys. Acta 1975, 415, 335-377). This lipopeptide has been recognized as a potent immune adjuvant (Weismuller et al., Physiol. Chem. 1983, 364, 593), and recent studies have shown that it interacts with Toll-like receptor-2 (TLR-2) exert its activity (Aliprantis et al., Science 1999, 285, 736-73). This interaction leads to the production of proinflammatory cytokines and chemokines, which in turn stimulate antigen-presenting cells (APCs) to initiate helper T cell development and activation (Werling et al., Vet. Immunol. Immunopathol. 2003, 91, 1-12). Lipopeptides also facilitate the incorporation of antigen into liposomes. Liposomes have attracted attention as carriers in vaccine design (Kersten et al., Biochim. Biophys. Acta 1995, 1241, 117-138), due to their low inherent immunogenicity, thereby avoiding unwanted carrier-induced immune response.
靶化合物9的合成需要采用以下化学操作的高度会聚的合成策略,所述化学操作与碳水化合物、肽和脂质部分的存在相容。设想9可以由含间隔物的Tn抗原7、聚合物结合的肽1和S-[2,3-双(棕榈酰氧基)丙基]-N-Fmoc-Cys (Pam2FmocCys,2,(Metzger等人,Int.J. Peptide Protein Res. 1991,38,545-554))进行制备。使用与作为激活混合物(方案10)的高酸敏感的HMPB-MBHA树脂和2-(1H-苯并三唑-1-基)-氧基-1,1,3,3-四甲基脲六氟磷酸盐/1-羟基苯并三唑(HBTU/HOBt)(Knorr等人,Tetrahedron Lett. 1989,30,1927-1930)组合的Fmoc保护氨基酸,通过自动化固相肽合成装配树脂结合的肽1。选择HMPB-MBHA树脂,因为它允许化合物从树脂中裂解,而无侧链保护基团的伴随去除。这个特征是重要的,因为天冬氨酸、谷氨酸和赖氨酸的侧链官能团否则会干扰Tn抗原衍生物7的掺入。接下来,在DMF和二氯甲烷的混合物中在DIPEA存在下,将Pam2FmocCys衍生物2使用PyBOP(Martinez等人,J. Med. Chem. 1988,28,1874-1879)和HOBt手工偶联至肽1的N末端胺,以给出树脂结合的脂肽3。3的Fmoc基团在标准条件下去除,所得到的化合物4的游离胺在PyBOP和HOBt的存在下与棕榈酸偶联,以给出完全保护和树脂结合的脂肽5。Pam2Cys部分的胺在与1偶联后棕榈酰化,以避免半胱氨酸部分的外消旋化。化合物5从树脂中的裂解用2%TFA的二氯甲烷溶液来达到,随后用5%吡啶的甲醇溶液立即中和。在通过LH-20尺寸排阻层析纯化后,采用DIC/HOAt/DIPEA (Carpino,J. Am. Chem. Soc 1993,115,4397-4398)作为偶联剂,使脂肽6的C末端羧酸与Tn衍生物7的胺偶联,以在通过Sephadex LH-20尺寸排阻层析纯化后,给出以79%得率的完全保护的脂质化糖肽8。通过MALDI-TOF的质谱法分析显示在m/z 5239.6和5263.0处的信号,分别对应于[M+H]+和[M+Na]+。最后,利用1,2-乙二硫醇(EDT)作为清除剂,将8的侧链保护基团通过用95% TFA的水溶液处理去除。发现三异丙基硅烷(TIS)的可替代使用导致未鉴定的副产物的形成。靶化合物9通过尺寸排阻层析以及随后的使用Synchropak C4柱的RP-HPLC纯化。9的MALDI质量分析显示在m/z 3760.3处的信号,对应于[M+Na]+。The synthesis of target compound 9 required a highly convergent synthetic strategy employing chemical manipulations compatible with the presence of carbohydrate, peptide and lipid moieties. Scenario 9 can be composed of spacer-containing Tn antigen 7, polymer-conjugated peptide 1, and S- [2,3-bis(palmitoyloxy)propyl] -N -Fmoc-Cys (Pam 2 FmocCys, 2,( Metzger et al., Int. J. Peptide Protein Res. 1991, 38, 545-554)) for preparation. Using highly acid-sensitive HMPB-MBHA resin and 2-(1H-benzotriazol-1-yl)-oxy-1,1,3,3-tetramethylurea as the activation mixture (Scheme 10) Hexafluorophosphate/1-hydroxybenzotriazole (HBTU/HOBt) (Knorr et al., Tetrahedron Lett. 1989, 30, 1927-1930) combined Fmoc-protected amino acids for assembly of resin-bound peptides by automated solid-phase peptide synthesis 1. HMPB-MBHA resin was chosen because it allows cleavage of the compound from the resin without concomitant removal of side chain protecting groups. This feature is important because the side chain functional groups of aspartic acid, glutamic acid and lysine would otherwise interfere with the incorporation of the Tn antigen derivative7. Next, the Pam 2 FmocCys derivative 2 was manually coupled using PyBOP (Martinez et al., J. Med. Chem. 1988, 28, 1874-1879) and HOBt in the presence of DIPEA in a mixture of DMF and dichloromethane to the N-terminal amine of peptide 1 to give resin-bound lipopeptide 3. The Fmoc group of 3 was removed under standard conditions and the resulting free amine of compound 4 was coupled to palmitic acid in the presence of PyBOP and HOBt, to give fully protected and resin-bound lipopeptide 5. The amine of the Pam 2 Cys moiety is palmitoylated after coupling with 1 to avoid racemization of the cysteine moiety. Cleavage of compound 5 from the resin was achieved with 2% TFA in dichloromethane, followed by immediate neutralization with 5% pyridine in methanol. After purification by LH-20 size exclusion chromatography, the C-terminal carboxylate of lipopeptide 6 was made The acid was coupled to the amine of the Tn derivative 7 to give the fully protected lipidated glycopeptide 8 in 79% yield after purification by Sephadex LH-20 size exclusion chromatography. Mass spectrometry analysis by MALDI-TOF showed signals at m / z 5239.6 and 5263.0, corresponding to [M+H] + and [M+Na] + , respectively. Finally, the side chain protecting group of 8 was removed by treatment with 95% TFA in water using 1,2-ethanedithiol (EDT) as a scavenger. An alternative use of triisopropylsilane (TIS) was found to result in the formation of unidentified by-products. Target compound 9 was purified by size exclusion chromatography followed by RP-HPLC using a Synchropak C4 column. MALDI mass analysis of 9 showed a signal at m/z 3760.3, corresponding to [M+Na] + .
方案10. a)PyBOP、HOBt、DIPEA、DMF/DCM (5/1,v/v);b)哌啶/DMF(1/5,v/v);c)CH3(CH2)14COOH、PyBOP、HOBt、DMF/DCM (1/5,v/v);d) 2% TFA的DCM溶液;e) 7、DIC、HOAt、DIPEA、DMF/DCM (2/1,v/v)、79%;f) TFA/H2O/EDT (95/2.5/2.5,v/v/v)、79%。Scheme 10. a) PyBOP, HOBt, DIPEA, DMF/DCM (5/1, v/v); b) piperidine/DMF (1/5, v/v); c) CH 3 (CH 2 ) 14 COOH , PyBOP, HOBt, DMF/DCM (1/5, v/v); d) 2% TFA in DCM; e) 7, DIC, HOAt, DIPEA, DMF/DCM (2/1, v/v), 79%; f) TFA/ H2O /EDT (95/2.5/2.5, v/v/v), 79%.
接下来,将化合物9掺入基于磷脂的脂质体内。因此,在含9、胆固醇、磷脂酰胆碱和磷脂酰乙醇胺的脂质薄膜的水合后,通过经由100 nm Nuclepore®聚碳酸酯膜挤出制备小型单层囊泡(SUV)。通过负染色的透射电子显微镜检查(TEM)证实脂质体是有均匀大小的,具有约100 nm的预期直径(参见Buskas等人,Angew. Chem. Int. Ed. 2005,44,5985-5988的图1)。通过用TFA水解随后为高pH阴离子交换层析的定量,就N-乙酰半乳糖胺含量分析脂质体制剂。测定了约30 μg/mL GalNAc的浓度,其对应于约10%的起始化合物9的掺入。Next, compound 9 was incorporated into phospholipid-based liposomes. Therefore, after hydration of lipid films containing 9, cholesterol, phosphatidylcholine, and phosphatidylethanolamine, small unilamellar vesicles (SUVs) were prepared by extrusion through a 100 nm Nuclepore® polycarbonate membrane. Liposomes were uniformly sized by negative-stained transmission electron microscopy (TEM), with an expected diameter of about 100 nm (see Buskas et al., Angew. Chem. Int. Ed. 2005, 44, 5985-5988). figure 1). Liposome formulations were analyzed for N -acetylgalactosamine content by hydrolysis with TFA followed by quantification by high pH anion exchange chromatography. A concentration of about 30 μg/mL GalNAc, corresponding to about 10% incorporation of starting compound 9, was determined.
用含有0.6 μg碳水化合物的新鲜制备的脂质体,以每周一次的间隔皮下免疫接种五只雌性BALB/c小鼠的组。为了探究嵌入的脂肽Pam3Cys的佐剂性质,含抗原的脂质体连同或不连同有效的皂苷免疫佐剂QS-21 (Antigenics Inc.,Lexington,MA)一起施用。抗Tn抗体滴度通过用BSA-Tn缀合物包被微量滴定板进行测定,并且用标记有碱性磷酸酶的抗小鼠IgM或IgG抗体完成检测。如表1中可见的,将小鼠用脂质体制剂免疫接种,引发针对Tn抗原的IgM和IgG抗体(表1,条目1和2)。IgG抗体的存在指出9的辅助T表位肽已激活辅助T淋巴细胞。此外,对仅用脂质体免疫接种的小鼠(组1)产生IgG抗体的观察结果指出嵌入的佐剂Pam3Cys已触发用于DC成熟及其对辅助T细胞的后续激活的合适信号。然而,接受与QS-21组合的脂质体的小鼠(组2)引发更高滴度的抗Tn抗体。这种更强的免疫应答可能是由于从混合Th1/Th2到Th1应答的转变(Moore等人,Vaccine 1999,17,2517-2527)。Groups of five female BALB/c mice were immunized subcutaneously at weekly intervals with freshly prepared liposomes containing 0.6 μg carbohydrate. To explore the adjuvant properties of the embedded lipopeptide Pam3Cys , antigen-containing liposomes were administered with or without the potent saponin immunoadjuvant QS-21 (Antigenics Inc., Lexington, MA). Anti-Tn antibody titers were determined by coating microtiter plates with BSA-Tn conjugate and detection was accomplished with anti-mouse IgM or IgG antibodies labeled with alkaline phosphatase. As can be seen in Table 1, mice were immunized with liposome formulations, eliciting IgM and IgG antibodies against the Tn antigen (Table 1, entries 1 and 2). The presence of IgG antibodies indicated that the helper T epitope peptide of 9 had activated helper T lymphocytes. Furthermore, the observation that IgG antibodies were produced in mice immunized with liposomes only (Group 1 ) indicated that the embedded adjuvant Pam 3 Cys had triggered the appropriate signals for DC maturation and their subsequent activation of helper T cells. However, mice receiving liposomes in combination with QS-21 (Group 2) elicited higher titers of anti-Tn antibodies. This stronger immune response may be due to a shift from a mixed Th1/Th2 to a Th1 response (Moore et al., Vaccine 1999, 17, 2517-2527).
表1. 在用糖脂肽/脂质体制剂4次免疫接种后的ELISA抗Tn抗体滴度[a]。Table 1. ELISA anti-Tn antibody titers [a] after 4 immunizations with glycolipopeptide/liposome formulations.
[a] ELISA板用BSA-BrAc-Tn缀合物包被。所有滴度是关于五只小鼠的组的平均值。通过回归分析测定滴度,标绘与吸光度比较的log10稀释度而测定滴度。滴度计算为给出比相对于1:100稀释的生理盐水小鼠血清的吸光度高为0.1或更高的最高稀释度。 [a] ELISA plates were coated with BSA-BrAc-Tn conjugate. All titers are means for groups of five mice. Titers were determined by regression analysis plotting log10 dilutions compared to absorbance. Titers were calculated as the highest dilution that gave an absorbance greater than 0.1 or greater relative to a 1:100 dilution of saline mouse serum.
本文呈现的结果首次提供了关于使用脂质化糖肽作为最低限度亚单位疫苗的原理证明(proof-of-principle)。预期可以作出几个改善。例如,已发现Tn抗原的聚簇呈递是粘蛋白的更合适模拟物,因此针对这个结构产生的抗体更佳地识别在癌细胞上表达的Tn抗原(Nakada等人,J. Biol. Chem. 1991,266,12402-12405;Nakada等人,Proc. Natl.Acad. Sci. USA 1993,90,2495-2499;Reddish等人,Glycoconj. J. 1997,14,549-560;Reis等人,Glycoconj. J. 1998,15,51-62)。在这个研究中采用的Tn表位已知是用于人的MHC II类限制性表位。因此,当采用鼠Th表位时,可以预期向IgG抗体的更有效的类别转换。另一方面,化合物9是用于在人中使用的更合适的疫苗候选物。近期报道指出Pam2Cys是比Pam3Cys更有效的免疫佐剂(Jackson等人,Proc. Nat. Acad. Sci. USA 2004,101,15440-15445)。还已提出Pam2Cys佐剂具有改善的可溶性质(Zeng等人,J. Immunol. 2002,169,4905-4912),其是化合物9的成问题的特征。解决这些问题的研究在进行中。The results presented here provide for the first time a proof-of-principle for the use of lipidated glycopeptides as minimal subunit vaccines. Several improvements are expected to be made. For example, the clustered presentation of the Tn antigen has been found to be a more suitable mimic of mucin, and thus antibodies raised against this structure better recognize the Tn antigen expressed on cancer cells (Nakada et al., J. Biol. Chem. 1991 , 266, 12402-12405; Nakada et al., Proc. Natl. Acad. Sci. USA 1993, 90, 2495-2499; Reddish et al., Glycoconj. J. 1997, 14, 549-560; Reis et al., Glycoconj. J. 1998, 15, 51-62). The Tn epitope used in this study is a known MHC class II restricted epitope for humans. Therefore, more efficient class switching to IgG antibodies can be expected when murine Th epitopes are employed. Compound 9, on the other hand, is a more suitable vaccine candidate for use in humans. A recent report indicated that Pam 2 Cys is a more effective immune adjuvant than Pam 3 Cys (Jackson et al., Proc. Nat. Acad. Sci. USA 2004, 101, 15440-15445). The Pam 2 Cys adjuvant has also been suggested to have improved solubility properties (Zeng et al., J. Immunol. 2002, 169, 4905-4912), which is a problematic feature of compound 9. Research to address these issues is ongoing.
这个工作在Buskas等人,Angew. Chem. Int. Ed. 2005,44,5985-5988中报道。This work is reported in Buskas et al., Angew. Chem. Int. Ed . 2005, 44, 5985-5988.
支持信息support information
试剂和一般实验程序。氨基酸和树脂得自Applied Biosystems和NovaBiochem;DMF得自EM science;并且NMP得自Applied Biosystems。磷脂酰乙醇胺(PE)、胆固醇、磷脂酰胆碱(PC;蛋黄)和磷脂酰甘油(PG;蛋黄)购自Sigma-Aldrich和Fluka。所有其他化学制品购自Aldrich、Acros和Fluka,且无需进一步纯化而使用。采用的所有溶剂都具有试剂级别,且通过经过合适的干燥剂回流进行干燥。TLC使用Kieselgel 60 F254 (Merck)板执行,通过UV光(254 nm)和/或通过用8%硫酸的乙醇溶液炭化或通过茚三酮进行检测。柱层析在二氧化硅凝胶(Merck,筛目70-230)上执行。尺寸排阻柱层析在Sephadex LH-20上执行。将提取物在减压下在≤40℃(水浴)浓缩。配备自动采样器、UV检测器和流分收集器和具有1 mL/分钟流速的Synchropak C4柱100x4.6 mm RP的Agilent 1100系列HPLC系统用于分析和纯化。使用HP-MALDI仪器使用龙胆酸作为基质记录阳离子基质辅助激光解吸电离飞行时间(MALDI-TOF)质谱。1H NMR和13C NMR谱在Varian Inova300分光计、Varian Inova500分光计和Varian Inova600分光计上记录,所述分光计都配备Sun工作站。在CDCl3中记录的1H谱参考在7.26 ppm处的残基CHCl3或TMS,并且13C谱参考CDCl3在77.0 ppm处的中心峰。使用标准1D实验以及gCOSY/DQCOSY、gHSQC和TOCSY 2D实验作出分配。 Reagents and general experimental procedures. Amino acids and resins were obtained from Applied Biosystems and NovaBiochem; DMF was obtained from EM science; and NMP was obtained from Applied Biosystems. Phosphatidylethanolamine (PE), cholesterol, phosphatidylcholine (PC; egg yolk) and phosphatidylglycerol (PG; egg yolk) were purchased from Sigma-Aldrich and Fluka. All other chemicals were purchased from Aldrich, Acros and Fluka and used without further purification. All solvents employed were of reagent grade and dried by refluxing through a suitable desiccant. TLC was performed using Kieselgel 60 F 254 (Merck) plates with detection by UV light (254 nm) and/or by charring with 8% sulfuric acid in ethanol or by ninhydrin. Column chromatography was performed on silica gel (Merck, mesh 70-230). Size exclusion column chromatography was performed on Sephadex LH-20. The extract was concentrated under reduced pressure at < 40°C (water bath). An Agilent 1100 series HPLC system equipped with an autosampler, UV detector and fraction collector and a Synchropak C4 column 100x4.6 mm RP with a flow rate of 1 mL/min was used for analysis and purification. Cationic matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra were recorded using an HP-MALDI instrument using gentisic acid as the matrix. 1 H NMR and 13 C NMR spectra were recorded on a Varian Inova300 spectrometer, a Varian Inova500 spectrometer and a Varian Inova600 spectrometer, all equipped with a Sun workstation. The 1 H spectrum recorded in CDCl 3 was referenced to the residue CHCl 3 or TMS at 7.26 ppm, and the 13 C spectrum was referenced to the central peak of CDCl 3 at 77.0 ppm. Assignments were made using standard 1D experiments as well as gCOSY/DQCOSY, gHSQC and TOCSY 2D experiments.
脂肽6。化合物1在HMPB-MBHA树脂(最大负荷,0.1 mmol)上合成。肽1的合成在配备UV检测器的ABI 433A肽合成仪上执,使用Fmoc保护的氨基酸和2-(1H-苯并三唑-1-基)-氧基-1,1,3,3-四甲基脲六氟磷酸盐(HBTU)/1-羟基苯并三唑(HOBt)作为偶联剂进行。单个偶联步骤根据需要用条件性加帽进行。在肽1合成完成后,手工执行剩余步骤。将N-芴甲氧羰基-S-(2,3-双(棕榈酰氧基)-(2R-丙基)-(R)-半胱氨酸2 (120 mg,0.13 mmol)溶解于DMF (5 mL)中,并且加入PyBOP (0.13 mmol)、HOBt (0.13 mmol)和DIPEA (0.27 mmol)。在预混合2分钟后,加入DCM (1 mL),并且将混合物加入树脂中。将偶联步骤执行两次。在偶联完成(如通过Kaiser测试测定的)后,使用20%哌啶的DMF (5 mL)溶液裂解N-Fmoc基团。使用PyBop (0.3 mmol)、HOBt (0.3 mmol)和DIPEA (0.6 mmol)的DMF溶液,如上所述使棕榈酸(77 mg,0.3 mmol)与游离胺偶联。将树脂用DMF和DCM充分洗涤,且在真空下干燥4小时。通过用2%三氟乙酸的DCM (2.5 mL)溶液处理2分钟,从树脂中释放完全保护的脂肽6。将混合物过滤到5%吡啶的甲醇溶液(5 mL)内。将该程序重复,并且将含有脂肽的流分合并浓缩至干燥。通过尺寸排阻层析(LH-20,DCM/MeOH,1:1)纯化粗产物,以给出作为白色固体的脂肽6(275 mg,0.057 mmol):Rf = 0.57 (DCM/MeOH 9:1);所选的NMR数据(CDCl3/CD3OD 1/1 v/v600MHz): 1H, δ 0.48-0.90 (m, 27 H, Pam CH3, Leu CH3, Val CH3), 0.96-1.61 (m,Leu CH2, Leu CH, Lys CH2, tBu CH3, Boc CH3, Ala CH3, Arg CH2), 1.18 (br s, 72H,Pam CH2), 1.95, 1.99 (s, 4x3H, Pbf CH3C), 2.36, 2.41, 2.44 (s, 6x3H, Pbf CH3),2.48 (s, 2x2H, Pbf CH2) 2.65-2.73 (m, 6H, S-CH 2-甘油基, His CH2, Cysβ), 3.47(m, 2H, Glyα), 3.57 (m, 2H, Glyα), 4.06 (m, 1H, S-甘油基-CH 2 bO), 4.32 (m, 1H,S-甘油基-CH 2 aO), 3.65-4.39 (m, 17H, Pheα, Alaα, Hisα, Lysα, Valα, Asnα, Gluα,Tyrα, Argα), 4.45 (m, 1H, Cysα), 5.06 (m, 1H, S-甘油基-CH), 6.72-7.39 (m, 70H,His CH, Tyr芳族的(aromat), Phe芳族的, Trt芳族的), 7.48-8.29 (m, NH)。对于C269H373N33O42S3计算的MALDI-MS [M+Na] m/z = 4860.22:实测值4860.31。 lipopeptide 6. Compound 1 was synthesized on HMPB-MBHA resin (maximum load, 0.1 mmol). The synthesis of peptide 1 was performed on an ABI 433A peptide synthesizer equipped with a UV detector, using Fmoc-protected amino acids and 2-(1H-benzotriazol-1-yl)-oxyl-1,1,3,3- Tetramethylurea Hexafluorophosphate (HBTU)/1-hydroxybenzotriazole (HOBt) was performed as coupling agent. Individual coupling steps were performed with conditional capping as needed. After peptide 1 synthesis was complete, the remaining steps were performed manually. N -Fmoxy-S-(2,3-bis(palmitoyloxy)-(2R-propyl)-(R)-cysteine 2 (120 mg, 0.13 mmol) was dissolved in DMF ( 5 mL), and added PyBOP (0.13 mmol), HOBt (0.13 mmol) and DIPEA (0.27 mmol). After premixing for 2 minutes, DCM (1 mL) was added, and the mixture was added to the resin. The coupling step This was performed twice. After the coupling was complete (as determined by the Kaiser test), the N-Fmoc group was cleaved using 20% piperidine in DMF (5 mL). Using PyBop (0.3 mmol), HOBt (0.3 mmol) and DIPEA (0.6 mmol) in DMF, palmitic acid (77 mg, 0.3 mmol) was coupled with the free amine as described above. The resin was washed well with DMF and DCM and dried under vacuum for 4 hours. Treatment with fluoroacetic acid in DCM (2.5 mL) for 2 min released the fully protected lipopeptide 6 from the resin. The mixture was filtered into 5% pyridine in methanol (5 mL). This procedure was repeated and the lipopeptide containing Fractions were combined and concentrated to dryness. The crude product was purified by size exclusion chromatography (LH-20, DCM/MeOH, 1:1) to give lipopeptide 6 (275 mg, 0.057 mmol) as a white solid: R f = 0.57 (DCM/MeOH 9:1); selected NMR data (CDCl 3 /CD 3 OD 1/1 v/v 600MHz): 1 H, δ 0.48-0.90 (m, 27 H, Pam CH 3 , Leu CH 3 , Val CH 3 ), 0.96-1.61 (m,Leu CH 2 , Leu CH, Lys CH 2 , t Bu CH 3 , Boc CH 3 , Ala CH 3 , Arg CH 2 ), 1.18 (br s, 72H, Pam CH 2 ), 1.95, 1.99 (s, 4x3H, Pbf CH 3 C), 2.36, 2.41, 2.44 (s, 6x3H, Pbf CH 3 ), 2.48 (s, 2x2H, Pbf CH 2 ) 2.65-2.73 (m, 6H, SC H 2 -Glyceryl, His CH 2 , Cys β ), 3.47(m, 2H, Gly α ), 3.57 (m, 2H, Gly α ), 4.06 (m, 1H, S-Glyceryl- CH 2 b O), 4.32 (m, 1H,S-glyceryl- CH 2 a O), 3.65-4.39 (m, 17H, Phe α , Ala α , His α , Lys α , Val α , Asn α , Glu α ,Tyr α , Arg α ), 4.45 (m, 1H, Cys α ), 5.06 (m, 1H, S-glyceryl- CH ), 6.72-7.39 (m, 70H, His CH, Tyr aromatic (aromat), Phe aromatic, Trt aromatic), 7.48-8.29 (m , NH). MALDI-MS [M+Na] m/z = 4860.22 calculated for C269H373N33O42S3 : found 4860.31 .
受保护的糖脂肽8。将脂肽6 (22 mg,4.6 μmol)、HOAt (6.3 mg,46 μmol)和DIC(7 μL,46 μmol)的DCM/DMF (2/1 v/v,1.5 mL)溶液在氩气氛下在环境温度搅拌15分钟。将化合物7 (8 mg,19 μmol)和DIPEA (14 μL,92 μmol)的DMF(1.5 mL)溶液加入脂肽的搅拌混合物中,并且将反应在室温保持18小时。将混合物用甲苯稀释且在减压下浓缩至干燥。通过尺寸排阻(LH-20,DCM/MeOH 1:1)纯化残余物给出作为白色固体的化合物8 (19 mg,79%):所选的NMR数据(CDCl3/CD3OD 1/1 v/v 600MHz): 1H,δ 0.60-0.90 (m, 27 H, PamCH3, Leu CH3, Val CH3), 0.96-1.61 (m, Leu CH2, Leu CH, Lys CH2, tBu CH3, BocCH3, Ala CH3, Arg CH2), 1.18 (br s, 72H, Pam CH2), 1.94, 1.98, 1.99, 2.00 (s,6x3H, Pbf CH3C, HNAc CH3), 2.36, 2.41, 2.45 (s, 6x3H, Pbf CH3), 2.48 (s, 2x2H,Pbf CH2), 3.42-4.31 (m, Pheα, Ala, Lys, Val, Asp, Glu, Tyr, Arg, Gly, Leu,His, Asn CH2, Tyr CH2, Phe CH2, Arg CH2), 3.71 (H-3), 3.88 (H-4) 4.06 (S-甘油基-CH 2 βO), 4.20 (t, 1H, H-2), 4.32 (m, 1H, S-甘油基-CH 2 αO), 4.42 (m, 1H, Cysα),4.82 (d, 1H, H-1, J=3.68Hz), 5.06 (m, 1H, S-甘油基-CH), 6.72-7.39 (m, 70H,His CH, Tyr芳族的, Phe芳族的, Trt芳族的), 7.48-8.29 (m, NH)。对于C286H403N37O49S3计算的MALDI-MS [M+Na] m/z = 5262.67:实测值5262.99。 Protected Glycolipidin 8. A solution of lipopeptide 6 (22 mg, 4.6 μmol), HOAt (6.3 mg, 46 μmol) and DIC (7 μL, 46 μmol) in DCM/DMF (2/1 v/v, 1.5 mL) was prepared under argon atmosphere at Stir at ambient temperature for 15 minutes. A solution of compound 7 (8 mg, 19 μmol) and DIPEA (14 μL, 92 μmol) in DMF (1.5 mL) was added to the stirred mixture of lipopeptides, and the reaction was maintained at room temperature for 18 hours. The mixture was diluted with toluene and concentrated to dryness under reduced pressure. Purification of the residue by size exclusion (LH-20, DCM/MeOH 1:1) gave compound 8 (19 mg, 79%) as a white solid: Selected NMR data (CDCl 3 /CD 3 OD 1/1 v/v 600MHz): 1 H,δ 0.60-0.90 (m, 27 H, PamCH 3 , Leu CH 3 , Val CH 3 ), 0.96-1.61 (m, Leu CH 2 , Leu CH, Lys CH 2 , t Bu CH 3 , BocCH 3 , Ala CH 3 , Arg CH 2 ), 1.18 (br s, 72H, Pam CH 2 ), 1.94, 1.98, 1.99, 2.00 (s,6x3H, Pbf CH 3 C, HNAc CH 3 ), 2.36 , 2.41, 2.45 (s, 6x3H, Pbf CH 3 ), 2.48 (s, 2x2H,Pbf CH 2 ), 3.42-4.31 (m, Phe α , Ala, Lys, Val, Asp, Glu, Tyr, Arg, Gly, Leu,His, Asn CH 2 , Tyr CH 2 , Phe CH 2 , Arg CH 2 ), 3.71 (H-3), 3.88 (H-4) 4.06 (S-glyceryl- CH 2 β O), 4.20 ( t, 1H, H-2), 4.32 (m, 1H, S-glyceryl- CH 2 α O), 4.42 (m, 1H, Cys α ), 4.82 (d, 1H, H-1, J =3.68 Hz), 5.06 (m, 1H, S-glyceryl- CH ), 6.72-7.39 (m, 70H, His CH, Tyr aromatic, Phe aromatic, Trt aromatic), 7.48-8.29 (m , NH). MALDI-MS [M+Na] m/z = 5262.67 calculated for C 286 H 403 N 37 O 49 S 3 : found 5262.99.
糖脂肽9。将在TFA/H2O/乙烷-1,2-二硫醇(95:2.5:2.5,3 mL)的脱保护混合物中的化合物8 (12 mg,2.3 μmol)在室温搅拌1小时。在减压下去除溶剂,然后首先通过短的尺寸排阻LH-20柱(DCM/MeOH 1:1)纯化粗制化合物,随后通过使用0-100%乙腈的水溶液(0.1%TFA)梯度的HPLC来纯化粗制化合物,以在冻干后给出作为白色固体的化合物9 (6.8 mg,79%):所选NMR数据(CDCl3/CD3OD 600MHz): 1H, δ 0.74-0.96 (m, 27H, Pam CH3, LeuCH3, Val CH3), 1.11-2.35 (Leu CH2, Leu CH, sp CH2, Lys CH2, Glu CH2, Ala CH3,Val CH, Asp CH2), 1.29 (br S, 72H, Pam CH2), 2.43-3.87 (Alaα, Glyα, S-甘油基-OCH2, Cysβ, H-2, H-3, H-4, H-5, H-6), 4.05-4.73 (m, Cysα, Pheα, Tyrα, Hisα, Leuα, Lysα, Aspα, Valα, Argα, Gluα, H-1), 5.12 (m, 1H, S-甘油基-CH), 6.64-6.71 (dd+dd, 2H, His CH, NH), 6.86-7.12 (dd+dd 2H, His CH, NH) 7.16-8.23 (m, Tyr芳族的, Phe芳族的, NH)。对于C186H297N37O41S计算的HR-MALDI-MS [M+Na] m/z = 3760.1911:实测值3760.3384。 Glycolipidin 9. Compound 8 (12 mg, 2.3 μmol) in a deprotection mixture of TFA/H 2 O/ethane-1,2-dithiol (95:2.5:2.5, 3 mL) was stirred at room temperature for 1 hour. The solvent was removed under reduced pressure and the crude compound was purified first by a short size-exclusion LH-20 column (DCM/MeOH 1:1) followed by HPLC using a gradient of 0-100% acetonitrile in water (0.1% TFA) The crude compound was purified to give compound 9 (6.8 mg, 79%) as a white solid after lyophilization: selected NMR data (CDCl 3 /CD 3 OD 600 MHz): 1 H, δ 0.74-0.96 (m , 27H, Pam CH 3 , LeuCH 3 , Val CH 3 ), 1.11-2.35 (Leu CH 2 , Leu CH, sp CH 2 , Lys CH 2 , Glu CH 2 , Ala CH 3 ,Val CH, Asp CH 2 ), 1.29 (br S, 72H, Pam CH 2 ), 2.43-3.87 (Ala α , Gly α , S-glyceryl-OCH 2 , Cys β , H-2, H-3, H-4, H-5, H -6), 4.05-4.73 (m, Cys α , Phe α , Tyr α , His α , Leu α , Lys α , Asp α , Val α , Arg α , Glu α , H-1), 5.12 (m, 1H , S-glyceryl- CH ), 6.64-6.71 (dd+dd, 2H, His CH, NH), 6.86-7.12 (dd+dd 2H, His CH, NH) 7.16-8.23 (m, Tyr aromatic , Phe aromatic, NH). HR-MALDI-MS calculated for C 186 H 297 N 37 O 41 S [M+Na] m/z = 3760.1911 : found 3760.3384.
Tn衍生物11。将化合物10溶解于DMF (10 mL),并且加入二异丙基碳化二亚胺(DIC)(82 μL,0.53 mmol)和HOAt (216 mg,1.58 mmol)。在搅拌15分钟后,加入3-(N-(叔丁氧基羰基)-氨基)丙醇(111 mg,0.63 mmol),并且将反应维持在环境温度15小时。将混合物在减压下浓缩至干燥,并且通过硅胶柱层析(0-5%MeOH的DCM溶液)和LH-20尺寸排阻层析(DCM/MeOH 1:1)纯化残余物,以给出化合物11 (363 mg,83%)。Rf = 0.63 (DCM/MeOH 9:1); [α]D +4.4 (c 1.0 mg/mL,CH2Cl2);NMR数据(CDCl3, 500MHz): 1H, δ 1.27 (d, 3H,CH3 Thr), 1.43 (s, 9H, tBu CH3), 1.46-1.61 (m, 2H, CH2), 1.99 (s, 3H, CH3 Ac),2.05 (s, 6H, CH3 Ac), 2.06 (s, 3H, CH3 Ac), 2.17 (s, 3H, CH3 Ac), 3.17-3.27(m, 3H, CH2, CH2a), 3.48-3.50 (m, 1H, CH2b), 4.07-4.28 (m, 6H, H-6, H-5, Thrα,Thrβ, CH Fmoc), 4.43-4.51 (m, 2H, CH2 Fmoc), 4.62 (dd, 1H, H-2), 4.89 (br t,1H, NH), 5.04-5.11 (m, 2H, H-1, H-3), 5.41 (d, 1H, H-4), 5.75 (br d, 1H, NHT), 6.81 (br d, 1H, NH GalNAc), 7.17-7.79 (m, 8H, 芳族的H); 13C (CDCl3,75MHz)δ17.19, 20.92, 20.99, 21.09, 23.30, 28.55, 30.69, 35.87, 36.92, 47.43, 47.77,58.57, 62.36, 67.47, 68.68, 77.46, 80.08, 99.88, 120.25, 125.34, 127.35,128.00, 128.76, 129.13, 141.55, 143.94, 144.01, 156.51, 157.52, 169.68,170.66, 170.94, 170.99。 Tn derivatives 11. Compound 10 was dissolved in DMF (10 mL), and diisopropylcarbodiimide (DIC) (82 μL, 0.53 mmol) and HOAt (216 mg, 1.58 mmol) were added. After stirring for 15 minutes, 3-(N-(tert-butoxycarbonyl)-amino)propanol (111 mg, 0.63 mmol) was added and the reaction was maintained at ambient temperature for 15 hours. The mixture was concentrated to dryness under reduced pressure, and the residue was purified by silica gel column chromatography (0-5% MeOH in DCM) and LH-20 size exclusion chromatography (DCM/MeOH 1:1) to give Compound 11 (363 mg, 83%). R f = 0.63 (DCM/MeOH 9:1); [α] D +4.4 (c 1.0 mg/mL, CH 2 Cl 2 ); NMR data (CDCl 3 , 500MHz): 1 H, δ 1.27 (d, 3H ,CH 3 Thr), 1.43 (s, 9H, t Bu CH 3 ), 1.46-1.61 (m, 2H, CH 2 ), 1.99 (s, 3H, CH 3 Ac), 2.05 (s, 6H, CH 3 Ac ), 2.06 (s, 3H, CH 3 Ac), 2.17 (s, 3H, CH 3 Ac), 3.17-3.27(m, 3H, CH 2 , CH 2a ), 3.48-3.50 (m, 1H, CH 2b ) , 4.07-4.28 (m, 6H, H-6, H-5, Thr α ,Thr β , CH Fmoc), 4.43-4.51 (m, 2H, CH 2 Fmoc), 4.62 (dd, 1H, H-2) , 4.89 (br t,1H, NH), 5.04-5.11 (m, 2H, H-1, H-3), 5.41 (d, 1H, H-4), 5.75 (br d, 1H, NHT), 6.81 (br d, 1H, NH GalNAc), 7.17-7.79 (m, 8H, aromatic H); 13 C (CDCl 3 , 75MHz)δ17.19, 20.92, 20.99, 21.09, 23.30, 28.55, 30.69, 35.87, 36.92, 47.43, 47.77,58.57, 62.36, 67.47, 68.68, 77.46, 80.08, 99.88, 120.25, 125.34, 127.35,128.00, 128.76, 129.13, 141.55, 143.94, 144.01, 156.51, 157.52, 169.68,170.66, 170.94, 170.99。
对于C41H54N4O14计算的HR-MALDI-MS [M+Na] m/z = 849.3535:实测值849.3391。HR-MALDI-MS [M+Na] m/z = 849.3535 calculated for C 41 H 54 N 4 O 14 : found 849.3391.
Tn衍生物7。将化合物11 (194 mg,0.24 mmol)在含20%哌啶的DMF (5 mL)中的溶液在环境温度搅拌1小时。将混合物浓缩至干燥,并将残余物用吡啶/乙酸酐(3:1,5 mL)处理2小时。将反应混合物用甲苯稀释且浓缩至干燥。将残余物溶解于二氯甲烷中,并用1MHCl和饱和NaHCO3水溶液洗涤,用MgSO4干燥,过滤并浓缩。通过尺寸排阻层析(LH-20,DCM/MeOH 1:1)纯化残余物提供化合物12 (167 mg,91%):NMR数据(CDCl3, 300MHz): 1H, δ1.24 (d, 1H, Thr CH3), 1.42 (s, 9H, tBu CH3), 1.55-1.59 (m, 2H, NHCH2CH 2CH2NH),1.95, 2.02, 2.03, 2.12, 2.14 (s, 15H, CH3 Ac), 3.13-3.23 (m, 3H, CH2 + CH2a),3.36-3.41 (m, 1H, CH2b), 4.03-4.12 (m, 2H), 4.19-4.23 (m, 2H, Thrβ), 4.54-4.61(m, H-2, Thrα), 4.88 (m, 1H, NH), 4.96 (s, 1H, J=3.57 Hz, H-1), 5.07 (dd, 1H,H-3), 5.35 (d, 1H, H-4), 6.43 (br S, 1H, NH), 6.72 (br S, 1H, NH)。对C28H46N4O13计算的MALDI-MS [M+Na] m/z = 669.296:实测值669.323。通过与5%水合肼的甲醇(5 mL)溶液一起在室温搅拌35分钟,使化合物12脱保护。将反应混合物用甲苯稀释并浓缩。将残余物与甲苯一起共蒸发两次。通过硅胶柱层析(DCM/MeOH 5:1)的纯化获得13 (119 mg,89%):NMR数据(CD3OD, 300MHz): 1H, δ 1.26 (d, 3H, Thr CH3), 1.43 (s, 9H, tBu CH3),1.57-1.63 (m, 2H, NHCH2CH 2CH2NH), 2.06, 2.10 (s, 2x3H NHAc), 2.12-3.09 (m, 2H,CH2), 3.15 (m, 2H, CH2), 3.31 (br s, 2H, H-6), 3.68-3.76 (m, 2H, H-3, H-5),3.88 (d, 1H, H-4), 4.22-4.26 (m, 2H, H-2, Thrβ), 4.46 (m, 1H, Thrα), 4.84 (d,1H, H-1), 6.60 (br m, 1H, NH), 7.50 (br d, 1H, NH)。对于C22H40N4O10计算的MALDI-MS [M+Na] m/z = 543.264:实测值543.301。将13的三氟乙酸(4 mL)溶液在氩气氛下在环境温度搅拌45分钟。随后将反应混合物用DCM稀释且浓缩至干燥。通过柱层析(Iatro珠,EtOAc/MeOH/H2O 2:2:1 → MeOH/H2O 1:1)纯化粗产物。在合并的流分浓缩后,将固体自H2O冻干,以给出化合物作为白色粉末的化合物7 (91 mg,0.21 mmol,95%)。Rf = 0.17(EtOAc/MeOH/H2O 6:3:1); [α]D -37(c 1.0 mg/mL,H2O);NMR数据(D2O, 300MHz): 1H, δ 1.15 (d,3H, J = 6.3 Hz, Thr CH3), 1.73-1.77 (m, 2H, CH2), 1.95 (s, 3H, NHAc), 2.04 (s,3H, NHAc), 2.82-2.87 (m, 2H, CH2), 3.11-3.15 (m, 1H, CH2a), 3.22-3.26 (m, 1H,CH2b), 3.65 (m, 2H, H-6), 3.76 (dd, 1H, J = 2.9, 11.2 Hz, H-3), 3.87 (d, 1H, J= 2.9 Hz, H-4), 3.92 (t, 1H, H-5), 3.99 (dd, 1H, J = 3.41, 11.2 Hz, H-2),4.28-4.30 (m, 1H, Thrβ), 4.32 (d, 1H, J = 2.4 Hz, Thrα) 4.78 (d, 1H, J = 3.56Hz, J = 3.9 Hz, H-1), 7.97 (br d, 1H, NH), 8.17 (br t, 1H, NH), 8.27 (br d,1H, NH); 13C (D2O, 75MHz), δ 18.17 Thr CH3), 21.93, 22.33 (2xNAc) 26.98 (CH2),36.55 (CH2), 37.22 (CH2), 49.98 (C-6), 58.30 (C-3), 61.46 (C-4), 67.76 (C-5),68.65 (C-2), 71.54 (C-Thrβ), 74.60 (C-Thrα), 98.60 (C-1), 172.09, 174.37,175.18 (3x C=O, NHAc)。对于C17H32N4O8计算的HR-MALDI-MS [M+Na] m/z = 443.2118:实测值443.2489。 Tn derivatives 7 . A solution of compound 11 (194 mg, 0.24 mmol) in 20% piperidine in DMF (5 mL) was stirred at ambient temperature for 1 hour. The mixture was concentrated to dryness, and the residue was treated with pyridine/acetic anhydride (3:1, 5 mL) for 2 hours. The reaction mixture was diluted with toluene and concentrated to dryness. The residue was dissolved in dichloromethane and washed with 1M HCl and saturated aqueous NaHCO 3 , dried over MgSO 4 , filtered and concentrated. Purification of the residue by size exclusion chromatography (LH-20, DCM/MeOH 1:1) provided compound 12 (167 mg, 91%): NMR data (CDCl 3 , 300 MHz): 1 H, δ1.24 (d, 1H, Thr CH 3 ), 1.42 ( s , 9H, tBu CH 3 ), 1.55-1.59 (m, 2H, NHCH 2 CH 2 CH 2 NH), 1.95, 2.02, 2.03, 2.12, 2.14 (s, 15H , CH 3 Ac), 3.13-3.23 (m, 3H, CH 2 + CH 2a ),3.36-3.41 (m, 1H, CH 2b ), 4.03-4.12 (m, 2H), 4.19-4.23 (m, 2H, Thr β ), 4.54-4.61(m, H-2, Thr α ), 4.88 (m, 1H, NH), 4.96 (s, 1H, J =3.57 Hz, H-1), 5.07 (dd, 1H,H -3), 5.35 (d, 1H, H-4), 6.43 (br S, 1H, NH), 6.72 (br S, 1H, NH). MALDI-MS [ M +Na] m/z = 669.296 calculated for C28H46N4O13 : found 669.323 . Compound 12 was deprotected by stirring with 5% hydrazine hydrate in methanol (5 mL) for 35 minutes at room temperature. The reaction mixture was diluted with toluene and concentrated. The residue was co-evaporated twice with toluene. Purification by silica gel column chromatography (DCM/MeOH 5:1) afforded 13 (119 mg, 89%): NMR data (CD 3 OD, 300 MHz): 1 H, δ 1.26 (d, 3H, Thr CH 3 ), 1.43 (s, 9H, t Bu CH 3 ), 1.57-1.63 (m, 2H, NHCH 2 CH 2 CH 2 NH), 2.06, 2.10 (s, 2x3H NHAc), 2.12-3.09 (m, 2H, CH 2 ), 3.15 (m, 2H, CH 2 ), 3.31 (br s, 2H, H-6), 3.68-3.76 (m, 2H, H-3, H-5), 3.88 (d, 1H, H-4 ), 4.22-4.26 (m, 2H, H-2, Thr β ), 4.46 (m, 1H, Thr α ), 4.84 (d,1H, H-1), 6.60 (br m, 1H, NH), 7.50 (br d, 1H, NH). MALDI-MS [M+Na] m/z = 543.264 calculated for C 22 H 40 N 4 O 10 : found 543.301. A solution of 13 in trifluoroacetic acid (4 mL) was stirred at ambient temperature for 45 min under an atmosphere of argon. The reaction mixture was then diluted with DCM and concentrated to dryness. The crude product was purified by column chromatography (Iatro beads, EtOAc/MeOH/H2O 2 :2:1 → MeOH/ H2O 1:1). After concentration of the combined fractions, the solid was lyophilized from H 2 O to give compound 7 (91 mg, 0.21 mmol, 95%) as a white powder. R f = 0.17 (EtOAc/MeOH/H 2 O 6:3:1); [α] D -37 (c 1.0 mg/mL, H 2 O); NMR data (D 2 O, 300MHz): 1 H, δ 1.15 (d,3H, J = 6.3 Hz, Thr CH 3 ), 1.73-1.77 (m, 2H, CH 2 ), 1.95 (s, 3H, NHAc), 2.04 (s,3H, NHAc), 2.82-2.87 (m, 2H, CH 2 ), 3.11-3.15 (m, 1H, CH 2a ), 3.22-3.26 (m, 1H, CH 2b ), 3.65 (m, 2H, H-6), 3.76 (dd, 1H, J = 2.9, 11.2 Hz, H-3), 3.87 (d, 1H, J = 2.9 Hz, H-4), 3.92 (t, 1H, H-5), 3.99 (dd, 1H, J = 3.41, 11.2 Hz, H-2),4.28-4.30 (m, 1H, Thr β ), 4.32 (d, 1H, J = 2.4 Hz, Thr α ) 4.78 (d, 1H, J = 3.56Hz, J = 3.9 Hz, H -1), 7.97 (br d, 1H, NH), 8.17 (br t, 1H, NH), 8.27 (br d,1H, NH); 13 C (D 2 O, 75MHz), δ 18.17 Thr CH 3 ) , 21.93, 22.33 (2xNAc) 26.98 (CH 2 ),36.55 (CH 2 ), 37.22 (CH 2 ), 49.98 (C-6), 58.30 (C-3), 61.46 (C-4), 67.76 (C- 5), 68.65 (C-2), 71.54 (C-Thr β ), 74.60 (C-Thr α ), 98.60 (C-1), 172.09, 174.37, 175.18 (3x C=O, NHAc). HR-MALDI-MS [M+Na] m/z = 443.2118 calculated for C17H32N4O8 : found 443.2489 .
脂质体制备。脂质体由PC、PG、胆固醇和糖脂肽9 (15 μmol,摩尔比65:25:50:10)制备。将脂质在氩气氛下溶解于DCM/MeOH (3/1,v/v)中。随后通过使干氮气流经过和随后的在高真空下进一步干燥一小时来去除溶剂。将所得到的脂质薄膜悬浮于含有145 mMNaCl的1 mL 10 mM Hepes缓冲液,pH 6.5中。将溶液在振荡器(250 rpm)上在Ar气氛下在41℃涡旋3小时。将脂质体悬液在50℃通过0.6 μm、0.2 μm和0.1 μm 聚碳酸酯膜(Whatman,Nuclepore®,Track-Etch Membrane)挤出十次,以获得SUV。 Liposome preparation. Liposomes were prepared from PC, PG, cholesterol and glycolipeptide 9 (15 μmol, molar ratio 65:25:50:10). Lipids were dissolved in DCM/MeOH (3/1, v/v) under argon atmosphere. The solvent was then removed by passing a stream of dry nitrogen and subsequent further drying under high vacuum for one hour. The resulting lipid film was suspended in 1 mL of 10 mM Hepes buffer, pH 6.5, containing 145 mM NaCl. The solution was vortexed at 41 °C for 3 hours on a shaker (250 rpm) under Ar atmosphere. The liposome suspension was extruded ten times at 50°C through 0.6 μm, 0.2 μm and 0.1 μm polycarbonate membranes (Whatman, Nuclepore®, Track-Etch Membrane) to obtain SUVs.
免疫接种。在第0、7、14和21天时用0.6 μg的含有碳水化合物的脂质体和在每个加强中的10 μg佐剂QS-21皮下免疫接种五只小鼠(雌性BALB/c,6周)的组。在第28天时使小鼠放血(腿静脉),并且就抗体的存在情况测试血清。 immunization . Five mice (female BALB/c, 6-week ) group. Mice were bled (leg vein) on day 28 and sera were tested for the presence of antibodies.
ELISA。将96孔板用溶于含有75 mM氯化钠的0.2 M硼酸盐缓冲液(pH 8.5)中的Tn–BSA (2.5 μg mL-1)在4℃包被过夜(100 μL/孔)。将板用含有0.5% Tween 20%和0.02%叠氮化钠的0.01 M Tris缓冲液洗涤三次。通过使板与溶于含有0.14 M氯化钠的0.01 M磷酸盐缓冲液中的1% BSA一起在室温温育1小时达到封闭。接下来,将板洗涤,随后在室温与在磷酸缓冲盐水中的血清稀释物一起温育2小时。去除过量抗体,并且将板洗涤三次。将板与兔抗小鼠IgM和IgG Fcγ片段特异性碱性磷酸酶缀合的抗体(Jackson ImmunoResearchLaboratories Inc.,West Grove,PA)一起在室温温育2小时。随后,在将板洗涤后,加入酶底物(对硝基苯基磷酸酯),并允许反应30分钟,然后通过加入3 M含水氢氧化钠猝灭酶促反应,然后在405和490 nm的双重波长读取吸光度。通过回归分析测定抗体滴度,其中针对吸光度标绘log10稀释度。滴度计算为给出1:120稀释的正常小鼠血清吸光度的两倍的最高稀释度。 ELISA . A 96-well plate was coated with Tn–BSA (2.5 μg mL −1 ) dissolved in 0.2 M borate buffer (pH 8.5) containing 75 mM sodium chloride overnight at 4° C. (100 μL/well). Plates were washed three times with 0.01 M Tris buffer containing 0.5% Tween 20% and 0.02% sodium azide. Blocking was achieved by incubating the plate with 1% BSA in 0.01 M phosphate buffer containing 0.14 M sodium chloride for 1 hour at room temperature. Next, plates were washed, followed by incubation with serum dilutions in phosphate-buffered saline for 2 hours at room temperature. Excess antibody was removed and plates were washed three times. Plates were incubated with rabbit anti-mouse IgM and IgG Fcγ fragment-specific alkaline phosphatase-conjugated antibodies (Jackson ImmunoResearch Laboratories Inc., West Grove, PA) for 2 hours at room temperature. Subsequently, after the plate was washed, the enzyme substrate (p-nitrophenyl phosphate) was added and allowed to react for 30 minutes, then the enzymatic reaction was quenched by adding 3 M aqueous sodium hydroxide, followed by a reaction at 405 and 490 nm. Dual wavelength reads absorbance. Antibody titers were determined by regression analysis in which log 10 dilutions were plotted against absorbance. Titers were calculated as the highest dilution giving twice the absorbance of normal mouse serum at a 1:120 dilution.
实施例2Example 2
非共价连接的二表位脂质体制剂Noncovalently Linked Diepitope Liposome Formulations
在第一组实验中,将肿瘤相关碳水化合物B表位和通用T表位肽分开掺入预制成的脂质体内,以形成二表位构建体。另外,将脂肽Pam3Cys掺入脂质体内,预期它将充当嵌入佐剂,从而避免使用另外的外部佐剂例如QS-21的必要性。In the first set of experiments, tumor-associated carbohydrate B-epitope and universal T-epitope peptides were incorporated separately into preformed liposomes to form di-epitope constructs. Additionally, the lipopeptide Pam 3 Cys was incorporated into liposomes, where it is expected to act as an intercalation adjuvant, thus avoiding the necessity of using additional external adjuvants such as QS-21.
自在其表面上携带两种不同硫醇反应官能团(functionality)马来酰亚胺和溴乙酰的脂质锚制备脂质体。还将Pam3Cys佐剂掺入预制成的脂质体内,并且包括马来酰亚胺官能团。方便地,马来酰亚胺和溴乙酰基团在其对硫氢基的反应性方面显示显著差异。马来酰亚胺在pH 6.5与硫氢基化合物快速反应,而溴乙酰需要略微更高的pH 8-9,以与硫醇化合物有效反应。Liposomes were prepared from lipid anchors bearing two different thiol-reactive functionalities, maleimide and bromoacetyl, on their surface. The Pam 3 Cys adjuvant was also incorporated into preformed liposomes and included maleimide functionality. Conveniently, maleimide and bromoacetyl groups display marked differences in their reactivity toward sulfhydryl groups. Maleimide reacts rapidly with sulfhydryl compounds at pH 6.5, while bromoacetyl requires a slightly higher pH of 8-9 to react efficiently with thiol compounds.
通过利用在反应性方面的这种差异,制备了携带癌症相关Ley四糖和通用T辅助肽QYIKANSKFIGITEL(QYI)(SEQ ID NO:1)的二表位脂质体构建体(方案11)。对于与硫醇反应性锚的缀合,寡糖和肽都用含硫醇接头官能化。与预制成的脂质体的两步连续缀合具有极大优点:它是使得容易制备携带多种不同碳水化合物B表位的脂质体的非常灵活的方法。如基于对共价偶联至囊泡的碳水化合物和肽的定量,缀合得率很高,对于寡糖为70-80%和对于肽为65-70%,并且结果是可高度再现的。By exploiting this difference in reactivity, a dipetopic liposome construct carrying the cancer-associated Le y tetrasaccharide and the universal T helper peptide QYIKANSKFIGITEL (QYI) (SEQ ID NO: 1 ) was prepared (Scheme 11). For conjugation to thiol-reactive anchors, both oligosaccharides and peptides were functionalized with thiol-containing linkers. The two-step sequential conjugation to preformed liposomes has a great advantage: it is a very flexible method that allows easy preparation of liposomes carrying a variety of different carbohydrate B epitopes. As based on quantification of carbohydrates and peptides covalently coupled to vesicles, conjugation yields were high, 70-80% for oligosaccharides and 65-70% for peptides, and the results were highly reproducible.
重要的是要注意到在这些第一种二表位脂质体构建体中,碳水化合物B表位和肽T表位自身不通过共价键连接在一起,而是通过它们与之缀合的其各自的脂质锚和通过疏水相互作用保持接近。在关于具有病原体相关肽B表位的疫苗候选物的文献中的几个报道已显示这种方法是成功的,导致IgM和特异性IgG抗体的良好滴度。这些研究也指出嵌入佐剂Pam3Cys足以诱导合适的免疫应答。It is important to note that in these first di-epitope liposome constructs, the carbohydrate B epitope and the peptide T epitope are not themselves covalently linked together, but rather via their conjugated Their respective lipid anchors are kept in proximity by hydrophobic interactions. Several reports in the literature on vaccine candidates with pathogen-associated peptide B epitopes have shown that this approach is successful, leading to good titers of IgM and specific IgG antibodies. These studies also indicate that the intercalation adjuvant Pam 3 Cys is sufficient to induce an appropriate immune response.
然而,在我们用肿瘤相关碳水化合物B表位Ley的研究中,在这个实施例中描述的使用非共价连接的二表位脂质体制剂对小鼠的免疫接种,仅导致极低滴度的IgM抗体。未检测到IgG抗Ley抗体。甚至更令人惊讶地,共施用脂质体疫苗候选物与有力的外部佐剂QS-21也不改善结果。另外,发现已用未包被的脂质体对照(即在表面上只携带马来酰亚胺和溴乙酰官能团的脂质体)免疫接种的小鼠,引发如通过ELISA检测到的高滴度IgG抗体。使用多种蛋白质缀合物的来自这组小鼠的抗血清的更详细ELISA研究揭示小鼠已响应于马来酰亚胺接头并引发针对马来酰亚胺接头的抗体。此外,针对抗接头抗体筛选来自用包被有Ley抗原和QYI肽的脂质体免疫接种的小鼠的抗血清,发现这些小鼠也已引发针对马来酰亚胺接头的IgG抗体。However, in our studies with the tumor-associated carbohydrate B epitope Le y , the immunization of mice described in this Example using a non-covalently linked dipetope liposome formulation resulted in only very low titer Degree of IgM antibody. IgG anti-Le y antibodies were not detected. Even more surprisingly, co-administration of the liposomal vaccine candidate with the potent external adjuvant QS-21 did not improve the outcome. In addition, it was found that mice that had been immunized with uncoated liposome controls (i.e. liposomes carrying only maleimide and bromoacetyl functional groups on the surface) elicited high titers as detected by ELISA IgG antibodies. More detailed ELISA studies of antisera from this group of mice using various protein conjugates revealed that the mice had responded to and elicited antibodies against the maleimide linker. Furthermore, antisera from mice immunized with liposomes coated with Le y antigen and QYI peptide were screened for anti-linker antibodies and found that these mice had also elicited IgG antibodies against the maleimide linker.
方案11Scheme 11
由于其在接近中性pH的高反应性,马来酰亚胺接头在缀合化学中广泛用于达到在免疫接种研究中进一步使用的糖-和肽-蛋白质缀合物。存在商购可得的蛋白质缀合试剂盒(Pierce Endogen Inc.),其利用马来酰亚胺接头用于抗原缀合物和检测缀合物两者。我们的数据显示使用这些试剂盒可以导致假阳性结果,尤其当与低免疫原性的抗原一起工作时(参见T. Buskas,Y. Li和G-J. Boons,Chem. Eur. J.,10:3517-3523,2004)。Due to their high reactivity at near neutral pH, maleimide linkers are widely used in conjugation chemistry to reach sugar- and peptide-protein conjugates for further use in immunization studies. There are commercially available protein conjugation kits (Pierce Endogen Inc.) that utilize maleimide linkers for both antigen conjugates and detection conjugates. Our data show that use of these kits can lead to false positive results, especially when working with antigens of low immunogenicity (see T. Buskas, Y. Li and G-J. Boons, Chem. Eur. J., 10:3517 -3523, 2004).
为了测试高度免疫原性的马来酰亚胺接头是否抑制针对Ley四糖的免疫应答,我们仅使用溴乙酰接头制备非共价二表位脂质体。在这个实验中,含硫醇的Ley四糖和通用的T辅助细胞肽在分开反应中缀合至含有溴乙酰接头的脂质。缀合的脂质随后混合在一起,以形成脂质囊泡。将这种新脂质体制剂连同或不连同外部佐剂QS-21一起施用于小鼠,仅产生低滴度的抗Ley抗体。因此,针对Ley四糖的有效免疫应答的缺乏不仅仅是由于免疫原性的马来酰亚胺接头。To test whether the highly immunogenic maleimide linker suppresses the immune response against the Le y tetrasaccharide, we prepared non-covalent diepitopic liposomes using only the bromoacetyl linker. In this experiment, a thiol-containing Le y tetrasaccharide and a universal T helper peptide were conjugated to a lipid containing a bromoacetyl linker in separate reactions. The conjugated lipids are then mixed together to form lipid vesicles. Administration of this new liposomal formulation to mice with or without the external adjuvant QS-21 produced only low titers of anti-Le y antibodies. Thus, the lack of an effective immune response against the Le y tetrasaccharide is not solely due to the immunogenic maleimide linker.
因为已知肿瘤相关Ley四糖仅是弱免疫原性的,所以我们制备了另一种二表位脂质体构建体,其中更多免疫原性的Tn(簇)抗原用作靶B表位。然而,用这种抗原同样获得阴性结果。再次,小鼠的免疫接种仅导致极低滴度的抗Tn(c) IgM抗体。与作为外部佐剂的QS-21一起共施用完全没有增强免疫应答。Because the tumor-associated Le y tetrasaccharide is known to be only weakly immunogenic, we prepared another bi-epitope liposome construct in which the more immunogenic Tn (cluster) antigen was used as the target B-sheet bit. However, negative results were also obtained with this antigen. Again, immunization of mice resulted in only very low titers of anti-Tn(c) IgM antibodies. Co-administration with QS-21 as an external adjuvant did not enhance the immune response at all.
根据这些结果,我们得出结论:当具有低免疫原性的肿瘤相关碳水化合物抗原用作B表位时,已对一系列肽抗原证明成功的非共价连接的二表位脂质体方法失败了。因此,我们推论肿瘤相关碳水化合物B表位和辅助T表位需要差异呈递给免疫系统,以诱发T细胞依赖性免疫应答。From these results, we conclude that the non-covalently linked bi-epitope liposome approach, which has proven successful for a range of peptide antigens, fails when tumor-associated carbohydrate antigens with low immunogenicity are used as B epitopes up. Therefore, we reasoned that tumor-associated carbohydrate B epitopes and helper T epitopes require differential presentation to the immune system to elicit T cell-dependent immune responses.
实施例3Example 3
共价连接的二表位脂质体制剂Covalently Linked Diepitope Liposome Formulations
我们推测为了达到碳水化合物B表位和肽T表位的更佳呈递,可能它们需要共价连接在一起。为了测试这个想法,我们合成了构建体1 (方案12),其是含有集中和有效的T细胞依赖性免疫应答所需的结构特征的结构上充分确定的抗癌疫苗候选物。该疫苗候选物由肿瘤相关Tn抗原、肽T表位YAFKYARHANVGRNAFELFL(YAF)(SEQ ID NO:2)(脑膜炎奈瑟氏球菌)和脂肽Pam3Cys组成。由于在合成中使用原始辅助T表位肽QYI的困难,在这个研究中使用展示更佳可溶性质的不同通用T表位(YAF)。We speculate that in order to achieve better presentation of the carbohydrate B epitope and the peptide T epitope, perhaps they need to be covalently linked together. To test this idea, we synthesized Construct 1 (Scheme 12), a structurally well-defined anticancer vaccine candidate containing the structural features required for a focused and efficient T cell-dependent immune response. This vaccine candidate consists of the tumor-associated Tn antigen, the peptide T epitope YAFKYARHANVGRNAFELFL (YAF) (SEQ ID NO: 2) (Neisseria meningitidis), and the lipopeptide Pam 3 Cys. Due to the difficulty in using the original helper T-epitope peptide QYI in the synthesis, a different universal T-epitope (YAF) displaying better solubility properties was used in this study.
通过固相和溶液相合成的组合以高度会聚方式合成化合物1。Compound 1 was synthesized in a highly convergent manner by a combination of solid-phase and solution-phase syntheses.
方案12Scheme 12
随后将构建体掺入基于磷脂的脂质体内。化合物1具有在一系列溶剂中的低溶解度的缺点,其可能是在脂质体内的掺入仅是10%的主要原因。The constructs are then incorporated into phospholipid-based liposomes. Compound 1 has the disadvantage of low solubility in a range of solvents, which may be the main reason why incorporation in liposomes is only 10%.
用该构建体以每周一次间隔免疫接种小鼠。为了探究嵌入的脂肽Pam3Cys的佐剂性质,将含抗原脂质体连同(组2)或不连同(组1)佐剂QS-21一起施用。Mice were immunized with this construct at weekly intervals. To explore the adjuvant properties of the embedded lipopeptide Pam 3 Cys, antigen-containing liposomes were administered with (group 2) or without (group 1) adjuvant QS-21.
如表1 (实施例1)中可见的,将小鼠用脂质体制剂免疫接种,引发针对Tn抗原的IgM和IgG抗体(表1,条目1和2)。IgG抗体的存在指出1的辅助T表位肽已激活辅助T淋巴细胞。此外,对在不存在外部佐剂QS-21的情况下用脂质体免疫接种的小鼠(组1)产生IgG抗体的观察结果指出嵌入的佐剂Pam3Cys已触发用于DC成熟及其对辅助T细胞的后续激活的合适信号。然而,接受与QS-21组合的脂质体的小鼠(组2)引发更高滴度的抗Tn抗体。这种更强的免疫应答可能是由于从混合Th1/Th2到Th1倾斜应答的转变。As can be seen in Table 1 (Example 1), immunization of mice with the liposome formulation elicited IgM and IgG antibodies against the Tn antigen (Table 1, entries 1 and 2). The presence of IgG antibodies indicates that the helper T epitope peptide of 1 has activated helper T lymphocytes. Furthermore, the observation that IgG antibodies were produced in mice immunized with liposomes in the absence of the external adjuvant QS-21 (Group 1) indicated that the embedded adjuvant Pam 3 Cys has triggered a process for DC maturation and its Appropriate signal for subsequent activation of helper T cells. However, mice receiving liposomes in combination with QS-21 (Group 2) elicited higher titers of anti-Tn antibodies. This stronger immune response may be due to a shift from a mixed Th1/Th2 to a Th1 skewed response.
该结果首次提供了关于使用脂质化糖肽作为最低限度的自足亚单位疫苗的原理证明,所述脂质化糖肽含有碳水化合物B表位、辅助T细胞表位和脂肽佐剂。还得出结论:为了诱发针对肿瘤相关碳水化合物抗原的T细胞依赖性免疫应答,碳水化合物B表位和肽T表位以非共价方式在含佐剂脂质体的表面上一起呈递是不够的;相反,实体优选共价连接在一起。最后,观察到当三种组分(碳水化合物B表位、辅助T细胞表位和脂肽)共价连接以形成脂质化糖肽时,不需要外部佐剂(QS-21)。The results provide the first proof of principle for the use of lipidated glycopeptides containing carbohydrate B epitopes, helper T cell epitopes and lipopeptide adjuvants as minimally self-contained subunit vaccines. It was also concluded that in order to induce a T cell-dependent immune response against tumor-associated carbohydrate antigens, it is not sufficient that the carbohydrate B epitope and the peptide T epitope are presented together in a non-covalent manner on the surface of adjuvanted liposomes instead, the entities are preferably covalently linked together. Finally, it was observed that when the three components (carbohydrate B epitope, helper T cell epitope and lipopeptide) were covalently linked to form lipidated glycopeptides, no external adjuvant was required (QS-21).
可替代的糖脂肽组分Alternative Glycolipidin Components
可以对化合物1作出几个改进。例如,已发现针对Tn抗原引发的抗体弱识别癌细胞。然而,聚簇(Nakada等人,Proc. Natl. Acad. Sci. USA 1993,90,2495-2499;Reddish等人,1997,14,549-560;Zhang等人,Cancer Res. 1995,55,3364-3368;Adluri等人,CancerImmunol. Immunother 1995,41,185-192)或将Tn抗原作为MUC-1糖肽的部分呈递引发具有改善的结合特征的抗体(Snijdewint等人,Int. J. Cancer 2001,93,97-106)。在化合物1中采用的T表位是用于人的MHC II类限制性表位。因此,当采用鼠T表位时,可以预期向IgG抗体的更有效的类别转换。此外,已发现脂肽Pam2Cys或Pam3CysSK4是比Pam3Cys更有效的免疫佐剂(Spohn等人,Vaccine 2004,22,2494-2499)。然而,未知Pam2Cys或Pam3CysSK4连接至T和B表位是否会影响其功效和效力。因此,基于这些考虑,设计了化合物2和3 (方案12),其含有MUC-1糖肽作为B表位,含有衍生自脊髓灰质炎病毒的充分证明的鼠辅助T细胞表位KLFAVWKITYKDT(KLF)(SEQ ID NO:3)(Leclerc等人,J. Virol. 1991,65,711-718)作为T表位以及分别含有脂肽Pam2Cys或Pam3CysSK4。Several improvements can be made to compound 1. For example, it has been found that antibodies elicited against the Tn antigen weakly recognize cancer cells. However, clustering (Nakada et al., Proc. Natl. Acad. Sci. USA 1993, 90, 2495-2499; Reddish et al., 1997, 14, 549-560; Zhang et al., Cancer Res. 1995, 55, 3364 -3368; Adluri et al., Cancer Immunol. Immunother 1995, 41, 185-192) or presentation of the Tn antigen as part of the MUC-1 glycopeptide elicits antibodies with improved binding characteristics (Snijdewint et al., Int. J. Cancer 2001 , 93, 97-106). The T epitope employed in compound 1 is an MHC class II restricted epitope for humans. Therefore, a more efficient class switch to IgG antibodies can be expected when murine T epitopes are employed. Furthermore, the lipopeptides Pam 2 Cys or Pam 3 Cys SK 4 have been found to be more effective immune adjuvants than Pam 3 Cys (Spohn et al., Vaccine 2004, 22, 2494-2499). However, it is unknown whether attachment of Pam 2 Cys or Pam 3 CysSK 4 to T and B epitopes affects their efficacy and potency. Therefore, based on these considerations, compounds 2 and 3 were designed (Scheme 12), which contain the MUC-1 glycopeptide as the B epitope, containing the well-documented murine helper T cell epitope KLFAVWKITYKDT (KLF) derived from poliovirus (SEQ ID NO:3) (Leclerc et al., J. Virol. 1991, 65, 711-718) as T epitope and containing lipopeptides Pam 2 Cys or Pam 3 CysSK 4 , respectively.
如对化合物1所述,将糖脂肽2和3掺入基于磷脂的脂质体内。令人惊讶地,困扰化合物1的溶解度问题对于化合物2和3不是问题。将雌性BALB/c小鼠用脂质体制剂连同或不连同外部佐剂QS-21一起以每周一次间隔免疫接种四次(Kensil等人,J. Immunol. 1991,146,431-437)。通过用缀合至BSA的CTSAPDT(αGalNAc)RPAP包被微量滴定板测定抗Muc1抗体滴度,并且用由碱性磷酸酶标记的抗小鼠IgG抗体完成检测。结果概括于表2和3中。Glycolipidins 2 and 3 were incorporated into phospholipid-based liposomes as described for compound 1 . Surprisingly, the solubility issues that plagued compound 1 were not an issue for compounds 2 and 3. Female BALB/c mice were immunized four times at weekly intervals with the liposomal formulation with or without the external adjuvant QS-21 (Kensil et al., J. Immunol. 1991, 146, 431-437). Anti-Muc1 antibody titers were determined by coating microtiter plates with CTSAPDT (αGalNAc) RPAP conjugated to BSA, and detection was accomplished with an anti-mouse IgG antibody labeled with alkaline phosphatase. The results are summarized in Tables 2 and 3.
表2. 在用糖脂肽/脂质体制剂4次免疫接种后的ELISA抗MUC-1抗体滴度*。Table 2. ELISA anti-MUC-1 antibody titers* after 4 immunizations with glycolipopeptide/liposome formulations.
* ELISA板用BSA-BrAc-MUC-1缀合物包被。抗MUC1抗体滴度作为五只小鼠的组的平均值呈现。滴度定义为获得相对于空白小鼠血清的本底而言光密度为0.1或更大的最高稀释度。*ELISA plates were coated with BSA-BrAc-MUC-1 conjugate. Anti-MUCl antibody titers are presented as mean values of groups of five mice. Titer was defined as the highest dilution to obtain an optical density of 0.1 or greater relative to the background of blank mouse serum.
表3. 在用糖脂肽/脂质体制剂4次免疫接种后的ELISA抗MUC-1抗体滴度*。Table 3. ELISA anti-MUC-1 antibody titers* after 4 immunizations with glycolipopeptide/liposome formulations.
* ELISA板用BSA-BrAc-MUC-1缀合物包被。抗MUC1抗体滴度作为五只小鼠的组的平均值呈现。滴度定义为获得相对于空白小鼠血清的本底而言光密度为0.1或更大的最高稀释度。*ELISA plates were coated with BSA-BrAc-MUC-1 conjugate. Anti-MUCl antibody titers are presented as mean values of groups of five mice. Titer was defined as the highest dilution to obtain an optical density of 0.1 or greater relative to the background of blank mouse serum.
如表2中可见,用化合物2和3的脂质体制剂免疫接种的小鼠引发高滴度的抗MUC-1IgG抗体。令人惊讶地,用基于Pam3CysSK4的疫苗免疫接种的小鼠引发比用Pam2Cys衍生物免疫接种的小鼠更高滴度的抗体。这些结果与已比较Pam2Cys和Pam3CysSK4的佐剂性(adjuvancy)的报道相矛盾。IgG抗体的亚分型(IgG1、IgG2a、IgG2b和IgG3)指出朝向Th2免疫应答的偏向(条目1和3,表3)。佐剂QS-21的共施用不导致IgG抗体的显著增加,然而,在这些情况下,观察到混合Th1/Th2应答(条目2和4,表3)。As can be seen in Table 2, mice immunized with liposomal formulations of Compounds 2 and 3 elicited high titers of anti-MUC-1 IgG antibodies. Surprisingly, mice immunized with Pam 3 CysSK 4 -based vaccines elicited higher titers of antibodies than mice immunized with Pam 2 Cys derivatives. These results contradict reports that have compared the adjuvancy of Pam 2 Cys and Pam 3 CysSK 4 . The subtypes of IgG antibodies (IgG1, IgG2a, IgG2b and IgG3) indicate a bias towards Th2 immune responses (entries 1 and 3, Table 3). Co-administration of the adjuvant QS-21 did not lead to a significant increase in IgG antibodies, however, in these cases mixed Th1/Th2 responses were observed (entries 2 and 4, Table 3).
为了确保小鼠血清能够识别在癌细胞上存在的天然MUC-1糖肽,检查血清与表达MUC-1的MCF-7人乳腺癌细胞系的结合。因此,将细胞用1:50稀释的血清处理30分钟,这之后加入由FITC标记的山羊抗小鼠IgG抗体。通过流式细胞术分析测定阳性细胞百分比和平均荧光。如(图2)中可见的,抗血清与MUC-1阳性肿瘤细胞强烈反应,而对于得自首次用于实验的小鼠的血清未观察到结合。此外,当采用不表达MUC-1糖肽的SK-MEL 28细胞时,未观察到结合。这些结果证实由3诱导的抗MUC-1抗体识别在人癌细胞上的天然抗原。进一步的ELISA研究显示针对T表位的滴度极低,显示未出现显著的表位抑制。To ensure that mouse sera were able to recognize native MUC-1 glycopeptides present on cancer cells, sera were checked for binding to the MCF-7 human breast cancer cell line expressing MUC-1. Therefore, cells were treated with 1:50 diluted serum for 30 minutes, after which FITC-labeled goat anti-mouse IgG antibody was added. The percentage of positive cells and mean fluorescence were determined by flow cytometry analysis. As can be seen in ( FIG. 2 ), the antiserum reacted strongly with MUC-1 positive tumor cells, while no binding was observed for sera from naive mice. Furthermore, no binding was observed when using SK-MEL 28 cells that do not express the MUC-1 glycopeptide. These results demonstrate that anti-MUC-1 antibodies induced by 3 recognize native antigens on human cancer cells. Further ELISA studies showed extremely low titers against the T epitope, showing no significant epitope suppression.
三组分疫苗的脂肽部分是起始产生必需的细胞因子和趋化因子(危险信号)所必需的(Bevan,Nat. Rev. Immunol. 2004,4,595-602;Eisen等人,Curr. Drug Targets2004,5,89-105;Akira等人,Nat. Immunol. 2001,2,675-680;Pasare等人,Immunity2004,21,733-741;Dabbagh等人,Curr. Opin. Infect. Dis. 2003,16,199-204;Beutler,Mol. Immunol. 2004,40,845-859)。近期研究的结果指出脂肽通过与单核吞噬细胞表面上的Toll样受体2相互作用而起始先天性免疫应答。在激活后,TLR-2的细胞内结构域募集衔接蛋白质MyD88,导致激酶级联的激活,导致许多细胞因子和趋化因子的产生。另一方面,脂多糖通过与Toll样受体4 (TLR4)/MD2相互作用而诱导细胞应答,这导致衔接蛋白质MyD88和TRIF的募集,导致产生更复杂模式的细胞因子。TNF-α分泌是MyD88依赖性途径激活的原型量度,而IFN-β的分泌通常用作TRIF依赖性细胞激活的指示物(Akira等人,Nat.Immunol. 2001,2,675-680;Beutler,Mol. Immunol. 2004,40,845-859)。The lipopeptide portion of the three-component vaccine is required to initiate the production of essential cytokines and chemokines (danger signals) (Bevan, Nat. Rev. Immunol. 2004, 4, 595-602; Eisen et al., Curr. Drug Targets2004, 5, 89-105; Akira et al., Nat. Immunol. 2001, 2, 675-680; Pasare et al., Immunity2004, 21, 733-741; Dabbagh et al., Curr. Opin. Infect. Dis. 2003 , 16, 199-204; Beutler, Mol. Immunol. 2004, 40, 845-859). Results of recent studies indicate that lipopeptides initiate innate immune responses by interacting with Toll-like receptor 2 on the surface of mononuclear phagocytes. Upon activation, the intracellular domain of TLR-2 recruits the adapter protein MyD88, leading to the activation of a kinase cascade leading to the production of a number of cytokines and chemokines. On the other hand, LPS induces cellular responses by interacting with Toll-like receptor 4 (TLR4)/MD2, which leads to the recruitment of the adapter proteins MyD88 and TRIF, resulting in a more complex pattern of cytokine production. TNF-α secretion is a prototypical measure of MyD88-dependent pathway activation, whereas IFN-β secretion is commonly used as an indicator of TRIF-dependent cellular activation (Akira et al., Nat. Immunol. 2001, 2, 675-680; Beutler, Mol. Immunol. 2004, 40, 845-859).
为了检查含有T表位和B表位的糖肽与TLR配体的连接是否影响细胞因子产生,测定了通过化合物1、2和3诱导的TNF-α和IFN-β分泌的功效(EC50)和效力(最大应答性),将结果与Pam2CysSK4、Pam3CysSK4和LPS的那些相比较。因此,使RAW NO-小鼠巨噬细胞暴露于广泛范围浓度的化合物1、2和3、Pam2CysSK4、Pam3CysSK4和大肠杆菌055:B5 LPS。在5小时后,收获上清液,使用商业或内部开发的捕获ELISA测定分别针对小鼠TNF-α和IFN-β检查该上清液。To examine whether the linkage of glycopeptides containing T- and B-epitopes to TLR ligands affects cytokine production, the potency (EC 50 ) of TNF-α and IFN-β secretion induced by compounds 1, 2 and 3 was determined and potency (maximal responsiveness), the results were compared to those of Pam 2 CysSK 4 , Pam 3 CysSK 4 and LPS. Therefore, RAW NO − mouse macrophages were exposed to a wide range of concentrations of Compounds 1, 2 and 3, Pam 2 CysSK 4 , Pam 3 CysSK 4 and E. coli 055:B5 LPS. After 5 hours, supernatants were harvested and examined for mouse TNF-α and IFN-β, respectively, using commercial or in-house developed capture ELISA assays.
表4. 大肠杆菌LPS和合成化合物对于通过小鼠巨噬细胞(RAW γNO(-)细胞)的TNF-α产生的浓度-应答曲线的EC50和Emax值。Table 4. EC50 and Emax values of concentration-response curves of E. coli LPS and synthetic compounds for TNF-α production by mouse macrophages (RAW γNO(-) cells).
* EC50和Emax的值报道为根据Prism(GraphPad Software,Inc)的最佳拟合值。使用Prism中的非线性最小二乘法曲线拟合分析浓度-应答数据。* EC50 and Emax values are reported as best fit values according to Prism (GraphPad Software, Inc). Concentration-response data were analyzed using nonlinear least squares curve fitting in Prism.
如图3和表4中可见,糖脂肽3和Pam3CysSK4以相似功效和效力诱导TNF-α的分泌,表明B表位和T表位的连接对细胞因子和趋化因子应答没有作用。令人惊讶地,B表位和T表位与Pam2CysSK4的连接导致效力的显著减少,因此在这种情况下B表位和T表位的连接导致活性的减少。含有Pam3Cys部分的化合物1比化合物2和3显著活性更低,这可能解释了化合物1的弱抗原性。化合物1、2和3不诱导IFN-β的产生。令人惊讶地,与化合物1、2、3和Pam3CysSK4相比较,大肠杆菌055:B5展示对于TNF-α诱导大得多的效力和功效。此外,它能够刺激细胞产生IFN-β。大肠杆菌LPS太活跃,导致先天性免疫系统的过度激活,导致脓毒性休克的症状。As can be seen in Figure 3 and Table 4, GLP 3 and Pam 3 CysSK 4 induced the secretion of TNF-α with similar efficacy and potency, indicating that linkage of B and T epitopes has no effect on cytokine and chemokine responses . Surprisingly, linking of B and T epitopes to Pam 2 CysSK 4 resulted in a significant reduction in potency, thus in this case linking of B and T epitopes resulted in a decrease in activity. Compound 1 containing the Pam 3 Cys moiety was significantly less active than compounds 2 and 3, which may explain the weak antigenicity of compound 1. Compounds 1, 2 and 3 did not induce IFN-β production. Surprisingly, E. coli 055:B5 displayed much greater potency and efficacy for TNF-α induction compared to compounds 1, 2, 3 and Pam 3 CysSK 4 . In addition, it is able to stimulate cells to produce IFN-β. E. coli LPS is too active, leading to hyperactivation of the innate immune system, leading to symptoms of septic shock.
推测除了起始细胞因子和趋化因子的产生外,脂肽还可以以TLR2依赖性方式促进通过抗原呈递细胞的选择性靶向和摄取。为了测试这个假设,将含有荧光标记的化合物4施用于RAW NO-小鼠巨噬细胞,并且在30分钟后收获细胞,裂解并测量荧光。为了考虑到可能的细胞表面结合而无内在化,细胞也在裂解前受胰蛋白酶作用,随后检查荧光。如图4中可见,显著数量的4是内在化的,而少量附着至细胞表面。为了测定摄取是否由TLR2介导,使用天然HEK297细胞和用TLR2或TLR4/MD2转染的HEK297细胞重复摄取研究。重要的是,仅当细胞用TLR2转染时,观察到显著摄取,表明摄取由这种受体介导。这些研究显示TLR2促进抗原的摄取,这是抗原加工和免疫应答中的重要步骤。It is hypothesized that in addition to initiating cytokine and chemokine production, lipopeptides may also facilitate selective targeting and uptake by antigen-presenting cells in a TLR2-dependent manner. To test this hypothesis, compound 4 containing a fluorescent label was administered to RAW NO - mouse macrophages and after 30 min the cells were harvested, lysed and fluorescence was measured. To allow for possible cell surface binding without internalization, cells were also trypsinized prior to lysis and subsequently checked for fluorescence. As can be seen in Figure 4, a significant amount of 4 was internalized, while a small amount was attached to the cell surface. To determine whether uptake is mediated by TLR2, uptake studies were repeated using native HEK297 cells and HEK297 cells transfected with TLR2 or TLR4/MD2. Importantly, significant uptake was observed only when cells were transfected with TLR2, suggesting that uptake is mediated by this receptor. These studies show that TLR2 promotes antigen uptake, an important step in antigen processing and immune response.
实施例4Example 4
脂质组分的共价连接Covalent attachment of lipid components
为了确定TLR配体与疫苗候选物的共价连接的重要性,设计并合成了仅含有B表位和T表位的化合物5 (方案13)。在PAM3CysSK4的存在下,将小鼠用这种化合物以每周一次间隔免疫接种四次。有趣的是,糖肽5和佐剂Pam3CysSK4的混合物未引发IgG抗体或引发极低滴度的IgG抗体,证实Pam3CysSK4与B表位和T表位的共价连接对于强免疫应答是关键的。To determine the importance of covalent attachment of TLR ligands to vaccine candidates, compound 5 containing only B and T epitopes was designed and synthesized (Scheme 13). Mice were immunized with this compound four times at weekly intervals in the presence of PAM3CysSK4 . Interestingly, the mixture of glycopeptide 5 and adjuvant Pam 3 CysSK 4 did not elicit IgG antibodies or elicited very low titers of IgG antibodies, confirming that covalent attachment of Pam 3 CysSK 4 to B and T epitopes is essential for strong immune responses is critical.
方案13Scheme 13
实施例5Example 5
脂质组分Lipid composition
为了测定用Toll样受体的配体脂质化的重要性,设计并合成了化合物6 (方案14)。这种化合物由连接至非免疫原性脂质化氨基酸的B表位和T表位组成。将小鼠用化合物6的脂质体制剂免疫接种,这类似于对于化合物1和2采用的程序。含有化合物6的脂质体诱导显著低于由化合物3引发的那些的滴度,证实三组分疫苗的TLR配体对于最佳免疫应答是重要的。To determine the importance of lipidation with ligands for Toll-like receptors, compound 6 was designed and synthesized (Scheme 14). This compound consists of a B epitope and a T epitope linked to a non-immunogenic lipidated amino acid. Mice were immunized with a liposomal formulation of Compound 6, similar to the procedure employed for Compounds 1 and 2. Liposomes containing Compound 6 induced significantly lower titers than those elicited by Compound 3, demonstrating that the TLR ligands of the three-component vaccine are important for optimal immune responses.
方案14Scheme 14
结论in conclusion
三组分的基于碳水化合物的疫苗具有相对于传统缀合物疫苗的许多独特优点。例如,最低限度亚单位疫苗不具有碳水化合物-蛋白质缀合物特有的表位抑制的缺点。除了提供危险信号外,脂肽Pam3CysSK4还促进抗原掺入脂质体内。脂质体制剂是有吸引力的,因为它将抗原有效呈递给免疫系统。疫苗的独特特征是Pam3CysSK4促进通过抗原呈递细胞、T辅助细胞和B淋巴细胞的选择性靶向和摄取,所述细胞表达Toll loll样受体(实施例3)。最后,完全合成的化合物具有以下优点:它可以得到完全表征,这促进其以可再现方式产生。Three-component carbohydrate-based vaccines have many unique advantages over traditional conjugate vaccines. For example, minimal subunit vaccines do not suffer from the disadvantages of epitope suppression typical of carbohydrate-protein conjugates. In addition to providing a danger signal, the lipopeptide Pam 3 CysSK 4 also facilitates antigen incorporation into liposomes. Liposomal formulations are attractive because of their efficient presentation of antigens to the immune system. A unique feature of the vaccine is that Pam 3 CysSK 4 facilitates selective targeting and uptake by antigen presenting cells, T helper cells and B lymphocytes expressing Toll loll-like receptors (Example 3). Finally, a fully synthetic compound has the advantage that it can be fully characterized, which facilitates its production in a reproducible manner.
实施例6Example 6
通过靶向Toll样受体增加合成肿瘤相关碳水化合物抗原的抗原性Increased antigenicity of synthetic tumor-associated carbohydrate antigens by targeting Toll-like receptors
在这个实施例中,已设计、化学合成和免疫学评价许多完全合成的疫苗候选物,以建立克服肿瘤相关碳水化合物和糖肽的弱免疫原性的策略和详细研究TLR参与对于抗原应答的重要性。TLR2激动剂、非种系选择性肽T辅助细胞表位和肿瘤相关糖肽的共价连接给出在小鼠中引发特别高滴度的IgG抗体的化合物,所述IgG抗体识别表达肿瘤相关碳水化合物的癌细胞。In this example, a number of fully synthetic vaccine candidates have been designed, chemically synthesized, and immunologically evaluated to establish strategies to overcome the weak immunogenicity of tumor-associated carbohydrates and glycopeptides and to study in detail the importance of TLR engagement for antigen response sex. Covalent linkage of a TLR2 agonist, a non-germline-selective peptide T helper epitope, and a tumor-associated glycopeptide gives a compound that elicits exceptionally high titers of IgG antibodies that recognize expressed tumor-associated carbohydrates in mice Compounds of cancer cells.
寡糖例如Globo-H、LewisY和Tn抗原的过表达是致癌转化细胞的共同特征(Springer,Mol. Med. 1997,75,594-602;Hakomori,Acta Anat. 1998,161,79-90;Dube,Nat. Rev. Drug Discov. 2005,4,477-488)。众多研究已显示这种异常糖基化可以促进转移(Sanders,J. Clin. Pathol. Mol. Pathol. 1999,52,174-178),因此这些化合物的表达与癌症患者的弱存活率强烈关联。广泛和扩大量的临床前和临床研究证实针对碳水化合物相关肿瘤抗原的天然获得抗体、被动给予抗体或主动诱导的抗体能够消除癌症患者中的循环肿瘤细胞和微小转移(Livingston,Cancer Immunol. 1997,45,10-19;Ragupathi,Cancer Immunol. 1996,43,152-157;von Mensdorff-Pouilly,Int. J. Cancer 2000,86,702-712;Finn,Nat. Rev. Immunol. 2003,3,630-641)。由缀合至外源载体蛋白质(例如KLH和BSA)的肿瘤相关碳水化合物(Globo-H、LewisY和Tn)组成的传统癌症疫苗候选物未能在大多数患者中引发足够高滴度的IgG抗体。看起来针对肿瘤相关碳水化合物的IgG抗体的诱导比引发针对病毒和细菌碳水化合物的相似抗体困难得多。这个观察结果并不令人惊讶,因为肿瘤相关糖是自身抗原,因而被免疫系统耐受。生长中的肿瘤的抗原脱落(shedding)加固这种耐受性。此外,外源载体蛋白质例如KLH可以引发强B细胞应答,这可以导致针对碳水化合物表位的抗体应答的抑制。当采用自身抗原例如肿瘤相关碳水化合物时,后者是更大的问题。此外,用于碳水化合物与蛋白质的缀合的接头可以是免疫原性的,导致表位抑制(Buskas,Chem. Eur. J. 2004,10,3517-3524;Ni,Bioconjug. Chem. 2006,17,493-500)。明确的是,基于碳水化合物的癌症疫苗的成功开发需要用于向免疫系统更有效呈递肿瘤相关碳水化合物表位,导致向IgG抗体的更有效类别转换的新策略(Reichel,J.Chem. Commun. 1997,21,2087-2088;Alexander,J. Immunol. 2000,164,1625-1633;Kudryashov,Proc. Natl. Acad. Sci. U.S.A. 2001,98,3264-3269;Lo-Man,J. Immunol.2001,166,2849-2854;Jiang,Curr. Med. Chem. 2003,10,1423-1439;Jackson,Proc.Natl. Acad. Sci. U.S.A. 2004,101,15440-5;Lo-Man,Cancer Res. 2004,64,4987-4994;Buskas,Angew. Chem. Int. Ed. 2005,44,5985-5988(实施例1);Dziadek,Angew.Chem. Int. Ed. 2005,44,7630-7635;Krikorian,Bioconjug. Chem. 2005,16,812-819;Pan,J. Med. Chem. 2005,48,875-883)。Overexpression of oligosaccharides such as Globo-H, LewisY and Tn antigens is a common feature of oncogenically transformed cells (Springer, Mol. Med. 1997, 75, 594-602; Hakomori, Acta Anat. 1998, 161, 79-90; Dube , Nat. Rev. Drug Discov. 2005, 4, 477-488). Numerous studies have shown that this aberrant glycosylation can promote metastasis (Sanders, J. Clin. Pathol. Mol. Pathol . 1999, 52 , 174-178), so the expression of these compounds is strongly correlated with poor survival of cancer patients. Extensive and expanded preclinical and clinical studies have demonstrated that naturally acquired, passively administered or actively induced antibodies against carbohydrate-associated tumor antigens can eliminate circulating tumor cells and micrometastases in cancer patients (Livingston, Cancer Immunol. 1997, 45, 10-19; Ragupathi, Cancer Immunol. 1996, 43, 152-157; von Mensdorff-Pouilly, Int. J. Cancer 2000, 86, 702-712; Finn, Nat. Rev. Immunol. 2003, 3, 630 -641). Traditional cancer vaccine candidates consisting of tumor-associated carbohydrates (Globo-H, Lewis Y , and Tn) conjugated to exogenous carrier proteins (e.g., KLH and BSA) fail to elicit sufficiently high titers of IgG in most patients Antibody. It appears that induction of IgG antibodies against tumor-associated carbohydrates is much more difficult than eliciting similar antibodies against viral and bacterial carbohydrates. This observation is not surprising since tumor-associated sugars are self-antigens and thus tolerated by the immune system. Antigen shedding by growing tumors reinforces this tolerance. Furthermore, exogenous carrier proteins such as KLH can elicit strong B cell responses, which can lead to suppression of antibody responses to carbohydrate epitopes. The latter is a greater problem when employing self-antigens such as tumor-associated carbohydrates. Furthermore, linkers used for the conjugation of carbohydrates to proteins can be immunogenic, leading to epitope suppression (Buskas, Chem. Eur. J. 2004, 10, 3517-3524; Ni, Bioconjug. Chem. 2006, 17 , 493-500). It is clear that the successful development of carbohydrate-based cancer vaccines requires new strategies for more efficient presentation of tumor-associated carbohydrate epitopes to the immune system, resulting in more efficient class switching to IgG antibodies (Reichel, J. Chem. Commun. 1997, 21, 2087-2088; Alexander, J. Immunol. 2000, 164, 1625-1633; Kudryashov, Proc. Natl. Acad. Sci. USA 2001, 98, 3264-3269; Lo-Man, J. Immunol.2001 , 166, 2849-2854; Jiang, Curr. Med. Chem. 2003, 10, 1423-1439; Jackson, Proc. Natl. Acad. Sci. USA 2004, 101, 15440-5; Lo-Man, Cancer Res. 2004 , 64,4987-4994; Buskas, Angew.Chem.Int.Ed.2005,44,5985-5988 (Example 1); Dziadek, Angew.Chem.Int.Ed.2005,44,7630-7635; Krikorian, Bioconjug. Chem. 2005, 16, 812-819; Pan, J. Med. Chem. 2005, 48, 875-883).
在先天性和适应性免疫应答的合作的知识中的进展(Pasare,Semin. Immunol.2004,16,23-26;Pashine,Nat. Med. 2005,11,S63-S68;Akira,Nat. Rev. Immunol.2004,4,499-511;O'Neill,Curr Opin Immunol 2006,18,3-9;Lee,Semin Immunol 2007,19,48-55;Ghiringhelli,Curr Opin Immunol 2007,19,224-31)提供用于疾病例如癌症的疫苗设计的新途径,对于所述疾病,传统疫苗方法已失败。先天性免疫系统快速响应高度保守化合物的家族,该高度保守化合物是病原体的主要部分并被宿主察觉为危险信号。这些分子模式的识别由高度保守的受体例如Toll样受体(TLR)的套组介导,该受体的激活导致急性炎症应答,例如针对侵入病原体的直接局部攻击和不同组细胞因子的产生。除了抗微生物性质外,细胞因子和趋化因子也激活并调节免疫系统的适应性组分(Lin,J ClinInvest 2007,117,1175-83)。在这方面,细胞因子刺激许多共刺激蛋白质的表达,用于在T辅助细胞与B细胞和抗原呈递细胞(APC)之间的最佳相互作用。此外,一些细胞因子和趋化因子负责克服由调节性T细胞介导的抑制。其他细胞因子对于将效应T细胞应答导向T辅助细胞-1 (Th-1)或T辅助细胞-2 (Th-2)表型是重要的(Dabbagh,Curr. Opin. Infect.Dis. 2003,16,199-204)。Advances in knowledge of the cooperation of innate and adaptive immune responses (Pasare, Semin. Immunol. 2004, 16, 23-26; Pashine, Nat. Med. 2005, 11, S63-S68; Akira, Nat. Rev. Immunol.2004, 4, 499-511; O'Neill, Curr Opin Immunol 2006, 18, 3-9; Lee, Semin Immunol 2007, 19, 48-55; Ghiringhelli, Curr Opin Immunol 2007, 19, 224-31) Provides new avenues for vaccine design for diseases, such as cancer, for which traditional vaccine approaches have failed. The innate immune system responds rapidly to a family of highly conserved compounds that are an integral part of pathogens and are perceived by the host as danger signals. Recognition of these molecular patterns is mediated by sets of highly conserved receptors such as Toll-like receptors (TLRs), the activation of which leads to acute inflammatory responses such as direct local attack against invading pathogens and production of diverse sets of cytokines . In addition to antimicrobial properties, cytokines and chemokines also activate and regulate adaptive components of the immune system (Lin, J ClinInvest 2007, 117, 1175-83). In this regard, cytokines stimulate the expression of a number of co-stimulatory proteins for optimal interaction between T helper cells and B cells and antigen presenting cells (APCs). Furthermore, several cytokines and chemokines are responsible for overcoming suppression mediated by regulatory T cells. Other cytokines are important for directing effector T cell responses towards a T helper-1 (Th-1) or T helper-2 (Th-2) phenotype (Dabbagh, Curr. Opin. Infect. Dis. 2003, 16 , 199-204).
近来,我们描述了由肿瘤相关MUC-1糖肽B表位、非种系选择性辅助T细胞表位和TLR2配体组成的完全合成的三组分疫苗候选物(化合物21,图5)(Buskas,Angew. Chem.Int. Ed. 2005,44,5985-5988(实施例1);Ingale,Nat. Chem. Biol. 2007,3,663-667;Ingale,J. Org. Lett. 2006,8,5785-5788;Bundle,Nat. Chem. Biol. 2007,3,604-606)。三组分疫苗的优越抗原性质归因于作为抗原性且可能诱导免疫抑制的任何不必要特征的不存在。然而,它含有用于引发有关IgG免疫应答所需的所有介质。此外,TLR2激动剂Pam3CysSK4与B表位和T表位的连接确保细胞因子在其中疫苗与免疫细胞相互作用的位点产生。这导致高局部浓度的细胞因子,促进有关免疫细胞的成熟。除了提供危险信号外,脂肽Pam3CysSK4还促进抗原掺入脂质体内,促进通过抗原呈递细胞和B淋巴细胞的选择性靶向和摄取。Recently, we described a fully synthetic three-component vaccine candidate (compound 21, Fig. Buskas, Angew. Chem. Int. Ed. 2005, 44, 5985-5988 (Example 1); Ingale, Nat. Chem. Biol. 2007, 3, 663-667; Ingale, J. Org. Lett. 2006, 8 , 5785-5788; Bundle, Nat. Chem. Biol. 2007, 3, 604-606). The superior antigenic properties of the three-component vaccine are due to the absence of any unnecessary features that are antigenic and may induce immunosuppression. However, it contains all the mediators required for eliciting an IgG-related immune response. In addition, linkage of the TLR2 agonist Pam 3 CysSK 4 to the B and T epitopes ensures cytokine production at the sites where the vaccine interacts with immune cells. This results in high local concentrations of cytokines that promote maturation of the involved immune cells. In addition to providing a danger signal, the lipopeptide Pam 3 CysSK 4 also facilitates antigen incorporation into liposomes, facilitating selective targeting and uptake by antigen-presenting cells and B lymphocytes.
为了建立完全合成的三组分癌症疫苗的最佳体系结构和详细研究TLR参与对于抗原应答的重要性,我们已化学合成并免疫学评价了许多完全合成的疫苗候选物。已发现由免疫沉默脂肽、非种系选择性肽T辅助细胞表位和MUC-1糖肽组成的化合物22的脂质体制剂比由TLR2配体(Pam3CysSK4)修饰的化合物21显著抗原性更低。然而,具有分别为TLR2和TLR4激动剂的Pam3CysSK4 (23)或单磷酰脂质A (24)的化合物22的脂质体制剂引发可与化合物21相比的滴度。然而,由22和23或24的混合物引发的抗血清具有受损的识别癌细胞的能力。令人惊讶地,由连接至脂质化氨基酸的MUC-1糖肽B表位和连接至Pam3CysSK4的辅助T表位组成的化合物25和26的混合物不产生针对MUC-1糖肽的抗体。总之,该结果证实TLR参与不是必需的,但极大增强针对肿瘤相关糖肽MUC-1的抗原应答。TLR激动剂与B表位和辅助T表位的共价连接对于用于改善的癌细胞识别的抗体成熟是重要的。In order to establish the optimal architecture of a fully synthetic three-component cancer vaccine and to study in detail the importance of TLR engagement for antigen response, we have chemically synthesized and immunologically evaluated a number of fully synthetic vaccine candidates. A liposomal formulation of compound 22 consisting of an immunosilencing lipopeptide, a non-germline-selective peptide T helper epitope, and a MUC-1 glycopeptide was found to be significantly more potent than compound 21 modified with a TLR2 ligand (Pam 3 CysSK 4 ). less antigenic. However, liposomal formulations of Compound 22 with Pam 3 CysSK 4 (23) or monophosphoryl lipid A (24), which are TLR2 and TLR4 agonists, respectively, elicited titers comparable to Compound 21. However, antisera raised with a mixture of 22 and 23 or 24 had impaired ability to recognize cancer cells. Surprisingly, the mixture of compounds 25 and 26 consisting of the MUC-1 glycopeptide B epitope linked to lipidated amino acids and the helper T epitope linked to Pam 3 CysSK 4 did not produce a reaction against the MUC-1 glycopeptide Antibody. Taken together, the results demonstrate that TLR involvement is not essential but greatly enhances the antigenic response against the tumor-associated glycopeptide MUC-1. Covalent attachment of TLR agonists to B and helper T epitopes is important for antibody maturation for improved cancer cell recognition.
结果和讨论。Results and discussion.
化学合成。chemical synthesis.
含有衍生自MUC-1的肿瘤相关糖肽(Berzofsky,Nat. Rev. Immunol. 2001,1,209-219;Baldus,Crit. Rev. Clin. Lab. Sci. 2004,41,189-231;Apostolopoulos,Curr. Opin. Mol. Ther. 1999,1,98-103;Hang,Bioorg. Med. Chem. Lett. 2005,13,5021-5034)作为B表位、衍生自脊髓灰质炎病毒的充分证明的鼠MHC II类限制性辅助T细胞表位KLFAVWKITYKDT (SEQ ID NO:3)(Leclerc,J. Virol. 1991,65,711-718)和脂肽Pam3CysSK4(TLR2激动剂)(Spohn,Vaccine 2004,22,2494-2499)的化合物21 (图5),先前显示在小鼠中引发特别高滴度的IgG抗体(Ingale,Nat. Chem. Biol. 2007,3,663-667)。化合物22具有与21相似的体系结构,然而,TLR2配体已替换为脂质化氨基酸(Toth,Tetrahedron Lett. 1993,34,3925-3928)。脂质化氨基酸不诱导细胞因子的产生,然而,它们致使化合物能够掺入脂质体内。因此,糖脂肽22理想地适合于确定TLR参与对于针对肿瘤相关糖肽的抗原应答的重要性。为了测定TLR配体的共价连接的重要性,采用化合物22和分别为TLR2和TRL4激动剂的Pam3CysSK4 (23)或单磷酰脂质A (24)的脂质体制剂(Spohn,Vaccine 2004,22,2494-2499;Chow,J. Biol. Chem. 1999,274,10689-10692)。最后,由连接至脂质化氨基酸的MUC-1糖肽B表位和连接至Pam3CysSK4的辅助T表位组成的化合物25和26用于确定B表位和辅助T表位的共价连接的重要性。化合物21如先前描述地制备(Ingale,Nat. Chem. Biol. 2007,3,663-667;Ingale,Org. Lett. 2006,8,5785-5788)。使用Rink酰胺树脂、Fmoc保护的氨基酸、Fmoc-Thr-(AcO3-α-D-GalNAc)(Cato,J. Carbohydr. Chem.2005,24,503-516)和Fmoc保护的脂质化氨基酸(Gibbons,Liebigs Ann. Chem. 1990,1175-1183;Koppitz,Helv. Chim. Acta 1997,80,1280-1300),通过SPPS合成化合物22。使用2-(1H-苯并三唑-1-基)-氧基-1,1,3,3-四甲基六氟磷酸盐(HBTU)/N-羟基苯并三唑(HOBt)(Knorr,Tetrahedron Lett. 1989,30,1927-1930)作为激活试剂引入标准氨基酸,糖基化氨基酸用O-(7-氮杂苯并三唑-1-基)-N,N,N’,N'-四甲基脲六氟磷酸盐(HATU)/1-羟基-7-氮杂苯并三唑(HOAt)装入,脂质化氨基酸由苯并三唑-1-基-氧基-三吡咯烷子基磷六氟磷酸盐(PyBOP)/HOBt装入。在糖脂肽装配完成后,使用标准条件去除N末端Fmoc保护基团,所得到的胺用乙酸酐和二异丙基乙胺(DIPEA)的N-甲基吡咯烷酮(NMP)溶液通过乙酰化加帽。接下来,糖部分的乙酰酯用60%肼的MeOH溶液裂解,用试剂B (TFA、H2O、苯酚、三乙基硅烷,88/5/5/2,v/v/v/v)处理导致侧链保护基团的去除和糖肽从固相支持体中释放。Contains tumor-associated glycopeptides derived from MUC-1 (Berzofsky, Nat. Rev. Immunol. 2001, 1, 209-219; Baldus, Crit. Rev. Clin. Lab. Sci. 2004, 41, 189-231; Apostolopoulos, Curr. Opin. Mol. Ther. 1999, 1, 98-103; Hang, Bioorg. Med. Chem. Lett. 2005, 13, 5021-5034) as a well-documented mouse B epitope, derived from poliovirus MHC class II restricted helper T cell epitope KLFAVWKITYKDT (SEQ ID NO:3) (Leclerc, J. Virol. 1991, 65, 711-718) and lipopeptide Pam 3 CysSK 4 (TLR2 agonist) (Spohn, Vaccine 2004 , 22, 2494-2499), compound 21 ( FIG. 5 ), was previously shown to elicit particularly high titers of IgG antibodies in mice (Ingale, Nat. Chem. Biol. 2007, 3, 663-667). Compound 22 has a similar architecture to 21, however, the TLR2 ligand has been replaced by a lipidated amino acid (Toth, Tetrahedron Lett. 1993, 34, 3925-3928). Lipidated amino acids do not induce cytokine production, however, they enable compound incorporation into liposomes. Glycolipid22 is therefore ideally suited to determine the importance of TLR engagement for antigenic responses against tumor-associated glycopeptides. To determine the importance of covalent attachment of TLR ligands, liposomal formulations of compound 22 and Pam 3 CysSK 4 (23) or monophosphoryl lipid A (24), which are TLR2 and TRL4 agonists, respectively (Spohn, Vaccine 2004, 22, 2494-2499; Chow, J. Biol. Chem. 1999, 274, 10689-10692). Finally, compounds 25 and 26, consisting of the MUC-1 glycopeptide B epitope linked to a lipidated amino acid and the helper T epitope linked to Pam 3 CysSK 4 , were used to determine the covalency of the B epitope and helper T epitope The importance of connections. Compound 21 was prepared as previously described (Ingale, Nat. Chem. Biol. 2007, 3, 663-667; Ingale, Org. Lett. 2006, 8, 5785-5788). Using Rink amide resin, Fmoc-protected amino acid, Fmoc-Thr-(AcO 3 -α-D-GalNAc) (Cato, J. Carbohydr. Chem. 2005, 24, 503-516) and Fmoc-protected lipidated amino acid ( Gibbons, Liebigs Ann. Chem. 1990, 1175-1183; Koppitz, Helv. Chim. Acta 1997, 80, 1280-1300), compound 22 was synthesized by SPPS. Using 2-(1H-benzotriazol-1-yl)-oxy-1,1,3,3-tetramethylhexafluorophosphate (HBTU)/ N -hydroxybenzotriazole (HOBt) (Knorr , Tetrahedron Lett. 1989, 30, 1927-1930) as an activation reagent to introduce standard amino acids, glycosylated amino acids with O -(7-azabenzotriazol-1-yl) -N , N , N',N' -Tetramethylurea Hexafluorophosphate (HATU)/1-hydroxy-7-azabenzotriazole (HOAt) loaded, lipidated amino acid composed of benzotriazol-1-yl-oxy-tripyrrolidinophosphorus Hexafluorophosphate (PyBOP)/HOBt loading. After the glycolipopeptide assembly is complete, the N -terminal Fmoc protecting group is removed using standard conditions, and the resulting amine is added by acetylation with acetic anhydride and diisopropylethylamine (DIPEA) in N -methylpyrrolidone (NMP). cap. Next, the acetyl ester of the sugar moiety was cleaved with 60% hydrazine in MeOH with reagent B (TFA, H2O , phenol, triethylsilane, 88/5/5/2, v/v/v/v) Treatment results in removal of the side chain protecting groups and release of the glycopeptide from the solid support.
在通过用冰冷的二乙醚沉淀和随后的在C-4半制备型柱上的HPLC纯化粗产物后,获得纯化合物22。类似方案用于合成化合物25。衍生物26通过SPPS在Rink酰胺树脂上合成,并且在肽装配后,所得到的产物用N-芴甲氧羰基-R-(2,3-双(棕榈酰氧基)-(2R-丙基)-(R)-半胱氨酸(Fmoc-Pam2Cys-OH)手工偶联(Metzger,Int. J. Pept. Protein Res.1991,38,545-554)。用20%哌啶的DMF溶液去除产物的N-Fmoc基团,并且使用PyBOB、HOBt和DIPEA的DMF溶液,使所得到的胺与棕榈酸偶联。将脂肽用试剂B处理,以将其从树脂中裂解和去除侧链保护基团。通过用冰冷的二乙醚沉淀和随后的在C-4半制备型柱上的HPLC纯化粗产物。Pure compound 22 was obtained after purification of the crude product by precipitation with ice-cold diethyl ether followed by HPLC on a C-4 semi-preparative column. A similar scheme was used to synthesize compound 25. Derivative 26 was synthesized by SPPS on Rink amide resin, and after peptide assembly, the resulting product was treated with N -fluorenylmethoxycarbonyl- R- (2,3-bis(palmitoyloxy)-( 2R -propyl )-( R )-cysteine (Fmoc-Pam 2 Cys-OH) manual coupling (Metzger, Int. J. Pept. Protein Res. 1991, 38, 545-554). DMF with 20% piperidine Solution removes the N -Fmoc group of the product and the resulting amine is coupled to palmitic acid using PyBOB, HOBt and DIPEA in DMF. The lipopeptide is treated with Reagent B to cleave it from the resin and remove the side Chain protecting group. The crude product was purified by precipitation with ice-cold diethyl ether followed by HPLC on a C-4 semi-preparative column.
免疫接种和免疫学。Immunization and Immunology.
通过卵磷脂酰胆碱(PC)、磷脂酰甘油(PG)、胆固醇(Chol)和化合物21或22 (摩尔比:65/25/50/10)的薄膜在含有NaCl (145 mM)的HEPES缓冲液(10 mM,pH 6.5)中的水合,随后为通过经由100 nm Nuclepore®聚碳酸酯膜挤出,将化合物21和22掺入基于磷脂的小型单层囊泡(SUV)内。将五只雌性BALB/c小鼠的组用含有3 μg糖的脂质体以每周一次间隔皮下免疫接种四次。此外,在HEPES缓冲液中制备具有糖肽22与23或24的混合物的相似脂质体(摩尔比:PC/PG/Chol/22/23或24,65/25/5/5/5),在血清收获前以每周一次间隔施用四次。最后,采用标准程序,将小鼠用化合物25和26的脂质体制剂(摩尔比:PC/PG/Chol/25/26,65/25/5/5/5)免疫接种。Pass the membrane of egg phosphatidylcholine (PC), phosphatidylglycerol (PG), cholesterol (Chol) and compound 21 or 22 (molar ratio: 65/25/50/10) in HEPES buffer containing NaCl (145 mM) Compounds 21 and 22 were incorporated into phospholipid-based small unilamellar vesicles (SUVs) by hydration in solution (10 mM, pH 6.5) followed by extrusion through a 100 nm Nuclepore® polycarbonate membrane. Groups of five female BALB/c mice were immunized subcutaneously four times at weekly intervals with liposomes containing 3 μg of sugar. In addition, similar liposomes with a mixture of glycopeptides 22 and 23 or 24 were prepared in HEPES buffer (molar ratio: PC/PG/Chol/22/23 or 24, 65/25/5/5/5), Four doses were administered at weekly intervals prior to serum harvest. Finally, mice were immunized with liposomal formulations of compounds 25 and 26 (molar ratio: PC/PG/Chol/25/26, 65/25/5/5/5) using standard procedures.
通过用缀合至BSA的MUC-1衍生的糖肽TSAPDT(α-D-GalNAc)RPAP包被微量滴定板来测定抗血清的抗MUC-1抗体滴度,并且用由碱性磷酸酶标记的抗小鼠IgM或IgG抗体完成检测。用21免疫接种的小鼠引发特别高滴度的抗MUC-1 IgG抗体(表5)。IgG抗体的亚分型(IgG1、IgG2a、IgG2b和IgG3)指出朝向Th2免疫应答的偏向。此外,观察到的高IgG3滴度是抗碳水化合物应答的典型。用含有脂质化氨基酸代替TLR2配体的糖脂肽22免疫接种导致显著更低滴度的IgG抗体,证实TLR参与对于最佳抗原应答是非常重要的。然而,具有Pam3CysSK4 (23)或单磷酰脂质A (24)的化合物22的脂质体制剂引发与21相似的IgG (总)滴度。在22与23的混合物的情况下,如通过高IgG1和低IgG2a,b滴度证明的,免疫应答朝向Th2应答偏向。另一方面,单磷酰脂质A的使用导致显著的IgG1和IG2a,b应答,因此这种制剂引发混合Th1/Th2应答。最后,含有化合物25和26的脂质体不诱导可测量滴度的抗MUC-1抗体,表明对于抗原应答,B表位和T表位需要共价连接。Anti-MUC-1 antibody titers of antisera were determined by coating microtiter plates with the MUC-1-derived glycopeptide TSAPDT (α-D-GalNAc) RPAP conjugated to BSA, and labeled with alkaline phosphatase Anti-mouse IgM or IgG antibodies complete the detection. Mice immunized with 21 elicited particularly high titers of anti-MUC-1 IgG antibodies (Table 5). The subtypes of IgG antibodies (IgGl, IgG2a, IgG2b and IgG3) indicate a bias towards Th2 immune responses. Furthermore, the high IgG3 titers observed were typical of an anticarbohydrate response. Immunization with glycolipopeptide 22 containing lipidated amino acids instead of TLR2 ligands resulted in significantly lower titers of IgG antibodies, demonstrating that TLR engagement is critical for optimal antigen responses. However, liposomal formulations of compound 22 with Pam 3 CysSK 4 (23) or monophosphoryl lipid A (24) elicited IgG (total) titers similar to 21. In the case of a mixture of 22 and 23, the immune response was skewed towards a Th2 response as evidenced by high IgGl and low IgG2a,b titers. On the other hand, the use of monophosphoryl lipid A resulted in significant IgG1 and IG2a,b responses, thus this formulation elicited a mixed Th1/Th2 response. Finally, liposomes containing compounds 25 and 26 did not induce measurable titers of anti-MUC-1 antibodies, indicating that covalent linkage of B and T epitopes is required for antigen response.
表5. 在用多种制剂4次免疫接种后的ELISA抗MUC1和抗T表位抗体滴度a。Table 5. ELISA anti-MUCl and anti-T epitope antibody titers a after 4 immunizations with various formulations.
a抗MUC1和抗T表位抗体滴度作为关于五只小鼠的组的中值呈现。对于抗MUC1抗体滴度,将ELISA板用BSA-MI-MUC1缀合物包被,或对于抗T表位抗体滴度,将ELISA板用中性抗生物素蛋白-生物素-T表位包被。通过线性回归分析,标绘与吸光度比较的稀释度而测定滴度。滴度定义为获得相对于正常对照小鼠血清光密度为0.1或更大的最高稀释度。 a Anti-MUCl and anti-T epitope antibody titers are presented as median values for a group of five mice. For anti-MUC1 antibody titers, coat ELISA plates with BSA-MI-MUC1 conjugate, or for anti-T epitope antibody titers, coat ELISA plates with neutravidin-biotin-T epitope quilt. Titers were determined by linear regression analysis, plotting dilutions compared to absorbance. Titer was defined as the highest dilution to obtain an optical density of 0.1 or greater relative to normal control mouse serum.
b 采用脂质体制剂。 b using liposome formulations.
总IgG、IgG1、IgG2a、IgG2b、IgG3和IgM的个别抗MUC1滴度和总IgG的抗T表位在表8中报道。Individual anti-MUCl titers for total IgG, IgGl, IgG2a, IgG2b, IgG3 and IgM and anti-T epitopes for total IgG are reported in Table 8.
接下来,研究针对辅助T表位的可能抗原应答。因此,将链霉抗生物素蛋白包被的微量滴定板用由生物素修饰的辅助T表位处理。在加入血清的系列稀释液后,用由碱性磷酸酶标记的抗小鼠IgM或IgG抗体完成检测。有趣的是,化合物21引发低的针对辅助T表位的抗体,而22与23或24的混合物未引发针对辅助T表位的抗体。Next, possible antigenic responses to helper T epitopes were investigated. Therefore, streptavidin-coated microtiter plates were treated with biotin-modified helper T epitopes. Detection was accomplished with anti-mouse IgM or IgG antibodies labeled with alkaline phosphatase after addition of serial dilutions of sera. Interestingly, compound 21 elicited low antibodies against the helper T epitope, whereas a mixture of 22 with 23 or 24 elicited no antibodies against the helper T epitope.
分别通过与单核吞噬细胞表面上的TLR2或TLR4相互作用,Pam3CysSK4或单磷酰脂质A用于起始细胞因子产生(Kawai,Semin. Immunol. 2007,19,24-32)。在用Pam3CysSK4激活后,TLR2的细胞内结构域募集衔接蛋白质MyD88,导致激酶级联的激活,从而导致许多细胞因子和趋化因子的产生。另一方面,脂多糖(LPS)和脂质A通过与TLR4/MD2复合物相互作用而诱导细胞应答,这导致衔接蛋白质MyD88和TRIF的募集,从而导致更复杂模式的细胞因子的诱导。TNF-α分泌是MyD88依赖性途径激活的原型量度,而IFN-β的分泌通常用作TRIF依赖性细胞激活的指示物。Pam 3 CysSK 4 or monophosphoryl lipid A are used to initiate cytokine production by interacting with TLR2 or TLR4 on the surface of mononuclear phagocytes, respectively (Kawai, Semin. Immunol. 2007, 19, 24-32). Upon activation with Pam 3 CysSK 4 , the intracellular domain of TLR2 recruits the adapter protein MyD88, leading to the activation of a kinase cascade leading to the production of a number of cytokines and chemokines. On the other hand, lipopolysaccharide (LPS) and lipid A induce cellular responses by interacting with the TLR4/MD2 complex, which leads to the recruitment of the adapter proteins MyD88 and TRIF, leading to the induction of a more complex pattern of cytokines. TNF-α secretion is a prototypical measure of MyD88-dependent pathway activation, whereas IFN-β secretion is commonly used as an indicator of TRIF-dependent cellular activation.
为了检查细胞因子产生,使小鼠巨噬细胞(RAW γNO(-)细胞)暴露于广泛范围浓度的化合物21-24、大肠杆菌055:B5 LPS和原型大肠杆菌二磷酰脂质A (Zhang,J. Am.Chem. Soc. 2007,129,5200-5216)。在5.5小时后,收获上清液,使用商业或内部开发的捕获ELISA分别针对小鼠TNF-α和IFN-β检查该上清液(图6)。通过使用PRISM软件使剂量应答曲线拟合至逻辑斯谛方程,测定效力(EC50,产生50%活性的浓度)和功效(最大生产水平)。糖脂肽21和Pam3CysSK4 (23)以相似功效和效力诱导TNF-α分泌,表明B表位和T表位的连接对细胞因子应答没有作用。如预期的,化合物无一诱导IFN-β的产生。此外,化合物22不诱导TNF-α和IFN-β分泌,表明它的脂质部分是免疫沉默的。化合物24刺激细胞产生TNF-α和INF-β,但它的效力比大肠杆菌055:B5 LPS的小得多。与化合物21和23相比较,它展示大得多的TNF-α生产功效。化合物21和23的功效减少可能是有利性质,因为LPS可以过度激活先天性免疫系统,导致脓毒性休克的症状。To examine cytokine production, mouse macrophages (RAW γNO(-) cells) were exposed to a wide range of concentrations of compounds 21-24, E. coli 055:B5 LPS, and prototype E. coli diphosphoryl lipid A (Zhang, J. Am. Chem. Soc. 2007, 129, 5200-5216). After 5.5 hours, supernatants were harvested and examined for mouse TNF-α and IFN-β, respectively, using commercial or in-house developed capture ELISAs ( FIG. 6 ). Potency ( EC50 , concentration giving 50% activity) and efficacy (maximal production level) were determined by fitting dose response curves to the logistic equation using PRISM software. Glycolipidin 21 and Pam 3 CysSK 4 (23) induced TNF-α secretion with similar potency and potency, suggesting that linkage of B and T epitopes has no effect on cytokine responses. As expected, none of the compounds induced IFN-[beta] production. Furthermore, compound 22 did not induce TNF-α and IFN-β secretion, suggesting that its lipid fraction is immunosilencing. Compound 24 stimulated cells to produce TNF-α and INF-β, but it was much less potent than E. coli 055:B5 LPS. Compared to compounds 21 and 23, it exhibited much greater efficacy in TNF-[alpha] production. The reduced efficacy of compounds 21 and 23 may be a favorable property because LPS can overactivate the innate immune system, leading to symptoms of septic shock.
接下来,确定小鼠抗血清识别存在于癌细胞上的天然MUC-1抗原的能力。因此,将血清样品的系列稀释液加入表达MUC-1的MCF-7人乳腺癌细胞(Horwitz,Steroids 1975,26,785-95),并且使用FITC标记的抗小鼠IgG抗体建立识别。如图7中可见,得自用三组分疫苗1免疫接种的抗血清展示极佳的MUC-1肿瘤细胞识别,而当采用不表达MUC-1抗原的SK-MEL 28细胞时,未观察到结合(图9)。Next, the ability of the mouse antisera to recognize the native MUC-1 antigen present on cancer cells was determined. Therefore, serial dilutions of serum samples were added to MCF-7 human breast cancer cells expressing MUC-1 (Horwitz, Steroids 1975, 26, 785-95), and recognition was established using FITC-labeled anti-mouse IgG antibody. As can be seen in Figure 7, antisera obtained from immunization with the three-component vaccine 1 exhibited excellent recognition of MUC-1 tumor cells, whereas no binding was observed when using SK-MEL 28 cells that do not express the MUC-1 antigen (Figure 9).
尽管得自用脂质化T-B表位(22)和Pam3CysSK4 (23)的混合物免疫接种的小鼠的血清引发与21相等的高IgG抗体滴度(表5),但观察到少得多的MCF-7细胞识别。这个结果指出佐剂PamsCysSK4 (23)与B-T表位的共价连接对于正确的抗体成熟是重要的,正确的抗体成熟导致改善的癌细胞识别。用化合物22和单磷酰脂质A(24)的混合物免疫接种导致可变结果,两只小鼠展示极佳的MCF-7细胞识别,三只小鼠展示中等的MCF-7细胞识别。Although sera from mice immunized with a mixture of lipidated TB epitopes ( 22 ) and Pam3CysSK4 (23) elicited high IgG antibody titers equivalent to 21 (Table 5), much less was observed Recognition of MCF-7 cells. This result indicates that covalent attachment of the adjuvant PamsCysSK 4 (23) to the BT epitope is important for proper antibody maturation, which leads to improved cancer cell recognition. Immunization with a mixture of compound 22 and monophosphoryl lipid A (24) resulted in variable results, with two mice showing excellent MCF-7 cell recognition and three mice showing moderate MCF-7 cell recognition.
讨论discuss
旨在开发基于碳水化合物的癌症疫苗的大多数努力已集中于使用通过人工接头连接至载体蛋白质的化学合成的肿瘤相关碳水化合物(Springer,Mol. Med. 1997,75,594-602;Dube,Nat. Rev. Drug Discov. 2005,4,477-488;Ouerfelli,Expert Rev. Vaccines2005,4,677-685;Slovin,Immunol. Cell Biol. 2005,83,418-428)。已确定使用KLH作为载体蛋白质与有力佐剂QS-21组合给出最佳结果。然而,这种方法的缺点是KLH是极大和麻烦的蛋白质,其可以引发高滴度的抗KLH抗体(Cappello,Cancer Immunol Immunother1999,48,483-492),导致肿瘤相关碳水化合物表位的免疫抑制。此外,缀合化学常常难以控制,因为它导致产生具有可以影响免疫应答的再现性的在组成和结构方面的含糊性的缀合物。此外,接头部分可以引发强B细胞应答(Buskas,Chem. Eur. J. 2004,10,3517-3524;Ni,Bioconjug. Chem. 2006,17,493-500)。并不令人惊讶地,用碳水化合物-蛋白质缀合物的临床前和临床研究已导致混合优点的结果。例如,在佐剂QS-21的存在下,用缀合至KLH的Tn抗原的三聚体簇(Tn(c)-KLH)免疫接种小鼠引发中等滴度的IgG抗体(Kuduk,J. Am.Chem. Soc. 1998,120,12474-12485)。在复发的前列腺癌患者的临床试验中检查疫苗候选物给出低的中值IgG和IgM抗体滴度(Slovin,J. Clin. Oncol. 2003,21,4292-4298)。Most efforts aimed at developing carbohydrate-based cancer vaccines have focused on the use of chemically synthesized tumor-associated carbohydrates linked to carrier proteins by artificial linkers (Springer, Mol. Med. 1997, 75, 594-602; Dube, Nat. . Rev. Drug Discov. 2005, 4, 477-488; Ouerfelli, Expert Rev. Vaccines 2005, 4, 677-685; Slovin, Immunol. Cell Biol. 2005, 83, 418-428). It was determined that the use of KLH as a carrier protein in combination with the potent adjuvant QS-21 gave the best results. However, the disadvantage of this approach is that KLH is a very large and troublesome protein that can elicit high titers of anti-KLH antibodies (Cappello, Cancer Immunol Immunother 1999, 48, 483-492), resulting in immunosuppression of tumor-associated carbohydrate epitopes . Furthermore, conjugation chemistry is often difficult to control as it results in conjugates with compositional and structural ambiguities that can affect the reproducibility of the immune response. Furthermore, linker moieties can elicit strong B cell responses (Buskas, Chem. Eur. J. 2004, 10, 3517-3524; Ni, Bioconjug. Chem. 2006, 17, 493-500). Not surprisingly, preclinical and clinical studies with carbohydrate-protein conjugates have resulted in results of mixed merit. For example, immunization of mice with trimeric clusters of Tn antigen conjugated to KLH (Tn(c)-KLH) in the presence of the adjuvant QS-21 elicited moderate titers of IgG antibodies (Kuduk, J. Am. Chem. Soc. 1998, 120, 12474-12485). Examination of vaccine candidates in clinical trials of recurrent prostate cancer patients gave low median IgG and IgM antibody titers (Slovin, J. Clin. Oncol. 2003, 21, 4292-4298).
本文报道的研究显示其中MUC-1相关糖肽B表位、非种系选择性鼠MHC II类限制性辅助T细胞表位和TLR2激动剂(21)共价连接的三组分疫苗,可以引发强IgG抗体应答。尽管TLR2配体与T-B糖肽表位的共价连接不是高IgG抗体滴度所需的,但发现它对于最佳癌细胞识别是非常重要的。在这方面,含有化合物21或化合物22和TLR2激动剂23的混合物的脂质体引发相似的高抗MUC-1 IgG抗体滴度。然而,得自用21免疫接种的抗血清在比得自用22和23的混合物免疫接种的抗血清低得多的血清稀释度下识别表达MUC-1的癌细胞。看起来用三组分疫苗21免疫接种导致更有效的抗体成熟,从而导致改善的癌细胞识别。Studies reported here show that a three-component vaccine in which a MUC-1-associated glycopeptide B epitope, a non-germline-selective murine MHC class II-restricted helper T-cell epitope, and a TLR2 agonist (21) are covalently linked can elicit Strong IgG antibody response. Although covalent attachment of TLR2 ligands to T-B glycopeptide epitopes is not required for high IgG antibody titers, it was found to be very important for optimal cancer cell recognition. In this regard, liposomes containing compound 21 or a mixture of compound 22 and TLR2 agonist 23 elicited similarly high anti-MUC-1 IgG antibody titers. However, antisera from immunization with 21 recognized MUC-1 expressing cancer cells at much lower serum dilutions than antisera from immunization with a mixture of 22 and 23. It appears that immunization with the three-component vaccine21 resulted in more efficient antibody maturation, resulting in improved cancer cell recognition.
还观察到针对辅助T表位的抗原应答方面的差异。因此,21引发针对辅助T表位的低滴度的IgG抗体,而22与23的混合物不诱导针对候选疫苗的这个部分的抗原应答。因此,TLR2配体的共价连接使得化合物21更多抗原性,导致针对辅助T表位的低抗体应答。Differences in antigenic responses to helper T epitopes were also observed. Thus, 21 elicited low titers of IgG antibodies against the helper T epitope, whereas the mixture of 22 and 23 did not induce an antigenic response against this part of the vaccine candidate. Thus, covalent attachment of TLR2 ligands made compound 21 more antigenic, resulting in low antibody responses against the helper T epitope.
观察到化合物22与23或24的混合物诱导相似高滴度的总IgG抗体。然而,当采用TLR2激动剂Pam3CysSK4 (23)时,观察到朝向Th2应答(IgG1)的偏向,而当使用TLR4激动剂单磷酰脂质A (24)时,获得混合Th1/Th2应答(IgG2a,b)。辅助T细胞的极化方面的差异可能是由于不同模式的细胞因子被TLR2或TLR4诱导。在这方面,先前观察到Pam3Cys诱导比大肠杆菌LPS更低水平的Th1诱导性细胞因子Il-12(p70),和高得多水平的Th2诱导性IL-10(Dillon,B. J Immunol 2004,172,4733-43)。差异可能是由于TLR4募集衔接蛋白质MyD88和Trif的能力,而TLR2仅可募集MyD88。该结果表明免疫系统可以通过佐剂的适当选择以特定方向定制,这是有意义的,因为不同IgG同种型执行不同效应子功能。Mixtures of compound 22 and 23 or 24 were observed to induce similarly high titers of total IgG antibodies. However, a bias towards a Th2 response (IgG1) was observed when the TLR2 agonist Pam 3 CysSK 4 (23) was used, whereas a mixed Th1/Th2 response was obtained when the TLR4 agonist monophosphoryl lipid A (24) was used (IgG2a,b). Differences in the polarization of helper T cells may be due to different patterns of cytokine induction by TLR2 or TLR4. In this regard, it was previously observed that Pam 3 Cys induces lower levels of the Th1-inducible cytokine Il-12 (p70) than E. coli LPS, and much higher levels of Th2-inducible IL-10 (Dillon, B. J Immunol 2004, 172, 4733-43). The difference may be due to the ability of TLR4 to recruit the adapter proteins MyD88 and Trif, whereas TLR2 can only recruit MyD88. This result suggests that the immune system can be tailored in specific directions by appropriate choice of adjuvants, which is meaningful since different IgG isotypes perform different effector functions.
本文描述的结果还显示与由TLR2配体修饰的化合物21相比较,含有免疫沉默脂肽的化合物22单独引发低得多的IgG滴度。特别地,化合物22引发IgG2抗体的能力是受损的。采用在TLR信号转导方面缺陷的小鼠的近期研究对这些先天性免疫受体对于适应性免疫应答的重要性产生怀疑(Blander,Nature 2006,440,808-812;Gavin,Science 2006,314,1936-1938;Meyer-Bahlburg,J Exp Med 2007,204,3095-101;Pulendran,N Engl J Med2007,356,1776-8)。在这方面,用MyD88缺陷型小鼠的研究显示IgM和IgG1在很大程度上但并非完全依赖TLR信号转导,而IgG2同种型是完全TLR依赖性的(Blander,Nature 2006,440,808-812)。与此处报道的结果一致的这些观察结果归因于B细胞成熟需要TLR信号转导。然而,另一个研究发现当在几种佐剂的存在或不存在下,用三硝基苯酚-血蓝蛋白(TNP-Hy)或TNP-KLH免疫接种时,MyD88-/-/Triflps/lps双重敲除小鼠引发与野生型小鼠相似滴度的抗体(Gavin,Science 2006,314,1936-1938)。得出结论:可能需要从佐剂中排除TLR激动剂。已注意到佐剂的重要性可能依赖于免疫原的抗原性(Meyer-Bahlburg,J Exp Med2007,204,3095-101;Pulendran,N Engl J Med 2007,356,1776-8)。在这方面,TNP的蛋白质缀合物是高度抗原性的并且可能不需要佐剂用于最佳应答。然而,自身抗原例如肿瘤相关碳水化合物具有低固有抗原性,并且此处报道的结果明确显示当共施用TLR配体时,获得强得多的抗体应答。此外,此处证实候选疫苗的体系结构对于最佳抗原应答是非常重要的,特别地TLR配体与T-B表位的共价连接导致改善的癌细胞识别。The results described herein also show that compound 22 containing the immunosilencing lipopeptide alone elicits much lower IgG titers compared to compound 21 modified by TLR2 ligand. In particular, the ability of compound 22 to elicit IgG2 antibodies was impaired. Recent studies using mice deficient in TLR signaling cast doubt on the importance of these innate immune receptors for the adaptive immune response (Blander, Nature 2006, 440, 808-812; Gavin, Science 2006, 314, 1936-1938; Meyer-Bahlburg, J Exp Med 2007, 204, 3095-101; Pulendran, N Engl J Med 2007, 356, 1776-8). In this regard, studies with MyD88-deficient mice showed that IgM and IgG1 are largely but not completely dependent on TLR signaling, whereas the IgG2 isotype is completely TLR-dependent (Blander, Nature 2006, 440, 808 -812). These observations, consistent with the results reported here, have been attributed to the requirement of TLR signaling for B cell maturation. However, another study found that MyD88 -/- /Trif lps/lps Double knockout mice elicited similar titers of antibodies to wild type mice (Gavin, Science 2006, 314, 1936-1938). It was concluded that TLR agonists may need to be excluded from adjuvants. It has been noted that the importance of adjuvants may depend on the antigenicity of the immunogen (Meyer-Bahlburg, J Exp Med 2007, 204, 3095-101; Pulendran, N Engl J Med 2007, 356, 1776-8). In this regard, protein conjugates of TNP are highly antigenic and may not require adjuvants for an optimal response. However, self-antigens such as tumor-associated carbohydrates have low intrinsic antigenicity, and the results reported here clearly show that a much stronger antibody response is obtained when TLR ligands are co-administered. Furthermore, it is demonstrated here that the architecture of a vaccine candidate is very important for optimal antigen response, in particular covalent attachment of TLR ligands to TB epitopes leads to improved cancer cell recognition.
化合物25和26的混合物不能引发抗MUC-1糖肽抗体指出T表位与B表位的共价连接是引发抗原应答所需的。在这方面,B细胞通过辅助T细胞的激活需要与通过抗原呈递细胞的辅助T细胞激活相似类型的细胞间相互作用。因此,含蛋白质或肽的抗原需要被B细胞内在化以转运至内体小泡,在此蛋白酶将消化蛋白质,一些所得到的肽片段将与II类MHC蛋白质复合。II类MHC-肽复合物随后转运至B淋巴细胞的细胞表面,以介导与辅助T细胞的相互作用,导致从低亲和力IgM到高亲和力IgG抗体产生的类别转换。与抗原呈递细胞不同,B细胞具有弱吞噬性质,并且仅可内在化结合B细胞受体的分子。因此,预期辅助T表位的内在化通过与B表位(MUC-1糖肽)的共价连接得到促进,因此两种表位的共价连接将导致更强的抗原应答。The inability of the mixture of compounds 25 and 26 to elicit anti-MUC-1 glycopeptide antibodies indicates that covalent attachment of the T epitope to the B epitope is required to elicit an antigenic response. In this regard, activation of B cells by helper T cells requires similar types of intercellular interactions as activation of helper T cells by antigen-presenting cells. Thus, protein or peptide-containing antigens need to be internalized by B cells for transport to endosomal vesicles where proteases will digest the protein and some of the resulting peptide fragments will complex with MHC class II proteins. Class II MHC-peptide complexes are then transported to the cell surface of B lymphocytes to mediate interactions with helper T cells, resulting in a class switch from low-affinity IgM to high-affinity IgG antibody production. Unlike antigen presenting cells, B cells have weak phagocytic properties and can only internalize molecules that bind to the B cell receptor. Therefore, it is expected that the internalization of the helper T epitope is facilitated by covalent linkage to the B epitope (MUC-1 glycopeptide), and thus covalent linkage of the two epitopes will lead to a stronger antigenic response.
总之,已证实完全合成的癌症疫苗的抗原性质可以通过结构-活性关系研究最佳化。在这方面,已确定其中肿瘤相关MUC-1糖肽B表位、非种系选择性辅助T细胞表位和TLR2配体共价连接的三组分疫苗,可以引发特别高的IgG抗体应答,其具有识别癌细胞的能力。辅助T表位共价连接至B表位是非常重要的,可能是因为辅助T表位通过B细胞的内在化需要B表位的存在。还已显示TLR激动剂的掺入对于针对肿瘤相关糖肽抗原的强抗原应答是重要的。在这方面,由TLR2配体诱导的细胞因子对于免疫细胞成熟是重要的,免疫细胞成熟导致强抗体应答。令人惊讶的发现是当TLR2表位共价连接至糖肽T-B表位时,观察到改善的癌细胞识别。此处呈现的结果提供三组分疫苗的最佳构成的重要信息,并且将指导基于碳水化合物的癌症疫苗的成功开发。In conclusion, it has been demonstrated that the antigenic properties of fully synthetic cancer vaccines can be optimized through structure-activity relationship studies. In this regard, it has been determined that a three-component vaccine in which tumor-associated MUC-1 glycopeptide B epitopes, non-germline-selective helper T-cell epitopes, and TLR2 ligands are covalently linked elicits particularly high IgG antibody responses, It has the ability to recognize cancer cells. The covalent linkage of the helper T epitope to the B epitope is very important, probably because the internalization of the helper T epitope by B cells requires the presence of the B epitope. The incorporation of TLR agonists has also been shown to be important for strong antigenic responses against tumor-associated glycopeptide antigens. In this regard, cytokines induced by TLR2 ligands are important for immune cell maturation, which leads to strong antibody responses. A surprising finding was that improved cancer cell recognition was observed when the TLR2 epitope was covalently linked to the glycopeptide T-B epitope. The results presented here provide important information on the optimal composition of three-component vaccines and will guide the successful development of carbohydrate-based cancer vaccines.
实验experiment
肽合成:肽通过建立的方案在配备UV检测器的ABI 433A肽合成仪(AppliedBiosystems)上使用N α -Fmoc保护的氨基酸和2-(1H-苯并三唑-1-基)-氧基-1,1,3,3-四甲基六氟磷酸盐(HBTU)/N-羟基苯并三唑(HOBt)(Knorr,Tetrahedron Lett. 1989,30,1927-1930)作为激活试剂而合成。单个偶联步骤用条件性加帽执行。使用下述受保护的氨基酸:N α -Fmoc-Arg(Pbf)-OH、N α -Fmoc-Asp(O t Bu)-OH、N α -Fmoc-Asp-Thr(ψMe,Mepro)-OH、N α -Fmoc-Ile-Thr(ψMe,Mepro)-OH、N α -Fmoc-Lys(Boc)-OH、N α -Fmoc-Ser( t Bu)-OH、N α -Fmoc-Thr( t Bu)-OH和N α-Fmoc-Tyr( t Bu)-OH。使用O-(7-氮杂苯并三唑-1-基)-N,N,N’,N'-四甲基脲六氟磷酸盐(HATU)/1-羟基-7-氮杂苯并三唑(HOAt)作为偶联剂,手工执行糖基化氨基酸N α-Fmoc-Thr-(AcO3-α-D-GalNAc) 1S (Cato,J. Carbohydr. Chem. 2005,24,503-516)的偶联。使用苯并三唑-1-基-氧基-三吡咯烷子基-磷六氟磷酸盐(PyBOP)/HOBt作为偶联剂(参见支持信息),执行N α -Fmoc-亲脂氨基酸(N α -Fmoc-D,L-十四烷酸) 2S (Gibbons,Liebigs Ann. Chem. 1990,1175-1183;Koppitz,Helv. Chim. Acta 1997,80,1280-1300)和N α -Fmoc-S-(2,3-双(棕榈酰氧基)-(2R-丙基)-(R)-半胱氨酸3S (Metzger,Int. J.Pept. Protein Res. 1991,38,545-554;Roth,Bioconj. Chem. 2004,15,541-553)(其由(R)-缩水甘油制备)的偶联。通过标准Kaiser测试监控手工偶联的进展(Kaiser,Anal.Biochem. 1970,34,595)。 Peptide synthesis: Peptides were processed by established protocols on an ABI 433A peptide synthesizer (Applied Biosystems) equipped with a UV detector using Nα -Fmoc protected amino acids and 2-(1H-benzotriazol-1-yl) -oxy- 1,1,3,3-Tetramethylhexafluorophosphate (HBTU)/ N -hydroxybenzotriazole (HOBt) (Knorr, Tetrahedron Lett. 1989, 30, 1927-1930) was synthesized as an activating reagent. Individual coupling steps are performed with conditional capping. The following protected amino acids were used: N α -Fmoc-Arg(Pbf)-OH, N α -Fmoc-Asp( O t Bu ) -OH, N α -Fmoc-Asp-Thr(ψMe ,Me pro)- OH, N α -Fmoc-Ile-Thr(ψ Me,Me pro)-OH, N α -Fmoc-Lys(Boc)-OH, N α -Fmoc-Ser( t Bu)-OH, N α -Fmoc- Thr( tBu )-OH and Nα - Fmoc -Tyr( tBu )-OH. Using O -(7-azabenzotriazol-1-yl) -N , N , N',N' -tetramethylurea Glycosylated amino acid N α -Fmoc-Thr-(AcO 3 -α-D-GalNAc ) 1S (Cato, J. Carbohydr. Chem. 2005, 24, 503-516). Using benzotriazol-1-yl-oxy-tripyrrolidino-phosphorus Hexafluorophosphate (PyBOP)/HOBt was used as a coupling agent (see Supporting Information) to perform Nα -Fmoc-lipophilic amino acid ( Nα - Fmoc -D,L-tetradecanoic acid) 2S (Gibbons, Liebigs Ann. Chem. 1990, 1175-1183; Koppitz, Helv. Chim. Acta 1997, 80, 1280-1300) and N α -Fmoc- S -(2,3-bis(palmitoyloxy)-(2 R -propyl )-( R )-cysteine 3S (Metzger, Int. J. Pept. Protein Res. 1991, 38, 545-554; Roth, Bioconj. Chem. 2004, 15, 541-553) (which is derived from (R ) - Coupling of glycidol preparation). The progress of the manual coupling was monitored by the standard Kaiser test (Kaiser, Anal. Biochem. 1970, 34, 595).
脂质体制备:将卵磷脂酰胆碱(PC)、磷脂酰甘油(PG)、胆固醇(Chol)和化合物21或22 (15 mmol,摩尔比65:25:50:10)或PC/PG/Chol/22/23或24 (15 mmol,摩尔比60:25:50:10:5)或PC/PG/Chol/25/26 (15 mmol,摩尔比65:25:50:5:5)溶解于三氟乙醇和MeOH (1:1,v/v,5 mL)的混合物中。将溶剂在真空中去除,以给出薄脂质薄膜,其通过在氩气氛下在41℃在含有NaCl (145 mM)的HEPES缓冲液(10 mM,pH 6.5) (1 mL)中振荡3小时水合。将囊泡悬液超声处理1分钟,随后在50℃相继通过1.0、0.4、0.2和0.1 μm聚碳酸酯膜(Whatman,Nuclepore® Track-Etch Membrane)挤出,以获得SUV。通过在100℃在密封管中加热SUV(50 μL)和含水TFA (2 M,200 μL)的混合物4小时测定GalNAc含量。随后将溶液在真空中浓缩,并且通过高pH阴离子交换层析,使用脉冲安培检测器(HPAEC-PAD;Methrome)和CarboPac柱PA-10和PA-20 (Dionex)进行分析。 Liposome preparation: egg phosphatidylcholine (PC), phosphatidylglycerol (PG), cholesterol (Chol) and compound 21 or 22 (15 mmol, molar ratio 65:25:50:10) or PC/PG/ Chol/22/23 or 24 (15 mmol, molar ratio 60:25:50:10:5) or PC/PG/Chol/25/26 (15 mmol, molar ratio 65:25:50:5:5) dissolved in a mixture of trifluoroethanol and MeOH (1:1, v/v, 5 mL). The solvent was removed in vacuo to give a thin lipid film by shaking in HEPES buffer (10 mM, pH 6.5) (1 mL) containing NaCl (145 mM) for 3 h at 41 °C under an argon atmosphere. Hydrate. The vesicle suspension was sonicated for 1 min and subsequently extruded sequentially through 1.0, 0.4, 0.2 and 0.1 μm polycarbonate membranes (Whatman, Nuclepore® Track-Etch Membrane) at 50°C to obtain SUVs. GalNAc content was determined by heating a mixture of SUV (50 μL) and aqueous TFA (2 M, 200 μL) in a sealed tube at 100 °C for 4 hours. The solution was then concentrated in vacuo and analyzed by high pH anion exchange chromatography using a pulsed amperometric detector (HPAEC-PAD; Methrome) and CarboPac columns PA-10 and PA-20 (Dionex).
剂量和免疫接种时间表:将五只小鼠的组(雌性BALB/c,年龄8-10周;JacksonLaboratories)以每周一次间隔免疫接种四次。每次加强在脂质体制剂中包含3 µg糖。血清样品在免疫接种(预先放血)前和最后一次免疫接种后的一周获得。最后一次放血通过心脏放血完成。 Dosage and Immunization Schedule: Groups of five mice (female BALB/c, age 8-10 weeks; Jackson Laboratories) were immunized four times at weekly intervals. Each booster contains 3 µg of sugar in the liposomal formulation. Serum samples were obtained before immunization (pre-bleeding) and one week after the last immunization. The final phlebotomy is done by exsanguination from the heart.
血清学测定:如先前描述的(Buskas,Chem. Eur. J. 2004,10,3517-3524),通过酶联免疫吸附测定(ELISA)测定抗MUC-1 IgG、IgG1、IgG2a、IgG2b、IgG3和IgM抗体滴度。简言之,将ELISA板(Thermo Electron Corp.)用通过马来酰亚胺接头缀合至BSA的MUC-1糖肽缀合物(BSA-MI-MUC-1)包被。允许血清的系列稀释液结合固定的MUC-1。通过加入磷酸酯缀合的抗小鼠IgG (Jackson ImmunoResearch Laboratories Inc.)、IgG1 (Zymed)、IgG2a(Zymed)、IgG2b (Zymed)、IgG3 (BD Biosciences Pharmingen)或IgM (JacksonImmunoResearch Laboratories Inc.)抗体完成检测。在加入对硝基苯基磷酸酯(Sigma)后,使用微板读数器(BMG Labtech)在405 nm处测量吸光度,其中波长校正设在490 nm处。如下测定针对T (脊髓灰质炎)表位的抗体滴度。使Reacti-bind NeutrAvidin包被和预封闭的板(Pierce)与生物素标记的T表位(10 µg/mL)一起温育2小时。接下来,允许血清的系列稀释液结合固定的T表位。如上所述完成检测。抗体滴度定义为获得相对于正常对照小鼠血清光密度为0.1或更大的最高稀释度。 Serological assays: Anti-MUC-1 IgG, IgG1, IgG2a, IgG2b, IgG3 and IgM antibody titer. Briefly, ELISA plates (Thermo Electron Corp.) were coated with MUC-1 glycopeptide conjugate (BSA-MI-MUC-1 ) conjugated to BSA via a maleimide linker. Serial dilutions of sera were allowed to bind immobilized MUC-1. By adding phosphate-conjugated anti-mouse IgG (Jackson ImmunoResearch Laboratories Inc.), IgG1 (Zymed), IgG2a (Zymed), IgG2b (Zymed), IgG3 (BD Biosciences Pharmingen) or IgM (Jackson ImmunoResearch Laboratories Inc.) antibodies detection. After addition of p-nitrophenyl phosphate (Sigma), absorbance was measured at 405 nm using a microplate reader (BMG Labtech) with wavelength correction set at 490 nm. Antibody titers against T (polio) epitopes were determined as follows. Reacti-bind NeutrAvidin coated and pre-blocked plates (Pierce) were incubated with biotin-labeled T epitope (10 µg/mL) for 2 hours. Next, serial dilutions of sera are allowed to bind the immobilized T epitopes. Assays were done as described above. Antibody titers were defined as the highest dilution that achieved an optical density of 0.1 or greater relative to normal control mouse serum.
细胞培养:衍生自RAW 264.7小鼠单核细胞/巨噬细胞细胞系的RAW 264.7 γNO(-)细胞得自ATCC。将细胞维持在具有L-谷氨酰胺(2 mM)的RPMI 1640培养基中,所述RPMI1640培养基调整为含有碳酸氢钠(1.5 g L-1)、葡萄糖(4.5 g L-1)、HEPES (10 mM)和丙酮酸钠(1.0 mM),且补充有青霉素(100 u mL-1)/ 链霉素(100 µg mL-1;Mediatech)和FBS(10%;Hyclone)。得自ATCC的人乳腺腺癌细胞(MCF7)(Horwitz,Steroids 1975,26,785-95)在具有L-谷氨酰胺(2 mM)和Earle’s BSS的伊格尔最低基础培养基(Eagle’s minimumessential medium)中培养,所述伊格尔最低基础培养基经修改为含有碳酸氢钠(1.5 g L-1)、非必需氨基酸(0.1 mM)和丙酮酸钠(1 mM),且补充有牛胰岛素(0.01 mg mL-1;Sigma)和FBS(10%)。人皮肤恶性黑素瘤细胞(SK-MEL-28)得自ATCC,且在具有L-谷氨酰胺(2 mM)和Earle’s BSS的伊格尔最低基础培养基中生长,所述伊格尔最低基础培养基调整为含有碳酸氢钠(1.5 g L-1)、非必需氨基酸(0.1 mM)和丙酮酸钠(1 mM),且补充有FBS (10%)。所有细胞在37℃下维持在潮湿5% CO2大气中。 Cell culture: RAW 264.7 γNO(-) cells derived from the RAW 264.7 mouse monocyte/macrophage cell line were obtained from ATCC. Cells were maintained in RPMI 1640 medium with L-glutamine (2 mM) adjusted to contain sodium bicarbonate (1.5 g L -1 ), glucose (4.5 g L -1 ), HEPES (10 mM) and sodium pyruvate (1.0 mM), supplemented with penicillin (100 u mL -1 )/streptomycin (100 µg mL -1 ; Mediatech) and FBS (10%; Hyclone). Human breast adenocarcinoma cells (MCF7) from ATCC (Horwitz, Steroids 1975, 26, 785-95) were cultured in Eagle's minimal essential medium with L-glutamine (2 mM) and Earle's BSS ) in Eagle's minimal basal medium modified to contain sodium bicarbonate (1.5 g L -1 ), non-essential amino acids (0.1 mM) and sodium pyruvate (1 mM), supplemented with bovine insulin ( 0.01 mg mL −1 ; Sigma) and FBS (10%). Human cutaneous malignant melanoma cells (SK-MEL-28) were obtained from ATCC and grown in Eagle's minimal basal medium with L-glutamine (2 mM) and Earle's BSS, which Basal medium was adjusted to contain sodium bicarbonate (1.5 g L −1 ), non-essential amino acids (0.1 mM) and sodium pyruvate (1 mM), supplemented with FBS (10%). All cells were maintained at 37°C in a humidified 5% CO2 atmosphere.
TNF-α和IFN-β测定。在暴露测定当天,将RAW 264.7 γNO(-)细胞以2 x 105个细胞/孔铺板于96孔板(Nunc)中,在多粘菌素B的存在或不存在下,与不同刺激物一起温育5.5小时。将培养上清液收集并冷冻(-80℃)贮存,直至测定细胞因子产生。使用来自R&DSystems的TNF-α DuoSet ELISA Development试剂盒测定TNF-α浓度。如下测定IFN-β的浓度。将ELISA MaxiSorp板用针对小鼠IFN-β的兔多克隆抗体(PBL BiomedicalLaboratories)包被。允许在标准品和样品中的IFN-β结合固定化抗体。随后加入大鼠抗小鼠IFN-β抗体(USBiological),产生抗体-抗原-抗体“夹心”。接下来,加入辣根过氧化物酶(HRP)缀合的山羊抗大鼠IgG (H+L)抗体(Pierce)和HRP的生色底物3,3’,5,5’-四甲基联苯胺(TMB;Pierce)。在反应停止后,在450 nm处测量吸光度,其中波长校正设至540 nm。使用Prism(GraphPad Software,Inc.)中的非线性最小二乘法曲线拟合分析浓度-应答数据。用下述四参数逻辑斯谛方程拟合这些数据:Y = Emax /(1 +(EC50/X)Hill斜率),其中Y是细胞因子应答,X是刺激物的浓度,Emax是最大应答,并且EC50是产生50%刺激的刺激物浓度。Hill斜率设为1,以能够比较不同诱导物的EC50值。所有细胞因子值作为一式三份测量的平均值± SD呈现,其中每次试验重复三次。 TNF-α and IFN-β assays. On the day of the exposure assay, RAW 264.7 γNO(-) cells were plated at 2 x 105 cells/well in 96-well plates (Nunc) in the presence or absence of polymyxin B, together with different stimuli Incubate for 5.5 hours. Culture supernatants were harvested and stored frozen (-80°C) until assayed for cytokine production. TNF-α concentrations were determined using the TNF-α DuoSet ELISA Development kit from R&D Systems. The concentration of IFN-[beta] was determined as follows. ELISA MaxiSorp plates were coated with rabbit polyclonal antibody against mouse IFN-β (PBL Biomedical Laboratories). Immobilized antibodies allowed for binding of IFN-β in standards and samples. Rat anti-mouse IFN-β antibody (US Biological) was then added to create an antibody-antigen-antibody "sandwich". Next, horseradish peroxidase (HRP)-conjugated goat anti-rat IgG (H+L) antibody (Pierce) and the chromogenic substrate for HRP, 3,3',5,5'-tetramethyl Benzidine (TMB; Pierce). After the reaction was stopped, absorbance was measured at 450 nm with wavelength correction set to 540 nm. Concentration-response data were analyzed using nonlinear least squares curve fitting in Prism (GraphPad Software, Inc.). These data were fitted with the following four-parameter logistic equation: Y= Emax /(1+( EC50 /X) Hill slope ), where Y is the cytokine response, X is the concentration of the stimulus, and Emax is the maximum response, and the EC50 is the concentration of the stimulus that produces 50% stimulation. Hill slope was set at 1 to enable comparison of EC50 values of different inducers. All cytokine values are presented as mean ± SD of triplicate measurements, where each experiment was repeated three times.
针对LPS污染评价材料:为了确保细胞因子产生中的任何增加不由含有多种刺激物的溶液的LPS污染引起,亲合结合LPS的脂质A区域,从而阻止LPS诱导的细胞因子产生(Tsubery,Biochemistry 2000,39,11837-44)。在与大肠杆菌O55:B5 LPS一起温育5.5小时前与多粘菌素B (30 µg mL-1;Bedford Laboratories)一起预温育30分钟的细胞上清液中的TNF-α和IFN-β浓度显示完全抑制,而与多粘菌素B一起预温育对与合成化合物21和23一起温育的细胞的TNF-α合成没有作用。因此,后一种制剂的LPS污染是无关紧要的。 Materials were evaluated for LPS contamination: To ensure that any increase in cytokine production was not caused by LPS contamination of solutions containing various stimuli, the lipid A region of LPS was affinity bound, thereby preventing LPS-induced cytokine production (Tsubery, Biochemistry 2000, 39, 11837-44). TNF-α and IFN-β in supernatants of cells preincubated with polymyxin B (30 µg mL -1 ; Bedford Laboratories) for 30 minutes prior to incubation with E. coli O55:B5 LPS for 5.5 hours concentrations showed complete inhibition, whereas pre-incubation with polymyxin B had no effect on TNF-α synthesis in cells incubated with synthetic compounds 21 and 23. Therefore, LPS contamination of the latter formulation was insignificant.
通过荧光测量的细胞识别分析:使免疫接种前和后的血清的系列稀释液与MCF7和SK-MEL-28单细胞悬液一起在冰上温育30分钟。接下来,将细胞洗涤并与缀合至异硫氰酸荧光素(FITC;Sigma)的山羊抗小鼠IgG γ-链特异性抗体一起在冰上温育20分钟。在三次洗涤和细胞裂解后,使用微板读数器(BMG Labtech),就荧光强度(485 ex / 520 em)分析细胞裂解产物。数据点一式三份地收集并代表三次独立实验。 Cell recognition assay by fluorescence measurement: Serial dilutions of pre- and post-immunization sera were incubated with MCF7 and SK-MEL-28 single cell suspensions for 30 minutes on ice. Next, cells were washed and incubated for 20 minutes on ice with goat anti-mouse IgG γ-chain specific antibody conjugated to fluorescein isothiocyanate (FITC; Sigma). After three washes and cell lysis, cell lysates were analyzed for fluorescence intensity (485 ex/520 em) using a microplate reader (BMG Labtech). Data points were collected in triplicate and represent three independent experiments.
实施例7Example 7
化合物的合成compound synthesis
一般方法:Fmoc-L-氨基酸衍生物和树脂购自NovaBioChem和Applied Biosystems;肽合成级别N,N-二甲基甲酰胺(DMF)购自EM Science;N-甲基吡咯烷酮(NMP)购自AppliedBiosystems。卵磷脂酰胆碱(PC)、磷脂酰甘油(PG)、胆固醇(Chol)和单磷酰脂质A (MPL-A)得自Avanti Polar Lipids。EZ-Link® NHS-生物素试剂(琥珀酰亚胺基-6-(生物素酰胺)己酸酯)得自Pierce。所有其他化学试剂购自Aldrich、Acros、Alfa Aesar和FisherScientific,且无需进一步纯化而使用。采用的所有溶剂都是试剂级的。使用以1 mL/分钟流速的Agilent Zorbax EclipseTM C8分析柱(5 μm,4.6 x 150 mm)、以3 mL/分钟流速的Agilent Zorbax EclipseTM C8半制备型柱(5 μm,10 x 250 mm)、或以2mL/分钟流速的Phenomenex JupiterTM C4半制备型柱(5 μm,10 x 250 mm),在配备自动注射器、流分收集器和UV检测器(在214 nm处检测)的Agilent 1100系列系统上执行反相高效液相层析(RP-HPLC)。所有运行都使用经过40分钟的0-100%溶剂B的线性梯度(溶剂A = 5%乙腈,0.1%三氟乙酸(TFA)的水溶液,溶剂B = 5%水,0.1%TFA的乙腈溶液)执行。在ABI 4700蛋白质组学分析仪上记录基质辅助激光解吸电离飞行时间质谱法(MALDI-TOF)质谱。 General methods: Fmoc-L-amino acid derivatives and resins were purchased from NovaBioChem and Applied Biosystems; peptide synthesis grade N,N -dimethylformamide (DMF) was purchased from EM Science; N -methylpyrrolidone (NMP) was purchased from Applied Biosystems . Egg phosphatidylcholine (PC), phosphatidylglycerol (PG), cholesterol (Chol) and monophosphoryl lipid A (MPL-A) were obtained from Avanti Polar Lipids. EZ-Link® NHS-Biotin reagent (succinimidyl-6-(biotinamide)hexanoate) was obtained from Pierce. All other chemical reagents were purchased from Aldrich, Acros, Alfa Aesar and Fisher Scientific and used without further purification. All solvents employed were of reagent grade. Agilent Zorbax Eclipse ™ C8 analytical column (5 μm, 4.6 x 150 mm) at 1 mL/min flow rate, Agilent Zorbax Eclipse ™ C8 semi-preparative column (5 μm, 10 x 250 mm) at 3 mL/min flow rate , or a Phenomenex Jupiter TM C4 semi-preparative column (5 μm, 10 x 250 mm) at a flow rate of 2 mL/min on an Agilent 1100 series equipped with an autoinjector, fraction collector and UV detector (detection at 214 nm) Reverse-phase high-performance liquid chromatography (RP-HPLC) was performed on the system. All runs used a linear gradient of 0-100% solvent B over 40 minutes (solvent A = 5% acetonitrile, 0.1% trifluoroacetic acid (TFA) in water, solvent B = 5% water, 0.1% TFA in acetonitrile) implement. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) mass spectra were recorded on an ABI 4700 proteomics analyzer.
糖脂肽22的合成:如在实验中的肽合成下所述的,合成22在Rink酰胺树脂(28,0.1mmol)上执行。前四个氨基酸Arg-Pro-Ala-Pro使用标准方案在肽合成仪上偶联,以获得29。在合成完成后,执行1S (0.2 mmol,134 mg)的手工偶联。将N α-Fmoc-Thr-(AcO3-α-D-GalNAc) 1S (Cato,J. Carbohydr. Chem. 2005,24,503-516)溶解于NMP (5 mL)中,将O-(7-氮杂苯并三唑-1-基)-N,N,N’,N'-四甲基脲六氟磷酸盐(HATU;0.2 mmol,76 mg)、1-羟基-7-氮杂苯并三唑(HOAt;0.2 mmol,27 mg)和二异丙基乙胺(DIPEA;0.4 mmol,70 μL)加入溶液中,然后将所得到的混合物加入树脂中。通过标准Kaiser测试监控偶联反应。在12小时后,将树脂用NMP (6 mL)和二氯甲烷(DCM;6 mL)洗涤,然后再经历相同偶联条件,以确保完全偶联。随后在肽合成仪上延长糖肽30。在合成完成后,将树脂用NMP (6 mL)、DCM (6mL)和甲醇(MeOH;6 mL)充分洗涤,并真空干燥。随后将树脂在DCM (5 mL)中溶胀1小时,并且手工执行偶联的剩余部分。接下来,将溶解于NMP(5 mL)、苯并三唑-1-基-氧基-三吡咯烷子基-磷六氟磷酸盐(PyBOP;0.3 mmol,156 mg)、HOBt(0.3 mmol,40 mg)和DIPEA(0.4mmol,67 μL)中的N α -Fmoc-亲脂氨基酸(N α -Fmoc-D,L-十四烷酸) 2S (Gibbons,LiebigsAnn. Chem. 1990,1175-1183;Koppitz,Helv. Chim. Acta 1997,80,1280-1300)(0.3mmol,139 mg)预混合2分钟,随后加入树脂中。通过Kaiser测试监控偶联反应,然后在静置8小时后完成。使用哌啶(20%)的DMF(6 mL)溶液裂解N α -Fmoc基团。将溶解于NMP(5 mL)、PyBOP(0.3 mmol,156 mg)、HOBt(0.3 mmol,40 mg)和DIPEA(0.4 mmol,67 μL)中的N α -Fmoc-Gly-OH(0.3 mmol,90 mg)预混合2分钟,随后加入树脂中。通过Kaiser测试监控偶联反应,然后在静置4小时后完成。使用哌啶(20%)的DMF(6 mL)溶液裂解N α -Fmoc基团。使用PyBOP(0.3 mmol,156 mg)、HOBt(0.3 mmol,40 mg)和DIPEA(0.4 mmol,67 μL)的NMP(5 mL)溶液,如上所述执行2S (0.3 mmol,139 mg)的再一个偶联循环。最后,使用哌啶(20%)的DMF(6 mL)溶液裂解N α -Fmoc基团,并且通过用Ac2O(10%)和DIPEA(5%)的NMP(5mL)溶液处理树脂10分钟,使所得到的游离氨基乙酰化。将树脂用NMP(5 mL x 2)、DCM(5 mL x 2)和MeOH(5mL x 2)充分洗涤,并且在真空中干燥。将树脂在DCM(5 mL)中溶胀1小时,用肼(60%)的MeOH4,5(10 mL)溶液处理2小时,用NMP(5 mL x 2)、DCM(5 mL x 2)和MeOH(5 mL x 2)充分洗涤,然后在真空中干燥。将树脂在DCM(5 mL)中溶胀1小时,随后用试剂B(TFA(88%)、水(5%)、苯酚(5%)和TIS(2%),10 mL)处理2小时。将树脂过滤,用纯净TFA(2 mL)洗涤,随后将滤液在真空中浓缩至其原始体积的约1/3。使用二乙醚(0℃,40 mL)沉淀糖脂肽,通过以3,000 rpm离心15分钟回收。使用经过40分钟的0-95%溶剂B的A溶液的线性梯度,在半制备型C-4柱上通过RP-HPLC纯化粗制糖脂肽,并且将合适流分冻干以提供22 (图10)(57 mg,16%). C165H267N37O44,MALDI-ToF MS:观察到的,[M+] 3473.4900Da;计算的,[M+]3473.1070Da。 Synthesis of glycolipopeptide 22: Synthesis 22 was performed on Rink amide resin (28, 0.1 mmol) as described under Peptide Synthesis in Experiments. The first four amino acids Arg-Pro-Ala-Pro were coupled on a peptide synthesizer using standard protocols to obtain 29. After the synthesis was complete, manual coupling of 1S (0.2 mmol, 134 mg) was performed. N α -Fmoc-Thr-(AcO 3 -α-D-GalNAc) 1S (Cato, J. Carbohydr. Chem. 2005, 24, 503-516) was dissolved in NMP (5 mL), O- (7 -Azabenzotriazol-1-yl)- N , N , N',N' -tetramethylurea Hexafluorophosphate (HATU; 0.2 mmol, 76 mg), 1-hydroxy-7-azabenzotriazole (HOAt; 0.2 mmol, 27 mg) and diisopropylethylamine (DIPEA; 0.4 mmol, 70 μL ) was added to the solution, and the resulting mixture was then added to the resin. Coupling reactions were monitored by standard Kaiser tests. After 12 hours, the resin was washed with NMP (6 mL) and dichloromethane (DCM; 6 mL) before being subjected to the same coupling conditions again to ensure complete coupling. Glycopeptide 30 was subsequently elongated on a peptide synthesizer. After the synthesis was complete, the resin was washed well with NMP (6 mL), DCM (6 mL) and methanol (MeOH; 6 mL), and dried in vacuo. The resin was then swelled in DCM (5 mL) for 1 hour and the remainder of the coupling was performed manually. Next, dissolve in NMP (5 mL), benzotriazol-1-yl-oxy-tripyrrolidino-phosphorus N α -Fmoc-lipophilic amino acid ( N α -Fmoc - D,L -tetradecanoic acid) 2S (Gibbons, LiebigsAnn. Chem. 1990, 1175-1183; Koppitz, Helv. Chim. Acta 1997, 80, 1280-1300) (0.3mmol, 139 mg) pre-mixed for 2 minutes, then added to the resin middle. The coupling reaction was monitored by Kaiser test and then completed after standing for 8 hours. The N α -Fmoc group was cleaved using piperidine (20%) in DMF (6 mL). N α -Fmoc - Gly-OH (0.3 mmol, 90 mg) was pre-mixed for 2 minutes and then added to the resin. The coupling reaction was monitored by Kaiser test and then completed after 4 hours of standing. The N α -Fmoc group was cleaved using piperidine (20%) in DMF (6 mL). Using PyBOP (0.3 mmol, 156 mg), HOBt (0.3 mmol, 40 mg) and DIPEA (0.4 mmol, 67 μL) in NMP (5 mL), another 2S (0.3 mmol, 139 mg) was performed as described above. Coupling cycle. Finally, the N α -Fmoc group was cleaved using piperidine (20%) in DMF (6 mL) and the resin was treated with Ac 2 O (10%) and DIPEA (5%) in NMP (5 mL) for 10 min , to acetylate the resulting free amino group. The resin was washed well with NMP (5 mL x 2), DCM (5 mL x 2) and MeOH (5 mL x 2), and dried in vacuo. The resin was swollen in DCM (5 mL) for 1 h, treated with hydrazine (60%) in MeOH 4,5 (10 mL) for 2 h, washed with NMP (5 mL x 2), DCM (5 mL x 2) and MeOH (5 mL x 2) was washed well, then dried in vacuo. The resin was swelled in DCM (5 mL) for 1 hour, then treated with reagent B (TFA (88%), water (5%), phenol (5%) and TIS (2%), 10 mL) for 2 hours. The resin was filtered, washed with neat TFA (2 mL), and the filtrate was concentrated in vacuo to about 1/3 of its original volume. Glycolipid peptides were precipitated using diethyl ether (0°C, 40 mL) and recovered by centrifugation at 3,000 rpm for 15 minutes. The crude glycolipopeptide was purified by RP-HPLC on a semi-preparative C-4 column using a linear gradient of 0-95% solvent B in A over 40 minutes, and the appropriate fractions were lyophilized to provide 22 (Fig. 10) (57 mg, 16%). C 165 H 267 N 37 O 44 , MALDI-ToF MS: Observed, [M+] 3473.4900 Da; Calculated, [M+] 3473.1070 Da.
方案15。试剂和条件:a)使用Fmoc化学的SPPS,在DIPEA的NMP溶液的存在下与HBTU/HOBt偶联;b) 1S、HATU/HOAt、DIPEA、NMP,过夜;c) i. 在DIPEA的NMP溶液的存在下,2S与PyBOP/HOBt的手工偶联;ii. 20%哌啶的DMF溶液;iii. 在DIPEA的NMP溶液的存在下,1S与PyBOP/HOBt的手工偶联;iv. 20%哌啶的DMF溶液;v. 在DIPEA的NMP溶液的存在下,2S与PyBOP/HOBt的手工偶联;vi. 20%哌啶的DMF溶液;vii. 10%Ac2O,5%DIPEA的NMP溶液达10分钟;(d) 60%肼的MeOH溶液,2小时;e)试剂B,TFA(88%)、苯酚(5%)、水(5%)、TIS(2%),2小时。Program 15. Reagents and conditions: a) SPPS using Fmoc chemistry, coupled to HBTU/HOBt in the presence of DIPEA in NMP; b) 1S, HATU/HOAt, DIPEA, NMP, overnight; c) i. in DIPEA in NMP ii. 20% piperidine in DMF; iii. manual coupling of 1S to PyBOP/HOBt in the presence of DIPEA in NMP; iv. 20% piperidine Pyridine in DMF; v. Manual coupling of 2S to PyBOP/HOBt in the presence of DIPEA in NMP; vi. 20% piperidine in DMF; vii. 10% Ac2O , 5% DIPEA in NMP Up to 10 minutes; (d) 60% hydrazine in MeOH, 2 hours; e) Reagent B, TFA (88%), phenol (5%), water (5%), TIS (2%), 2 hours.
脂肽23的合成:如在实验中的肽合成下所述的,23的合成在Rink酰胺树脂(28,0.1mmol)上执行。在前五个氨基酸的偶联后,手工偶联分子的脂质部分。将N α -Fmoc-S-(2,3-双(棕榈酰氧基)-(2R-丙基)-(R)-半胱氨酸,3S (Metzger,Int. J. Pept. Protein Res.1991,38,545-554;Roth,Bioconj. Chem. 2004,15,541-553)(0.3 mmol,267 mg)溶解于DMF(5 mL)中,将PyBOP(0.3 mmol,156 mg)、HOBt(0.3 mmol,40 mg)和DIPEA(0.4 mmol,67μL)加入溶液中。在2分钟后,将反应混合物加入树脂中。通过Kaiser测试监控偶联反应,然后在静置12小时后完成。接下来,使用哌啶(20%)的DMF(6 mL)溶液裂解N α -Fmoc基团,以获得36。使用PyBOP(0.3 mmol,156 mg)、HOBt(0.3 mmol,40 mg)和DIPEA(0.4 mmol,67 μL)的DMF溶液,如上所述使棕榈酸(0.3 mmol,77 mg)与36的游离胺偶联。将树脂用DMF(5 mL x2)、DCM(5 mL x 2)和MeOH(5 mL x 2)充分洗涤,然后在真空中干燥。将树脂在DCM(5 mL)中溶胀1小时,随后用TFA(95%)、水(2.5%)和TIS(2.5%)(10 mL)在室温处理2小时。将树脂过滤,用纯净TFA(2 mL)洗涤。随后将滤液在真空中浓缩至其原始体积的约1/3。使用二乙醚(0℃,30 mL)沉淀脂肽,通过以3000 rpm离心15分钟回收。使用经过40分钟时期的0-95%溶剂B的溶剂A溶液的线性梯度,在半制备型C-4柱上通过RP-HPLC纯化粗制脂肽,并且将合适流分冻干以提供23 (图11)(40 mg,26%)。C81H156N11O12S,MALDI-ToF MS:观察到的[M+Na],1531.2240Da;计算的[M+Na],1531.1734Da。 Synthesis of lipopeptide 23: Synthesis of 23 was performed on Rink amide resin (28, 0.1 mmol) as described under Peptide Synthesis in Experiments. After coupling of the first five amino acids, the lipid portion of the molecule was manually coupled. N α -Fmoc- S -(2,3-bis(palmitoyloxy)-(2 R -propyl)-( R )-cysteine, 3S (Metzger, Int. J. Pept. Protein Res .1991,38,545-554; Roth, Bioconj.Chem.2004,15,541-553) (0.3 mmol, 267 mg) was dissolved in DMF (5 mL), PyBOP (0.3 mmol, 156 mg), HOBt (0.3 mmol, 40 mg) and DIPEA (0.4 mmol, 67 μL) were added to the solution. After 2 minutes, the reaction mixture was added to the resin. The coupling reaction was monitored by Kaiser test and then completed after standing for 12 hours. Next , using piperidine (20%) in DMF (6 mL) to cleave the N α -Fmoc group to obtain 36. Using PyBOP (0.3 mmol, 156 mg), HOBt (0.3 mmol, 40 mg) and DIPEA (0.4 mmol , 67 μL) in DMF, palmitic acid (0.3 mmol, 77 mg) was coupled with the free amine of 36 as described above. The resin was washed with DMF (5 mL x 2), DCM (5 mL x 2) and MeOH (5 mL x 2) was washed thoroughly, and then dried in vacuo. The resin was swelled in DCM (5 mL) for 1 hour, followed by TFA (95%), water (2.5%) and TIS (2.5%) (10 mL) in Treated at room temperature for 2 hours. The resin was filtered and washed with pure TFA (2 mL). The filtrate was then concentrated in vacuo to about 1/3 of its original volume. The lipopeptide was precipitated using diethyl ether (0°C, 30 mL) and passed Recovered by centrifugation at 3000 rpm for 15 minutes. Crude lipopeptides were purified by RP-HPLC on a semi-preparative C-4 column using a linear gradient of 0-95% solvent B in solvent A over a 40 minute period and appropriate Fractions were lyophilized to provide 23 ( FIG. 11 ) (40 mg, 26%). C 81 H 156 N 11 O 12 S, MALDI-ToF MS: Observed [M+Na], 1531.2240 Da; Calculated [M + Na], 1531.1734 Da.
方案16。试剂和条件:a)使用Fmoc化学的SPPS,在DIPEA的NMP溶液的存在下与HBTU/HOBt偶联;b)在DIPEA的DMF溶液的存在下,通过PyBOP/HOBt激活的3S手工偶联;c)哌啶(20%)的DMF溶液;d)在DIPEA的DMF溶液的存在下,通过PyBOP/HOBt激活的棕榈酸偶联;e)TFA(95%)、水(2.5%)、TIS(2.5%),2小时。Program 16. Reagents and conditions: a) SPPS using Fmoc chemistry coupled to HBTU/HOBt in the presence of DIPEA in NMP; b) manual coupling by 3S activated by PyBOP/HOBt in the presence of DIPEA in DMF; c ) piperidine (20%) in DMF; d) palmitic acid coupling activated by PyBOP/HOBt in the presence of DIPEA in DMF; e) TFA (95%), water (2.5%), TIS (2.5 %),2 hours.
糖脂肽 25的合成:如在实验中的肽合成下所述的,合成25在Rink酰胺树脂(28,0.1 mmol)上执行。前四个氨基酸Arg-Pro-Ala-Pro使用标准方案在肽合成仪上偶联,以获得29。在合成完成后,使用1S (0.2 mmol,134 mg)执行手工偶联。将1S溶解于NMP(5 mL)中,加入HATU(0.2 mmol,76 mg)、HOAt(0.2 mmol,27 mg)和DIPEA(0.4 mmol,70 μL),然后将所得到的混合物加入树脂中。通过标准Kaiser测试监控偶联反应。在12小时后,将树脂用NMP(6 mL)和DCM(6 mL)洗涤,然后再经历相同偶联条件,以确保完全偶联。随后在肽合成仪上延长糖肽30。在合成完成后,将树脂用NMP(6 mL)、DCM(6 mL)和MeOH(6 mL)充分洗涤,然后在真空中干燥。随后将树脂在DCM(5 mL)中溶胀1小时,并且手工完成肽序列的剩余部分。将2S (0.3 mmol,139 mg)溶解于NMP(5 mL),将PyBOP(0.3 mmol,156 mg)、HOBt(0.3 mmol,40mg)和DIPEA(0.4 mmol,67 μL)加入溶液中。在2分钟后,将混合物加入树脂中。通过标准Kaiser测试监控偶联反应,并且在静置8小时后完成。接下来,使用哌啶(20%)的DMF(6 mL)溶液裂解N α -Fmoc基团。将N α -Fmoc-L-甘氨酸(0.3 mmol,90 mg)溶解于NMP(5 mL),并且在将反应混合物加入树脂中之前,与PyBOP(0.3 mmol,156 mg)、HOBt(0.3 mmol,40 mg)和DIPEA(0.4 mmol,67 μL)预混合2分钟。通过Kaiser测试监控偶联反应,并且在静置4小时后完成。使用哌啶(20%)的DMF(6 mL)溶液裂解N α -Fmoc基团。使用PyBOP(0.3 mmol,156 mg)、HOBt(0.3 mmol,40 mg)和DIPEA(0.4 mmol,67 μL)的NMP(5 mL)溶液,如上所述执行2S (0.3mmol,139 mg)的再一个偶联循环。最后,使用哌啶(20%)的DMF(6 mL)溶液裂解N α -Fmoc基团,并且使用Ac2O(10%)和DIPEA(5%)的NMP(5 mL)溶液,使所得到的游离氨基乙酰化10分钟。将树脂用NMP(5 mL x 2)、DCM(5 mL x 2)和MeOH(5 mL x 2)充分洗涤,并且在真空中干燥。将树脂在DCM(5 mL)中溶胀1小时,用肼(60%)的MeOH(10 mL)溶液处理2小时,用NMP(5mL x 2)、DCM(5 mL x 2)和MeOH(5 mL x 2)充分洗涤,并且在真空中干燥。将树脂在DCM(5mL)中溶胀1小时,这之后将它用试剂B(TFA(88%)、水(5%)、苯酚(5%)和TIS(2%),10 mL)处理2小时。将树脂过滤,用纯净TFA(2 mL)洗涤,随后将滤液在真空中浓缩至其原始体积的约1/3。使用二乙醚(0℃;40 mL)沉淀糖脂肽,并且通过以3,000 rpm离心15分钟回收。使用经过40分钟的0-95%溶剂B的A溶液的线性梯度,在半制备型C-4柱上通过RP-HPLC纯化粗制糖脂肽,将合适流分冻干以提供5 (图12)(35 mg,19%)。C84H145N19O25,MALDI-ToF MS:观察到的,[M+] 1821.1991Da;计算的,[M+] 1821.1624Da。 Synthesis of glycolipopeptide 25: Synthesis of 25 was performed on Rink amide resin (28, 0.1 mmol) as described under Peptide Synthesis in Experiments. The first four amino acids Arg-Pro-Ala-Pro were coupled on a peptide synthesizer using standard protocols to obtain 29. After the synthesis was complete, manual coupling was performed using 1S (0.2 mmol, 134 mg). 1S was dissolved in NMP (5 mL), HATU (0.2 mmol, 76 mg), HOAt (0.2 mmol, 27 mg) and DIPEA (0.4 mmol, 70 μL) were added, and the resulting mixture was added to the resin. Coupling reactions were monitored by standard Kaiser tests. After 12 hours, the resin was washed with NMP (6 mL) and DCM (6 mL) before being subjected to the same coupling conditions again to ensure complete coupling. Glycopeptide 30 was subsequently elongated on a peptide synthesizer. After the synthesis was complete, the resin was washed well with NMP (6 mL), DCM (6 mL) and MeOH (6 mL), then dried in vacuo. The resin was then swollen in DCM (5 mL) for 1 hour, and the remainder of the peptide sequence was completed by hand. 2S (0.3 mmol, 139 mg) was dissolved in NMP (5 mL), and PyBOP (0.3 mmol, 156 mg), HOBt (0.3 mmol, 40 mg) and DIPEA (0.4 mmol, 67 μL) were added to the solution. After 2 minutes, the mixture was added to the resin. The coupling reaction was monitored by standard Kaiser test and was complete after 8 hours of standing. Next , the N α -Fmoc group was cleaved using piperidine (20%) in DMF (6 mL). N α -Fmoc - L-glycine (0.3 mmol, 90 mg) was dissolved in NMP (5 mL), and before adding the reaction mixture to the resin, mixed with PyBOP (0.3 mmol, 156 mg), HOBt (0.3 mmol, 40 mg) and DIPEA (0.4 mmol, 67 μL) were premixed for 2 minutes. The coupling reaction was monitored by Kaiser test and was complete after 4 hours of standing. The N α -Fmoc group was cleaved using piperidine (20%) in DMF (6 mL). Using PyBOP (0.3 mmol, 156 mg), HOBt (0.3 mmol, 40 mg) and DIPEA (0.4 mmol, 67 μL) in NMP (5 mL), another 2S (0.3 mmol, 139 mg) was performed as described above. Coupling cycle. Finally, the N α -Fmoc group was cleaved using piperidine ( 20 %) in DMF (6 mL) , and the resulting Acetylation of the free amino group for 10 min. The resin was washed well with NMP (5 mL x 2), DCM (5 mL x 2) and MeOH (5 mL x 2), and dried in vacuo. The resin was swelled in DCM (5 mL) for 1 h, treated with hydrazine (60%) in MeOH (10 mL) for 2 h, washed with NMP (5 mL x 2 ), DCM (5 mL x 2 ) and MeOH (5 mL x 2) Wash well and dry in vacuum. The resin was swollen in DCM (5 mL) for 1 hour after which it was treated with reagent B (TFA (88%), water (5%), phenol (5%) and TIS (2%), 10 mL) for 2 hours . The resin was filtered, washed with neat TFA (2 mL), and the filtrate was concentrated in vacuo to about 1/3 of its original volume. Glycolipid peptides were precipitated using diethyl ether (0°C; 40 mL) and recovered by centrifugation at 3,000 rpm for 15 minutes. Crude glycolipopeptides were purified by RP-HPLC on a semi-preparative C-4 column using a linear gradient of 0-95% solvent B in A over 40 minutes, and the appropriate fractions were lyophilized to provide 5 (Figure 12 ) (35 mg, 19%). C 84 H 145 N 19 O 25 , MALDI-ToF MS: Observed, [M+] 1821.1991 Da; Calculated, [M+] 1821.1624 Da.
方案17。试剂和条件:a)使用Fmoc化学的SPPS,在DIPEA的NMP溶液的存在下与HBTU/HOBt偶联;b) 1S、HATU/HOAt、DIPEA、NMP,过夜;c) i. 在DIPEA的NMP溶液的存在下,2S与PyBOP/HOBt的手工偶联;ii. 20%哌啶的DMF溶液;iii. 在DIPEA的NMP溶液的存在下,N α -Fmoc-Gly-OH与PyBOP/HOBt的手工偶联;iv. 20%哌啶的DMF溶液;v. 在DIPEA的NMP溶液的存在下,2S与PyBOP/HOBt的手工偶联;vi. 20%哌啶的DMF溶液;vii. 10% Ac2O,5% DIPEA的NMP溶液达10分钟;(d) 60%肼的MeOH溶液,2小时;e)试剂B,TFA(88%)、苯酚(5%)、水(5%)、TIS(2%),2小时。Program 17. Reagents and conditions: a) SPPS using Fmoc chemistry, coupled to HBTU/HOBt in the presence of DIPEA in NMP; b) 1S, HATU/HOAt, DIPEA, NMP, overnight; c) i. in DIPEA in NMP In the presence of 2S and PyBOP/HOBt; ii. 20% piperidine in DMF; iii. In the presence of DIPEA in NMP, the manual coupling of N α -Fmoc-Gly-OH and PyBOP/HOBt iv. 20% piperidine in DMF; v. manual coupling of 2S to PyBOP/HOBt in the presence of DIPEA in NMP; vi. 20% piperidine in DMF; vii. 10% Ac 2 O , 5% DIPEA in NMP for 10 minutes; (d) 60% hydrazine in MeOH for 2 hours; e) Reagent B, TFA (88%), phenol (5%), water (5%), TIS (2 %),2 hours.
脂肽26的合成:26的合成在Rink酰胺树脂(28,0.1 mmol)上执行。在通过使用标准SPPS装配肽后,手工偶联分子的脂质部分。将3S (0.3 mmol,267 mg)溶解于DMF(5 mL)中,将PyBOP(0.3 mmol,156 mg)、HOBt(0.3 mmol,40 mg)和DIPEA(0.4 mmol,67 μL)加入溶液中。在3S激活2分钟后,将反应混合物加入树脂中。通过Kaiser测试监控偶联反应,并且在静置12小时后完成。使用哌啶(20%)的DMF(6 mL)溶液裂解N-Fmoc基团,以获得43。使用PyBOP(0.3 mmol,156 mg)、HOBt(0.3 mmol,40 mg)和DIPEA(0.4 mmol,67 μL)的DMF溶液,如上所述使棕榈酸(77 mg,0.3 mmol)与43的游离胺偶联。将树脂用DMF(5 mL x 2)、DCM(5 mL x2)和MeOH(5 mL x 2)充分洗涤,然后在真空中干燥。将树脂在DCM(5 mL)中溶胀1小时,用试剂B(TFA(88%)、水(5%)、苯酚(5%)和TIS(2%),10 mL)处理2小时,过滤,并用纯净TFA(2 mL)洗涤。随后将滤液在真空中浓缩至其原始体积的约1/3,使用二乙醚(0℃,30 mL)沉淀脂肽,然后通过以3000 rpm离心15分钟回收。使用经过40分钟的0-95%溶剂B的A溶液的线性梯度,在半制备型C-4柱上通过RP-HPLC纯化粗制脂肽,并且将合适流分冻干以提供26 (图13)(57mg,18%)。C162H278N29O31S,MALDI-ToF MS:观察到的,[M+] 3160.9423Da;计算的,[M+]3160.1814Da。 Synthesis of lipopeptide 26: Synthesis of 26 was performed on Rink amide resin (28, 0.1 mmol). After assembling the peptides by using standard SPPS, the lipid portion of the molecule was manually coupled. 3S (0.3 mmol, 267 mg) was dissolved in DMF (5 mL), and PyBOP (0.3 mmol, 156 mg), HOBt (0.3 mmol, 40 mg) and DIPEA (0.4 mmol, 67 μL) were added to the solution. After 2 min of 3S activation, the reaction mixture was added to the resin. The coupling reaction was monitored by Kaiser test and was complete after 12 hours of standing. The N- Fmoc group was cleaved using piperidine (20%) in DMF (6 mL) to obtain 43 . Palmitic acid (77 mg, 0.3 mmol) was coupled with the free amine of 43 as described above using PyBOP (0.3 mmol, 156 mg), HOBt (0.3 mmol, 40 mg) and DIPEA (0.4 mmol, 67 μL) in DMF. couplet. The resin was washed well with DMF (5 mL x 2), DCM (5 mL x 2) and MeOH (5 mL x 2), then dried in vacuo. The resin was swelled in DCM (5 mL) for 1 h, treated with reagent B (TFA (88%), water (5%), phenol (5%) and TIS (2%), 10 mL) for 2 h, filtered, And washed with pure TFA (2 mL). The filtrate was then concentrated in vacuo to about 1/3 of its original volume, the lipopeptide was precipitated using diethyl ether (0°C, 30 mL), and recovered by centrifugation at 3000 rpm for 15 minutes. The crude lipopeptide was purified by RP-HPLC on a semi-preparative C-4 column using a linear gradient of 0-95% solvent B in A over 40 minutes, and the appropriate fractions were lyophilized to provide 26 (Figure 13 ) (57 mg, 18%). C162H278N29O31S , MALDI- ToF MS: observed, [M+] 3160.9423 Da; calculated, [M+] 3160.1814 Da.
方案18。试剂和条件:a)使用Fmoc化学的SPPS,在DIPEA的NMP溶液的存在下与HBTU/HOBt偶联;b)在DIPEA的DMF溶液的存在下,3S、PyBOP、HOBt的手工偶联;c) 20%哌啶的DMF溶液;d)在DIPEA的DMF溶液的存在下,棕榈酸、PyBOP、HOBt的手工偶联;e)试剂B,TFA(88%)、苯酚(5%)、水(5%)、TIS(2%),2小时。Program 18. Reagents and conditions: a) SPPS using Fmoc chemistry, coupling to HBTU/HOBt in the presence of DIPEA in NMP; b) manual coupling of 3S, PyBOP, HOBt in the presence of DIPEA in DMF; c) 20% piperidine in DMF; d) manual coupling of palmitic acid, PyBOP, HOBt in the presence of DIPEA in DMF; e) reagent B, TFA (88%), phenol (5%), water (5%) %), TIS (2%), 2 hours.
生物素-T表位肽27的合成:如一般方法中所述的,27的合成在Rink酰胺树脂(28,0.1 mmol)上执行。在合成完成后,将树脂用DMF(5 mL x 2)、DCM(5 mL x 2)和MeOH(5 mL x2)充分洗涤,随后在真空中干燥。将树脂在DCM(5 mL)中溶胀1小时。接下来,将EZ-Link®NHS-生物素试剂(琥珀酰亚胺基-6-(生物素酰胺)己酸酯)(0.2 mmol,90 mg)和DIPEA(0.2mmol,36 μL)在DMF(5 mL)中的混合物加入树脂中。通过标准Kaiser测试监控偶联,并且偶联在8小时内完成。将树脂用DMF(5 mL x 2)、DCM(5 mL x 2)和MeOH(5 mL x 2)充分洗涤,然后在真空中干燥。将树脂在DCM(5 mL)中膨胀1小时,用试剂B(TFA(88%)、水(5%)、苯酚(5%)和TIS(2%),15 mL)在室温处理2小时。将树脂过滤,用纯净TFA(2 mL)洗涤。将滤液在真空中浓缩至其原始体积的约1/3。使用二乙醚(0℃,30 mL)沉淀该肽,并且通过以3,000 rpm离心15分钟回收。使用经过40分钟时期的0-95%溶剂B的溶剂A溶液的线性梯度,在半制备型C-8柱上通过RP-HPLC纯化粗制肽,并且将合适流分冻干以提供27 (图14)(60%,基于树脂装载能力)。C95H147N21O21S,MALDI-ToF MS:观察到的[M+],1951.2966Da;计算的[M+],1951.3768Da。 Synthesis of biotin-T epitope peptide 27: Synthesis of 27 was performed on Rink amide resin (28, 0.1 mmol) as described in General Methods. After the synthesis was completed, the resin was washed well with DMF (5 mL x 2), DCM (5 mL x 2) and MeOH (5 mL x 2), followed by drying in vacuo. The resin was swelled in DCM (5 mL) for 1 h. Next, EZ-Link® NHS-Biotin Reagent (succinimidyl-6-(biotinamide) hexanoate) (0.2 mmol, 90 mg) and DIPEA (0.2 mmol, 36 μL) were dissolved in DMF ( 5 mL) was added to the resin. Coupling was monitored by standard Kaiser test and was complete within 8 hours. The resin was washed well with DMF (5 mL x 2), DCM (5 mL x 2) and MeOH (5 mL x 2), then dried in vacuo. The resin was swelled in DCM (5 mL) for 1 h and treated with reagent B (TFA (88%), water (5%), phenol (5%) and TIS (2%), 15 mL) at room temperature for 2 h. The resin was filtered, washed with neat TFA (2 mL). The filtrate was concentrated in vacuo to about 1/3 of its original volume. The peptide was precipitated using diethyl ether (0°C, 30 mL) and recovered by centrifugation at 3,000 rpm for 15 minutes. The crude peptide was purified by RP-HPLC on a semi-preparative C-8 column using a linear gradient of 0-95% solvent B in solvent A over a 40 minute period, and the appropriate fractions were lyophilized to provide 27 (Fig. 14) (60%, based on resin loading capacity). C95H147N21O21S , MALDI- ToF MS: observed [M+], 1951.2966 Da; calculated [M+], 1951.3768 Da.
方案19。试剂和条件:a)使用Fmoc化学的SPPS,在DIPEA的NMP溶液的存在下,与HBTU/HOBt偶联;b)在DIPEA的DMF溶液的存在下,琥珀酰亚胺基-6-(生物素酰胺)己酸酯的手工偶联;c)试剂B,TFA(88%)、苯酚(5%)、水(5%)、TIS(2%),2小时。Program 19. Reagents and conditions: a) SPPS using Fmoc chemistry, in the presence of DIPEA in NMP, was coupled to HBTU/HOBt; b) in the presence of DIPEA in DMF, succinimidyl-6-(biotin amide) manual coupling of hexanoate; c) Reagent B, TFA (88%), phenol (5%), water (5%), TIS (2%), 2 hours.
实施例8Example 8
完全合成的多组分癌症疫苗引发多模式免疫应答(multi-model immune response)A fully synthetic multicomponent cancer vaccine elicits a multi-model immune response
这个实施例证实共价连接至Toll样受体(TLR)激动剂的糖基化MUC1衍生的糖肽可以引发有效的体液和细胞免疫应答,并且在逆转耐受和生成治疗应答中是有效的。许多对照化合物的检查证实三组分疫苗的疗效是由于通过佐剂引发的非特异性抗肿瘤应答,和通过MUC1衍生的糖肽引发的特异性体液和细胞免疫应答。已发现MUC1肽的糖基化对于诱导最佳应答是关键的,此外,辅助T表位和B表位共价连接至TLR配体是必需的。This example demonstrates that glycosylated MUCl -derived glycopeptides covalently linked to Toll-like receptor (TLR) agonists can elicit potent humoral and cellular immune responses and are effective in reversing tolerance and generating therapeutic responses. Examination of a number of control compounds confirmed that the efficacy of the three-component vaccine was due to a non-specific antitumor response elicited by the adjuvant, and a specific humoral and cellular immune response elicited by the MUCl-derived glycopeptide. Glycosylation of the MUCl peptide was found to be critical for the induction of an optimal response and, moreover, covalent attachment of helper T and B epitopes to TLR ligands was required.
结果result
抗原设计和肿瘤攻击研究。在充分建立的乳腺癌小鼠模型(Akporiaye等人,2007,Vaccine;25:6965-6974)中检查化合物1、2、3、4和5的混合物和单独的5的脂质体制剂的功效(图16)。多组分疫苗候选物1含有衍生自MUC1的肿瘤相关糖肽(Baldus等人,2004,Crit. Rev Clin Lab Sci;41:189-231;和Springer,1997,J Mol Med;75:594-602)、衍生自脊髓灰质炎病毒的充分证明的鼠MHC II类限制性辅助T细胞表位KLFAVWKITYKDT(SEQ ID NO:1)(Leclerc等人,1991,J Virol;65:711-718)和作为Toll样受体-2 (TLR2)的有效激动剂的脂肽Pam3CysSK4 (Spohn等人,2004,Vaccine;22:2494-2499)。先前,MUC1衍生的糖肽SAPDT(α-GalNAc)RPAP被鉴定为MUC1的串联重复的抗原性优势结构域(Baldus等人,2004,Crit. Rev Clin Lab Sci;41:189-231;和Springer,1997,J Mol Med;75:594-602)。此外,这个表位还可以以与MHC I类(Kb)的复合物呈现,导致细胞毒性T淋巴细胞(CTL)的激活(Apostolopoulos等人,2003,Proc Natl Acad Sci USA;100:15029-15034)。Antigen design and tumor challenge studies. The efficacy of a mixture of compounds 1, 2, 3, 4 and 5 and a liposomal formulation of 5 alone was examined in a well-established mouse model of breast cancer (Akporiaye et al., 2007, Vaccine ; 25:6965-6974) ( Figure 16). Multicomponent vaccine candidate 1 contains tumor-associated glycopeptides derived from MUC1 (Baldus et al., 2004, Crit. Rev Clin Lab Sci ; 41:189-231; and Springer, 1997, J Mol Med ; 75:594-602 ), the well documented murine MHC class II restricted helper T cell epitope KLFAVWKITYKDT (SEQ ID NO:1) derived from poliovirus (Leclerc et al., 1991, J Virol ; 65:711-718) and as Toll The lipopeptide Pam3CysSK4, a potent agonist of TLR2-like receptor-2 (TLR2) (Spohn et al., 2004, Vaccine ; 22:2494-2499). Previously, the MUCl-derived glycopeptide SAPDT (α-GalNAc) RPAP was identified as the tandem repeat antigenically dominant domain of MUCl (Baldus et al., 2004, Crit. Rev Clin Lab Sci ; 41:189-231; and Springer, 1997, J Mol Med ; 75:594-602). Furthermore, this epitope can also be presented in complex with MHC class I (K b ), leading to the activation of cytotoxic T lymphocytes (CTL) (Apostolopoulos et al., 2003, Proc Natl Acad Sci USA ; 100:15029-15034 ).
如这个实施例中所示,1的MHC II类限制性辅助T细胞表位诱导从IgM到IgG抗体生产的类别转换(图20),并促进外源糖肽在MHC 1类上的呈递。最后,1的Pam3CysSK4部分通过引发有关细胞因子和趋化因子充当嵌入佐剂(Spohn等人,2004,Vaccine;22:2494-2499)。为了测定1的碳水化合物部分的重要性,检查构建体2,其具有与1相似的结构,只是MUC1肽的苏氨酸不是糖基化的。化合物3缺乏1和2的MUC1糖肽表位,并被检查以解释由于通过佐剂的免疫激活的可能疗效。最后,检查糖肽4和佐剂Pam3CysSK4 5的混合物,以确定佐剂与MUC1糖肽和辅助T表位的共价连接的重要性。As shown in this example, the MHC class II-restricted helper T cell epitope of 1 induces a class switch from IgM to IgG antibody production ( FIG. 20 ) and promotes the presentation of exogenous glycopeptides on MHC class 1. Finally, the Pam3CysSK4 portion of 1 acts as an intercalation adjuvant by priming associated cytokines and chemokines (Spohn et al., 2004, Vaccine ; 22:2494-2499). To determine the importance of the carbohydrate moiety of 1, construct 2, which has a similar structure to 1 except that the threonine of the MUCl peptide is not glycosylated, was examined. Compound 3 lacks the MUC1 glycopeptide epitope of 1 and 2 and was examined to account for possible efficacy due to immune activation by adjuvants. Finally, the mixture of glycopeptide 4 and adjuvant Pam3CysSK4 5 was examined to determine the importance of covalent attachment of the adjuvant to the MUC1 glycopeptide and helper T epitope.
多组分疫苗1通过脂质体介导的天然化学连接(Ingale等人,2006,Org Lett;8:5785-5788)进行制备。化合物2、3、4通过SPPS方案,使用Rink酰胺树脂、Fmoc保护的氨基酸Fmoc-Thr-(AcO3-α-D-GalNAc)合成。通过合成化合物、卵磷脂酰胆碱、磷脂酰甘油和胆固醇的薄膜在含有NaCl(145 mM)的HEPES缓冲液(10 mM,pH 6.5)中的水合和随后的经由100 nmNuclepore®聚碳酸酯膜的挤出,将所得到的化合物掺入基于磷脂的小型单层囊泡(SUV)内。用化合物1、2、3、4和5的混合物和单独的5的脂质体制剂,将表达人MUC1的MUC1.Tg小鼠(C57BL/6;H-2b)的组以每两周一次的间隔免疫接种三次。在35天后,将小鼠用MMT乳房肿瘤细胞(对MUC1和Tn呈阳性)攻击,随后为一周后的再一次加强。在最后一次免疫接种后两周,将小鼠处死,并且通过肿瘤重量测定疫苗的功效。此外,通过MUC1特异性抗体的滴度和抗血清裂解荷有MUC1的肿瘤细胞的能力,来评估体液免疫应答的强健性。此外,通过测定产生IFN-γ的CD8+ T细胞的数目和这些细胞裂解肿瘤细胞的能力,来评价细胞免疫应答。Multicomponent Vaccine 1 was prepared by liposome-mediated native chemical ligation (Ingale et al., 2006, Org Lett ; 8:5785-5788). Compounds 2, 3, and 4 were synthesized by SPPS protocol using Rink amide resin, Fmoc-protected amino acid Fmoc-Thr-(AcO 3 -α-D-GalNAc). Hydration of thin films of synthetic compounds, egg phosphatidylcholine, phosphatidylglycerol, and cholesterol in HEPES buffer (10 mM, pH 6.5) containing NaCl (145 mM) and subsequent hydration via a 100 nm Nuclepore ® polycarbonate membrane Extrusion incorporates the resulting compounds into small phospholipid-based unilamellar vesicles (SUVs). Groups of MUCl.Tg mice (C57BL/6; H-2 b ) expressing human MUCl were treated every two weeks with liposomal formulations of compounds 1, 2, 3, 4, and 5 and 5 alone. immunized three times at intervals. After 35 days, mice were challenged with MMT mammary tumor cells (positive for MUCl and Tn), followed by another boost one week later. Two weeks after the last immunization, mice were sacrificed and vaccine efficacy was determined by tumor weight. In addition, the robustness of the humoral immune response was assessed by the titers of MUCl-specific antibodies and the ability of the antiserum to lyse MUCl-bearing tumor cells. In addition, cellular immune responses were assessed by measuring the number of IFN-γ producing CD8 + T cells and the ability of these cells to lyse tumor cells.
与空脂质体或用不含有MUC1糖肽表位的化合物3处理相比较,用多组分疫苗候选物1免疫接种导致肿瘤负荷的显著减少(图17)。有趣的是,与空脂质体的应用相比较,用化合物3免疫接种导致略微更小的肿瘤,表明由于非特异性佐剂效应所致的抗肿瘤性质。与对照免疫接种相比较,糖基化多组分疫苗候选物2以及化合物4和5的混合物未显示出抗癌性质的显著改善。在这些情况下,观察到在肿瘤重量方面的大分散,而用化合物1免疫接种导致在所有小鼠中肿瘤重量的实质减少。Immunization with multicomponent vaccine candidate 1 resulted in a significant reduction in tumor burden compared to empty liposomes or treatment with compound 3 not containing the MUCl glycopeptide epitope (Figure 17). Interestingly, immunization with compound 3 resulted in slightly smaller tumors compared to application of empty liposomes, indicating antitumor properties due to nonspecific adjuvant effects. Glycosylated multicomponent vaccine candidate 2 and the mixture of compounds 4 and 5 did not show significant improvement in anticancer properties compared to control immunizations. In these cases, a large spread in tumor weight was observed, whereas immunization with compound 1 resulted in a substantial reduction in tumor weight in all mice.
体液免疫。通过用缀合至溴乙酰修饰的BSA的CTSAPDT(α-D-GalNAc)RPAP包被微量滴定板测定抗MUC1抗体滴度。化合物1已引发强IgG抗体应答,并且抗体的亚分型指出混合Th1/Th2应答(表6)。用1免疫接种但未用MMT肿瘤细胞攻击的小鼠引发相似滴度的抗体,指出癌细胞的免疫抑制可能得到逆转。抑制ELISA显示多克隆血清对于糖基化MUC1表位具有略微更高的亲和力(表7)。此外,测量到针对辅助T表位的低滴度抗体,指出候选疫苗不具有免疫抑制的缺点。尽管化合物2不含有碳水化合物部分,但所得到的抗血清可以识别CTSAPDT(α-D-GalNAc)RPAP表位。然而,在这种情况下,未检测到IgG3抗体。有趣的是,化合物4和5的混合物已引发低滴度的抗体,突出显示Pam3CysSK4与糖肽表位的共价连接对于强抗原应答的重要性。如预期的,不含有MUC1衍生表位的对照(3和5)不引发抗MUC1抗体应答。Humoral immunity. Anti-MUCl antibody titers were determined by coating microtiter plates with CTSAPDT (α-D-GalNAc) RPAP conjugated to bromoacetyl-modified BSA. Compound 1 had elicited a strong IgG antibody response, and subtyping of the antibodies indicated a mixed Th1/Th2 response (Table 6). Mice immunized with 1 but not challenged with MMT tumor cells elicited similar titers of antibody, indicating that the immunosuppression of cancer cells may be reversed. Inhibition ELISA showed polyclonal sera to have slightly higher affinity for glycosylated MUCl epitopes (Table 7). Furthermore, low titers of antibodies against the helper T epitope were measured, indicating that the candidate vaccine does not have the disadvantage of immunosuppression. Although Compound 2 does not contain a carbohydrate moiety, the resulting antiserum recognizes the CTSAPDT (α-D-GalNAc) RPAP epitope. However, in this case, IgG3 antibodies were not detected. Interestingly, a mixture of compounds 4 and 5 had elicited low titers of antibodies, highlighting the importance of covalent attachment of Pam3CysSK4 to glycopeptide epitopes for strong antigenic responses. Controls (3 and 5) that did not contain MUCl-derived epitopes did not elicit anti-MUCl antibody responses, as expected.
通过用51Cr标记两个MUC1表达癌细胞类型和随后的抗血清和细胞毒性效应细胞(NK细胞)的添加和释放的51Cr的测量,来检查抗体依赖性细胞介导的细胞毒性(ADCC)。如图18A和18B中可见,与对照化合物3相比较,通过用1免疫接种获得的抗血清能够显著增加癌细胞裂解。重要的是,与化合物1相比较,通过化合物2引发的抗体在细胞裂解中明显更不有效,突出显示糖基化对于有关抗原应答的重要性。如预期的,衍生自4和5的混合物和缺乏MUC1糖肽的对照衍生物的抗血清不诱导显著细胞裂解。Examination of antibody-dependent cell-mediated cytotoxicity (ADCC) by labeling two MUCl -expressing cancer cell types with Cr and subsequent addition and release of antisera and cytotoxic effector cells (NK cells) . As can be seen in Figures 18A and 18B, the antiserum obtained by immunization with 1 was able to significantly increase cancer cell lysis compared to the control compound 3. Importantly, antibodies elicited by compound 2 were significantly less effective in cell lysis compared to compound 1, highlighting the importance of glycosylation for relevant antigen responses. Antisera derived from the mixture of 4 and 5 and the control derivative lacking the MUCl glycopeptide did not induce significant cell lysis, as expected.
表6. 在用多种制剂4次免疫接种后的ELISA抗MUC1和抗T表位抗体滴度[a]。Table 6. ELISA anti-MUCl and anti-T epitope antibody titers after 4 immunizations with various formulations [a] .
[a]抗MUC1和抗T表位抗体滴度作为四到十三只小鼠的组的中值呈现。对于抗MUC1抗体滴度,将ELISA板用BSA-MI-MUC1(Tn)缀合物包被,或对于抗T表位抗体滴度,将ELISA板用中性抗生物素蛋白-生物素-T表位包被。通过线性回归分析测定滴度,其中与吸光度相比较对稀释度作图。滴度定义为获得相对于正常对照小鼠血清而言光密度为0.1或更大的最高稀释度。[b]采用脂质体制剂。在第3次和第4次免疫接种之间诱导MTT肿瘤。[c] EL = 空脂质体。[d]未诱导肿瘤。[a] Anti-MUCl and anti-T epitope antibody titers are presented as median values for groups of four to thirteen mice. For anti-MUC1 antibody titers, ELISA plates were coated with BSA-MI-MUC1(Tn) conjugate, or for anti-T epitope antibody titers, ELISA plates were coated with Neutravidin-Biotin-T Epitope coating. Titers were determined by linear regression analysis in which dilution was plotted against absorbance. Titer was defined as the highest dilution to obtain an optical density of 0.1 or greater relative to normal control mouse serum. [b] Using a liposome formulation. MTT tumors were induced between the 3rd and 4th immunization. [c] EL = empty liposomes. [d] No tumor was induced.
表7. 通过ELISA[a]的MUC1(Tn)和MUC1 (未糖基化的)与BSA-MI-MUC1(Tn)缀合物的抗体结合的竞争性抑制IC50值。Table 7. Competitive inhibition IC50 values of antibody binding of MUCl(Tn) and MUCl (unglycosylated) to BSA-MI-MUCl(Tn) conjugate by ELISA [a] .
[a] 将ELISA板用BSA-MI-MUC1(Tn)缀合物包被。将稀释以在不存在抑制剂的情况下在ELISA中获得约1的OD的在用1或2免疫接种后7只小鼠的组的血清样品,首先与MUC1(Tn)或未糖基化的MUC1 (0-500 µM终浓度)混合,随后应用于包被的微量滴定板。将光密度值对于用单独的血清(0 µM抑制剂,100%)获得的光密度值标准化。用下述逻辑斯谛方程拟合抑制数据:Y = 底部 +(顶部 – 底部)/(1 + 10(X – Log IC50)),其中Y是标准化的光密度,X是抑制剂浓度的对数,并且IC50是使应答减少一半的抑制剂浓度。IC50值报道为最佳拟合值和95%置信区间。[a] ELISA plates were coated with BSA-MI-MUCl(Tn) conjugate. Serum samples from groups of 7 mice after immunization with 1 or 2, diluted to obtain an OD of about 1 in ELISA in the absence of inhibitors, were first reacted with MUCl(Tn) or unglycosylated MUC1 (0-500 µM final concentration) was mixed and then applied to the coated microtiter plate. Optical density values were normalized to those obtained with serum alone (0 µM inhibitor, 100%). Inhibition data were fitted with the following logistic equation: Y = Bottom + (Top - Bottom)/(1 + 10 (X - Log IC50) ), where Y is the normalized optical density and X is the logarithm of the inhibitor concentration , and the IC50 is the concentration of inhibitor that halve the response. IC50 values are reported as best fit values with 95% confidence intervals.
细胞免疫。为了评估疫苗候选物激活细胞毒性T淋巴细胞的能力,通过磁性细胞分选从用多种化合物免疫接种的小鼠的淋巴结中分离CD8+ T细胞,并且在ELLISPOT板上与用免疫接种肽脉冲的被照射DC一起温育。与对照相比较,疫苗候选物1和2显示出强CD8+应答(图19A,1和2与3比较)。有趣的是,糖肽4和佐剂5 (Pam3CysSK4)的混合物诱导更少数目的CD8+的激活,指出MUC1和辅助T表位与佐剂的共价连接对于CTL的最佳激活是重要的。cellular immunity. To assess the ability of vaccine candidates to activate cytotoxic T lymphocytes, CD8 + T cells were isolated by magnetic cell sorting from the lymph nodes of mice immunized with various compounds and plated on ELLISPOT plates with The irradiated DCs were incubated together. Vaccine candidates 1 and 2 showed strong CD8 + responses compared to controls (Figure 19A, compare 1 and 2 with 3). Interestingly, the mixture of glycopeptide 4 and adjuvant 5 (Pam3CysSK4) induced the activation of a smaller number of CD8 + , indicating that the covalent attachment of MUCl and helper T epitopes to the adjuvant is important for optimal activation of CTLs.
通过51Cr释放测定检查分离的CD8+细胞在无体外刺激的情况下的裂解活性,其中DC用MUC1衍生的糖肽SAPDT(Tn)RPAP (SEQ ID NO:26)或在免疫接种2的情况下用肽SAPDTRPAP (SEQ ID NO:20)脉冲。如图19B中可见,与对照相比较,通过化合物1和2激活的CTL显示出显著更大的细胞毒性。此外,用4和5的混合物免疫接种的小鼠显示出减少的裂解活性,进一步证实多种表位的共价连接的重要性。The lytic activity of isolated CD8+ cells in the absence of in vitro stimulation was examined by Cr release assay in which DCs were treated with the MUCl-derived glycopeptide SAPDT (Tn)RPAP (SEQ ID NO:26) or in the case of immunization with 2 Peptide SAPDTRPAP (SEQ ID NO:20) pulsed. As can be seen in Figure 19B, CTLs activated by compounds 1 and 2 showed significantly greater cytotoxicity compared to controls. Furthermore, mice immunized with a mixture of 4 and 5 showed reduced lytic activity, further confirming the importance of covalent linkage of multiple epitopes.
为了详细研究CD8+细胞的表位需求,将五只MUC1.tg的组用化合物1和2的脂质体制剂免疫接种,随后收获并合并CD8+细胞,将其通过分别用糖肽SAPDT(Tn)RPAP (6) (SEQID NO:26)和肽SAPDTRPAP (7) (SEQ ID NO:20)脉冲的DC在体外刺激1天,随后通过与IL-2和IL-7一起培养而允许扩繁14天。在用MUC1衍生的糖肽6-9脉冲树突状细胞后,确定产生IFN-γ的CD8+细胞的百分比。化合物1已激活可通过糖基化和非糖基化结构激活的不同范围的CTL,而通过用2免疫接种获得的那些仅显示与无糖基化肽7的应答性。此外,得自用1免疫接种的CD8+细胞可以裂解用糖基化和无糖基化结构脉冲的DC (图20)。To study the epitope requirement of CD8 + cells in detail, groups of five MUC1.tg were immunized with liposomal formulations of compounds 1 and 2, and CD8 + cells were subsequently harvested and pooled, which were treated separately with the glycopeptide SAPDT(Tn ) RPAP (6) (SEQ ID NO:26) and peptide SAPDTRPAP (7) (SEQ ID NO:20) pulsed DCs were stimulated in vitro for 1 day and then allowed to expand by incubation with IL-2 and IL-7 for 14 sky. The percentage of IFN-γ-producing CD8 + cells was determined after dendritic cells were pulsed with MUCl-derived glycopeptides 6–9. Compound 1 had activated a diverse range of CTLs that could be activated by glycosylated and aglycosylated structures, whereas those obtained by immunization with 2 showed responsiveness only to aglycosylated peptide 7. Furthermore, CD8 + cells obtained from immunization with 1 could lyse DCs pulsed with glycosylated and aglycosylated constructs ( FIG. 20 ).
这些结果指出通过用1免疫接种激活的CTL识别更广范围的结构(包括糖基化和无糖基化MUC1衍生的肽),而由化合物2获得的CTL对无糖基化肽显示出强烈的优先。These results indicate that CTLs activated by immunization with 1 recognize a wider range of structures (including glycosylated and aglycosylated MUC1-derived peptides), whereas CTLs obtained from compound 2 show a strong response to aglycosylated peptides. priority.
细胞因子诱导。需要三组分疫苗的脂肽部分通过与单核吞噬细胞表面上的TLR2相互作用,以起始必需的细胞因子和趋化因子的产生(Akira等人,2001,Nat Immunol;2:675-680;Finlay和Hancock,2004,Nat Rev Microbiol;2:497-504;van Amersfoort等人,2003,Clin Microbiol Rev;16:379-414;和Spohn等人,2004,Vaccine;22:2494-2499)。在激活后,TLR2的细胞内结构域募集衔接蛋白质MyD88,导致激酶级联的激活,从而导致许多细胞因子和趋化因子的产生。另一方面,脂多糖通过与TLR4/MD2/CD14复合物相互作用而诱导细胞应答,这导致衔接蛋白质MyD88和TRIF的募集,从而导致更复杂模式的细胞因子诱导。TNF-γ分泌是MyD88依赖性途径激活的原型量度,而IFN-γ的分泌通常用作TRIF依赖性细胞激活的指示物(Akira等人,2001,Nat Immunol;2:675-680;和van Amersfoort等人,2003,Clin Microbiol Rev;16:379-414)。Cytokine induction. The lipopeptide portion of the three-component vaccine is required to initiate the production of essential cytokines and chemokines by interacting with TLR2 on the surface of mononuclear phagocytes (Akira et al., 2001, Nat Immunol ; 2:675-680 ; Finlay and Hancock, 2004, Nat Rev Microbiol ; 2:497-504; van Amersfoort et al., 2003, Clin Microbiol Rev ; 16:379-414; and Spohn et al., 2004, Vaccine ; 22:2494-2499). Upon activation, the intracellular domain of TLR2 recruits the adapter protein MyD88, leading to the activation of a kinase cascade leading to the production of a number of cytokines and chemokines. On the other hand, LPS induces cellular responses by interacting with the TLR4/MD2/CD14 complex, which leads to the recruitment of the adapter proteins MyD88 and TRIF, leading to a more complex pattern of cytokine induction. TNF-γ secretion is a prototypical measure of MyD88-dependent pathway activation, whereas IFN-γ secretion is commonly used as an indicator of TRIF-dependent cellular activation (Akira et al., 2001, Nat Immunol ; 2:675-680; and van Amersfoort et al., 2003, Clin Microbiol Rev ; 16:379-414).
为了检查通过多组分疫苗1的细胞因子产生的模式和确定糖基化是否影响应答性,检查通过化合物1、2和5诱导的TNF-α、IFN-β、Rantes、IL-6、IL-1、IL-10、IP-10、IL-12p70和IL-12/23p40分泌的功效(EC50)和效力(最大应答性)。因此,使通过确定的方法获得的原代树突状细胞暴露于广泛范围浓度的化合物1、2、5和大肠杆菌055:B5 LPS,使用捕获ELISA就多种小鼠细胞因子检查上清液。糖脂肽1、脂肽2和Pam3CysSK4 (5)以相似功效和效力诱导TNF-α、Rantes、IL-6、IL-1和IL-12/23p40分泌,指出B和T表位的连接和糖基化对细胞因子应答没有作用。参见图22、表8和表9。如预期的,两种化合物都不诱导IFN-β的产生。有趣的是,与化合物1、2和5相比较,大肠杆菌055:B5 LPS展示对于TNF-α诱导大得多的效力和功效。此外,它能够刺激细胞产生IFN-β、IL-10、IP10和IL-12p70。1、2和5的效力和功效减少是有利性质,因为已知LPS可以过度激活先天性免疫系统,导致脓毒性休克的症状。To examine the pattern of cytokine production by multicomponent vaccine 1 and determine whether glycosylation affects responsiveness, TNF-α, IFN-β, Rantes, IL-6, IL- 1. Efficacy ( EC50 ) and potency (maximal responsiveness) of IL-10, IP-10, IL-12p70 and IL-12/23p40 secretion. Therefore, primary dendritic cells obtained by established methods were exposed to a wide range of concentrations of compounds 1, 2, 5 and E. coli 055:B5 LPS, and supernatants were examined for various mouse cytokines using capture ELISA. Glycolipeptide 1, lipopeptide 2, and Pam3CysSK4 (5) induce TNF-α, Rantes, IL-6, IL-1, and IL-12/23p40 secretion with similar potency and potency, pointing to linkage of B and T epitopes and sugar Kylation had no effect on cytokine responses. See Figure 22, Table 8 and Table 9. As expected, neither compound induced IFN-[beta] production. Interestingly, compared to compounds 1, 2 and 5, E. coli 055:B5 LPS displayed much greater potency and efficacy for TNF-α induction. In addition, it is able to stimulate cells to produce IFN-β, IL-10, IP10, and IL-12p70. The reduced potency and efficacy of 1, 2, and 5 are favorable properties because LPS is known to overactivate the innate immune system, leading to sepsis Symptoms of shock.
为了确保细胞因子产生以TLR2依赖性方式起始,使化合物1和5暴露于HEK 293T细胞,其用鼠TLR2稳定转染,且用含有报道基因pELAM-Luc的质粒(NF-B依赖性萤火虫萤光素酶报道载体)和含有对照基因pRL-TK的质粒(海肾(Renilla)萤光素酶对照报道载体)瞬时转染。在4小时温育时间后,使用商业双重萤光素酶测定测量活性,发现化合物1和5能够以TLR2依赖性方式激活NF- B。To ensure that cytokine production is initiated in a TLR2-dependent manner, compounds 1 and 5 were exposed to HEK 293T cells stably transfected with murine TLR2 and treated with a plasmid containing the reporter gene pELAM-Luc (NF-B-dependent firefly firefly luciferase reporter vector) and a plasmid containing the control gene pRL-TK (Renilla luciferase control reporter vector) was transiently transfected. After a 4 h incubation time, activity was measured using a commercial dual luciferase assay and it was found that compounds 1 and 5 were able to activate NF-B in a TLR2-dependent manner.
表8. 在原代树突状细胞温育24小时后获得的装载有化合物1、2或3和大肠杆菌LPS的脂质体制剂的剂量应答曲线的细胞因子坪值[a](pg/mL)。Table 8. Cytokine Plateau [a] (pg/mL) for Dose Response Curves of Liposome Formulations Loaded with Compound 1, 2 or 3 and E. coli LPS Obtained After 24 Hours of Incubation of Primary Dendritic Cells .
[a]按照皮克细胞因子/μg总蛋白质使用非线性最小二乘法曲线拟合,通过Prism报告为最佳拟合值±标准误差的坪值。[a] Curve fitting using non-linear least squares in pg cytokine/[mu]g total protein, reported as plateau of best fit ± standard error by Prism.
[b] nd表示未检测到。[b]nd means not detected.
表9. 在原代树突状细胞中装载有化合物1、2或3和大肠杆菌LPS的脂质体制剂的细胞因子log EC50值[a](nM)。Table 9. Cytokine log EC50 values [a] (nM) of liposome formulations loaded with compound 1, 2 or 3 and E. coli LPS in primary dendritic cells.
[a]使用非线性最小二乘法曲线拟合,通过Prism报告为最佳拟合值±标准误差的Log EC50值。[a] Log EC50 values reported as best fit ± standard error by Prism using nonlinear least squares curve fitting.
[b] nd表示在用于精确EC50测定的水平上未检测到。[b] nd means not detected at the level used for accurate EC50 determination.
讨论discuss
正在显现成功癌症疫苗开发需要立刻影响免疫系统的几个方面的多模式治疗的证据。尽管已在一些癌症患者中观察到针对MUC1的细胞和体液免疫应答,但设计可以引发这两种应答的癌症疫苗候选物是困难的。这个实施例证实由衍生自MUC1的糖肽、非种系选择性肽辅助T表位和TLR2激动剂组成的多组分疫苗可以引发IgG抗体,其可以裂解表达MUC1的癌细胞并刺激细胞毒性T淋巴细胞,从而在乳腺癌的小鼠模型中逆转耐受并生成治疗应答。Evidence is emerging that successful cancer vaccine development requires multimodal treatments that affect several aspects of the immune system at once. Although cellular and humoral immune responses against MUCl have been observed in some cancer patients, designing cancer vaccine candidates that can elicit both responses has been difficult. This example demonstrates that a multicomponent vaccine consisting of a glycopeptide derived from MUCl, a non-germline-selective peptide helper T epitope, and a TLR2 agonist can elicit IgG antibodies that can lyse MUC1-expressing cancer cells and stimulate cytotoxic T lymphocytes, thereby reversing tolerance and generating a therapeutic response in a mouse model of breast cancer.
对照化合物的仔细分析揭示由多组分疫苗介导的肿瘤负荷的减少通过针对MUC1的特异性免疫和通过由嵌入TLR2激动剂介导的非特异性佐剂效应引起。正在显现TLR由肿瘤细胞广泛表达并且其激活可以导致致肿瘤性的抑制或促进的证据。此外,在TLR激活后产生的细胞因子和趋化因子可以刺激许多共刺激蛋白质的表达,用于在T辅助细胞与B细胞和抗原呈递细胞之间的最佳相互作用。近期研究指出TLR1/2激动剂具有在体外和体内减少Foxp3+调节性T细胞(Tregs)的抑制功能和增强肿瘤特异性CTL的细胞毒性的独特能力,并且潜在地具有比其他TLR激动剂更有利的抗肿瘤效应。Careful analysis of control compounds revealed that the reduction in tumor burden mediated by the multicomponent vaccine was caused by specific immunity against MUCl and by nonspecific adjuvant effects mediated by intercalating TLR2 agonists. Evidence is emerging that TLRs are ubiquitously expressed by tumor cells and that their activation can lead to inhibition or promotion of tumorigenicity. Furthermore, cytokines and chemokines produced following TLR activation can stimulate the expression of many co-stimulatory proteins for optimal interaction between T helper cells and B cells and antigen-presenting cells. Recent studies have pointed to the unique ability of TLR1/2 agonists to reduce the suppressive function of Foxp3 + regulatory T cells (Tregs) and enhance the cytotoxicity of tumor-specific CTLs in vitro and in vivo, and potentially have more favorable effects than other TLR agonists. antitumor effect.
这个实施例也证实TLR2激动剂与糖脂肽表位的共价连接对于引发抗体和最佳CTL功能是关键的。用TLR2激动剂进行的脂质化使得有可能在脂质体制剂中配制多组分疫苗,这可能增强其循环时间。此外,脂质体制剂以多价方式呈递糖肽表位,从而提供用于B细胞表位的有效聚簇的机会,这是起始B细胞信号转导和抗体产生所必需的。如先前实施例中所示,TLR2激动剂Pam3CysSK4的共价连接促进通过表达TLR2的免疫细胞例如B细胞和抗原呈递细胞(APC)的选择性内在化。抗原的摄取和加工和T表位作为与MHC I或II类的复合物在APC细胞表面上的后续呈递,对于引发IgG抗体是关键的。在过去十年,众多研究已显示抗原选择性靶向APC将导致改善的免疫应答。例如,氧化甘露聚糖、热休克蛋白、细菌毒素和靶向树突状细胞的细胞表面受体的抗体已连接至抗原,以增加通过树突状细胞的摄取。尽管这些摄取策略是有吸引力的,但它们具有这样的缺点:靶向装置是抗原性的,这可能导致肿瘤相关碳水化合物的免疫抑制。Pam3CysSK4对于促进通过APC的摄取的吸引力在于其低固有免疫性。因此,三组分疫苗将促进摄取,而不具有免疫抑制的缺点。This example also demonstrates that covalent attachment of TLR2 agonists to glycolipopeptide epitopes is critical for eliciting antibodies and optimal CTL function. Lipidation with TLR2 agonists makes it possible to formulate multicomponent vaccines in liposomal formulations, which may enhance their circulation time. Furthermore, liposomal formulations present glycopeptide epitopes in a multivalent manner, thereby providing an opportunity for efficient clustering of B-cell epitopes, which are required for initiating B-cell signaling and antibody production. As shown in previous examples, covalent attachment of the TLR2 agonist Pam3CysSK4 facilitates selective internalization by TLR2-expressing immune cells such as B cells and antigen presenting cells (APCs). The uptake and processing of antigen and the subsequent presentation of T epitopes as complexes with MHC class I or II on the surface of APC cells are critical for eliciting IgG antibodies. Over the past decade, numerous studies have shown that selective targeting of antigens to APCs will lead to improved immune responses. For example, oxidized mannan, heat shock proteins, bacterial toxins, and antibodies targeting cell surface receptors of dendritic cells have been linked to antigens to increase uptake by dendritic cells. Although these uptake strategies are attractive, they have the disadvantage that the targeting device is antigenic, which may lead to immunosuppression of tumor-associated carbohydrates. The attractiveness of Pam3CysSK4 for facilitating uptake by APCs is its low innate immunity. Thus, a three-component vaccine would facilitate uptake without the disadvantage of immunosuppression.
最后,本实施例证实MUC1表位的糖基化对于肿瘤负荷的最佳减少是关键的。机制研究为这些观察结果提供基本原理,发现与使用缺乏Tn抗原的化合物2相比较,用化合物1免疫接种导致略微更高滴度的抗体,其是明显更有裂解性的。通过用光散射测量补充的NMR的构象研究已指出MUC1的去糖基化导致更少延伸和更加球状的结构。使用MUC1相关O-糖肽的相似研究已显示碳水化合物部分发挥构象效应,这可以提供免疫应答中的差异的基本原理。此外,糖基化1的使用导致CTL的有效激活,该CTL能够识别糖基化和未糖基化的结构,其中前面一种是优选的。另一方面,用非糖基化化合物2免疫接种导致主要识别非糖基化结构的CTL。已知在MUC1串联重复上的短O联聚糖例如Tn和STn在MHC II类途径中的DC加工过程中保持完整,因此有可能引发糖肽选择性CTL应答。此外,存在与相应非糖基化肽相比较,MUC1糖肽可以更强烈地结合MHC I类小鼠等位基因H2Kb的证据。此外,癌的进展不仅与具有截短糖例如Tn抗原的MUC1修饰相关,而且这些结构还以高得多的密度存在,因此有效免疫治疗需要引发针对此类结构的应答。Finally, this example demonstrates that glycosylation of the MUCl epitope is critical for optimal reduction of tumor burden. Mechanistic studies provided a rationale for these observations, finding that immunization with Compound 1 resulted in slightly higher titers of antibodies, which were significantly more lytic, compared with Compound 2 lacking the Tn antigen. Conformational studies by NMR supplemented by light scattering measurements have indicated that deglycosylation of MUCl leads to a less extended and more globular structure. Similar studies using MUCl-associated O-glycopeptides have shown that carbohydrate moieties exert conformational effects, which may provide a rationale for differences in immune responses. Furthermore, the use of glycosylation 1 resulted in efficient activation of CTLs capable of recognizing glycosylated and unglycosylated structures, with the former being preferred. On the other hand, immunization with aglycosylated compound 2 resulted in CTLs predominantly recognizing aglycosylated structures. Short O-linked glycans such as Tn and STn on MUCl tandem repeats are known to remain intact during DC processing in the MHC class II pathway, thus potentially eliciting glycopeptide-selective CTL responses. Furthermore, there is evidence that MUC1 glycopeptides can bind MHC class I mouse allele H2K b more strongly than the corresponding non-glycosylated peptides. Furthermore, not only is cancer progression associated with MUCl modifications with truncated sugars such as the Tn antigen, but these structures are also present in much higher densities, thus eliciting responses against such structures is required for effective immunotherapy.
实验部分Experimental part
用于自动化固相肽合成(SPPS)的一般方法:使用Nα-Fmoc保护的氨基酸和2-(1H-苯并三唑-1-基)-1,1,3,3-四甲基脲六氟磷酸盐(HBTU)/1-羟基苯并三唑(HOBt)作为激活试剂,通过建立的方案在配备UV检测器的Applied Biosystems,ABI 433A肽合成仪上合成肽。单个偶联步骤用条件性加帽执行。General Method for Automated Solid-Phase Peptide Synthesis (SPPS): Using N α -Fmoc-Protected Amino Acids and 2-(1H-Benzotriazol-1-yl)-1,1,3,3-Tetramethylurea Hexafluorophosphate (HBTU)/1-hydroxybenzotriazole (HOBt) was used as the activation reagent, and peptides were synthesized by an established protocol on an Applied Biosystems, ABI 433A peptide synthesizer equipped with a UV detector. Individual coupling steps are performed with conditional capping.
用于天然化学连接的脂质体制备的一般方法:制备含有2 mM三(2-羧乙基)膦(TCEP)和0.3% EDTA的pH 7.8 200 mM磷酸钠缓冲液。将缓冲液脱气1小时。将含半胱氨酸肽(1当量)、硫酯(2当量)和十二烷基磷酸胆碱(dodecylposphocholine)(13当量)溶解于1:1CHCl3:三氟乙醇中,去除溶剂。随后将脂质/肽薄膜在恒温箱中在41℃水合4小时。将混合物超声处理,将肽/脂质悬液在50℃通过1.0 μm聚碳酸酯膜(Whatman,Nucleopore,Track-Etch Membrane)挤出,以获得均匀囊泡。General method for liposome preparation for native chemical attachment: Prepare pH 7.8 200 mM sodium phosphate buffer containing 2 mM tris(2-carboxyethyl)phosphine (TCEP) and 0.3% EDTA. The buffer was degassed for 1 h. Cysteine-containing peptides (1 equiv), thioesters (2 equiv), and dodecylposphocholine (13 equiv) were dissolved in 1:1 CHCl3:trifluoroethanol and the solvent removed. The lipid/peptide films were subsequently hydrated in an incubator at 41 °C for 4 hours. The mixture was sonicated and the peptide/lipid suspension was extruded through a 1.0 μm polycarbonate membrane (Whatman, Nucleopore, Track-Etch Membrane) at 50 °C to obtain homogeneous vesicles.
糖基化三组分疫苗候选物1的合成:将肽硫酯X (1.1 mg,0.674 μmol)、肽X (1.0mg,0.337 μmol)和十二烷基磷酸胆碱(1.5 mg,4.38 μmol)溶解于1:1 CHCl3:三氟乙醇的混合物(5 mL)中。将溶剂在减压下去除,以给出脂质/肽薄膜。使用含有2 mM TCEP和0.3%EDTA的200 mM磷酸钠缓冲液,将脂质/肽薄膜在41℃水合4小时。将混合物超声处理,将肽/脂质悬液在50℃通过1.0 μm聚碳酸酯膜(Whatman,Nucleopore,Track-Etch Membrane)挤出,以获得均匀囊泡。向囊泡悬液中加入2-巯基乙磺酸钠(1 mM),以起始反应(1.5 mM最终肽浓度)。在20分钟后,使用经过40分钟时期的0-100% B的A溶液梯度,通过在分析型C-4反相柱上的RP-HPLC纯化反应混合物。合适流分的冻干提供1 (1.2 mg,80%)。C217H367N45O53S2HR MALDI-ToF MS:观察到的;计算的4515.685 [M+]。Synthesis of Glycosylated Three-Component Vaccine Candidate 1: Peptide Thioester X (1.1 mg, 0.674 μmol), Peptide X (1.0 mg, 0.337 μmol) and Dodecylphosphocholine (1.5 mg, 4.38 μmol) Dissolve in a 1:1 mixture of CHCl3:trifluoroethanol (5 mL). The solvent was removed under reduced pressure to give lipid/peptide films. Lipid/peptide films were hydrated at 41°C for 4 hr using 200 mM sodium phosphate buffer containing 2 mM TCEP and 0.3% EDTA. The mixture was sonicated and the peptide/lipid suspension was extruded through a 1.0 μm polycarbonate membrane (Whatman, Nucleopore, Track-Etch Membrane) at 50 °C to obtain homogeneous vesicles. Sodium 2-mercaptoethanesulfonate (1 mM) was added to the vesicle suspension to initiate the reaction (1.5 mM final peptide concentration). After 20 minutes, the reaction mixture was purified by RP-HPLC on an analytical C-4 reverse phase column using a gradient of 0-100% B in A over a 40 minute period. Lyophilization of the appropriate fractions provided 1 (1.2 mg, 80%). C217H367N45O53S2HR MALDI - ToF MS: Observed; Calculated 4515.685 [M + ].
用于免疫接种的脂质体制备的一般方法:通过合成化合物、卵磷脂酰胆碱、磷脂酰甘油和胆固醇的薄膜在含有NaCl (145 mM)的HEPES缓冲液(10 mM,pH 7.4)中的水合和随后的经由0.1 µm Nucleopore®聚碳酸酯膜的挤出,将每种糖脂肽掺入基于磷脂的小型单层囊泡(SUV)内。General method for the preparation of liposomes for immunization: Thin films of synthetic compounds, egg phosphatidylcholine, phosphatidylglycerol and cholesterol in HEPES buffer (10 mM, pH 7.4) containing NaCl (145 mM) Hydration and subsequent extrusion through a 0.1 µm Nucleopore® polycarbonate membrane incorporates each glycolipopeptide into small phospholipid-based unilamellar vesicles (SUVs).
免疫接种:用三组分疫苗构建体(25 μg,含有3 μg碳水化合物)的脂质体制剂和缺乏肿瘤相关MUC1表位的各自对照,将表达人MUC1的8到12周龄MUC1.Tg小鼠(C57BL/6;H-2b)以每两周一次的间隔在尾的底部皮内免疫接种三次。在35天后,将小鼠用表达MUC1和Tn的MMT乳房肿瘤细胞(1×106个细胞)攻击。在第42天时,在肿瘤细胞注射后一周,给予再一次免疫接种。在第49天时,在最后一次免疫接种后一周,将小鼠处死,并且测定疫苗的功效。Immunization: 8- to 12-week-old MUC1.Tg mice expressing human MUC1 were challenged with liposomal formulations of the three-component vaccine construct (25 μg, containing 3 μg carbohydrate) and respective controls lacking tumor-associated MUC1 epitopes. Mice (C57BL/6; H-2b) were immunized three times intradermally at the base of the tail at biweekly intervals. After 35 days, mice were challenged with MMT breast tumor cells ( 1 x 106 cells) expressing MUCl and Tn. On day 42, one week after tumor cell injection, another immunization was given. On day 49, one week after the last immunization, mice were sacrificed and the efficacy of the vaccine was determined.
肿瘤触诊:在第三次免疫接种后7天,用在100 µL PBS中的1×106个癌细胞在左胁中皮下注射MUC1.Tg小鼠。通过测径器测量可触知肿瘤,并且根据下式计算肿瘤重量:克=[(长度)X(宽度)2]/ 2,其中长度和宽度以厘米测量。在终点时,将肿瘤手术切除并测量肿瘤重量。Tumor palpation: 7 days after the third immunization, MUC1.Tg mice were injected subcutaneously in the left flank with 1 x 106 cancer cells in 100 µL of PBS. Palpable tumors were measured by calipers, and tumor weights were calculated according to the formula: grams = [(length) x (width)2]/2, where length and width are measured in centimeters. At endpoint, tumors were surgically excised and tumor weights were measured.
51铬(Cr)释放测定:使用以100:1比的作为效应细胞的无任何体外刺激的来自TDLN的CD8+ T细胞和作为靶细胞的用各自肽脉冲的51Cr标记的DC,通过标准51Cr释放方法持续6小时而测定细胞裂解活性。在与效应物一起温育前,将靶细胞用100 µCi 51Cr (AmershamBiosciences)/106个靶细胞载装2小时。使用Topcount Microscintillation Counter(Packard Biosciences)测定放射性51Cr释放,并且计算特异性裂解:(实验cpms – 自发cpms/完全cpms – 自发cpms)x 100。自发裂解是总裂解的<15%。 51 Chromium (Cr) release assay: Using CD8 + T cells from TDLN without any in vitro stimulation as effector cells at a ratio of 100:1 and 51 Cr-labeled DCs pulsed with the respective peptides as target cells, passed standard 51 The Cr release method lasted 6 hours to measure the cell lytic activity. Target cells were loaded with 100 µCi 51 Cr (Amersham Biosciences)/10 6 target cells for 2 hours prior to incubation with effectors. Radioactive51Cr release was measured using a Topcount Microscintillation Counter (Packard Biosciences) and specific cleavage was calculated: (Experimental cpms - Spontaneous cpms/Complete cpms - Spontaneous cpms) x 100. Spontaneous lysis was <15% of total lysis.
抗体依赖性细胞介导的细胞毒性(ADCC)的测定:将肿瘤细胞(Yac-MUC1或C57mg.MUC1)用100 µCi 51Cr在37℃标记2小时,洗涤并与5 µg/mL的对照抗体(小鼠IgG)或得自疫苗接种小鼠的血清(25个稀释度中的1个)一起在37℃温育30分钟。具有高表达的CD16受体的NK细胞(KY-1克隆,来自Dr. Wayne M. Yokoyama,Washington University,St.Louis的慷慨赠品)用作效应物。在测定前这些细胞用IL-2 (200单位/mL)刺激24小时。以50:1的效应物:靶细胞比,将效应细胞与抗体标记的肿瘤细胞一起接种于96孔培养板(Costar高结合板)中4小时。通过Top Count测定在上清液中的51Cr释放。将51Cr的自发释放和最大释放测定,并低于20%。测定特异性释放的百分比:(释放-自发释放/最大释放-自发释放)x100。Determination of antibody-dependent cell-mediated cytotoxicity (ADCC): Tumor cells (Yac-MUC1 or C57mg.MUC1) were labeled with 100 µCi 51 Cr at 37°C for 2 hours, washed and mixed with 5 µg/mL of a control antibody ( Mouse IgG) or sera from vaccinated mice (1 out of 25 dilutions) were incubated at 37°C for 30 minutes. NK cells with high expression of the CD16 receptor (KY-1 clone, a generous gift from Dr. Wayne M. Yokoyama, Washington University, St. Louis) were used as effectors. These cells were stimulated with IL-2 (200 units/mL) for 24 hours before the assay. Effector cells were seeded together with antibody-labeled tumor cells in 96-well culture plates (Costar High Binding Plates) at an effector:target cell ratio of 50:1 for 4 hours. 51 Cr release in the supernatant was determined by Top Count. The spontaneous release and maximum release of 51 Cr were measured and were less than 20%. The percentage of specific release was determined: (release-spontaneous release/maximum release-spontaneous release) x 100.
IFN-γ ELISPOT测定:在处死时,从处理的MUC1.Tg小鼠中分离来自TDLN的MAC分选的CD4+和CD8+ T细胞,并且在IFN-γ ELISPOT测定中用作应答者。通过ZellNetConsulting,Inc.(Fort Lee,NJ),使用计算机辅助的视频图像分析测定斑点数目。来自用Concavalin A刺激的C57BL/6小鼠的脾细胞用作阳性对照。IFN-γ ELISPOT Assay: At sacrifice, MAC-sorted CD4 + and CD8 + T cells from TDLN were isolated from treated MUC1.Tg mice and used as responders in the IFN-γ ELISPOT assay. The number of spots was determined using computer-aided video image analysis by ZellNet Consulting, Inc. (Fort Lee, NJ). Splenocytes from C57BL/6 mice stimulated with Concavalin A were used as positive controls.
血清学测定:如先前描述的(Buskas等人,2004,Chemistry,10(14):3517-24),通过酶联免疫吸附测定(ELISA)测定抗MUC-1 IgG、IgG1、IgG2a、IgG2b、IgG3和IgM抗体滴度。简言之,将ELISA板(Thermo Electron Corp.)用通过马来酰亚胺接头缀合至BSA的MUC-1糖肽缀合物(BSA-MI-MUC-1)包被。允许血清的系列稀释液结合固定的MUC-1。通过加入磷酸酯缀合的抗小鼠IgG (Jackson ImmunoResearch Laboratories Inc.)、IgG1 (Zymed)、IgG2a(Zymed)、IgG2b (Zymed)、IgG3 (BD Biosciences Pharmingen)、或IgM (JacksonImmunoResearch Laboratories Inc.)抗体完成检测。在加入对硝基苯基磷酸酯(Sigma)后,使用微板读数器(BMG Labtech)在405 nm处测量吸光度,其中波长校正设在490 nm处。如下测定针对T (脊髓灰质炎)表位的抗体滴度。使Reacti-bind NeutrAvidin包被和预封闭的板(Pierce)与生物素标记的T表位(10 µg/mL;100 μL/孔)一起温育2小时。接下来,允许血清的系列稀释液结合固定的T表位。如上所述完成检测。抗体滴度定义为获得相对于正常对照小鼠血清光密度为0.1或更大的最高稀释度。Serological assays: Anti-MUC-1 IgG, IgG1, IgG2a, IgG2b, IgG3 by enzyme-linked immunosorbent assay (ELISA) as previously described (Buskas et al., 2004, Chemistry , 10(14):3517-24) and IgM antibody titers. Briefly, ELISA plates (Thermo Electron Corp.) were coated with MUC-1 glycopeptide conjugate (BSA-MI-MUC-1 ) conjugated to BSA via a maleimide linker. Serial dilutions of sera were allowed to bind immobilized MUC-1. By adding phosphate-conjugated anti-mouse IgG (Jackson ImmunoResearch Laboratories Inc.), IgG1 (Zymed), IgG2a (Zymed), IgG2b (Zymed), IgG3 (BD Biosciences Pharmingen), or IgM (Jackson ImmunoResearch Laboratories Inc. ) antibodies Complete the test. After addition of p-nitrophenyl phosphate (Sigma), absorbance was measured at 405 nm using a microplate reader (BMG Labtech) with wavelength correction set at 490 nm. Antibody titers against T (polio) epitopes were determined as follows. Reacti-bind NeutrAvidin coated and pre-blocked plates (Pierce) were incubated with biotinylated T-epitopes (10 µg/mL; 100 µL/well) for 2 hours. Next, serial dilutions of sera are allowed to bind the immobilized T epitopes. Assays were done as described above. Antibody titers were defined as the highest dilution that achieved an optical density of 0.1 or greater relative to normal control mouse serum.
抑制ELISA:为了探究相应糖肽、肽和糖对MAb与MUC(Tn)的结合的竞争性抑制,将血清样品以这样的方式在稀释缓冲液中稀释,所述方式使得在没有抑制剂的情况下,预期的最终光密度值是约1。对于每个孔,将60 µL稀释的血清样品在未包被的微量滴定板中与60 µL稀释缓冲液、以0-500 µM的终浓度溶于稀释缓冲液中的糖肽6 (MUC(Tn))、肽7 (未糖基化的MUC1)或Tn-单体混合。在室温温育30分钟后,将100 µl混合物转移至由BSA-MI-MUC1(Tn)包被的板。对于总IgG使用碱性磷酸酶缀合的检测抗体,如上所述将微量滴定板温育并显色。将光密度值针对用单独的单克隆抗体(0 µM抑制剂,100%)获得的光密度值标准化。Inhibition ELISA: To investigate the competitive inhibition of MAb binding to MUC(Tn) by corresponding glycopeptides, peptides and sugars, serum samples were diluted in dilution buffer in such a way that in the absence of inhibitor Below, the expected final optical density value is about 1. For each well, mix 60 µL of diluted serum samples in an uncoated microtiter plate with 60 µL of dilution buffer, glycopeptide 6 (MUC(Tn )), peptide 7 (unglycosylated MUC1) or Tn-monomer mix. After 30 minutes of incubation at room temperature, 100 µl of the mixture was transferred to a plate coated with BSA-MI-MUC1(Tn). For total IgG using an alkaline phosphatase-conjugated detection antibody, microtiter plates were incubated and developed as described above. Optical density values were normalized to those obtained with monoclonal antibodies alone (0 µM inhibitor, 100%).
树突状细胞(DC)制备:如先前描述的(Inaba等人,1992,J Exp Med;176(6):1693-702和Mukherjee,2003,J Immunother;26:47-62),由小鼠骨髓培养物制备DC。Dendritic cells (DC) preparation: as previously described (Inaba et al., 1992, J Exp Med ; 176(6):1693-702 and Mukherjee, 2003 , J Immunother ; 26:47-62), from mice DCs were prepared from bone marrow cultures.
细胞因子测定:在暴露测定当天时,将成熟DC作为4×106个细胞/孔以1.8 mL在24孔组织培养板中铺板。随后将细胞与不同刺激物(200 μL,10X)一起在2 mL/孔的最终体积中温育24小时。刺激物以广泛的浓度范围(对于脂质体中的1、5或6,对应于0.1 ng/mL-100µg/mL PAM3CysSK4的终浓度,和对于大肠杆菌LPS,对应于0.001 ng/mL-10 µg/mL的终浓度)给予。收集上清液。对于ATP对IL-1β分泌的作用的评价,将DC在相同体积的含有ATP (5 mM;Sigma)的培养基中再温育30分钟,这之后收获上清液。将所有收集的培养上清液冷冻(负80℃)贮存。Cytokine assays: On the day of the exposure assay, mature DCs were plated as 4 x 106 cells/well in 1.8 mL in 24-well tissue culture plates. Cells were then incubated with different stimuli (200 μL, 10X) for 24 hours in a final volume of 2 mL/well. The stimuli were prepared at a wide concentration range (corresponding to a final concentration of 0.1 ng/mL-100 µg/mL PAM 3 CysSK 4 for 1, 5, or 6 in liposomes, and 0.001 ng/mL for E. coli LPS -10 µg/mL final concentration) was administered. Collect the supernatant. For the evaluation of the effect of ATP on IL-1β secretion, DCs were incubated for an additional 30 minutes in the same volume of medium containing ATP (5 mM; Sigma), after which supernatants were harvested. All collected culture supernatants were stored frozen (minus 80°C).
细胞因子ELISA在96孔MaxiSorp板(Nalge Nunc International)中执行。根据制造商的说明书,将细胞因子DuoSet ELISA Development试剂盒(R&D Systems)用于小鼠TNF-α、RANTES、IL-6、IL-1β、IL-10、IP-10、IL-12 p70和IL-12/23 p40的细胞因子定量。使用微板读数器(BMG Labtech),在450 nm处测量吸光度,其中波长校正设至540 nm。如下测定在培养上清液中的小鼠IFN-β浓度。将板用针对小鼠IFN-β的兔多克隆抗体(PBLBiomedical Laboratories)包被。允许在标准品(PBL Biomedical Laboratories)和样品中的IFN-β结合固定化抗体。随后加入大鼠抗小鼠IFN-β抗体(USBiological)。接下来,加入HRP缀合的山羊抗大鼠IgG (H+L)抗体(Pierce)和HRP的生色底物3,3’,5,5’-四甲基联苯胺(Pierce)。在反应停止后,在450 nm处测量吸光度,其中波长校正设至540 nm。细胞因子值表示为pg细胞因子/mL。在Prism (GraphPad Software,Inc.)中使用非线性最小二乘法曲线拟合分析浓度-应答数据。用下述四参数逻辑斯谛方程拟合这些数据:Y = Emax /(1 +(EC50/X)Hill斜率),其中Y是细胞因子应答,X是刺激物的浓度,Emax是最大应答(坪值),并且EC50是产生50%刺激的刺激物浓度。Hill斜率设为1,以能够比较不同诱导物的EC50值。Cytokine ELISA was performed in 96-well MaxiSorp plates (Nalge Nunc International). Cytokine DuoSet ELISA Development Kit (R&D Systems) was used for mouse TNF-α, RANTES, IL-6, IL-1β, IL-10, IP-10, IL-12 p70 and IL according to the manufacturer’s instructions Cytokine quantification of -12/23 p40. Absorbance was measured at 450 nm using a microplate reader (BMG Labtech) with wavelength correction set to 540 nm. The concentration of mouse IFN-β in the culture supernatant was determined as follows. Plates were coated with rabbit polyclonal antibody against mouse IFN-[beta] (PBL Biomedical Laboratories). Antibodies were immobilized to allow IFN-β binding in standards (PBL Biomedical Laboratories) and samples. Rat anti-mouse IFN-β antibody (US Biological) was then added. Next, HRP-conjugated goat anti-rat IgG (H+L) antibody (Pierce) and the chromogenic substrate for HRP, 3,3',5,5'-tetramethylbenzidine (Pierce), were added. After the reaction was stopped, absorbance was measured at 450 nm with wavelength correction set to 540 nm. Cytokine values are expressed as pg cytokine/mL. Concentration-response data were analyzed using nonlinear least squares curve fitting in Prism (GraphPad Software, Inc.). These data were fitted with the following four-parameter logistic equation: Y= Emax /(1+( EC50 /X) Hill slope ), where Y is the cytokine response, X is the concentration of the stimulus, and Emax is the maximum Response (plateau), and EC50 is the stimulus concentration that produces 50% stimulation. Hill slope was set at 1 to enable comparison of EC50 values of different inducers.
统计分析:使用单向方差分析(ANOVA)与Bonferroni多重比较检验执行多重比较。当P <0.05时,差异视为显著的。对于在两个组之间的比较,使用双尾斯氏t检验与95%置信区间分析数据。P-值 <0.05视为统计上显著的。Statistical analysis: Multiple comparisons were performed using one-way analysis of variance (ANOVA) with Bonferroni's multiple comparison test. Differences were considered significant when P < 0.05. For comparisons between two groups, data were analyzed using a two-tailed Student's t -test with 95% confidence intervals. P -values <0.05 were considered statistically significant.
实施例9Example 9
第二种TLR激动剂的添加Addition of a second TLR agonist
这个实施例测定第二种TLR激动剂CpG的添加对免疫接种的有效性的作用。遵循实施例8中更详细地描述的程序,将表达人MUC1的老年MUC1.Tg小鼠(C57BL/6;H-2b)用下述物质的制剂免疫接种:化合物2 (Pam3CysSK4-T辅助细胞表位(脊髓灰质炎)- MUC1(未糖基化的));化合物1 (Pam3CysSK4-T辅助细胞表位(脊髓灰质炎)- MUC1(Tn));化合物1加上CpG(CpG 寡脱氧核苷酸(CpG ODN)));化合物5 (Pam3CysSK4)加上化合物4 (T辅助细胞表位(脊髓灰质炎)- MUC1(Tn));化合物5;化合物3 (Pam3CysSK4-T辅助细胞表位(脊髓灰质炎));化合物3加上CpG;EL (空脂质体)加上CpG;或EL。化合物1、2、3、4和5的结构显示于图16中。使用标准免疫接种时间表,将化合物与TLR9激动剂CpG一起共施用。如图23-25中所示,TLR9配体CpG的组合的施用进一步改善三组分疫苗1的抗肿瘤性质。具体地,第二种激动剂的添加导致肿瘤重量的显著的进一步减少(图23),并诱导更有效的免疫应答(图24和25)。This example determines the effect of the addition of a second TLR agonist, CpG, on the effectiveness of immunization. Following the procedure described in more detail in Example 8, aged MUCl.Tg mice (C57BL/6; H-2b) expressing human MUCl were immunized with a preparation of Compound 2 (Pam 3 CysSK 4 -T Helper Epitope (Polio) - MUC1(unglycosylated)); Compound 1 (Pam 3 CysSK 4 -T Helper Epitope (Polio) - MUC1(Tn)); Compound 1 plus CpG (CpG oligodeoxynucleotide (CpG ODN))); compound 5 (Pam 3 CysSK 4 ) plus compound 4 (T helper cell epitope (polio)-MUC1(Tn)); compound 5; compound 3 ( Pam 3 CysSK 4 -T helper epitope (polio)); Compound 3 plus CpG; EL (empty liposome) plus CpG; or EL. The structures of compounds 1, 2, 3, 4 and 5 are shown in FIG. 16 . Compounds were co-administered with the TLR9 agonist CpG using a standard immunization schedule. As shown in Figures 23-25, administration of the combination of TLR9 ligands CpGs further improved the anti-tumor properties of the three-component vaccine 1 . Specifically, the addition of the second agonist resulted in a significant further reduction in tumor weight (Figure 23) and induced a more potent immune response (Figures 24 and 25).
实施例10Example 10
在具有MMT肿瘤的MUC1.Tg小鼠中,三组分MUC1糖肽疫苗诱导体液和细胞免疫应答两者In MUC1.Tg mice bearing MMT tumors, a three-component MUC1 glycopeptide vaccine induces both humoral and cellular immune responses
用于癌症的有效免疫治疗取决于针对肿瘤抗原的细胞和体液免疫应答两者。在乳腺癌上以增加水平表达的MUC1也显示出改变的糖基化,其促成新抗原的形成。衍生自肿瘤相关MUC1的MHC I和II类结合肽的鉴定已促进基于MUC1的癌症疫苗的开发。当随着用佐剂进行的乳化给予时,来自MUC1串联重复的MHC I类结合表位导致强细胞应答,而无抗体应答。有可能的是,使用个体对于其可能更不耐受的更加代表如癌症所见到的新形式MUC1的糖肽,获得更佳的免疫原性,以及疫苗组分的直接连接会导致比将其作为混合物递送更佳的免疫应答。这个实施例显示由TLR2激动剂、辅助表位和T细胞表位(其也是衍生自MUC1的B细胞表位)组成的三组分疫苗,可以破坏耐受且引发体液和细胞免疫应答两者。与仅用佐剂和空脂质体处理的小鼠相比较,用MUC1糖肽疫苗免疫接种导致肿瘤负荷的显著减少。三组分疫苗激活MUC1糖肽特异性细胞毒性CD8+ T细胞,并且引发强滴度的介导通过ADCC裂解有关肿瘤细胞的IgG抗体。Effective immunotherapy for cancer depends on both cellular and humoral immune responses to tumor antigens. MUCl, expressed at increased levels on breast cancer, also exhibits altered glycosylation that contributes to the formation of neoantigens. The identification of MHC class I and II binding peptides derived from tumor-associated MUCl has facilitated the development of MUCl-based cancer vaccines. MHC class I binding epitopes from MUCl tandem repeats resulted in strong cellular responses, but no antibody responses, when administered with emulsification with adjuvant. It is possible that using a glycopeptide more representative of the new form of MUCl as seen in cancer, to which an individual may be less tolerant, would result in better immunogenicity, and the direct linking of vaccine components would result in a better immunogenicity than its Delivers a better immune response as a mixture. This example shows that a three-component vaccine consisting of a TLR2 agonist, a helper epitope, and a T-cell epitope (which is also a B-cell epitope derived from MUCl ) can break tolerance and elicit both humoral and cellular immune responses. Immunization with the MUC1 glycopeptide vaccine resulted in a significant reduction in tumor burden compared to mice treated with adjuvant and empty liposomes only. The three-component vaccine activated MUC1 glycopeptide-specific cytotoxic CD8+ T cells and elicited strong titers of IgG antibodies that mediated lysis of associated tumor cells via ADCC.
用三组分疫苗化合物1 (Pam3CysSK4-T辅助细胞-MUC1)和LAA-T辅助细胞-MUC1(其含有免疫沉默脂质)和作为对照的化合物2 ((Pam3CysSK4-T辅助细胞)和LAA-T辅助细胞(这两者都缺乏肿瘤相关MUC1表位)的脂质体制剂,将表达人MUC1的MUC1.Tg小鼠(C57BL/6;H-2b)以每两周一次的间隔免疫接种三次。化合物的结构显示于图26中。在35天后,将小鼠用表达MUC1和Tn的MMT乳房肿瘤细胞攻击。免疫接种时间表显示于图27中。在最后一次免疫接种后三周,将小鼠处死,并且通过肿瘤负荷、细胞介导的免疫应答和抗体介导的免疫应答测定疫苗的功效。与LAA-T辅助细胞-MUC1(缺乏TLR2激动剂的化合物)和各自的对照化合物2(TLR2激动剂–T辅助细胞表位)和空脂质体相比较,用三组分糖基化疫苗化合物1免疫接种导致肿瘤质量的显著减少(参见图28)。三组分糖基化疫苗化合物1引发强滴度的介导通过ADCC裂解有关肿瘤细胞的IgG抗体(参见图30和31)。如通过铬释放测定所测定的,来自免疫接种的荷有MMT肿瘤的小鼠的经分选CD8+ T细胞的裂解潜力显示:与各自的对照化合物2((Pam3CysSK4-T辅助细胞)和EL以及缺乏TLR2配体的LAA-T辅助细胞-MUC1化合物相比较,用三组分糖基化疫苗免疫接种显示显著更大的裂解(参见图29)。这是引发细胞和体液应答两者的首个疫苗制剂。A three-component vaccine compound 1 (Pam 3 CysSK 4 -T helper-MUC1) and LAA-T helper-MUC1 (which contains immune silencing lipids) and compound 2 ((Pam 3 CysSK 4 -T helper cells) and LAA-T helper cells (both of which lack tumor-associated MUC1 epitopes), MUC1.Tg mice (C57BL/6; H-2b) expressing human MUC1 were administered biweekly The interval of immunization was three times. The structure of the compound is shown in Figure 26. After 35 days, the mice were challenged with MMT mammary tumor cells expressing MUC1 and Tn. The immunization schedule is shown in Figure 27. After the last immunization Three weeks, the mice were sacrificed, and the efficacy of the vaccine was determined by tumor burden, cell-mediated immune response and antibody-mediated immune response.Comparison with LAA-T helper cells-MUC1 (compound lacking TLR2 agonist) and respective Immunization with the three-component glycosylated vaccine compound 1 resulted in a significant reduction in tumor mass compared to the control compound 2 (TLR2 agonist – T helper epitope) and empty liposomes (see Figure 28). Compound 1 elicited strong titers of IgG antibodies mediating lysis of associated tumor cells by ADCC (see Figures 30 and 31). As determined by chromium release assay, MMT tumor-bearing mice from immunized The lytic potential of sorted CD8+ T cells was shown: compared with the respective control compound 2 ((Pam 3 CysSK 4 -T helper) and EL and the LAA-T helper-MUC1 compound lacking TLR2 ligands, with three groups Glycosylated vaccine immunizations showed significantly greater lysis (see Figure 29). This is the first vaccine formulation to elicit both cellular and humoral responses.
实施例11Example 11
利用人MUC1 T辅助细胞序列的合成三组分构建体Synthetic three-component constructs utilizing human MUC1 T helper cell sequences
对于I-Ab、H2-Kb和H2-Db结合表位的预测,主要查询Rankpe (Harvard,MA)位置特异性计分矩阵(Position Specific Scoring Matrices, PSSM)程序。逆向查询第二种程序SYPEITHI (Institute for Cell Biology,Heidelberg,德国),以交叉验证H2-Kb和H2-Db结合表位。图32展示关于人MUC1衍生肽与小鼠I-Ab 15聚体以及H2-Db和H2-Kb 9聚体的结合的分析。许多鼓舞人心的预测是明显的。虚线显示了显示关于与I-Ab结合的RANKPEP得分的15聚体。指定了显示关于与H2-D b(dddd)或H2-Kb (kkkk)的结合或与两种(bbbb)的非种系选择性结合的RANKPEP得分的9聚体。For the prediction of IA b , H2-K b and H2-D b binding epitopes, the Rankpe (Harvard, MA) Position Specific Scoring Matrices (PSSM) program was primarily queried. A second program, SYPEITHI (Institute for Cell Biology, Heidelberg, Germany), was reverse-queried to cross-validate H2-Kb and H2-Db binding epitopes. Figure 32 shows an analysis of the binding of human MUCl -derived peptides to mouse IA b 15mers and H2- Db and H2-Kb 9mers. Many encouraging predictions are evident. Dashed lines show 15mers showing RANKPEP scores for binding to IAb . 9mers showing RANKPEP scores for binding to H2- Db (dddd) or H2-Kb (kkkk) or non-germline selective binding to both (bbbb) are assigned.
针对对CD4和CD8细胞的干扰素γ产生的诱导,测试通过这种分析鉴定的化合物。将小鼠用图33A中所述的肽免疫接种,并且通过细胞分选获得表达低水平CD62L的淋巴结衍生的T细胞,并且在用免疫接种肽脉冲的DC的存在下培养14天。在暴露用y轴上所列出的肽脉冲的DC后,就CD4+IFNγ+和CD8+IFNγ+ T细胞的存在情况通过细胞内细胞因子分析所得到的细胞(图33B)。用糖基化21聚体(肽C)免疫接种引发针对它自己以及非糖基化15聚体(肽A)和21聚体(肽B)的强特异性CD4+和CD8+应答。Compounds identified by this assay were tested for induction of interferon gamma production on CD4 and CD8 cells. Mice were immunized with the peptides described in Figure 33A, and lymph node-derived T cells expressing low levels of CD62L were obtained by cell sorting and cultured for 14 days in the presence of DC pulsed with the immunization peptides. After exposure to DCs pulsed with the peptides listed on the y-axis, the resulting cells were analyzed by intracellular cytokines for the presence of CD4 + IFNγ + and CD8 + IFNγ + T cells ( FIG. 33B ). Immunization with the glycosylated 21mer (peptide C) elicited strong specific CD4 + and CD8 + responses against itself as well as the aglycosylated 15mer (peptide A) and 21mer (peptide B).
已产生了利用图34中所示的人MUC1 T辅助细胞序列的多种合成构建体。遵循实施例8-10中更详细地描述的程序,将表达人MUC1的MUC1.Tg小鼠(C57BL/6;H-2 b)用图33和34中所示的构建体免疫接种。遵循实施例8-10中更详细地描述的程序,测定构建体在减少肿瘤重量、引发IgG抗体、介导通过ADCC裂解肿瘤细胞、引发CD8+细胞毒性活性和产生IFN-γ及其他细胞因子方面的有效性。Various synthetic constructs utilizing the human MUCl T helper sequence shown in Figure 34 have been generated. Following the procedures described in more detail in Examples 8-10, MUCl.Tg mice expressing human MUCl (C57BL/6; H- 2b ) were immunized with the constructs shown in Figures 33 and 34 . Following the procedures described in more detail in Examples 8-10, the constructs were assayed for reducing tumor weight, eliciting IgG antibodies, mediating lysis of tumor cells by ADCC, eliciting CD8+ cytotoxic activity, and producing IFN-γ and other cytokines. effectiveness.
实施例12Example 12
通过使用完全合成的三组分免疫原产生的针对碳水化合物和糖肽的单克隆抗体Monoclonal antibodies against carbohydrates and glycopeptides generated by using a fully synthetic three-component immunogen
糖缀合物是在自然界中在功能和结构上最多样的分子,并且目前充分确定蛋白质和脂质结合的糖在影响真核生物学和疾病的许多分子过程中起基本作用。此类过程的例子包括受精、胚胎发生、神经元发育、激素活性、细胞增殖及其组构成特定组织。细胞-表面碳水化合物中的显著变化随着肿瘤进展出现,这看起来与转移密切相关。此外,碳水化合物能够诱导保护性抗体应答,这种免疫反应是生物在感染过程中存活的主要贡献者。Glycoconjugates are the most functionally and structurally diverse molecules in nature, and it is now well established that protein- and lipid-bound sugars play fundamental roles in many molecular processes affecting eukaryotic biology and disease. Examples of such processes include fertilization, embryogenesis, neuronal development, hormonal activity, cell proliferation and their organization into specific tissues. Significant changes in cell-surface carbohydrates occur with tumor progression, which appear to correlate strongly with metastasis. Furthermore, carbohydrates are able to induce protective antibody responses, an immune response that is a major contributor to the survival of organisms during infection.
糖不能激活辅助T淋巴细胞已使其作为疫苗的开发变复杂。对于大多数免疫原(包括碳水化合物),抗体产生依赖于两类淋巴细胞B细胞和辅助T细胞的协同相互作用(Jennings,Neoglyconjugates:Preparation and Applications 325-371(AcademicPress,Inc.,1994);Kuberan,Curr. Org. Chem. 2000,4,653-677)。糖单独不能激活辅助T细胞,因此具有有限的免疫原性,如通过低亲和力IgM抗体和IgG抗体的不存在所体现的。为了克服碳水化合物的T细胞独立性质,过去研究已集中于糖与外源载体蛋白质(例如匙孔血蓝蛋白(KLH)、去毒破伤风类毒素)的缀合(Jennings,Neoglyconjugates:Preparation andApplications 325-371(Academic Press,Inc.,1994);Kuberan,Curr. Org. Chem. 2000,4,653-677;Jones,An. Acad. Bras. Cienc. 2005,77,293-324)。在这种方法中,载体蛋白质增强碳水化合物向免疫系统的呈递,并提供可以激活T辅助细胞的T表位(12-15个氨基酸的肽片段)。因此,完成从低亲和力IgM到高亲和力IgG抗体的类别转换。这种方法已成功地应用于开发缀合物疫苗,以预防流感嗜血菌感染。The inability of sugar to activate helper T lymphocytes has complicated its development as a vaccine. For most immunogens, including carbohydrates, antibody production relies on the cooperative interaction of two classes of lymphocytes, B cells and helper T cells (Jennings, Neoglyconjugates: Preparation and Applications 325-371 (Academic Press, Inc., 1994); Kuberan , Curr. Org. Chem. 2000, 4, 653-677). Sugars alone are unable to activate helper T cells and therefore have limited immunogenicity, as manifested by the absence of low affinity IgM and IgG antibodies. To overcome the T cell-independent nature of carbohydrates, past studies have focused on conjugation of carbohydrates to exogenous carrier proteins such as keyhole limpet hemocyanin (KLH), detoxified tetanus toxoid (Jennings, Neoglyconjugates: Preparation and Applications 325 -371 (Academic Press, Inc., 1994); Kuberan, Curr. Org. Chem. 2000, 4, 653-677; Jones, An. Acad. Bras. Cienc. 2005, 77, 293-324). In this approach, the carrier protein enhances the presentation of carbohydrates to the immune system and provides T epitopes (peptide fragments of 12-15 amino acids) that can activate T helper cells. Thus, a class switch from low-affinity IgM to high-affinity IgG antibodies is accomplished. This approach has been successfully applied to the development of conjugate vaccines to prevent H. influenzae infection.
由更苛求的碳水化合物抗原例如肿瘤相关碳水化合物和糖肽组成的碳水化合物-蛋白质缀合物候选疫苗未能引发高滴度的IgG抗体。这些结果并不令人惊讶,因为肿瘤相关糖具有低抗原性,因为它们是自身抗原,因而被免疫系统耐受。通过生长中的肿瘤的抗原脱落加固这种耐受性。此外,外源载体蛋白质例如KLH和BSA和将糖连接至载体蛋白质的接头可以引发强B细胞应答,这可以导致针对碳水化合物表位的抗体应答的抑制(Buskas,Chem.Eur. J. 2004,10,3517-3524;Ni,Bioconjug. Chem. 2006,17,493-500)。明确的是,基于碳水化合物的癌症疫苗的成功开发需要用于向免疫系统更有效呈递肿瘤相关碳水化合物表位,导致更有效的向IgG抗体的类别转换的新策略(Reichel,Chem. Commun. 1997,21,2087-2088;Alexander,J. Immunol. 2000,164,1625-1633;Kudryashov,Proc. Natl.Acad. Sci. U.S.A. 2001,98,3264-3269;Lo-Man,J. Immunol. 2001,166,2849-2854;Jiang,Curr. Med. Chem. 2003,10,1423-1439;Jackson,Proc. Natl. Acad. Sci.U.S.A. 2004,101,15440-5;Lo-Man,Cancer Res. 2004,64,4987-4994;Buskas,Angew.Chem. Int. Ed. 2005,44,5985-5988(实施例I);Dziadek,Angew. Chem. Int. Ed. 2005,44,7624-7630;Krikorian,Bioconjug. Chem. 2005,16,812-819;Pan,J. Med. Chem.2005,48,875-883)。Carbohydrate-protein conjugate vaccine candidates consisting of more demanding carbohydrate antigens such as tumor-associated carbohydrates and glycopeptides failed to elicit high titers of IgG antibodies. These results are not surprising since tumor-associated sugars are low antigenic because they are self-antigens and thus tolerated by the immune system. This tolerance is reinforced by antigen shedding by growing tumors. Furthermore, exogenous carrier proteins such as KLH and BSA and linkers linking sugars to carrier proteins can elicit strong B cell responses, which can lead to suppression of antibody responses against carbohydrate epitopes (Buskas, Chem. Eur. J. 2004, 10, 3517-3524; Ni, Bioconjug. Chem. 2006, 17, 493-500). It is clear that the successful development of carbohydrate-based cancer vaccines requires new strategies for more efficient presentation of tumor-associated carbohydrate epitopes to the immune system, resulting in more efficient class switching to IgG antibodies (Reichel, Chem. Commun. 1997 , 21, 2087-2088; Alexander, J. Immunol. 2000, 164, 1625-1633; Kudryashov, Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 3264-3269; Lo-Man, J. Immunol. 2001, 166, 2849-2854; Jiang, Curr. Med. Chem. 2003, 10, 1423-1439; Jackson, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15440-5; Lo-Man, Cancer Res. 64, 4987-4994; Buskas, Angew. Chem. Int. Ed. 2005, 44, 5985-5988 (Example 1); Dziadek, Angew. Chem. Int. Ed. 2005, 44, 7624-7630; Krikorian, Bioconjug 2005, 16, 812-819; Pan, J. Med. Chem. 2005, 48, 875-883).
如先前实施例中所示,由TLR2激动剂、非种系选择性肽T辅助细胞表位和肿瘤相关糖肽组成的三组分疫苗,可以在小鼠中引发特别高滴度的IgG抗体,其可以识别表达肿瘤相关碳水化合物的癌细胞(参见化合物21,图5,实施例6和化合物51,图15)(Ingale,Nat.Chem. Biol. 2007,3,663-667)。疫苗候选物的优良性质归因于细胞因子的局部产生、共刺激蛋白质的上调、通过巨噬细胞和树突状细胞的摄取增强和表位抑制的避免。As shown in previous examples, a three-component vaccine consisting of a TLR2 agonist, a non-germline-selective peptide T helper epitope, and a tumor-associated glycopeptide elicited particularly high titers of IgG antibodies in mice, It can recognize cancer cells expressing tumor-associated carbohydrates (see Compound 21, Figure 5, Example 6 and Compound 51, Figure 15) (Ingale, Nat. Chem. Biol. 2007, 3, 663-667). The superior properties of vaccine candidates have been attributed to local production of cytokines, upregulation of co-stimulatory proteins, enhanced uptake by macrophages and dendritic cells, and avoidance of epitope suppression.
本发明的三组分免疫原技术可用于生成针对弱抗原性碳水化合物和糖肽的单克隆抗体(MAb)。我们起初已集中于针对β-N-乙酰葡糖胺(β-O-GlcNAc)修饰肽的MAb (Wells,Science 2001,291,2376-2378;Whelan,Methods Enzymol. 2006,415,113-133;Zachara,Biochim. Biophys. Acta,2006,1761,599-617;Dias和Hart,Mol. Biosyst. 2007,3,766-772;Hart,Nature 2007,446,1017-1022;Lefebvre,Exp. Rev. Proteomics 2005,2,265-275)。后生动物中的众多核和细胞质蛋白质是在Ser和Thr残基上通过单糖β-O-GlcNAc修饰的。响应细胞外刺激的在O-GlcNAc水平上的快速和动态变化暗示O-GlcNAc在信号转导途径中的关键作用。O-GlcNAc水平的调节对细胞功能具有显著作用,这部分地通过在O-GlcNAc和O-磷酸酯之间的复杂相互影响介导。近来,O-GlcNAc已牵涉II型糖尿病的病因学、应激反应途径的调节和蛋白酶体的调节。这个令人兴奋的研究领域中的进展被试剂例如合适MAbs的缺乏严重阻碍。在这方面,仅一种具有相对广泛特异性的差性能IgM MAb (Comer,Anal.Biochem. 2001,293,169-177)是商购可得的(Covance Research Products Inc)。The three-component immunogen technology of the present invention can be used to generate monoclonal antibodies (MAbs) against weakly antigenic carbohydrates and glycopeptides. We have initially focused on MAbs directed against β- N -acetylglucosamine (β- O -GlcNAc) modified peptides (Wells, Science 2001, 291, 2376-2378; Whelan, Methods Enzymol. 2006, 415, 113-133; Zachara, Biochim. Biophys. Acta, 2006, 1761, 599-617; Dias and Hart, Mol. Biosyst. 2007, 3, 766-772; Hart, Nature 2007, 446, 1017-1022; Lefebvre, Exp. Rev. Proteomics 2005, 2, 265-275). Numerous nuclear and cytoplasmic proteins in metazoans are modified at Ser and Thr residues by the monosaccharide β- O -GlcNAc. Rapid and dynamic changes in O -GlcNAc levels in response to extracellular stimuli imply a critical role for O -GlcNAc in signal transduction pathways. Regulation of O -GlcNAc levels has profound effects on cellular function, mediated in part through complex interplay between O -GlcNAc and O -phosphate. Recently, O -GlcNAc has been implicated in the etiology of type II diabetes, regulation of stress response pathways and regulation of the proteasome. Progress in this exciting field of research is severely hampered by the lack of reagents such as suitable MAbs. In this regard, only one poorly performing IgM MAb with relatively broad specificity (Comer, Anal. Biochem. 2001, 293, 169-177) is commercially available (Covance Research Products Inc).
我们已设计并合成化合物52 (图15),其含有衍生自酪蛋白激酶II (CKII)的β-GlcNAc修饰的糖肽(Kreppel,J. Biol. Chem. 1999,274,32015-32022)作为B表位、衍生自脊髓灰质炎病毒的充分证明的鼠MHC II类限制性辅助T细胞表位KLFAVWKITYKDT (SEQ IDNO:3)、和嵌入佐剂Pam3CysSK4。此外,制备了具有人工的硫连接的GlcNAc部分的化合物53,预期其具有更佳的代谢稳定性。通过合成化合物、卵磷脂酰胆碱、磷脂酰甘油和胆固醇的薄膜在含有NaCl (145 mM)的HEPES缓冲液(10 mM,pH 6.5)中的水合和随后的经由100 nmNucleopore®聚碳酸酯膜的挤出,将化合物52和53掺入基于磷脂的小型单层囊泡(SUV)内。用含有3 μg糖的脂质体,将五只雌性BALB/c小鼠的组以每周一次间隔腹膜内免疫接种四次。We have designed and synthesized compound 52 (Figure 15), which contains a β-GlcNAc modified glycopeptide derived from casein kinase II (CKII) (Kreppel, J. Biol. Chem. 1999, 274, 32015-32022) as B epitope, the well documented murine MHC class II restricted helper T cell epitope KLFAVWKITYKDT (SEQ ID NO:3) derived from poliovirus, and the intercalating adjuvant Pam 3 CysSK 4 . In addition, compound 53 was prepared with an artificial sulfur-linked GlcNAc moiety, which is expected to have better metabolic stability. Hydration of thin films of synthetic compounds, egg phosphatidylcholine, phosphatidylglycerol, and cholesterol in HEPES buffer (10 mM, pH 6.5) containing NaCl (145 mM) and subsequent hydration via a 100 nm Nucleopore® polycarbonate membrane Compounds 52 and 53 were incorporated into phospholipid-based small unilamellar vesicles (SUVs) by extrusion. Groups of five female BALB/c mice were immunized four times intraperitoneally at weekly intervals with liposomes containing 3 μg of sugar.
通过用缀合至马来酰亚胺(MI)修饰的BSA的CGSTPVS(β-O-GlcNAc)SANM包被微量滴定板,测定抗糖肽抗体滴度,然后用由碱性磷酸酶标记的抗小鼠IgG抗体实现检测。如表10中可见,化合物52和53引发极佳滴度的抗MUC1 IgG抗体。此外,在O联和S联糖衍生物之间未观察到滴度的显著差异。Anti-glycopeptide antibody titers were determined by coating microtiter plates with CGSTPVS(β- O -GlcNAc)SANM conjugated to maleimide (MI)-modified BSA, followed by anti-glycopeptide labeled with alkaline phosphatase. Detection of mouse IgG antibody. As can be seen in Table 10, compounds 52 and 53 elicited excellent titers of anti-MUCl IgG antibodies. Furthermore, no significant differences in titers were observed between O -linked and S -linked saccharide derivatives.
表10. 在用两种不同制剂的4次免疫接种后的ELISA抗GSTPVS(β-O-GlcNAc)SANM(68)滴度a Table 10. ELISA anti- GSTPVS (β- O -GlcNAc) SANM(68) titers after 4 immunizations with two different formulationsa
a抗GSTPVS(β-O-GlcNAc)SANM (68)抗体滴度作为五只小鼠的组的平均值呈现。将ELISA板用BSA-MI-GSTPVS(β-O-GlcNAc)SANM(BSA-MI-66)缀合物包被,并且通过线性回归分析,标绘与吸光度比较的稀释度来测定滴度。滴度定义为获得相对于正常对照小鼠血清光密度为0.1或更大的最高稀释度。 a Anti-GSTPVS(β- O -GlcNAc)SANM (68) antibody titers are presented as the mean of a group of five mice. ELISA plates were coated with BSA-MI-GSTPVS(β- O -GlcNAc)SANM(BSA-MI-66) conjugate and titers were determined by linear regression analysis plotting dilutions compared to absorbance. Titer was defined as the highest dilution to obtain an optical density of 0.1 or greater relative to normal control mouse serum.
b 采用脂质体制剂。 b using liposome formulations.
c O-GlcNAc 52;Pam3CysSK4G-C-KLFAVWKITYKDT-G-GSTPVS(β-O-GluNAc)SANM。cO- GlcNAc52 ; Pam3CysSK4GC - KLFAVWKITYKDT - G-GSTPVS(β- O - GluNAc )SANM.
d S-GlcNAc 53;Pam3CysSK4G-C-KLFAVWKITYKDT-G-GSTPVS(β-S-GluNAc)SANM。dS- GlcNAc53 ; Pam3CysSK4GC - KLFAVWKITYKDT - G-GSTPVS(β- S - GluNAc )SANM.
对于IgM滴度,在52与53之间观察到统计上显著的差异(P = 0.0327)。For IgM titers, a statistically significant difference was observed between 52 and 53 ( P =0.0327).
关于总IgG、IgG1、IgG2a、IgG2b、IgG3和IgM的个别滴度在图36中报道。Individual titers for total IgG, IgGl, IgG2a, IgG2b, IgG3 and IgM are reported in Figure 36.
接下来,收获用O联糖脂肽52免疫接种的两只小鼠的脾脏,标准杂交瘤培养技术给出七个IgG1、七个IgG2a、两个IgG2b和十四个IgG3产生杂交瘤细胞系。使用ELISA和抑制ELISA研究所得到的MAb的配体特异性。所有MAb都识别连接至BSA的CGSTPVS(β-O-GlcNAc)SANM,而仅少数识别缀合至BSA的肽CGSTPVSSANM (SEQ ID NO:12)。此外,十九种MAb与BSA-MI-CGSTPVS(β-O-GlcNAc)SANM的相互作用可被糖肽GSTPVS(β-O-GlcNAc)SANM抑制。Next, spleens from two mice immunized with O -linked glycolipopeptide 52 were harvested, and standard hybridoma culture techniques gave seven IgG1, seven IgG2a, two IgG2b, and fourteen IgG3 producing hybridoma cell lines. The ligand specificity of the resulting MAbs was investigated using ELISA and inhibition ELISA. All MAbs recognized CGSTPVS(β- O -GlcNAc)SANM linked to BSA, while only a few recognized the peptide CGSTPVSSANM (SEQ ID NO: 12) conjugated to BSA. In addition, the interaction of nineteen MAbs with BSA-MI-CGSTPVS(β- O -GlcNAc)SANM could be inhibited by the glycopeptide GSTPVS(β- O -GlcNAc)SANM.
如WO 2010/002478(“Glycopeptide and Uses Thereof”)中更详细地描述的,杂交瘤细胞系1F5.D6、9D1.E4和18B10.C7于2008年7月1日保藏于美国典型培养物保藏中心(ATCC),10801 University Blvd.,Manassas,VA,20110-2209,USA,并且分别指定ATCC保藏号PTA-9339、PTA-9340和PTA-9341。然而,应当理解本文的书面说明书视为足以致使本领域技术人员能够完全实践本发明。此外,保藏实施方案预期作为本发明的一个方面的单个举例说明,并且不应解释为以任何方式限制权利要求的范围。The hybridoma cell lines 1F5.D6, 9D1.E4 and 18B10.C7 were deposited with the American Type Culture Collection on July 1, 2008 as described in more detail in WO 2010/002478 ("Glycopeptide and Uses Thereof") (ATCC), 10801 University Blvd., Manassas, VA, 20110-2209, USA, and assigned ATCC Deposit Nos. PTA-9339, PTA-9340, and PTA-9341, respectively. However, it should be understood that the written description herein is considered sufficient to enable those skilled in the art to fully practice the invention. Furthermore, the deposited embodiments are intended as single illustrations of one aspect of the invention and should not be construed as limiting the scope of the claims in any way.
遵循相似程序,可以制备对于本文描述的任何MUC1构建体具有特异性的多克隆和单克隆抗体。Following similar procedures, polyclonal and monoclonal antibodies specific for any of the MUCl constructs described herein can be prepared.
实施例13Example 13
使用新的合成免疫原生成O-GlcNAc特异性单克隆抗体Generation of O-GlcNAc-specific monoclonal antibodies using a novel synthetic immunogen
使完全合成的三组分免疫原与杂交瘤技术组合导致具有广谱结合靶的O-GlcNAc特异性IgG MAb的生成。大规模鸟枪蛋白质组学导致鉴定254种哺乳动物O-GlcNAc修饰的蛋白质,包括大量新糖蛋白。该数据暗示O-GlcNAc在转录/翻译调节、信号转导、遍在蛋白途径、细胞内囊泡的顺行运输和翻译后修饰中的作用。Combining a fully synthetic three-component immunogen with hybridoma technology resulted in the generation of O -GlcNAc-specific IgG MAbs with a broad spectrum of binding targets. Large-scale shotgun proteomics led to the identification of 254 mammalian O -GlcNAc-modified proteins, including a large number of new glycoproteins. The data implicate a role for O -GlcNAc in transcriptional/translational regulation, signal transduction, ubiquitin pathway, anterograde trafficking of intracellular vesicles, and post-translational modification.
核和细胞质蛋白质的丝氨酸和苏氨酸通过单个β-N-乙酰基-D-葡糖胺部分(β-GlcNAc)的O糖基化是遍在的翻译后修饰,其是高度动态的并通过循环酶O联GlcNAc转移酶(OGT)和O-GlcNAcase(OGA)的作用响应细胞刺激而波动。这类糖基化已牵涉许多细胞过程,这通常经由与可在相同氨基酸残基上出现的磷酸化的相互影响而进行。重要的是,O-GlcNAc水平的改变已与流行的人疾病(包括II型糖尿病和阿尔茨海默氏病)的病因学关连(Hart等人,2007 Nature 446,1017-1022)。 O -glycosylation of serine and threonine of nuclear and cytoplasmic proteins by a single β- N- acetyl-D-glucosamine moiety (β-GlcNAc) is a ubiquitous post-translational modification that is highly dynamic and occurs through The action of the cycling enzymes O -linked GlcNActransferase (OGT) and O -GlcNAcase (OGA) fluctuates in response to cellular stimuli. Such glycosylation has been implicated in many cellular processes, often via interaction with phosphorylation which may occur on the same amino acid residue. Importantly, alterations in O- GlcNAc levels have been linked to the etiology of prevalent human diseases, including type II diabetes and Alzheimer's disease (Hart et al., 2007 Nature 446, 1017-1022).
与对于其可获得广泛范围的泛特异性和位点特异性磷酸-抗体的磷酸化不同,O-GlcNAc修饰的研究被缺乏用于其检测、定量和位点定位的有效工具阻碍。特别地,仅两种泛-O-GlcNAc特异性抗体已得到描述:IgM泛-O-GlcNAc抗体(CTD 110.6;Comer等人,2001Anal. Biochem. 293,169-177)、和针对O-GlcNAc修饰的核孔组分产生的IgG抗体(RL-2;Snow等人,1987 J. Cell Biol. 104,1143-1156),该IgG抗体显示与O-GlcNAc修饰的蛋白质的受限交叉反应性。事实上,多个研究已显示O-GlcNAc修饰的糖缀合物不引发有关IgG同种型抗体,因此引发O-GlcNAc特异性IgG抗体的挑战是相当大的。我们推论O-GlcNAc特异性抗体可以通过采用三组分免疫原(化合物52,图 35)引发,所述三组分免疫原由在这个研究中衍生自酪氨酸激酶II (CKII) α亚基的含O-GlcNAc肽(Kreppel和Hart,1999 J. Biol.Chem. 274,32015-32022)、充分证明的鼠MHC II类限制性辅助T细胞表位和作为嵌入佐剂的Toll样受体-2 (TLR2)激动剂组成。此类化合物预期避免由典型缀合物疫苗的载体蛋白质或接头区引起的免疫抑制;然而,它含有引发强烈和相关IgG免疫应答所需的所有介质(Ingale等人,2007 Nat. Chem. Biol. 3,663-667)。此外,制备了具有人工的硫连接的GlcNAc部分的化合物53,与其O联配对物相比较,所述部分具有改善的代谢稳定性,从而提供引发O-GlcNAc特异性抗体的另外机会。Unlike phosphorylation of a broad range of pan-specific and site-specific phospho-antibodies for which a wide range of pan-specific and site-specific phospho-antibodies are available, the study of O -GlcNAc modification is hampered by the lack of efficient tools for its detection, quantification and site localization. In particular, only two pan- O -GlcNAc-specific antibodies have been described: the IgM pan- O -GlcNAc antibody (CTD 110.6; Comer et al., 2001 Anal. Biochem. 293, 169-177), and the anti- O -GlcNAc modified IgG antibodies produced by the nuclear pore component of the β-Na (RL-2; Snow et al., 1987 J. Cell Biol. 104, 1143-1156), which show limited cross-reactivity with O -GlcNAc-modified proteins. In fact, multiple studies have shown that O -GlcNAc-modified glycoconjugates do not elicit antibodies of the relevant IgG isotype, so the challenge of eliciting O -GlcNAc-specific IgG antibodies is considerable. We reasoned that O -GlcNAc-specific antibodies could be elicited by using a three-component immunogen (compound 52, Figure 35) derived from the tyrosine kinase II (CKII) α subunit in this study. Contains O -GlcNAc peptide (Kreppel and Hart, 1999 J. Biol. Chem. 274, 32015-32022), well-documented murine MHC class II-restricted helper T-cell epitopes, and Toll-like receptor-2 as an intercalating adjuvant (TLR2) agonist composition. This class of compound is expected to avoid immunosuppression caused by carrier proteins or linker regions of typical conjugate vaccines; however, it contains all the mediators required to elicit a strong and relevant IgG immune response (Ingale et al., 2007 Nat. Chem. Biol. 3, 663-667). Furthermore, compound 53 was prepared with an artificial sulfur-linked GlcNAc moiety that has improved metabolic stability compared to its O -linked counterpart, providing an additional opportunity to elicit O -GlcNAc-specific antibodies.
通过脂质体介导的C末端脂肽硫酯63分别与糖肽64和65的天然化学连接(Ingale等人,2006 Org. Lett. 8,5785-5788),容易地获得化合物52和53 (图35)。起始硫酯63在磺酰胺“保险栓(safety-catch)”接头上装配,接着通过用碘乙腈烷基化而释放和用苄硫醇处理,以给出使用标准条件脱保护的化合物。分别采用Rink酰胺树脂、Fmoc保护的氨基酸和Fmoc-Ser-(AcO3-α-D-GluNAc)或Fmoc-Ser-(1-硫代-AcO3-α-D-GluNAc)制备化合物64和65。在装配完成后,通过用60%肼的MeOH溶液处理来裂解乙酰酯,并且通过用试剂K处理从树脂中裂解所得到的化合物,然后通过反相HPLC纯化。将化合物52和53掺入基于磷脂的小型单层囊泡(SUV)内,接着通过100 nm Nuclepore®聚碳酸酯膜挤出。将五只雌性BALB/c小鼠的组用含有3 μg糖的脂质体以两周一次的间隔腹膜内免疫接种四次。通过用缀合至马来酰亚胺(MI)修饰的BSA的CGSTPVS(β-O-GlcNAc)SANM (66)包被微量滴定板,测定抗糖肽抗体滴度,并且用由碱性磷酸酶标记的抗小鼠IgG抗体完成检测。化合物52和53引发极佳滴度的IgG抗体(表10;图36)。此外,在O联和S联糖衍生物之间未观察到IgG滴度的显著差异,因此进一步的关注集中于用52免疫接种的小鼠。Compounds 52 and 53 ( Figure 35). The starting thioester 63 was assembled on the sulfonamide "safety-catch" linker, followed by release by alkylation with iodoacetonitrile and treatment with benzylthiol to give the compound deprotected using standard conditions. Compounds 64 and 65 were prepared using Rink amide resin, Fmoc-protected amino acid and Fmoc-Ser-(AcO3-α-D-GluNAc) or Fmoc-Ser-(1-thio-AcO3-α- D -GluNAc), respectively. After assembly was complete, the acetyl ester was cleaved by treatment with 60% hydrazine in MeOH, and the resulting compound was cleaved from the resin by treatment with reagent K, followed by purification by reverse phase HPLC. Compounds 52 and 53 were incorporated into phospholipid-based small unilamellar vesicles (SUVs) followed by extrusion through a 100 nm Nuclepore® polycarbonate membrane. Groups of five female BALB/c mice were immunized four times intraperitoneally at biweekly intervals with liposomes containing 3 μg of sugar. Anti-glycopeptide antibody titers were determined by coating microtiter plates with CGSTPVS(β- O- GlcNAc)SANM (66) conjugated to maleimide (MI)-modified BSA, and assayed with alkaline phosphatase Labeled anti-mouse IgG antibodies complete the detection. Compounds 52 and 53 elicited excellent titers of IgG antibodies (Table 10; Figure 36). Furthermore, no significant differences in IgG titers were observed between O -linked and S -linked saccharide derivatives, so further attention was focused on mice immunized with 52.
收获用52免疫接种的两只小鼠的脾脏,标准杂交瘤培养技术给出七个IgG1、七个IgG2a、两个IgG2b和十四个IgG3产生杂交瘤细胞系。通过ELISA研究所得到的MAb的配体特异性。所有MAb都识别连接至BSA的CGSTPVS(β-O-GlcNAc)SANM (BSA-MI-66),而仅少数识别缀合至BSA的肽CGSTPVSSANM (SEQ ID NO:12) (BSA-MI-67)。此外,二十种MAb的相互作用可被糖肽GSTPVS(β-O-GlcNAc)SANM (68)抑制,但不能被肽GSTPVSSANM (SEQ ID NO:13)(69)或 -O-GlcNAc-Ser (70)抑制,这证实糖肽特异性。Spleens from two mice immunized with 52 were harvested and standard hybridoma culture techniques gave seven IgG1, seven IgG2a, two IgG2b and fourteen IgG3 producing hybridoma cell lines. The ligand specificity of the resulting MAbs was studied by ELISA. All MAbs recognized CGSTPVS(β- O -GlcNAc)SANM linked to BSA (BSA-MI-66), while only a few recognized the peptide CGSTPVSSANM (SEQ ID NO:12) (BSA-MI-67) conjugated to BSA . Furthermore, the interaction of twenty MAbs was inhibited by the glycopeptide GSTPVS(β- O -GlcNAc)SANM (68), but not by the peptide GSTPVSSANM (SEQ ID NO: 13) (69) or -O -GlcNAc-Ser ( 70) Inhibition, which confirms glycopeptide specificity.
将三种杂交瘤(18B10.C7(3)、9D1.E4(10)、1F5.D6(14))以一升规模培养,通过饱和硫酸铵沉淀和随后的蛋白G柱层析纯化所得到的抗体,以在每种情况下获得约10 mg的IgG。抑制ELISA证实MAb需要碳水化合物和肽(糖肽)用于结合。Three hybridomas (18B10.C7(3), 9D1.E4(10), 1F5.D6(14)) were cultured on a one-liter scale, and the resulting hybridomas were purified by saturated ammonium sulfate precipitation followed by protein G column chromatography Antibodies, to obtain about 10 mg of IgG in each case. Inhibition ELISA confirmed that MAbs require carbohydrates and peptides (glycopeptides) for binding.
总之,三组分免疫原方法已成功地用于生成泛GlcNAc特异性MAb的实验对象组,其提供用于探究这类蛋白质糖基化的生物学牵涉的有力新工具。新近鉴定的O-GlcNAc修饰的蛋白质打开了探究这类翻译后修饰对于多种生物过程的重要性的新途径。预期三组分免疫接种技术在用于生成针对其他形式的蛋白质糖基化的MAb方面具有广泛应用。In conclusion, the three-component immunogen approach has been successfully used to generate a panel of pan-GlcNAc-specific MAbs, which provides a powerful new tool for exploring the biological implications of this class of protein glycosylation. The newly identified O -GlcNAc-modified proteins open new avenues to explore the importance of such post-translational modifications for a variety of biological processes. The three-component immunization technique is expected to have broad application for generating MAbs against other forms of protein glycosylation.
方法method
用于合成的试剂和一般程序。Fmoc-L-氨基酸衍生物和树脂购自NovaBioChem和Applied Biosystems,肽合成级别的N,N-二甲基甲酰胺(DMF)购自EM Science,N-甲基吡咯烷酮(NMP)购自Applied Biosystems。卵磷脂酰胆碱(PC)、卵磷脂酰甘油(PG)、胆固醇(Chol)、单磷酰脂质A (MPL-A)和十二烷基磷酸胆碱(DPC)得自Avanti Polar Lipids。所有其他化学试剂购自Aldrich、Acros、Alfa Aesar和Fisher,且无需进一步纯化而使用。采用的所有溶剂都具有试剂级别。使用以1 ml分钟-1流速的Agilent ZorbaxEclipseTM C8分析柱(5 μm,4.6 x 150 mm)、以3 ml分钟-1流速的Agilent Zorbax EclipseTM C8半制备型柱(5 μm,10 x 250 mm)、或以2 ml分钟-1流速的Phenomenex JupiterTM C4半制备型柱(5 μm,10 x 250 mm),在配备自动注射器、流分收集器和UV检测器(在214 nm处检测)的Agilent1100系列系统上执行反相高效液相层析(RP-HPLC)。所有运行都使用经过40分钟的0-100%溶剂B的线性梯度(溶剂A = 5%乙腈,0.1%三氟乙酸(TFA)的水溶液,溶剂B = 5%水,0.1%TFA的乙腈溶液)执行。在ABI 4700蛋白质组学分析仪上记录基质辅助激光解吸电离飞行时间质谱法(MALDI-TOF)质谱。 Reagents and general procedures used in the synthesis. Fmoc- L -amino acid derivatives and resins were purchased from NovaBioChem and Applied Biosystems, peptide synthesis grade N,N -dimethylformamide (DMF) was purchased from EM Science, and N -methylpyrrolidone (NMP) was purchased from Applied Biosystems. Egg phosphatidylcholine (PC), egg phosphatidylglycerol (PG), cholesterol (Chol), monophosphoryl lipid A (MPL-A) and dodecylphosphocholine (DPC) were obtained from Avanti Polar Lipids. All other chemical reagents were purchased from Aldrich, Acros, Alfa Aesar and Fisher and used without further purification. All solvents used were of reagent grade. Agilent Zorbax Eclipse ™ C8 analytical column (5 μm, 4.6 x 150 mm) at a flow rate of 1 ml min-1 , Agilent Zorbax Eclipse™ C8 semi-preparative column (5 μm, 10 x 250 mm) at a flow rate of 3 ml min-1 was used , or a Phenomenex Jupiter TM C4 semi-preparative column (5 μm, 10 x 250 mm) at a flow rate of 2 ml min -1 , on an Agilent 1100 equipped with an autoinjector, fraction collector and UV detector (detected at 214 nm) Reverse-phase high-performance liquid chromatography (RP-HPLC) was performed on a series system. All runs used a linear gradient of 0-100% solvent B over 40 minutes (solvent A = 5% acetonitrile, 0.1% trifluoroacetic acid (TFA) in water, solvent B = 5% water, 0.1% TFA in acetonitrile) implement. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) mass spectra were recorded on an ABI 4700 proteomics analyzer.
用于固相肽合成(SPPS)的一般方法:使用N α-Fmoc保护的氨基酸和2-(1H-苯并三唑-1-基)-氧基-1,1,3,3-四乙基六氟磷酸盐(HBTU)/1-羟基苯并三唑(HOBt;Knorr等人,1989 Tetrahedron Lett. 30,1927-1930)作为激活试剂,通过建立的方案在配备UV检测器的ABI 433A肽合成仪(Applied Biosystems)上合成肽。单个偶联步骤用条件性加帽执行。使用下述受保护的氨基酸:N o-Fmoc-Arg(Pbf)-OH、N α-Fmoc-Asp(O t Bu)-OH、N α-Fmoc-Asp-Thr(ΨMe,Mepro)-OH、N α-Fmoc-Ile-Thr(ΨMe,Mepro)-OH、N α-Fmoc-Lys(Boc)-OH、N α-Fmoc-Ser( t Bu)-OH、N α-Fmoc-Thr( t Bu)-OH、N α-Fmoc-Tyr( t Bu)-OH。使用O-(7-氮杂苯并三唑-1-基)-N,N,N’,N'-四甲基脲六氟磷酸盐(HATU)/1-羟基-7-氮杂苯并三唑(HOAt)作为偶联剂,手工执行糖基化氨基酸N α-FmocSer-(AcO3-α-D-O-GlcNAc)OH、N α-FmocSer-(AcO3-α-D-S-GlcNAc)OH的偶联。使用苯并三唑-1-基-氧基-三吡咯烷子基-磷六氟磷酸盐(PyBOP)/HOBt作为偶联剂,执行N α-Fmoc-S-(2,3-双(棕榈酰氧基)-(2R-丙基)-(R)-半胱氨酸(Metzger等人,1991 Int. J. Pept. Protein Res. 38,545-554;Roth等人,2004Bioconjugate Chem. 15,541-553)(其由(R)-缩水甘油制备)的偶联。通过标准Kaiser测试监控手工偶联的进展(Kaiser等人,1970 Anal. Biochem. 34,595)。 General method for solid-phase peptide synthesis (SPPS) : using N α -Fmoc protected amino acids and 2-(1H-benzotriazol-1-yl)-oxy-1,1,3,3-tetraethyl Hexafluorophosphate (HBTU)/1-hydroxybenzotriazole (HOBt; Knorr et al., 1989 Tetrahedron Lett. 30, 1927-1930) was used as an activation reagent by an established protocol on ABI 433A peptide equipped with a UV detector. Peptides were synthesized on a synthesizer (Applied Biosystems). Individual coupling steps are performed with conditional capping. The following protected amino acids were used: N o -Fmoc-Arg(Pbf)-OH, N α -Fmoc-Asp( O t Bu ) -OH, N α -Fmoc-Asp-Thr(Ψ Me,Me pro)- OH, N α -Fmoc-Ile-Thr(Ψ Me ,Mepro)-OH, N α -Fmoc-Lys(Boc)-OH, N α -Fmoc-Ser( t Bu)-OH, N α -Fmoc-Thr ( tBu )-OH, Nα - Fmoc -Tyr( tBu )-OH. Using O -(7-azabenzotriazol-1-yl) -N , N , N',N' -tetramethylurea Glycosylated amino acid Nα -FmocSer-(AcO3- α -D- O -GlcNAc) was performed manually using hexafluorophosphate (HATU)/1-hydroxy-7-azabenzotriazole (HOAt) as a coupling agent Coupling of OH, N α -FmocSer-(AcO3-α-D- S -GlcNAc)OH. Using benzotriazol-1-yl-oxy-tripyrrolidino-phosphorus Hexafluorophosphate (PyBOP)/HOBt was used as a coupling agent to perform N α -Fmoc- S -(2,3-bis(palmitoyloxy)-(2 R -propyl)-( R )-cysteine Coupling of acids (Metzger et al., 1991 Int. J. Pept. Protein Res. 38, 545-554; Roth et al., 2004 Bioconjugate Chem. 15, 541-553) prepared from (R) -glycidol. The progress of the manual coupling was monitored by the standard Kaiser test (Kaiser et al., 1970 Anal. Biochem. 34, 595).
脂肽63的合成:如在用于肽合成的一般方法部分中所述的,63的合成在H-Gly-氨磺酰丁酰Novasyn TG树脂上执行。在前五个氨基酸的偶联后,手工执行剩余步骤。将N-α-Fmoc-S-(2,3-双(棕榈酰氧基)-(2R-丙基)-(R)-半胱氨酸(267 mg,0.3 mmol)溶解于DMF(5mL)中,将PyBOP(156.12 mg,0.3 mmol)、HOBt(40 mg,0.3 mmol)和DIPEA(67 μl,0.4 mmol)预混合2分钟,然后加入树脂中。通过Kaiser测试监控偶联反应,并且在静置12小时后完成。在偶联完成后,使用20%哌啶的DMF(6 mL)溶液裂解N-Fmoc基团,并且使用PyBOP(156.12mg,0.3 mmol)、HOBt(40 mg,0.3 mmol)和DIPEA(67 μl,0.4 mmol)的DMF溶液,使棕榈酸(77mg,0.3 mmol)与如上所述的游离胺偶联。将树脂用DMF(10 ml)、DCM(10 ml)和MeOH(10 ml)充分洗涤,随后在真空中干燥。将树脂在DCM(5 mL)中溶胀1小时,并且用DIPEA(0.5 ml,3mmol)、碘乙腈(0.36 ml,5 mmol)的NMP(6 ml)溶液处理。重要的是要注意到,在加入树脂之前,通过碱性矾土的塞来过滤碘乙腈。将树脂避光搅动24小时,过滤并用NMP(5 ml x 4)、DCM(5 ml x 4)和THF(5 ml x 4)洗涤。将激活的N-酰基磺酰胺树脂在DCM(5 ml)中溶胀1小时,排干并转移至50 ml圆底烧瓶。向含树脂的烧瓶中加入THF(4 ml)、苄硫醇(0.64 ml,5mmol)和苯硫酚钠(sodium thiophenate)(27 mg,0.2 mmol)。在搅动24小时后,将树脂过滤,并用己烷(5 ml x 2)洗涤。将合并的滤液和洗涤液收集并在真空中浓缩至其原始体积的约1/3。随后通过加入甲基叔丁基醚(0℃;60 mL)沉淀粗制产物,通过以3000 rpm离心15分钟回收,并且在乙醚倾析后,将肽沉淀物溶解于混合物DCM和MeOH(1.5 ml/1.5 ml)中。通过将其经过LH-20尺寸排阻柱,去除肽沉淀物中存在的硫醇杂质。收集含产物的流分并去除溶剂,以给出完全受保护的肽硫酯。将受保护的肽用试剂B(TFA 88%,苯酚5%,H2O 5%,TIS2%;5 ml)在室温处理4小时。随后将TFA溶液逐滴加入含有冰冷的甲基叔丁基醚(40 ml)的螺旋帽离心管中,并且将所得到的悬液在4℃静置过夜,这之后通过以3000 rpm(20分钟)离心收集沉淀物,并且在乙醚倾析后,将肽沉淀物重悬浮于冰冷的甲基叔丁基醚(40 ml)中,将洗涤过程重复两次。使用经过40分钟的0-100%溶剂B的A溶液的线性梯度,在半制备型C-4反相柱上通过HPLC纯化粗制肽,并且将合适流分冻干以提供63 (110 mg,65%)。C90H165N11O13S2,MALDI-ToF MS:观察到的,[M+Na] 1695.2335Da;计算的,[M+Na]1695.4714Da(图39)。 Synthesis of lipopeptide 63: Synthesis of 63 was performed on H-Gly-sulfamoylbutyryl Novasyn TG resin as described in the General Methods section for peptide synthesis. After coupling of the first five amino acids, the remaining steps were performed manually. Dissolve N -α-Fmoc- S- (2,3-bis(palmitoyloxy)-( 2R -propyl)-( R )-cysteine (267 mg, 0.3 mmol) in DMF (5 mL ), PyBOP (156.12 mg, 0.3 mmol), HOBt (40 mg, 0.3 mmol) and DIPEA (67 μl, 0.4 mmol) were premixed for 2 minutes before adding to the resin. The coupling reaction was monitored by Kaiser test, and at It was completed after standing for 12 hours. After the coupling was completed, the N-Fmoc group was cleaved using 20% piperidine in DMF (6 mL), and the N- Fmoc group was cleaved using PyBOP (156.12 mg, 0.3 mmol), HOBt (40 mg, 0.3 mmol ) and DIPEA (67 μl, 0.4 mmol) in DMF to couple palmitic acid (77 mg, 0.3 mmol) to the free amine as described above. The resin was washed with DMF (10 ml), DCM (10 ml) and MeOH ( 10 ml) was washed thoroughly, followed by drying in vacuo. The resin was swelled in DCM (5 mL) for 1 hour and washed with DIPEA (0.5 ml, 3 mmol), iodoacetonitrile (0.36 ml, 5 mmol) in NMP (6 ml) Solution handling. It is important to note that iodoacetonitrile was filtered through a plug of basic alumina prior to addition to the resin. The resin was agitated in the dark for 24 hours, filtered and washed with NMP (5 ml x 4), DCM (5 ml x 4) and THF (5 ml x 4). Swell the activated N -acylsulfonamide resin in DCM (5 ml) for 1 hour, drain and transfer to a 50 ml round bottom flask. Add to the flask containing the resin THF (4 ml), benzylthiol (0.64 ml, 5 mmol) and sodium thiophenate (27 mg, 0.2 mmol). After stirring for 24 hours, the resin was filtered and washed with hexane (5 ml x 2 ) wash. The combined filtrate and washings were collected and concentrated in vacuo to about 1/3 of its original volume. The crude product was then precipitated by adding methyl tert-butyl ether (0°C; 60 mL) It was recovered by centrifugation at rpm for 15 minutes, and after ether decantation, the peptide precipitate was dissolved in the mixture DCM and MeOH (1.5 ml/1.5 ml).By passing it through the LH-20 size exclusion column, the peptide precipitate was removed. thiol impurities. Fractions containing product were collected and solvent removed to give the fully protected peptide thioester. The protected peptide was treated with reagent B (TFA 88%, phenol 5%, H2O 5%, TIS 2%; 5 ml) at room temperature for 4 hours. Then the TFA solution was added dropwise to a screw-cap centrifuge tube containing ice-cold methyl tert-butyl ether (40 ml), and the resulting The suspension was left standing overnight at 4°C, after which the precipitate was collected by centrifugation at 3000 rpm (20 min), and after decanting from ether, the peptide precipitate was resuspended in ice-cold methyl tert-butyl ether (40 ml) , the washing process was repeated twice. The crude peptide was purified by HPLC on a semi-preparative C-4 reverse phase column using a linear gradient of 0-100% solvent B in A over 40 minutes, and the appropriate fractions were lyophilized to provide 63 (110 mg, 65%). C 90 H 165 N 11 O 13 S 2 , MALDI-ToF MS: Observed, [M+Na] 1695.2335 Da; Calculated, [M+Na] 1695.4714 Da ( FIG. 39 ).
糖脂肽64的合成:如在一般程序中所述的,在Rink酰胺树脂(0.1 mmol)上执行SPPS。前四个氨基酸Ser-Ala-Asn-Met使用标准方案在肽合成仪上偶联。在合成完成后,使用Nα-FmocSer-(AcO3-α-D-O-GlcNAc)OH(0.2 mmol,131 mg)与O-(7-氮杂苯并三唑-1-基)-N,N,N’,N'-四甲基脲六氟磷酸盐(HATU;0.2 mmol,76 mg)、1-羟基-7-氮杂苯并三唑(HOAt;0.2 mmol,27 mg)和二异丙基乙胺(DIPEA;0.4 mmol,70 μl)的NMP(5 ml)溶液,执行手工偶联12小时。通过标准Kaiser测试监控偶联反应。随后将树脂用NMP(6 ml)和二氯甲烷(DCM;6 ml)洗涤,然后再经历相同偶联条件,以确保偶联完成。随后在肽合成仪上延长糖肽,这之后将树脂用NMP(6 ml)、DCM(6 ml)和MeOH(6 ml)充分洗涤,在真空中干燥。将树脂在DCM(5 ml)中溶胀1小时,随后用肼(60%)的MeOH(10 ml)溶液处理2小时,用NMP(5 ml x2)、DCM(5 ml x 2)和MeOH(5 ml x 2)充分洗涤,在真空中干燥。将树脂在DCM(5 ml)中溶胀1小时,这之后将它用试剂K(TFA(81.5%)、苯酚(5%)、茴香硫醚(5%)、水(5%)、EDT(2.5%)、TIS(1%))(30 ml)在室温处理2小时。将树脂过滤,用纯净TFA(2 ml)洗涤。随后将滤液在真空中浓缩至其原始体积的约1/3。使用二乙醚(0℃)(30 ml)沉淀肽,并且通过以3000 rpm离心15分钟回收。使用经过40分钟时期的0-100%溶剂B的溶剂A溶液的线性梯度,在半制备型C-8柱上通过RP-HPLC纯化粗制肽,将合适流分冻干以提供64 (118 mg,40%)。C129H204N32O40S2,MALDI-ToF MS:观察到的[M+],2907.5916Da;计算的[M+],2905.4354 Da(图40)。Synthesis of Glycolipeptide 64: SPPS was performed on Rink amide resin (0.1 mmol) as described in the general procedure. The first four amino acids Ser-Ala-Asn-Met were coupled on a peptide synthesizer using standard protocols. After completion of the synthesis, use N α-FmocSer-(AcO 3 -α-D- O -GlcNAc)OH (0.2 mmol, 131 mg) with O -(7-azabenzotriazol-1-yl) -N , N , N',N' -tetramethylurea Hexafluorophosphate (HATU; 0.2 mmol, 76 mg), 1-hydroxy-7-azabenzotriazole (HOAt; 0.2 mmol, 27 mg) and diisopropylethylamine (DIPEA; 0.4 mmol, 70 μl ) in NMP (5 ml), a manual coupling was performed for 12 hours. Coupling reactions were monitored by standard Kaiser tests. The resin was subsequently washed with NMP (6 ml) and dichloromethane (DCM; 6 ml) before being subjected to the same coupling conditions again to ensure completion of the coupling. Glycopeptides were then elongated on a peptide synthesizer, after which the resin was washed extensively with NMP (6 ml), DCM (6 ml) and MeOH (6 ml), dried in vacuo. The resin was swollen in DCM (5 ml) for 1 h, then treated with hydrazine (60%) in MeOH (10 ml) for 2 h, and treated with NMP (5 ml x 2), DCM (5 ml x 2) and MeOH (5 ml x 2) Wash thoroughly and dry in vacuum. The resin was swollen in DCM (5 ml) for 1 hour after which it was treated with reagent K (TFA (81.5%), phenol (5%), thioanisole (5%), water (5%), EDT (2.5 %), TIS (1%)) (30 ml) at room temperature for 2 hours. The resin was filtered, washed with neat TFA (2 ml). The filtrate was then concentrated in vacuo to about 1/3 of its original volume. Peptides were precipitated using diethyl ether (0°C) (30 ml) and recovered by centrifugation at 3000 rpm for 15 minutes. The crude peptide was purified by RP-HPLC on a semi-preparative C-8 column using a linear gradient of 0-100% solvent B in solvent A over a 40 minute period and the appropriate fractions were lyophilized to afford 64 (118 mg , 40%). C129H204N32O40S2 , MALDI-ToF MS: observed [M + ], 2907.5916 Da; calculated [M+], 2905.4354 Da (Figure 40 ).
糖脂肽65的合成:如在一般程序中所述的,在Rink酰胺树脂(0.1 mmol)上执行SPPS。前四个氨基酸Ser-Ala-Asn-Met使用标准方案在肽合成仪上偶联。在合成完成后,使用Nα-FmocSer-(AcO3-α-D-S-GlcNAc)OH(0.2 mmol,134 mg)与O-(7-氮杂苯并三唑-1-基)-N,N,N’,N'-四甲基脲六氟磷酸盐(HATU;0.2 mmol,76 mg)、1-羟基-7-氮杂苯并三唑(HOAt;0.2 mmol,27 mg)和二异丙基乙胺(DIPEA;0.4 mmol,70 μl)的NMP(5 ml)溶液,执行手工偶联12小时。通过标准Kaiser测试监控偶联反应。随后将树脂用NMP(6 ml)和二氯甲烷(DCM;6 ml)洗涤,然后再经历相同偶联条件,以确保完全偶联。随后在肽合成仪上延长所得到的糖肽。在合成完成后,将树脂用NMP(6 ml)、DCM(6 ml)和MeOH(6 ml)充分洗涤,在真空中干燥。将树脂在DCM(5 ml)中溶胀1小时,随后用肼(60%)的MeOH(10 ml)溶液处理2小时,用NMP(5 ml x 2)、DCM(5 ml x 2)和MeOH(5 ml x 2)充分洗涤,在真空中干燥。将树脂在DCM(5 ml)中膨胀1小时,这之后将它用TFA(81.5%)、苯酚(5%)、茴香硫醚(5%)、水(5%)、EDT(2.5%)、TIS(1%)(30 ml)在室温处理2小时。将树脂过滤,并用纯净TFA(2 ml)洗涤。随后将滤液在真空中浓缩至其原始体积的约1/3。使用二乙醚(30 ml ,0℃)沉淀肽,通过以3000rpm离心15分钟回收。使用经过40分钟时期的0-100%溶剂B的溶剂A溶液的线性梯度,在半制备型C-8柱上通过RP-HPLC纯化粗制肽,将合适流分冻干以提供65 (95 mg,34%)。C129H204N32O39S3,MALDI-ToF MS:观察到的[M+],2923.6716Da;计算的[M+],2923.3861Da(图41)。Synthesis of Glycolipeptide 65: SPPS was performed on Rink amide resin (0.1 mmol) as described in the general procedure. The first four amino acids Ser-Ala-Asn-Met were coupled on a peptide synthesizer using standard protocols. After the synthesis was completed, use N α-FmocSer-(AcO 3 -α-D- S -GlcNAc)OH (0.2 mmol, 134 mg) with O- (7-azabenzotriazol-1-yl) -N , N , N',N' -tetramethylurea Hexafluorophosphate (HATU; 0.2 mmol, 76 mg), 1-hydroxy-7-azabenzotriazole (HOAt; 0.2 mmol, 27 mg) and diisopropylethylamine (DIPEA; 0.4 mmol, 70 μl ) in NMP (5 ml), a manual coupling was performed for 12 hours. Coupling reactions were monitored by standard Kaiser tests. The resin was subsequently washed with NMP (6 ml) and dichloromethane (DCM; 6 ml) before being subjected to the same coupling conditions again to ensure complete coupling. The resulting glycopeptides are then elongated on a peptide synthesizer. After the synthesis was complete, the resin was washed well with NMP (6 ml), DCM (6 ml) and MeOH (6 ml) and dried in vacuo. The resin was swelled in DCM (5 ml) for 1 h, then treated with hydrazine (60%) in MeOH (10 ml) for 2 h, and treated with NMP (5 ml x 2), DCM (5 ml x 2) and MeOH ( 5 ml x 2) Wash well and dry in vacuum. The resin was swelled in DCM (5 ml) for 1 hour after which it was treated with TFA (81.5%), phenol (5%), thioanisole (5%), water (5%), EDT (2.5%), TIS (1%) (30 ml) was treated at room temperature for 2 hours. The resin was filtered and washed with neat TFA (2 ml). The filtrate was then concentrated in vacuo to about 1/3 of its original volume. Peptides were precipitated using diethyl ether (30 ml , 0° C.) and recovered by centrifugation at 3000 rpm for 15 minutes. The crude peptide was purified by RP-HPLC on a semi-preparative C-8 column using a linear gradient of 0-100% solvent B in solvent A over a 40 minute period and the appropriate fractions were lyophilized to provide 65 (95 mg , 34%). C129H204N32O39S3 , MALDI - ToF MS: observed [M+], 2923.6716 Da; calculated [M+], 2923.3861 Da (Figure 41 ).
糖脂肽52的合成:将脂肽硫酯63 (4.3 mg,2.5 μmol)、糖肽64 (5.0 mg,1.7 μmol)和十二烷基磷酸胆碱(6.0 mg,17.0 μmol)溶解于三氟乙醇和CHCl3 (2.5 ml/2.5 ml)的混合物中。将溶剂在减压下去除,以给出脂质/肽薄膜,在三(羧乙基)膦(2% w/v,40.0 μg)和EDTA(0.1% w/v,20.0 μg)的存在下,使用200 mM磷酸盐缓冲液(pH 7.5,3 ml),将所述脂质/肽薄膜在37℃水合4小时。将混合物超声波处理1分钟。向囊泡悬液中加入2-巯基乙磺酸钠(2%w/v,40.0 μg),以起始连接反应。在恒温箱中在37℃执行反应,并且通过MALDI-ToF定期监控反应进展,MALDI-ToF显示糖肽64在2小时内消失。随后将反应用溶于连接缓冲液(2 ml)中的2-巯基乙醇(20%)稀释,使用经过40分钟的0-100%溶剂B的A溶液线性梯度,通过半制备型C-4反相柱纯化粗制肽,合适流分的冻干提供52 (4.3 mg,57%)。C212H360N43O53S3 ,MALDI-ToF MS:观察到的,4461.9177Da,计算的,4455.578Da(图37)。Synthesis of glycolipeptide 52: lipopeptide thioester 63 (4.3 mg, 2.5 μmol), glycopeptide 64 (5.0 mg, 1.7 μmol) and dodecylphosphocholine (6.0 mg, 17.0 μmol) were dissolved in trifluoro In a mixture of ethanol and CHCl 3 (2.5 ml/2.5 ml). The solvent was removed under reduced pressure to give lipid/peptide films in the presence of tris(carboxyethyl)phosphine (2% w/v, 40.0 μg) and EDTA (0.1% w/v, 20.0 μg) , using 200 mM phosphate buffer (pH 7.5, 3 ml), the lipid/peptide film was hydrated at 37°C for 4 hours. The mixture was sonicated for 1 min. Sodium 2-mercaptoethanesulfonate (2% w/v, 40.0 μg) was added to the vesicle suspension to initiate the ligation reaction. The reaction was performed at 37°C in an incubator, and the progress of the reaction was regularly monitored by MALDI-ToF, which showed that glycopeptide 64 disappeared within 2 hours. The reaction was then diluted with 2-mercaptoethanol (20%) in ligation buffer (2 ml) and run through a semi-preparative C-4 reaction using a linear gradient of 0-100% solvent B in A over 40 minutes. The crude peptide was column purified and lyophilization of the appropriate fractions provided 52 (4.3 mg, 57%). C212H360N43O53S3 , MALDI - ToF MS: observed, 4461.9177 Da, calculated, 4455.578 Da (Figure 37).
糖脂肽53的合成:将脂肽硫酯63 (2.5 mg,1.5 μmol)、糖肽65 (3.0 mg,1.0 μmol)和十二烷基磷酸胆碱(3.5 mg,10 μmol)溶解于三氟乙醇和CHCl3 (2.5 ml/2.5 ml)的混合物中。将溶剂在减压下去除,以给出脂质/肽薄膜,在三(羧乙基)膦(2%w/v,40.0 μg)和EDTA (0.1%w/v,20.0 μg)的存在下,使用200 mM磷酸盐缓冲液(pH 7.5,2 ml),将所述脂质/肽薄膜在37℃水合4小时。将混合物超声波处理1分钟。向囊泡悬液中加入2-巯基乙磺酸钠(2%w/v,40.0 μg),以起始连接反应。在恒温箱中在37℃执行反应,并且通过MALDI-ToF定期监控反应进展,MALDI-ToF显示糖肽在2小时内消失。随后将反应用溶于连接缓冲液(2ml)中的2-巯基乙醇(20%)稀释。使用经过40分钟的0-100%溶剂B的A溶液线性梯度,通过半制备型C-4反相柱纯化粗制肽,合适流分的冻干提供53 (2.8 mg,64%)。C212H360N43O52S4 ,MALDI-ToF MS:观察到的,4469.9112Da,计算的,4471.6437Da(图38)。Synthesis of glycolipeptide 53: lipopeptide thioester 63 (2.5 mg, 1.5 μmol), glycopeptide 65 (3.0 mg, 1.0 μmol) and dodecylphosphocholine (3.5 mg, 10 μmol) were dissolved in trifluoro In a mixture of ethanol and CHCl 3 (2.5 ml/2.5 ml). The solvent was removed under reduced pressure to give lipid/peptide films in the presence of tris(carboxyethyl)phosphine (2% w/v, 40.0 μg) and EDTA (0.1% w/v, 20.0 μg) , using 200 mM phosphate buffer (pH 7.5, 2 ml), the lipid/peptide film was hydrated at 37° C. for 4 hours. The mixture was sonicated for 1 min. Sodium 2-mercaptoethanesulfonate (2% w/v, 40.0 μg) was added to the vesicle suspension to initiate the ligation reaction. The reaction was performed at 37°C in an incubator, and the progress of the reaction was monitored regularly by MALDI-ToF, which showed that the glycopeptide disappeared within 2 hours. The reaction was then diluted with 2-mercaptoethanol (20%) in ligation buffer (2ml). The crude peptide was purified by a semi-preparative C-4 reverse phase column using a linear gradient of 0-100% solvent B in A over 40 minutes, and lyophilization of the appropriate fractions provided 53 (2.8 mg, 64%). C212H360N43O52S4 , MALDI - ToF MS: observed, 4469.9112 Da, calculated, 4471.6437 Da (Figure 38).
化合物66-70如标准程序部分中所述地在Rink酰胺树脂(0.1 mmol)上进行制备。糖肽66 (78 mg,61 %);C48H82N14O21S2,MALDI-ToF MS:观察到的[M+Na],1277.4746Da;计算的[M+Na],1277.5220 Da (图43)。肽67 (89 mg,83%);C40H69N13O16S2,MALDI-ToF MS:观察到的[M+Na],1074.4789 Da;计算的[M+Na],1074.4427 Da (图44)。糖肽68 (57 mg,48%);C45H77N13O20S,MALDI-ToF MS:观察到的[M+Na],1174.4740Da;计算的[M+Na],1174.5129 Da(图45)。肽69 (76 mg,78%)。C37H64N12O15S,MALDI-ToF MS:观察到的[M+Na],969.8162Da;计算的[M+Na],970.8657 Da (图46)。糖基化氨基酸70 (12 mg,33%),C14H25N3O8,MALDI-ToFMS:观察到的[M+Na],386.2749 Da;计算的[M+Na] 386.3636 Da(图46)。Compounds 66-70 were prepared on Rink amide resin (0.1 mmol) as described in the standard procedures section. Glycopeptide 66 (78 mg, 61 %); C 48 H 82 N 14 O 21 S 2 , MALDI-ToF MS: Observed [M+Na], 1277.4746 Da; Calculated [M+Na], 1277.5220 Da ( Figure 43). Peptide 67 (89 mg, 83%); C 40 H 69 N 13 O 16 S 2 , MALDI-ToF MS: Observed [M+Na], 1074.4789 Da; Calculated [M+Na], 1074.4427 Da (Fig. 44). Glycopeptide 68 (57 mg, 48%); C 45 H 77 N 13 O 20 S, MALDI-ToF MS: Observed [M+Na], 1174.4740 Da; Calculated [M+Na], 1174.5129 Da (Fig. 45). Peptide 69 (76 mg, 78%). C37H64N12O15S , MALDI- ToF MS: observed [M+Na], 969.8162 Da; calculated [M+Na], 970.8657 Da (Figure 46). Glycosylated amino acid 70 (12 mg, 33%), C 14 H 25 N 3 O 8 , MALDI-ToFMS: observed [M+Na], 386.2749 Da; calculated [M+Na] 386.3636 Da (Figure 46 ).
用于缀合至BSA-MI的一般程序:按照Pierce Endogen Inc指导执行缀合。简言之,将纯化的(糖)肽66或67 (对于BSA上的可用MI基团的2.5当量过量)溶解于缀合缓冲液(含有EDTA和叠氮化钠的磷酸钠,pH 7.2;100 μl)中,并加入马来酰亚胺激活的BSA (2.4 mg)在缀合缓冲液(200 μl)中的溶液中。将混合物在室温温育2小时,随后通过D-Salt™右旋糖酐脱盐柱(Pierce Endogen,Inc.)纯化,平衡并用含有0.15 M氯化钠的磷酸钠缓冲液(pH7.4)洗脱。使用BCA蛋白质测定鉴定含有缀合物的流分。通过经由HPAEC/PAD的定量单糖分析测定碳水化合物含量。 General procedure for conjugation to BSA-MI: Conjugation was performed following Pierce Endogen Inc directions. Briefly, purified (glyco)peptide 66 or 67 (2.5 equivalent excess to available MI groups on BSA) was dissolved in conjugation buffer (sodium phosphate containing EDTA and sodium azide, pH 7.2; 100 μl), and a solution of maleimide-activated BSA (2.4 mg) in conjugation buffer (200 μl) was added. The mixture was incubated at room temperature for 2 hours, then purified by D-Salt™ dextran desalting column (Pierce Endogen, Inc.), equilibrated and eluted with sodium phosphate buffer (pH 7.4) containing 0.15 M sodium chloride. Fractions containing the conjugate were identified using the BCA protein assay. Carbohydrate content was determined by quantitative monosaccharide analysis via HPAEC/PAD.
用于制备脂质体的一般程序。将卵PC、卵PG、胆固醇、MPL-A和化合物52或53 (15 μmol,摩尔比60:25:50:5:10)溶解于三氟乙醇和MeOH (1:1,v/v,5 ml)的混合物中。将溶剂在真空中去除,以产生薄脂质薄膜,其通过在氩气氛下在41℃悬浮于含有NaCl (145 mM;1ml)的HEPES缓冲液(10 mM,pH 6.5)中3小时而水合。将囊泡悬液超声处理1分钟,随后在50℃相继通过1.0、0.6、0.4、0.2和0.1 μm聚碳酸酯膜(Whatman,Nuclepore Track-EtchMembrane)挤出,以获得SUV。通过在100℃在密封管中加热SUV (50 μL)和含水TFA (2 M,200 μL)的混合物4小时,来测定脂质体的含糖量。随后将溶液在真空中浓缩,并且使用脉冲安培检测器(HPAEC-PAD;Methrome)和CarboPac柱PA-10和PA-20(Dionex),通过高pH阴离子交换层析进行分析。 General procedure for the preparation of liposomes . Egg PC, egg PG, cholesterol, MPL-A, and compound 52 or 53 (15 μmol, molar ratio 60:25:50:5:10) were dissolved in trifluoroethanol and MeOH (1:1, v/v, 5 ml) in the mixture. The solvent was removed in vacuo to yield a thin lipid film which was hydrated by suspending in HEPES buffer (10 mM, pH 6.5) containing NaCl (145 mM; 1 ml) for 3 hours at 41 °C under an argon atmosphere. The vesicle suspension was sonicated for 1 min and then extruded sequentially through 1.0, 0.6, 0.4, 0.2 and 0.1 μm polycarbonate membranes (Whatman, Nuclepore Track-EtchMembrane) at 50°C to obtain SUVs. The sugar content of liposomes was determined by heating a mixture of SUV (50 μL) and aqueous TFA (2 M, 200 μL) in a sealed tube at 100 °C for 4 h. The solution was then concentrated in vacuo and analyzed by high pH anion exchange chromatography using a pulsed amperometric detector (HPAEC-PAD; Methrome) and CarboPac columns PA-10 and PA-20 (Dionex).
剂量和免疫接种时间表:将五只小鼠 (雌性BALB/c,年龄8-10周,来自JacksonLaboratories)的组以两周间隔免疫接种四次。每次加强在脂质体制剂中包括3 µg糖。血清样品在免疫接种(预先放血)前和最后一次免疫接种后1周获得。最后一次放血通过心脏放血完成。 Dosage and immunization schedule: Groups of five mice (female BALB/c, age 8-10 weeks, from Jackson Laboratories) were immunized four times at two-week intervals. Each booster included 3 µg of sugar in the liposomal formulation. Serum samples were obtained before immunization (pre-bleeding) and 1 week after the last immunization. The final phlebotomy is done by exsanguination from the heart.
杂交瘤培养和抗体产生:收获用52免疫接种的两只小鼠的脾脏,标准杂交瘤培养技术给出30个产生IgG的杂交瘤细胞系。三种杂交瘤(18B10.C7(3)、9D1.E4(10)、1F5.D6(14))以一升规模培养,并且通过饱和硫酸铵沉淀和随后的蛋白G柱层析纯化所得到的抗体,以在每种情况下获得约10 mg的IgG。 Hybridoma culture and antibody production : Spleens from two mice immunized with 52 were harvested, and standard hybridoma culture techniques gave 30 IgG-producing hybridoma lines. Three hybridomas (18B10.C7(3), 9D1.E4(10), 1F5.D6(14)) were cultured on a one-liter scale, and the resulting samples were purified by saturated ammonium sulfate precipitation followed by protein G column chromatography. Antibodies, to obtain about 10 mg of IgG in each case.
用于生物实验的试剂:蛋白酶抑制剂混合物得自Roche(Indianapolis,IN)。PUGNAc O-(2-乙酰胺-2-脱氧-D-吡喃葡萄糖亚基(glucopyranosylidene))氨基N-苯基氨基甲酸酯自Toronto Research Chemicals,Inc(Ontario,加拿大)定购。小鼠IgM抗O-GlcNAc(CTD110.6;Comer等人,2001 Anal. Biochem. 293,169-177)和兔多克隆抗OGT(AL28)抗体先前在Dr. Gerald W. Hart的实验室(Johns Hopkins University School ofMedicine,Baltimore,MD)生成。兔多克隆抗OGA抗体是来自Dr. Sidney W. Whiteheart(University of Kentucky College of Medicine)的友情赠予。兔多克隆抗CKII α抗体(用于免疫印迹的NB100-377和用于免疫沉淀的NB100-378)购自Novus Biologicals(Littleton,CO)。针对α-微管蛋白的小鼠单克隆抗体和抗小鼠IgM(μ链)-琼脂糖得自Sigma(St. Louis,Missouri)。正常兔IgG琼脂糖、正常兔IgG琼脂糖和蛋白A/G PLUS琼脂糖自Santa Cruz Biotechnology,Inc.(Santa Cruz,CA)定购。 Reagents for biological experiments : Protease inhibitor cocktail was obtained from Roche (Indianapolis, IN). PUGNAc O-(2-acetamide-2-deoxy-D-glucopyranosylidene)amino N-phenylcarbamate was purchased from Toronto Research Chemicals, Inc (Ontario, Canada). Mouse IgM anti-O-GlcNAc (CTD110.6; Comer et al., 2001 Anal. Biochem. 293, 169-177) and rabbit polyclonal anti-OGT (AL28) antibodies were previously obtained in the laboratory of Dr. Gerald W. Hart (Johns Hopkins University School of Medicine, Baltimore, MD). Rabbit polyclonal anti-OGA antibody was a kind gift from Dr. Sidney W. Whiteheart (University of Kentucky College of Medicine). Rabbit polyclonal anti-CKII alpha antibodies (NB100-377 for immunoblotting and NB100-378 for immunoprecipitation) were purchased from Novus Biologicals (Littleton, CO). Mouse monoclonal antibody against α-tubulin and anti-mouse IgM (μ chain)-Sepharose were obtained from Sigma (St. Louis, Missouri). Normal Rabbit IgG Sepharose, Normal Rabbit IgG Sepharose and Protein A/G PLUS Sepharose were ordered from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).
血清学测定:如先前描述的(Buskas和Boons,2004 Chem. Eur. J. 10,3517-3524;Ingale等人,2007 Nat. Chem. Biol. 3,663-66),通过酶联免疫吸附测定(ELISA)测定抗GSTPVS(β-O-GlcNAc)SANM (68) IgG、IgG1、IgG2a、IgG2b、IgG3和IgM抗体滴度。简言之,以在包被缓冲液(含有75 mM氯化钠的0.2 M硼酸盐缓冲液,pH 8.5)中2.5 μg ml-1的浓度,将Immulon II-HB平底96孔微量滴定板(Thermo Electron Corp.)用100 μl/孔的通过马来酰亚胺接头缀合至BSA的糖肽缀合物(BSA-MI-GSTPVS(β-O-GlcNAc) SANM;BSA-MI-66)在4℃包被过夜。允许血清或含MAb的细胞上清液的系列稀释液在室温结合固定的GSTPVS(β-O-GlcNAc)SANM共2小时。通过加入碱性磷酸酶缀合的抗小鼠IgG (JacksonImmunoResearch Laboratories Inc.)、IgG1 (Zymed)、IgG2a (Zymed)、IgG2b (Zymed)、IgG3 (BD Biosciences Pharmingen)、或IgM (Jacksons ImmunoResearch Laboratories)抗体完成检测。在加入对硝基苯基磷酸酯(Sigma)后,使用微板读数器(BMG Labtech)在405nm处测量吸光度,其中波长校正设在490 nm处。抗体滴度定义为获得相对于光密度为0.1或更大的最高稀释度。 Serological assays: by ELISA as previously described (Buskas and Boons, 2004 Chem. Eur. J. 10, 3517-3524; Ingale et al., 2007 Nat. Chem. Biol. 3, 663-66) (ELISA) Determination of anti-GSTPVS (β- O -GlcNAc) SANM (68) IgG, IgG1, IgG2a, IgG2b, IgG3 and IgM antibody titers. Briefly, Immulon II-HB flat-bottom 96-well microtiter plates ( Thermo Electron Corp.) with 100 μl/well of a glycopeptide conjugate conjugated to BSA via a maleimide linker (BSA-MI-GSTPVS(β- O- GlcNAc) SANM; BSA-MI-66) in Coating overnight at 4°C. Serial dilutions of serum or MAb-containing cell supernatants were allowed to bind to immobilized GSTPVS(β- O -GlcNAc) SANM for 2 hours at room temperature. By adding alkaline phosphatase-conjugated anti-mouse IgG (JacksonImmunoResearch Laboratories Inc.), IgG1 (Zymed), IgG2a (Zymed), IgG2b (Zymed), IgG3 (BD Biosciences Pharmingen), or IgM (Jacksons ImmunoResearch Laboratories) antibodies Complete the test. After addition of p-nitrophenyl phosphate (Sigma), absorbance was measured at 405 nm using a microplate reader (BMG Labtech) with wavelength correction set at 490 nm. Antibody titer was defined as the highest dilution to obtain a relative optical density of 0.1 or greater.
为了探究相应糖肽、肽和糖对MAb与GSTPVS(β-O-GlcNAc)SANM (68)的结合的竞争性抑制,将MAb以这样的方式在稀释缓冲液中稀释,所述方式使得如果在抑制剂的情况下,预期的最终OD值是约1。对于每个孔,将60 µl稀释的MAb在未包被的微量滴定板中与60 µl稀释缓冲液、以0-500 µM的终浓度溶于稀释缓冲液中的糖肽68 (GSTPVS(β-O-GlcNAc)SANM)、肽69 (GSTPVSSANM;SEQ ID NO:11)或糖70 (β-O-GlcNAc-Ser)混合。在室温温育30分钟后,将100 µl混合物转移至由BSA-MICGSTPVS(β-O-GlcNAc)SANM (BSA-MI-66)包被的板。如上所述使用合适的碱性磷酸酶缀合的检测抗体,将微量滴定板温育并显色。To investigate the competitive inhibition of MAb binding to GSTPVS(β- O -GlcNAc)SANM (68) by the corresponding glycopeptides, peptides and sugars, MAbs were diluted in dilution buffer in such a way that if In the case of inhibitors, the expected final OD value is about 1. For each well, mix 60 µl of diluted MAb in an uncoated microtiter plate with 60 µl of dilution buffer, Glycopeptide 68 (GSTPVS(β- O -GlcNAc)SANM), peptide 69 (GSTPVSSANM; SEQ ID NO: 11) or sugar 70 (β- O- GlcNAc-Ser) mixed. After 30 minutes of incubation at room temperature, 100 µl of the mixture was transferred to a plate coated with BSA-MICGSTPVS(β- O -GlcNAc)SANM (BSA-MI-66). Microtiter plates were incubated and developed as described above using the appropriate alkaline phosphatase-conjugated detection antibody.
质粒构建:将人OGT和OGA cDNA以两步方式PCR扩增,以在5'末端引入attB1位点和HA表位以及在3'末端引入attB2位点,以促进入口(Gateway)克隆策略(Invitrogen,Carlsbad,CA)。引物包括(1)用于第一PCR以将HA表位掺入起始密码子后的ogt内的有义引物:5’-CCCCATGTATCCATATGACGTCCCAGACTATGCCGCGTCTTCCGTGGGCAACGT-3’ (SEQ ID NO:13);(2)使用HA-ogt PCR产物作为模板的含有attB1位点的有义引物:5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGATGTATCCATATGACGTCCCAGACTATGCCGCGTCTTCCG-3’(SEQ ID NO:14);(3)用于两个ogt PCR的具有3’ attB2位点的反义引物:5’-GGGGACCACTTTGTACAAGAAAGCTGGGTTCTATGCTGACTCAGTGACTTCAACGGGCTTAATCATGTGG-3’(SEQ ID NO:15);(4)用于第一PCR以将HA表位掺入起始密码子后的oga内的有义引物:5’-CCCCATGTATCCATATGACGTCCCAGACTATGCCGTGCAGAAGGAGAGTCAAGC-3’ (SEQ ID NO:16);(5)使用HA-oga PCR产物作为模板的含有attB1位点的有义引物:5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGATGTATCCATATGACGTCCCAGACTATGCCGTGCAGAAGG-3’(SEQ ID NO:17);(6)用于两个oga PCR的具有3’ attB2位点的反义引物:5’-GGGGACCACTTTGTACAAGAAAGCTGGGTTCACAGGCTCCGACCAAGTAT-3’ (SEQ ID NO:18)。随后根据制造商的说明书,对纯化的DNA片段实施入口克隆,获得最终表达构建体pDEST26/HA-OGT和pDEST26/HA-OGA。 Plasmid construction : Human OGT and OGA cDNAs were PCR amplified in two steps to introduce an attB1 site and an HA epitope at the 5' end and an attB2 site at the 3' end to facilitate the Gateway cloning strategy (Invitrogen , Carlsbad, CA). Primers included (1) a sense primer for the first PCR to incorporate the HA epitope into the ogt after the start codon: 5'-CCCCATGTATCCATATGACGTCCCAGACTATGCCGCGTCTTCCGTGGGCAACGT-3' (SEQ ID NO: 13); (2) using HA - ogt PCR product as template with sense primer containing attB1 site: 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGATGTATCCATATGACGTCCCAGACTATGCCGCGTCTTCCG-3' (SEQ ID NO: 14); (3) antisense with 3' attB2 site for both ogt PCRs Primer: 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTTCTATGCTGACTCAGTGACTTCAACGGGCTTAATCATGTGG-3' (SEQ ID NO: 15); (4) Sense primer for the first PCR to incorporate the HA epitope into oga after the start codon: 5'-CCCCATGTATCCATATGACGTCCCAGACTATGCCGTGCAGAAGGAGAGTCAAGC- 3' (SEQ ID NO: 16); (5) A sense primer containing an attB1 site using HA-oga PCR product as a template: 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGATGTATCCATATGACGTCCCAGACTATGCCGTGCAGAAGG-3' (SEQ ID NO: 17); (6) with Antisense primer with 3' attB2 site for two oga PCRs: 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTTCACAGGCTCCGACCAAGTAT-3' (SEQ ID NO: 18). Purified DNA fragments were then subjected to entry cloning according to the manufacturer's instructions to obtain the final expression constructs pDEST26/HA-OGT and pDEST26/HA-OGA.
细胞培养、转染和处理:HEK 293T细胞得自ATCC (Manassas,VA),并维持在由5%CO2加湿的37℃恒温箱中的补充有10%胎牛血清(GIBCO/Invitrogen,Carlsbad,CA)的达尔伯克(Dulbecco’s)改良伊格尔培养基(4.5 g l-1葡萄糖,Cellgro/Mediatech,Inc.,Herndon,VA)中。根据制造商的说明书,用8 μg DNA和Lipofectamine 2000试剂(Invitrogen Carlsbad,CA)/10 cm细胞板执行转染。在不存在DNA的情况下执行模拟转染。转染后48小时收获细胞。对于免疫沉淀实验,用冰冷的PBS洗涤板的细胞,并且作为沉淀物(pellet)贮存于-80℃直至使用。对于免疫印迹实验,将细胞用冰冷的PBS洗涤两次,并且刮到裂解缓冲液(10 mM Tris-HCl,pH 7.5、150 mM NaCl、1% Igepal CA-630、0.1% SDS、4 mMEDTA、1 mM DTT、0.1 mM PUGNAc、蛋白酶抑制剂混合物)中,将裂解产物在4℃在microfuge中以16,000 g澄清25分钟。用Bradford蛋白质测定伴随标准程序(Bio-Rad,Hercules,CA)和在样品缓冲液中煮沸5分钟,定量蛋白质浓度。对于质谱法实验,将293T细胞的2 X 15 cm板用50 μM PUGNAc处理24小时,将细胞形成沉淀并如上贮存。 Cell culture, transfection and treatment : HEK 293T cells were obtained from ATCC (Manassas, VA) and maintained in a 37°C incubator humidified with 5% CO 2 supplemented with 10% fetal bovine serum (GIBCO/Invitrogen, Carlsbad, CA) in Dulbecco's Modified Eagle's Medium (4.5 g l-1 glucose, Cellgro/Mediatech, Inc., Herndon, VA). Transfections were performed with 8 μg of DNA and Lipofectamine 2000 reagent (Invitrogen Carlsbad, CA) per 10 cm cell plate according to the manufacturer's instructions. Mock transfection was performed in the absence of DNA. Cells were harvested 48 hours after transfection. For immunoprecipitation experiments, plated cells were washed with ice-cold PBS and stored as pellets at -80°C until use. For immunoblotting experiments, cells were washed twice with ice-cold PBS and scraped into lysis buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Igepal CA-630, 0.1% SDS, 4 mM EDTA, 1 mM DTT, 0.1 mM PUGNAc, protease inhibitor cocktail), the lysate was clarified in a microfuge at 16,000 g for 25 min at 4°C. Protein concentrations were quantified using the Bradford protein assay with standard procedures (Bio-Rad, Hercules, CA) and boiling in sample buffer for 5 minutes. For mass spectrometry experiments, 2 X 15 cm plates of 293T cells were treated with 50 μM PUGNAc for 24 hours, cells were pelleted and stored as above.
免疫沉淀和蛋白质印迹:为了制备用于CKII免疫沉淀的核胞质(nucleocytosolic)级分,将具有模拟或OGT转染的HEK293T细胞沉淀物重悬浮于4体积的低渗缓冲液(5 mM Tris-HCl,pH 7.5,蛋白酶抑制剂混合物)中,并且转移到2 ml匀浆器内。在冰上温育10分钟后,对细胞悬液实施杜恩斯匀浆化,随后为在冰上的另外5分钟温育。随后将一体积的高渗缓冲液(0.1 M Tris-HCl,pH 7.5,2 M NaCl、5 mM EDTA、5 mM DTT、蛋白酶抑制剂混合物)加入裂解产物中。将裂解产物在冰上温育5分钟,随后为另一轮杜恩斯匀浆化。将所得到的裂解产物转移至含有PUGNAc(终浓度10 μM)的microfuge管,并且在4℃以18,000g离心25分钟。使用Bradford蛋白质测定(Bio-Rad,Hercules,CA)测定蛋白质浓度。在IP前,裂解产物用1% Igepal CA-630和0.1% SDS补充,并且用正常兔或小鼠IgG AC和蛋白A/G PLUS琼脂糖的混合物在4℃预澄清30分钟。在澄清后,在目的抗体的存在下,将预澄清的上清液在4℃温育4。在加入蛋白A/G PLUS琼脂糖后,将样品在4℃温育另外2小时,并且用IP洗涤缓冲液(10 mM Tris-HCl,pH 7.5、150 mM NaCl、1% Igepal CA-630、0.1% SDS)广泛洗涤。最后,将SDSPAGE样品缓冲液加入IP复合物内,并且煮沸3分钟。将上清液通过10%或4-15% Tris-HCl预制小凝胶(Bio-Rad,Hercules,CA)分辨,并且转移至Immobilon-P转移膜(Millipore,Bedford,MA)。将膜用3% BSA (O-GlcNAc印迹)或5%乳(蛋白质印迹)的TBST(具有0.1% Tween 20的TBS)溶液封闭,然后用每种抗体(对于O-GlcNAc印迹为1:1000稀释度,对于CKII、OGT和OGA印迹为1:8000稀释度,和对于α-微管蛋白印迹为1:10,000稀释度)在4℃探测过夜,随后为在室温与缀合至HRP的次级抗体一起温育2小时。如下使用SuperSignal化学发光底物(Thermo Scientific,Rockford,IL)执行HRP活性的最终检测:MAb 18B10.C7(3)、9D1.E4(10)和1F5.D6(14)使用Femto;CKII、OGT、OGA和微管蛋白使用PICO。使薄膜暴露于CL-XPosure胶片(Thermo Scientific,Rockford,IL)。在薄膜上显现图像后,将印迹用0.1 M甘氨酸(pH 2.5)在室温剥离1小时,用ddH2O洗涤和如上所述针对上样对照(CKII或α-微管蛋白)再探测。 Immunoprecipitation and Western blotting : To prepare nucleocytosolic fractions for CKII immunoprecipitation, HEK293T cell pellets with mock or OGT transfection were resuspended in 4 volumes of hypotonic buffer (5 mM Tris- HCl, pH 7.5, Protease Inhibitor Cocktail) and transferred to a 2 ml homogenizer. After a 10 min incubation on ice, Dawns homogenization was performed on the cell suspension, followed by an additional 5 min incubation on ice. A volume of hypertonic buffer (0.1 M Tris-HCl, pH 7.5, 2 M NaCl, 5 mM EDTA, 5 mM DTT, protease inhibitor cocktail) was then added to the lysate. Lysates were incubated on ice for 5 min, followed by another round of Dawns homogenization. The resulting lysate was transferred to a microfuge tube containing PUGNAc (final concentration 10 μΜ) and centrifuged at 18,000 g for 25 minutes at 4°C. Protein concentrations were determined using the Bradford protein assay (Bio-Rad, Hercules, CA). Before IP, lysates were supplemented with 1% Igepal CA-630 and 0.1% SDS, and pre-cleared with a mixture of normal rabbit or mouse IgG AC and protein A/G PLUS agarose at 4°C for 30 minutes. After clarification, the pre-cleared supernatant was incubated at 4 °C for 4 in the presence of the antibody of interest. After adding protein A/G PLUS agarose, samples were incubated at 4°C for another 2 hours and washed with IP wash buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Igepal CA-630, 0.1 % SDS) wash extensively. Finally, SDS PAGE sample buffer was added to the IP complex and boiled for 3 minutes. Supernatants were resolved by 10% or 4-15% Tris-HCl precast mini-gels (Bio-Rad, Hercules, CA) and transferred to Immobilon-P transfer membranes (Millipore, Bedford, MA). Membranes were blocked with 3% BSA ( O -GlcNAc blotting) or 5% milk (Western blotting) in TBST (TBS with 0.1% Tween 20) and then diluted 1:1000 with each antibody (for O -GlcNAc blotting) 1:8000 dilution for CKII, OGT, and OGA blots, and 1:10,000 dilution for α-tubulin blots) probed at 4°C overnight, followed by secondary antibody conjugated to HRP at room temperature Incubate together for 2 hours. Final detection of HRP activity was performed using SuperSignal chemiluminescent substrates (Thermo Scientific, Rockford, IL) as follows: MAb 18B10.C7(3), 9D1.E4(10) and 1F5.D6(14) using Femto; CKII, OGT, OGA and tubulin use PICO. Films were exposed to CL-XPosure film (Thermo Scientific, Rockford, IL). After developing the image on the film, the blot was stripped with 0.1 M glycine (pH 2.5) for 1 hour at room temperature, washed with ddH2O and reprobed for loading controls (CKII or α-tubulin) as described above.
MAb与琼脂糖的缀合和用于LC-MS/MS分析的样品制备:根据制造商的说明书,经由二琥珀酰亚胺基底物(DSS,Thermo Scientific,Rockford,IL),将MAb 18B10.C7(3)、9D1.E4(10)和1F5.D6(14)或CTD110.6共价缀合至蛋白A/G PULS琼脂糖或抗小鼠IgM琼脂糖。如上以更大规模制备PUGNAc处理的HEK293T核胞质级分,将其与抗体缀合的琼脂糖一起温育,并如上洗涤。为了从琼脂糖中洗脱蛋白质,加入0.1 M甘氨酸(pH 2.5),并且将洗脱物立即用1 M Tris-HCl(pH 8.0)中和。随后将样品如先前所述地还原并烷基化,并且在37℃实施LysC消化过夜。在消化后,如先前描述地加工样品(Lim等人,2008 J. Proteome Res.7,1251-1263)。 Conjugation of MAb to agarose and sample preparation for LC-MS/MS analysis: MAb 18B10.C7 was prepared via a disuccinimide substrate (DSS, Thermo Scientific, Rockford, IL) according to the manufacturer's instructions. (3), 9D1.E4(10) and 1F5.D6(14) or CTD110.6 were covalently conjugated to protein A/G PULS agarose or anti-mouse IgM agarose. PUGNAc-treated HEK293T nucleocytoplasmic fractions were prepared on a larger scale as above, incubated with antibody-conjugated agarose, and washed as above. For elution of proteins from agarose, 0.1 M glycine (pH 2.5) was added and the eluate was immediately neutralized with 1 M Tris-HCl (pH 8.0). Samples were then reduced and alkylated as previously described, and LysC digestion was performed overnight at 37°C. After digestion, samples were processed as previously described (Lim et al., 2008 J. Proteome Res. 7, 1251-1263).
质谱法:将样品用19.5 μl 0.1%甲酸(在水中)和0.5 μl 80%乙腈/0.1%甲酸(在水中)重悬浮,并且用0.2 μm滤器(Nanosep,PALL)过滤。随后将样品脱机上样到nanosprayC18柱上,使用Finnigan LTQ/XL质谱仪(ThermoFisher,San Jose,CA),如先前描述(Lim等人,2008 J. Proteome Res. 7,1251-1263)用160分钟线性梯度分离。对每种样品实施具有不同设置的3次运行:(1) ETD (电子转移解离)模式,其中收集全MS谱,随后为在最强峰的ETD (激活的补充激活(enabled supplemental activation))后的6 MS/MS谱。动态排除对于30秒持续时间设为1。(2) CID-NL (碰撞诱导的解离-假中性丢失)模式,其中收集全MS谱,随后为在最强峰的CID后的8 MS/MS谱。在遇到假中性丢失事件(GlcNAc的丢失,203.08)后,基于MS/MS谱产生MS8谱。动态排除具有与ETD方法相同的设置。(3) DDNL-ETD (在CID下的数据依赖性中性丢失MS8,随后为在每一次中性丢失事件后的ETD激活),其中用CID (35%标准化碰撞能量)收集来自每次完全MS扫描的最高的5个峰的MS/MS谱,并且监控203.08的中性丢失,在这个过程中产生MS8谱。使用由补充激活激活的ETD执行具有中性丢失的重复扫描事件。动态排除也与上述相同地设置。 Mass Spectrometry : Samples were resuspended with 19.5 μl 0.1% formic acid (in water) and 0.5 μl 80% acetonitrile/0.1% formic acid (in water) and filtered with 0.2 μm filter (Nanosep, PALL). The samples were then loaded offline onto a nanospray C18 column using a Finnigan LTQ/XL mass spectrometer (ThermoFisher, San Jose, CA) as previously described (Lim et al., 2008 J. Proteome Res. 7, 1251-1263) with 160 minute linear gradient separation. 3 runs with different settings were performed for each sample: (1) ETD (electron transfer dissociation) mode, where full MS spectra were collected, followed by ETD at the most intense peak (enabled supplemental activation) 6 MS/MS spectra after. Dynamic exclusions are set to 1 for a duration of 30 seconds. (2) CID-NL (Collision-Induced Dissociation-Pseudo-Neutral Loss) mode, where a full MS spectrum is collected followed by 8 MS/MS spectra after the CID of the strongest peak. MS8 spectra were generated based on MS/MS spectra after encountering a false neutral loss event (loss of GlcNAc, 203.08). Dynamic exclusion has the same settings as the ETD method. (3) DDNL-ETD (data-dependent neutral loss MS8 under CID, followed by ETD activation after each neutral loss event), where data from each complete MS is collected with CID (35% normalized collision energy) The MS/MS spectrum of the top 5 peaks was scanned and monitored for neutral loss at 203.08, generating an MS8 spectrum in the process. Repeat scan events with neutral loss were performed using ETD activated by complement activation. Dynamic exclusions are also set in the same way as above.
数据分析和验证:使用TurboSequest算法(Bioworks 3.3,Thermo Finnigan),针对从Swiss-Prot人蛋白质组数据库中提取的人(智人(Homo sapiens),32876个条目,2007年8月13日发表)正向和反向数据库搜索MS谱。用15种离子的阈值和1e3的TIC对谱生成DTA文件。对于氧化甲硫氨酸(methione)、烷基化半胱氨酸和O-GlcNAc修饰的丝氨酸/苏氨酸,分别考虑15.99、57.02和203.08 Da的动态质量增加。将搜索正向和反向数据库获得的每种样品的所得OUT文件进一步用ProtoeIQ (Bioinquire)剖析,并用1% FDR (使用的度量:F-值)和处于5的ProFDR的起始肽覆盖过滤。 Data analysis and verification : using the TurboSequest algorithm (Bioworks 3.3, Thermo Finnigan), the human (Homo sapiens ( Homo sapiens ), 32876 entries, published on August 13, 2007) extracted from the Swiss-Prot human proteome database was positively analyzed. Searches MS spectra to and from databases. DTA files were generated with a threshold of 15 ions and a TIC pair spectrum of 1e3. Dynamic mass gains of 15.99, 57.02 and 203.08 Da were considered for oxidized methionine, alkylated cysteine and O -GlcNAc modified serine/threonine, respectively. The resulting OUT files for each sample obtained by searching the forward and reverse databases were further parsed with ProtoeIQ (Bioinquire) and filtered with a starting peptide coverage of 1% FDR (metric used: F-value) and a ProFDR at 5.
统计分析:通过双尾、不成对斯氏t检验测定在组之间的统计显著性。当P <0.05时,差异视为显著的。 Statistical Analysis : Statistical significance between groups was determined by two-tailed, unpaired Student's t-test. Differences were considered significant when P < 0.05.
本文引用的所有专利、专利申请和出版物的完全公开内容和可电子获得的材料(包括例如在例如GenBank和RefSeq中的核苷酸序列提交,和在例如SwissProt、PIR、PRF、PDB中的氨基酸序列提交,和来自GenBank和RefSeq中的注释编码区的翻译)均通过引用并入。前述说明书和实施例仅为了明确理解而给出。不应由其理解为不必要的限制。本发明并不限于所示和所述的确切细节,因为对本领域技术人员显而易见的变动将包括在由权利要求限定的本发明内。Full disclosure and electronically available material of all patents, patent applications, and publications cited herein (including, for example, nucleotide sequence submissions in, e.g., GenBank and RefSeq, and amino acid sequences in, e.g., SwissProt, PIR, PRF, PDB Sequence submissions, and translations of annotated coding regions from GenBank and RefSeq) are all incorporated by reference. The foregoing description and examples have been given for clarity of understanding only. It should not be construed as unnecessary limitations. The invention is not limited to the exact details shown and described, for variations obvious to one skilled in the art will be encompassed within the invention defined by the claims.
Claims (37)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35407610P | 2010-06-11 | 2010-06-11 | |
US61/354076 | 2010-06-11 | ||
US201013002180A | 2010-12-30 | 2010-12-30 | |
US13/002180 | 2010-12-30 | ||
CN201180039067.0A CN103209701B (en) | 2010-06-11 | 2011-06-10 | Immunogenic vaccine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180039067.0A Division CN103209701B (en) | 2010-06-11 | 2011-06-10 | Immunogenic vaccine |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106215179A true CN106215179A (en) | 2016-12-14 |
Family
ID=57533559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610602144.3A Pending CN106215179A (en) | 2010-06-11 | 2011-06-10 | Immunogenic vaccine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106215179A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113499433A (en) * | 2021-06-21 | 2021-10-15 | 复旦大学 | GalNAc/CpG liposome vaccine with anti-tumor activity, preparation method and application |
CN113912741A (en) * | 2021-11-08 | 2022-01-11 | 苏州博领干细胞再生医学有限公司 | Fusion protein, recombinant engineering bacterium, culture method and purification method of anti-glucagon related peptide-2 vaccine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1668746A (en) * | 2002-05-24 | 2005-09-14 | 葛兰素集团有限公司 | MUC-1 antigen with reduced number of VNTR repeat units |
US20090041836A1 (en) * | 2006-01-03 | 2009-02-12 | University Of Georgia Research Foundation, Inc. | Glycolipopeptide and uses thereof |
-
2011
- 2011-06-10 CN CN201610602144.3A patent/CN106215179A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1668746A (en) * | 2002-05-24 | 2005-09-14 | 葛兰素集团有限公司 | MUC-1 antigen with reduced number of VNTR repeat units |
US20090041836A1 (en) * | 2006-01-03 | 2009-02-12 | University Of Georgia Research Foundation, Inc. | Glycolipopeptide and uses thereof |
Non-Patent Citations (2)
Title |
---|
HILTBOLD EM ET AL.: "Naturally Processed Class II Epitope from the Tumor Antigen MUC1 Primes Human CD4+ T Cells", 《CANCER RESEARCH》 * |
INGALE S ET AL.: "Increasing the Antigenicity of Synthetic Tumor-Associated Carbohydrate Antigens by Targeting Toll-Like Receptors", 《CHEMBIOCHEM》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113499433A (en) * | 2021-06-21 | 2021-10-15 | 复旦大学 | GalNAc/CpG liposome vaccine with anti-tumor activity, preparation method and application |
CN113912741A (en) * | 2021-11-08 | 2022-01-11 | 苏州博领干细胞再生医学有限公司 | Fusion protein, recombinant engineering bacterium, culture method and purification method of anti-glucagon related peptide-2 vaccine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103209701B (en) | Immunogenic vaccine | |
US7820797B2 (en) | Glycolipopeptide antibodies | |
Compañón et al. | Structure-based design of potent tumor-associated antigens: modulation of peptide presentation by single-atom O/S or O/Se substitutions at the glycosidic linkage | |
US9211345B2 (en) | Glycopeptide and uses thereof | |
Yin et al. | Significant impact of immunogen design on the diversity of antibodies generated by carbohydrate-based anticancer vaccine | |
CN105764921B (en) | Carbohydrate vaccine compositions for inducing immune response and use thereof for treating cancer | |
JP6774941B2 (en) | Immunogenic / Therapeutic Sugar Conjugate Compositions and Their Use | |
KR20110044854A (en) | Immune inducer | |
US9487567B2 (en) | Method for the production of an immunostimulating mucin (MUC1) | |
Sorieul et al. | Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics | |
US20130149331A1 (en) | Rhamnose and forssman conjugated immunogenic agents | |
AU2017201649B2 (en) | Xenoantigen-displaying anti-cancer vaccines and method of making | |
CZ20012581A3 (en) | Use of antibodies for vaccination against tumor diseases | |
TWI392502B (en) | Globo h and related anti-cancer vaccines with novel glycolipid adjuvants | |
Roy et al. | Carrier diversity and chemical ligations in the toolbox for designing tumor-associated carbohydrate antigens (TACAs) as synthetic vaccine candidates | |
CN106215179A (en) | Immunogenic vaccine | |
Buskas et al. | Semisynthetic and Fully Synthetic Carbohydrate‐Based Cancer Vaccines | |
Thompson | IMMUNE RECOGNITION OF TUMOR-ASSOCIATED MUC1 IS ACHIEVED BY A FULLY SYNTHETIC ABERRANTLY GLYCOSYLATED MUC1 TRIPARTITE VACCINE | |
LIVINGSTON | 7. ANTIBODY INDUCING POLYVALENT CANCER VACCINES | |
BR112016008254B1 (en) | PEPTIDE CONSISTING OF 4 LINKED CTL EPITOPES, CTL COMPOSITION, AND PHARMACEUTICAL COMPOSITION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161214 |