[go: up one dir, main page]

CN106201140B - touch device and sensing method thereof - Google Patents

touch device and sensing method thereof Download PDF

Info

Publication number
CN106201140B
CN106201140B CN201610552721.2A CN201610552721A CN106201140B CN 106201140 B CN106201140 B CN 106201140B CN 201610552721 A CN201610552721 A CN 201610552721A CN 106201140 B CN106201140 B CN 106201140B
Authority
CN
China
Prior art keywords
sensing
data
scan
data line
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610552721.2A
Other languages
Chinese (zh)
Other versions
CN106201140A (en
Inventor
林吴维
罗睿骐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Publication of CN106201140A publication Critical patent/CN106201140A/en
Application granted granted Critical
Publication of CN106201140B publication Critical patent/CN106201140B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开了一种触控装置与其感测方法,具有互容模式及自容模式。互容模式中由第i条第一数据线输出数据信号。依序地由M条扫描线其中至少一输出扫描信号。当第k条扫描线输出扫描信号时,接收第二数据线上的第一感应数据。第一感应数据系耦接于第j+1条第二数据线的感应单元与耦接于第i条第一数据线的感应单元互容量测的结果。切换由第i+1条第一数据线输出数据信号。当第k条扫描线输出扫描信号时,接收第二数据线上的第二感应数据。第二感应数据系耦接于第j+1条第二数据线的感应单元与耦接于第i+1条第一数据线的感应单元互容量测的结果。

The present invention discloses a touch device and a sensing method thereof, which have a mutual capacitance mode and a self-capacitance mode. In the mutual capacitance mode, a data signal is outputted by the i-th first data line. A scan signal is sequentially outputted by at least one of the M scan lines. When the k-th scan line outputs a scan signal, the first sensing data on the second data line is received. The first sensing data is the result of mutual capacitance measurement between the sensing unit coupled to the j+1-th second data line and the sensing unit coupled to the i-th first data line. The data signal is switched to be outputted by the i+1-th first data line. When the k-th scan line outputs a scan signal, the second sensing data on the second data line is received. The second sensing data is the result of mutual capacitance measurement between the sensing unit coupled to the j+1-th second data line and the sensing unit coupled to the i+1-th first data line.

Description

触控装置与其感测方法Touch device and sensing method thereof

技术领域technical field

本发明关于一种触控装置与其感测方法,特别是一种切换操作于互容模式和自容模式的触控装置与其感测方法。The present invention relates to a touch device and a sensing method thereof, in particular to a touch device and a sensing method for switching between a mutual capacitance mode and a self-capacitance mode.

背景技术Background technique

随着科技的发展,伴随着移动支付与私密数据的保存,产品类数据的保全(Security)的问题,因此必须要透过适当的使用者认证机制(Authentication)来限制对设备的控制与数据的存取,以保障期储存数据的安全,又以电容式指纹辨识更容易整合于移动装置中,同时能够进行生物活体识别,提供更高的安全性。With the development of science and technology, along with the preservation of mobile payment and private data, the security of product data (Security), it is necessary to limit the control of the device and the data security through an appropriate user authentication mechanism (Authentication). Access to ensure the security of long-term stored data, and it is easier to integrate into mobile devices with capacitive fingerprint recognition, and at the same time, it can perform biometric identification to provide higher security.

在电子装置的越来越轻薄的情况下,若使用互容式触控感应用以传送触控感测信号的驱动金属层和用以感应触控信号的感应金属层开始被设计于同一个金属层中。虽然达到减少体积和成本的目的,却也因为驱动金属层和感应金属层的面积减小,造成驱动金属层辐射能量下降及感应金属层的感应量下降的问题,进而使得触控感应的能力下降。当此种触控感应技术使用在例如指纹辨识器中时,就可能造成指纹特征感应能力不足、辨识失败等问题。As electronic devices become thinner and lighter, if mutual capacitive touch sensing is used, the driving metal layer for transmitting touch sensing signals and the sensing metal layer for sensing touch signals begin to be designed on the same metal in the layer. Although the purpose of reducing the volume and cost is achieved, the reduction in the area of the driving metal layer and the sensing metal layer results in a decrease in the radiation energy of the driving metal layer and the inductive amount of the sensing metal layer, which in turn reduces the ability of touch sensing. . When such a touch sensing technology is used in, for example, a fingerprint reader, it may cause problems such as insufficient sensing capability of fingerprint features and failure of identification.

发明内容SUMMARY OF THE INVENTION

本发明在于提供一种触控装置与其感测方法,藉以解决现有技术中驱动金属层辐射能量下降,感应金属层的感应量下降所造成的感应能力下降的问题。The present invention provides a touch device and a sensing method thereof, so as to solve the problem in the prior art that the inductive capability of the driving metal layer decreases due to the decrease in the radiant energy of the driving metal layer and the decrease in the inductive amount of the sensing metal layer.

本发明所公开的触控装置的感测方法,适用于感应电极层。感应电极层具有多个感应单元、M条扫描线及N条数据线。感应单元排列成M列N行的感应阵列,其中每一列中的感应单元电性连接M条扫描线其中之一,每一行中的感应单元电性连接N条数据线其中之一。数据线定义为多条第一数据线及多条第二数据线,第一数据线中的第i条第一数据线位于第二数据线中的第j条和第j+1条第二数据线之间,且第j+1条第二数据线位于第i条和第i+1条第一数据线之间,感测方法包括互容模式及自容模式,其中于互容模式中具有由第i条第一数据线输出数据信号。依序地由M条扫描线其中至少一输出扫描信号。当M条扫描线中第k条扫描线输出扫描信号时,接收每一个第二数据线上的第一感应数据,其中第j+1条第二数据线上的第一感应数据为第k列的感应单元中,电性连接于第j+1条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,且第k列中的每一感应单元电性连接第k条扫描线。切换由第i+1条第一数据线输出数据信号。当M条扫描线中第k条扫描线输出扫描信号时,接收每一个第二数据线上的第二感应数据,其中第j+1条第二数据线上的第二感应数据为第k列的感应单元中,电性连接于第j+1条第二数据线的感应单元与电性连接于第i+1条第一数据线的感应单元互容量测的结果。The sensing method of the touch device disclosed in the present invention is suitable for the sensing electrode layer. The sensing electrode layer has a plurality of sensing units, M scanning lines and N data lines. The sensing units are arranged in a sensing array of M columns and N rows, wherein the sensing units in each column are electrically connected to one of the M scan lines, and the sensing units in each row are electrically connected to one of the N data lines. The data lines are defined as a plurality of first data lines and a plurality of second data lines, the i-th first data line in the first data line is located in the j-th and j+1-th second data lines in the second data line between the lines, and the j+1 th second data line is located between the i th and the i+1 th first data line, the sensing method includes a mutual capacitance mode and a self-capacitance mode, wherein in the mutual capacitance mode, there are A data signal is output from the i-th first data line. A scan signal is output from at least one of the M scan lines in sequence. When the k-th scan line among the M scan lines outputs a scan signal, the first sensing data on each second data line is received, wherein the first sensing data on the j+1-th second data line is the k-th column Among the sensing units of , the result of mutual capacitance measurement between the sensing unit electrically connected to the j+1th second data line and the sensing unit electrically connected to the ith first data line, and each of the kth column The sensing unit is electrically connected to the kth scan line. Switch the i+1 th first data line to output the data signal. When the k-th scan line among the M scan lines outputs a scan signal, the second sensing data on each second data line is received, wherein the second sensing data on the j+1-th second data line is the k-th column In the sensing unit of , the result of mutual capacity measurement between the sensing unit electrically connected to the j+1 th second data line and the sensing unit electrically connected to the i+1 th first data line.

本发明所公开的触控装置包含感应电极层。感应电极层具有多个感应单元、M条扫描线、N条数据线及控制单元。多个感应单元排列成M列N行的感应阵列。感应阵列中每一列的感应单元电性连接M条扫描线其中之一。感应阵列中每一行的感应单元电性连接N条数据线其中之一。数据线定义为多条第一数据线及多条第二数据线。第一数据线中的第i条第一数据线位于第二数据线中的第j条和第j+1条第二数据线之间,且第j+1条第二数据线位于第i条和第i+1条第一数据线之间。控制单元运作于互容模式及自容模式。于互容模式中,控制单元从第i条第一数据线输出数据信号,并依序地从M条扫描线其中至少一输出扫描信号。当M条扫描线中第k条扫描线输出扫描信号时,控制单元接收每一第二数据线上的第一感应数据。控制单元切换从第i+1条第一数据线输出数据信号,并依序地从M条扫描线其中至少一输出扫描信号。当M条扫描线中第k条扫描线输出扫描信号时,控制单元接收每一第二数据线上的第二感应数据,其中第j+1条第二数据线上的第一感应数据为第k列的感应单元中,电性连接于第j+1条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,第j+1条第二数据线上的第二感应数据为第k列的感应单元中,电性连接于第j+1条第二数据线的感应单元与电性连接于第i+1条第一数据线的感应单元互容量测的结果。The touch device disclosed in the present invention includes a sensing electrode layer. The sensing electrode layer has a plurality of sensing units, M scan lines, N data lines and a control unit. A plurality of sensing units are arranged in a sensing array with M columns and N rows. The sensing units in each column of the sensing array are electrically connected to one of the M scan lines. The sensing units in each row of the sensing array are electrically connected to one of the N data lines. The data lines are defined as a plurality of first data lines and a plurality of second data lines. The i-th first data line in the first data lines is located between the j-th and j+1-th second data lines in the second data lines, and the j+1-th second data line is located in the i-th line and the i+1th first data line. The control unit operates in a mutual capacitance mode and a self-capacitance mode. In the mutual capacitance mode, the control unit outputs a data signal from the i-th first data line, and sequentially outputs a scan signal from at least one of the M scan lines. When the k-th scan line among the M scan lines outputs the scan signal, the control unit receives the first sensing data on each of the second data lines. The control unit switches to output the data signal from the i+1 th first data line, and sequentially outputs the scan signal from at least one of the M scan lines. When the k th scan line among the M scan lines outputs the scan signal, the control unit receives the second sensing data on each second data line, wherein the first sensing data on the j+1 th second data line is the first sensing data on the j+1 th second data line Among the sensing units in column k, the result of mutual capacitance measurement between the sensing unit electrically connected to the j+1th second data line and the sensing unit electrically connected to the ith first data line, the j+1th The second sensing data on the two data lines is the sensing unit in the k-th column, the sensing unit electrically connected to the j+1-th second data line and the sensing unit electrically connected to the i+1-th first data line The result of the unit mutual capacity test.

根据上述本发明所公开的触控装置与其感测方法,藉由触控装置切换地运作于自容模式和互容模式,使得触控装置可以增加感应面积和感应的数据量,藉以解决现有技术中,感应能力下降的问题。再者,藉由于执行互容模式时,触控装置会分时地从部分的第一数据线传送数据信号,再从另一部份的第一数据线传送数据信号,使得控制单元接收到的感应数据不会被误判,且感应单元之间的间隙区域亦可以被感应到,使得触控装置的感应能力和解析度更为提升。According to the touch device and the sensing method thereof disclosed in the present invention, the touch device can switch between the self-capacitance mode and the mutual-capacitance mode, so that the touch device can increase the sensing area and the amount of data to be sensed, so as to solve the problem of the existing In technology, the problem of decreased sensing ability. Furthermore, when the mutual capacitance mode is executed, the touch device will transmit data signals from part of the first data lines and transmit data signals from another part of the first data lines in time division, so that the control unit receives the data signal. The sensing data will not be misjudged, and the gap area between the sensing units can also be sensed, so that the sensing capability and resolution of the touch device are further improved.

以上的关于本公开内容的说明及以下的实施方式的说明用以示范与解释本发明的精神与原理,并且提供本发明的权利要求保护范围更进一步的解释。The above description of the present disclosure and the following description of the embodiments serve to demonstrate and explain the spirit and principles of the present invention, and provide further explanation of the scope of the claims of the present invention.

附图说明Description of drawings

图1为根据本发明一实施例所绘示之触控装置的感应电极层和控制单元的示意图。FIG. 1 is a schematic diagram of a sensing electrode layer and a control unit of a touch device according to an embodiment of the present invention.

图2为根据本发明一实施例所绘示之触控装置操作于互容模式下的一个操作阶段的电压时序图。2 is a voltage timing diagram of an operation stage of the touch device operating in a mutual capacitance mode according to an embodiment of the present invention.

图3为根据本发明一实施例所绘示之触控装置操作于互容模式下另一个操作阶段的电压时序图。3 is a voltage timing diagram of another operation stage of the touch device operating in the mutual capacitance mode according to an embodiment of the present invention.

图4为根据本发明另一实施例所绘示之触控装置的感应电极层和控制单元的示意图。4 is a schematic diagram of a sensing electrode layer and a control unit of a touch device according to another embodiment of the present invention.

图5为根据本发明另一实施例所绘示之触控装置操作于互容模式下的一个操作阶段的电压时序图。5 is a voltage timing diagram of an operation stage of the touch device operating in the mutual capacitance mode according to another embodiment of the present invention.

图6为根据本发明另一实施例所绘示之触控装置操作于互容模式下的一个操作阶段的电压时序图。6 is a voltage timing diagram of an operation stage of the touch device operating in the mutual capacitance mode according to another embodiment of the present invention.

图7为根据本发明另一实施例所绘示之触控装置操作于自容模式下的电压时序图。7 is a voltage timing diagram of a touch device operating in a self-capacitance mode according to another embodiment of the present invention.

图8为根据本发明再一实施例所绘示之触控装置的感应电极层和控制单元的示意图。8 is a schematic diagram of a sensing electrode layer and a control unit of a touch device according to still another embodiment of the present invention.

图9为根据本发明再一实施例所绘示之触控装置操作于互容模式下的一个操作阶段的电压时序图。FIG. 9 is a voltage timing diagram of an operation stage of a touch device operating in a mutual capacitance mode according to yet another embodiment of the present invention.

图10为根据本发明再一实施例所绘示之触控装置操作于互容模式下另一个操作阶段的电压时序图。10 is a voltage timing diagram of another operation stage of the touch device operating in the mutual capacitance mode according to still another embodiment of the present invention.

图11为根据本发明又一实施例所绘示之触控装置的感应电极层和控制单元的示意图。11 is a schematic diagram of a sensing electrode layer and a control unit of a touch device according to another embodiment of the present invention.

图12为根据本发明又一实施例所绘示之触控装置操作于互容模式下的电压时序图。12 is a voltage timing diagram of a touch device operating in a mutual capacitance mode according to yet another embodiment of the present invention.

图13为根据本发明又一实施例所绘示之触控装置操作于互容模式下另一个操作阶段的电压时序图。13 is a voltage timing diagram of another operation stage of the touch device operating in the mutual capacitance mode according to yet another embodiment of the present invention.

图14为根据本发明又一实施例所绘示之触控装置的感应电极层和控制单元的示意图。14 is a schematic diagram of a sensing electrode layer and a control unit of a touch device according to another embodiment of the present invention.

图15为根据本发明再一实施例所绘示之触控装置操作于自容模式下的电压时序图。15 is a voltage timing diagram of a touch device operating in a self-capacitance mode according to yet another embodiment of the present invention.

图16为根据本发明一实施例所绘示之触控装置感测方法的步骤流程图。FIG. 16 is a flow chart of steps of a sensing method of a touch device according to an embodiment of the present invention.

其中,附图标记:Among them, reference numerals:

10、20、10’、20’ 触控装置10, 20, 10’, 20’ Touch Device

11、21、11’、21’ 感应电极层11, 21, 11', 21' Sensing electrode layer

111、211、111’、211’ 感应单元111, 211, 111', 211' induction unit

112、212、112’、212’ 扫描线112, 212, 112', 212' scan lines

113、213、113’、213’ 数据线113, 213, 113', 213' data cable

114、214、114’、214’ 控制单元114, 214, 114’, 214’ control unit

115、215、115’、215’ 感应阵列115, 215, 115', 215' induction array

G(1)~G(m)、G(k-1)、G(k)、G(k+1)、G(k+2) 扫描信号G(1)~G(m), G(k-1), G(k), G(k+1), G(k+2) Scanning signal

T(i)、T(i+1)、T(i+2)、T(i+3)、R(j)、R(j+1)、R(j+2) 数据信号T(i), T(i+1), T(i+2), T(i+3), R(j), R(j+1), R(j+2) data signal

D(1)~D(n)、T(1)~T(4)、R(1)~R(4) 数据信号D(1)~D(n), T(1)~T(4), R(1)~R(4) Data signal

[i]、[i+1] 第一数据线[i], [i+1] First data line

[j]、[j+1]、[j+2] 第二数据线[j], [j+1], [j+2] Second data line

Z1~Z4、Y1~Y6、Y1’~Y6’、W1、W2 感测区域Z1~Z4, Y1~Y6, Y1’~Y6’, W1, W2 Sensing area

Prd1~Prd6、Prd1’~Prd4’ 时间区间Prd1~Prd6, Prd1’~Prd4’ time interval

具体实施方式Detailed ways

以下在实施方式中详细叙述本发明的详细特征以及优点,其内容足以使任何熟习相关技艺者了解本发明的技术内容并据以实施,且根据本说明书所公开的内容、申请专利范围及图式,任何熟习相关技艺者可轻易地理解本发明相关的目的及优点。以下的实施例进一步详细说明本发明的观点,但非以任何观点限制本发明的范畴。The detailed features and advantages of the present invention are described in detail below in the embodiments, and the content is sufficient to enable any person skilled in the relevant art to understand the technical content of the present invention and implement it accordingly, and according to the content disclosed in this specification, the scope of the patent application and the drawings , any person skilled in the related art can easily understand the related objects and advantages of the present invention. The following examples further illustrate the concept of the present invention in further detail, but are not intended to limit the scope of the present invention in any way.

请参照图1,图1为根据本发明一实施例所绘示的触控装置的感应电极层和控制单元的示意图,如图1所示,触控装置10包含感应电极层11。感应电极层11具有多个感应单元111、M条扫描线112、N条数据线113及控制单元114。多个感应单元111排列成M列N行的感应阵列115。感应阵列115中每一列的感应单元111电性连接M条扫描线112其中之一。感应阵列115中每一行的感应单元111电性连接N条数据线113其中之一。Please refer to FIG. 1 , which is a schematic diagram of a sensing electrode layer and a control unit of a touch device according to an embodiment of the present invention. As shown in FIG. 1 , the touch device 10 includes a sensing electrode layer 11 . The sensing electrode layer 11 has a plurality of sensing units 111 , M scan lines 112 , N data lines 113 and a control unit 114 . The plurality of sensing units 111 are arranged in a sensing array 115 with M columns and N rows. The sensing unit 111 in each column of the sensing array 115 is electrically connected to one of the M scan lines 112 . The sensing units 111 in each row of the sensing array 115 are electrically connected to one of the N data lines 113 .

于一个实施例中,控制单元114具有驱动电路及数据电路。M条扫描线112电性连接驱动电路,N条数据线113电性连接数据电路。M条扫描线112分别将驱动电路提供的扫描信号G(1)~G(m)传输至感应阵列115的M列感应单元111,N条数据线113分别将数据电路提供的数据信号传输至感应阵列115的N行感应单元111。于一个实施例中,感应单元111例如具有主动元件和导电体,主动元件例如为N型晶体管。当第k条扫描线112输出扫描信号G(k),亦即第k条扫描线112上的电压位准提升时,第k列上的感应单元111中的主动元件被驱动,第k列上的感应单元111中的主动元件导通,并将N条数据线113上的数据信号分别写入第k列上的导电体中,例如第k列第i行的感应单元111将第i条数据线113上的数据信号T(i)写入导电体。In one embodiment, the control unit 114 has a driving circuit and a data circuit. The M scan lines 112 are electrically connected to the driving circuit, and the N data lines 113 are electrically connected to the data circuit. The M scan lines 112 respectively transmit the scan signals G( 1 ) to G(m) provided by the driving circuit to the M columns of the sensing units 111 of the sensing array 115 , and the N data lines 113 respectively transmit the data signals provided by the data circuit to the sensing units 111 . N rows of sensing cells 111 of the array 115 . In one embodiment, the sensing unit 111 has, for example, an active element and a conductor, and the active element is, for example, an N-type transistor. When the k-th scan line 112 outputs the scan signal G(k), that is, when the voltage level on the k-th scan line 112 increases, the active element in the sensing unit 111 on the k-th column is driven, and the active element in the k-th column is driven. The active element in the inductive unit 111 is turned on, and the data signals on the N data lines 113 are written into the conductors on the k-th column respectively. For example, the sensing unit 111 in the k-th column and the i-th row The data signal T(i) on line 113 is written into the conductor.

当手指触碰于触控装置10的感应阵列115上时,触控装置10会对手指进行自容感测和互容感测,也就是说,控制单元114会切换地运作于互容模式和自容模式以对手指进行感测。以下将说明触控装置10运作于互容模式下的感测方法,请一并参考图1至图3,图2为根据本发明一实施例所绘示的触控装置操作于互容模式下的电压时序图,图3为根据本发明一实施例所绘示的触控装置操作于互容模式下另一个操作阶段的电压时序图。如图所示,N条数据线113中部分的数据线113被定义为第一数据线,另一部分的数据线113被定义为第二数据线,第一数据线和第二数据线分别被当作传送数据线(TX)和接收数据线(RX)。本实施例不限制第一数据线被作为传送数据线或第二数据线被作为传送数据线。When a finger touches the sensing array 115 of the touch device 10, the touch device 10 performs self-capacitance sensing and mutual-capacitance sensing on the finger, that is, the control unit 114 switches to operate in the mutual-capacitance mode and Self-capacitive mode for finger sensing. The sensing method of the touch device 10 operating in the mutual capacitance mode will be described below. Please refer to FIGS. 1 to 3 together. FIG. 2 illustrates the touch device operating in the mutual capacitance mode according to an embodiment of the present invention. FIG. 3 is a voltage timing diagram of another operation stage of the touch device operating in the mutual capacitance mode according to an embodiment of the present invention. As shown in the figure, part of the data lines 113 of the N data lines 113 is defined as the first data line, and another part of the data lines 113 is defined as the second data line, and the first data line and the second data line are respectively used as It is used as a transmit data line (TX) and a receive data line (RX). This embodiment does not limit the first data line to be used as the transmission data line or the second data line to be used as the transmission data line.

为了方便说明,于附图中以[i]和[j]来分别表示第一数据线和第二数据线,亦即[i]表示第i条第一数据线,[i+1]表示第i+1条第一数据线,[j]表示第j条第二数据线,[j]表示第j+1条第二数据线,其中第i条第一数据线位于第j条第二数据线和第j+1条第二数据线之间,第j+1条第二数据线位于第i条第一数据线和第i+1条第一数据线之间。For the convenience of description, the first data line and the second data line are represented by [i] and [j] respectively in the drawings, that is, [i] represents the ith first data line, and [i+1] represents the ith first data line. i+1 first data line, [j] represents the j-th second data line, [j] represents the j+1-th second data line, and the i-th first data line is located in the j-th second data line line and the j+1 th second data line, and the j+1 th second data line is located between the i th first data line and the i+1 th first data line.

于互容模式中,控制单元114从第i条第一数据线输出数据信号T(i),如图2所示。接着,控制单元114从M条扫描线112依序地输出扫描信号G(1)~G(m)。以M条扫描线112中的第k条扫描线112为例来说,当第k条扫描线112输出扫描信号G(k)时,控制单元114接收每一条第二数据线上的第一感应数据,如第j条第二数据线、第j+1条第二数据线和第j+2条第二数据线上的第一感应数据,其中当第k条扫描线112输出扫描信号G(k)时,第j条第二数据线上的第一感应数据为第k列上的感应单元111中,电性连接于第j条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,亦即图1中感测区域Z1的互容量测的结果。第j+1条第二数据线上的第一感应数据为第k列上的感应单元111中,电性连接于第j+1条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,亦即图1中感测区域Z2的互容量测的结果。In the mutual capacitance mode, the control unit 114 outputs the data signal T(i) from the i-th first data line, as shown in FIG. 2 . Next, the control unit 114 sequentially outputs the scan signals G( 1 ) to G(m) from the M scan lines 112 . Taking the k-th scan line 112 of the M scan lines 112 as an example, when the k-th scan line 112 outputs the scan signal G(k), the control unit 114 receives the first sense on each of the second data lines. data, such as the first sensing data on the j-th second data line, the j+1-th second data line, and the j+2-th second data line, when the k-th scan line 112 outputs the scan signal G ( k), the first sensing data on the j-th second data line is the sensing unit 111 on the k-th column, the sensing unit electrically connected to the j-th second data line and the sensing unit electrically connected to the i-th row The result of the mutual capacity measurement of the sensing units of the first data line, that is, the result of the mutual capacity measurement of the sensing area Z1 in FIG. 1 . The first sensing data on the j+1 th second data line is the sensing unit 111 on the k th column, the sensing unit electrically connected to the j+1 th second data line is electrically connected to the i th row The result of the mutual capacity measurement of the sensing units of the first data line, that is, the result of the mutual capacity measurement of the sensing area Z2 in FIG. 1 .

接下来,控制单元114从第i+1条第一数据线输出数据信号T(i+1),如图3所示。控制单元114从M条扫描线112依序地输出扫描信号G(1)~G(m)。同样地,以M条扫描线112中的第k条扫描线112为例来说,当第k条扫描线112输出扫描信号G(k)时,控制单元114接收每一条第二数据线上的第一感应数据,其中当第k条扫描线112输出扫描信号G(k)时,第j+1条第二数据线上的第一感应数据为第k列上的感应单元111中,电性连接于第j+1条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,亦即图1中感测区域Z3的互容量测的结果。第j+2条第二数据线上的第一感应数据为第k列上的感应单元111中,电性连接于第j+2条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,亦即图1中感测区域Z4的互容量测的结果。图1中感测区域Z1~Z4仅为了方便说明和图式显示并非指触控装置10实际的感测区域。Next, the control unit 114 outputs the data signal T(i+1) from the i+1 th first data line, as shown in FIG. 3 . The control unit 114 sequentially outputs the scan signals G( 1 ) to G(m) from the M scan lines 112 . Similarly, taking the k-th scan line 112 among the M scan lines 112 as an example, when the k-th scan line 112 outputs the scan signal G(k), the control unit 114 receives the signal on each of the second data lines. The first sensing data, wherein when the k-th scan line 112 outputs the scan signal G(k), the first sensing data on the j+1-th second data line is the electrical property of the sensing unit 111 on the k-th column. The result of the mutual capacity measurement between the sensing unit connected to the j+1 th second data line and the sensing unit electrically connected to the i th first data line, that is, the result of the mutual capacity measurement of the sensing area Z3 in FIG. 1 . The first sensing data on the j+2 th second data line is the sensing unit 111 on the k th column, the sensing unit electrically connected to the j+2 th second data line is electrically connected to the i th row The result of the mutual capacity measurement of the sensing units of the first data line, that is, the result of the mutual capacity measurement of the sensing area Z4 in FIG. 1 . The sensing regions Z1 to Z4 in FIG. 1 are only for the convenience of description and drawing, and do not refer to the actual sensing regions of the touch device 10 .

具体来说,请参照图4至图6,图4为根据本发明另一实施例所绘示的触控装置的感应电极层和控制单元的示意图,图5为根据本发明另一实施例所绘示的触控装置操作于互容模式下的一个操作阶段的电压时序图,图6为根据本发明另一实施例所绘示的触控装置操作于互容模式下的一个操作阶段的电压时序图,如图所示,当触控装置10的感应电极层11具有8条扫描线112、5条数据线113及以多个感应单元111排列成8列5行的感应阵列115时,控制单元114首先从第二条数据线113输出数据信号T(1),接着控制单元114依序地从8条扫描线112输出扫描信号G(1)~G(8)。Specifically, please refer to FIGS. 4 to 6 . FIG. 4 is a schematic diagram of a sensing electrode layer and a control unit of a touch device according to another embodiment of the present invention, and FIG. 5 is a schematic diagram of another embodiment of the present invention. The illustrated voltage timing diagram of the touch device operating in the mutual capacitance mode in one operation stage, FIG. 6 is the voltage in one operation stage of the touch device operating in the mutual capacitance mode according to another embodiment of the present invention. The timing diagram, as shown in the figure, when the sensing electrode layer 11 of the touch device 10 has 8 scan lines 112, 5 data lines 113, and a sensing array 115 with a plurality of sensing units 111 arranged in 8 columns and 5 rows, the control The unit 114 first outputs the data signal T( 1 ) from the second data line 113 , and then the control unit 114 sequentially outputs the scan signals G( 1 ) to G( 8 ) from the eight scan lines 112 .

于图5中的时间区间Prd1’中,当第一条扫描线112输出扫描信号G(1)时,亦即第一条扫描线112的电压位准上升时,控制单元114接收第一条数据线113、第三条数据线113和第五条数据线113上的第一感应数据。此时,第一条数据线113上的第一感应数据为第1行第1列的感应单元111和第2行第1列的感应单元111互容量测的结果。第三条数据线113上的第一感应数据为第3行第1列的感应单元111和第2行第1列的感应单元111互容量测的结果。第五条数据线113上的第一感应数据为第4行第1列的感应单元111和第5行第1列的感应单元111互容量测的结果。In the time interval Prd1 ′ in FIG. 5 , when the first scan line 112 outputs the scan signal G( 1 ), that is, when the voltage level of the first scan line 112 rises, the control unit 114 receives the first piece of data. The first sense data on line 113 , the third data line 113 and the fifth data line 113 . At this time, the first sensing data on the first data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the first row and the first column and the sensing unit 111 in the second row and the first column. The first sensing data on the third data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the third row and the first column and the sensing unit 111 in the second row and the first column. The first sensing data on the fifth data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the fourth row and the first column and the sensing unit 111 in the fifth row and the first column.

于时间区间Prd2’中,当第二条扫描线112输出扫描信号G(2)时,亦即第二条扫描线112的电压位准上升时,控制单元114接收第一条数据线113、第三条数据线113和第五条数据线113上的第一感应数据。此时,第一条数据线113上的第一感应数据为第1行第2列的感应单元111和第2行第2列的感应单元111互容量测的结果。第三条数据线113上的第一感应数据为第3行第2列的感应单元111和第2行第2列的感应单元111互容量测的结果。第五条数据线113上的第一感应数据为第4行第2列的感应单元111和第5行第2列的感应单元111互容量测的结果。In the time interval Prd2', when the second scan line 112 outputs the scan signal G(2), that is, when the voltage level of the second scan line 112 rises, the control unit 114 receives the first data line 113, the second The first sensing data on the three data lines 113 and the fifth data line 113 . At this time, the first sensing data on the first data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the first row and the second column and the sensing unit 111 in the second row and the second column. The first sensing data on the third data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the third row and the second column and the sensing unit 111 in the second row and the second column. The first sensing data on the fifth data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the fourth row and the second column and the sensing unit 111 in the fifth row and the second column.

当第三条扫描线112至第八条扫描线112输出扫描信号G(3)~G(8)时,同理地,控制单元114接收第一条数据线113、第三条数据线113和第五条数据线113上的感应单元111互容量测的结果,不再加以赘述。When the third to eighth scan lines 112 to 112 output the scan signals G( 3 ) to G( 8 ), similarly, the control unit 114 receives the first data line 113 , the third data line 113 and the The result of the mutual capacity measurement of the sensing unit 111 on the fifth data line 113 will not be repeated here.

接着,控制单元114从第四条数据线113输出数据信号T(2),控制单元114依序地从8条扫描线112输出扫描信号G(1)~G(8)。于图6中的时间区间Prd3’中,当第一条扫描线112输出扫描信号G(1)时,亦即第一条扫描线112的电压位准上升时,控制单元114接收第三条数据线113和第五条数据线113上的第二感应数据。第三条数据线113上的第二感应数据为第3行第1列的感应单元111和第4行第1列的感应单元111互容量测的结果。第五条数据线113上的第二感应数据为第5行第1列的感应单元111和第4行第1列的感应单元111互容量测的结果。Next, the control unit 114 outputs the data signal T( 2 ) from the fourth data line 113 , and the control unit 114 sequentially outputs the scan signals G( 1 ) to G( 8 ) from the eight scan lines 112 . In the time interval Prd3 ′ in FIG. 6 , when the first scan line 112 outputs the scan signal G( 1 ), that is, when the voltage level of the first scan line 112 rises, the control unit 114 receives the third piece of data. Line 113 and second sense data on the fifth data line 113. The second sensing data on the third data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the third row and the first column and the sensing unit 111 in the fourth row and the first column. The second sensing data on the fifth data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the fifth row and the first column and the sensing unit 111 in the fourth row and the first column.

于第四时间区间Prd4’中,当第二条扫描线112输出扫描信号G(2)时,亦即第二条扫描线112的电压位准上升时,控制单元114接收第三条数据线113和第五条数据线113上的第二感应数据。第三条数据线113上的第二感应数据为第3行第2列的感应单元111和第4行第2列的感应单元111互容量测的结果。第五条数据线113上的第二感应数据为第5行第2列的感应单元111和第4行第2列的感应单元111互容量测的结果。In the fourth time interval Prd4 ′, when the second scan line 112 outputs the scan signal G( 2 ), that is, when the voltage level of the second scan line 112 rises, the control unit 114 receives the third data line 113 and the second sense data on the fifth data line 113. The second sensing data on the third data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the third row and the second column and the sensing unit 111 in the fourth row and the second column. The second sensing data on the fifth data line 113 is the result of mutual capacitance measurement between the sensing unit 111 in the fifth row and the second column and the sensing unit 111 in the fourth row and the second column.

当第三条扫描线112至第八条扫描线112输出扫描信号G(3)~G(8)时,同理地,控制单元114接收第一条数据线113、第三条数据线113和第五条数据线113上的感应单元111互容量测的结果,不再加以赘述。When the third to eighth scan lines 112 to 112 output the scan signals G( 3 ) to G( 8 ), similarly, the control unit 114 receives the first data line 113 , the third data line 113 and the The result of the mutual capacity measurement of the sensing unit 111 on the fifth data line 113 will not be repeated here.

在实务上,互容量测的结果指当手指触碰于感应单元11上时,控制单元114量测到手指造成两个感应单元111之间互容电容改变的结果。具体来说,以两个感应单元111为例,其中一个感应单元111被提供数据信号,另外一个感应单元111感应被提供数据信号的感应单元111所产生的辐射能量。当手指未触碰于感应单元111之上时,两个感应单元111之间具有互容电容。当手指触碰于感应单元111之上时,手指与两个感应单元111之间分别产生电容。手指上的电容、手指与两个感应单元111之间的电容会改变两个感应单元111之间的互容电容。控制单元114可以依据两个感应单元111之间已改变的互容电容或两个感应单元111之间互容电容的改变量来判断手指的触碰。In practice, the result of the mutual capacitance measurement refers to the result that when the finger touches the sensing unit 11 , the control unit 114 measures the result of the change in the mutual capacitance between the two sensing units 111 caused by the finger. Specifically, taking two sensing units 111 as an example, one sensing unit 111 is provided with a data signal, and the other sensing unit 111 senses the radiation energy generated by the sensing unit 111 provided with the data signal. When the finger does not touch the sensing unit 111 , there is a mutual capacitance between the two sensing units 111 . When a finger touches the sensing unit 111 , capacitances are generated between the finger and the two sensing units 111 respectively. The capacitance on the finger and the capacitance between the finger and the two sensing units 111 will change the mutual capacitance between the two sensing units 111 . The control unit 114 can determine the touch of the finger according to the changed mutual capacitance between the two sensing units 111 or the change amount of the mutual capacitance between the two sensing units 111 .

接下来将说明触控装置10运作于自容模式下的感测方法,请重新参考图1,如图1所示,于自容模式中,控制单元114从N条数据线113输出数据信号D(1)~D(n),并由从M条扫描线112依序地输出扫描信号G(1)~G(m)。以M条扫描线112中的第k条扫描线112为例来说,当第k条扫描线112输出扫描信号G(k)时,控制单元114接收每一条数据线113的第三感应数据。也就是说,于自容模式下,每一条第一数据线和每一条第二数据线皆会输出数据信号,而使控制单元114接收到每一条第一数据线和每一条第二数据线上的第三感应数据。在实务上,由于自容模式下,每一条数据线113皆会输出数据信号,因此数据线113实际上并未被定义为第一数据线和第二数据线,此处以第一数据线和第二数据线来说仅为配合互容模式的说明,并非加以限制本实施例。Next, the sensing method of the touch device 10 operating in the self-capacitance mode will be described. Please refer to FIG. 1 again. As shown in FIG. 1 , in the self-capacitance mode, the control unit 114 outputs the data signal D from the N data lines 113 . (1) to D(n), and the scanning signals G(1) to G(m) are sequentially output from the M scanning lines 112 . Taking the k-th scan line 112 of the M scan lines 112 as an example, when the k-th scan line 112 outputs the scan signal G(k), the control unit 114 receives the third sensing data of each data line 113 . That is to say, in the self-capacitance mode, each of the first data lines and each of the second data lines outputs a data signal, so that the control unit 114 receives each of the first data lines and each of the second data lines of the third sensing data. In practice, since each data line 113 outputs a data signal in the self-capacitance mode, the data line 113 is not actually defined as the first data line and the second data line. The two data lines are only used for the description of the mutual capacitance mode, and are not intended to limit this embodiment.

当第k条扫描线112输出扫描信号G(k)时,第i条第一数据线上的第三感应数据为第k列上的感应单元111中,电性连接于第i条第一数据线的感应单元111自容量测的结果,亦即第i行第k列感应单元111自容量测的结果。第j条第二数据线上的第三感应数据为第k列上的感应单元111中,电性连接于第j条第二数据线的感应单元111自容量测的结果,亦即第j行第k列感应单元111自容量测的结果。When the k-th scan line 112 outputs the scan signal G(k), the third sensing data on the i-th first data line is the sensing unit 111 on the k-th column, which is electrically connected to the i-th first data line The result of the self-capacitance measurement of the sensing unit 111 of the line, that is, the result of the self-capacitance measurement of the sensing unit 111 of the i-th row and the k-th column. The third sensing data on the j-th second data line is the self-capacitance measurement result of the sensing unit 111 electrically connected to the j-th second data line in the sensing unit 111 on the k-th column, that is, the j-th row The result of the self-capacitance measurement of the sensing unit 111 in the k-th column.

同样以图4实际的例子来说,请一并参照图4及图7,图7为根据本发明另一实施例所绘示的触控装置操作于自容模式下的电压时序图,如图所示,当触控装置10的感应电极层11具有8条扫描线112、5条数据线113及以多个感应单元111排列成8列5行的感应阵列115时,控制单元114首先从每一条数据线113分别输出数据信号D(1)~D(5),接着控制单元114依序地从8条扫描线112输出扫描信号G(1)~G(8)。Taking the actual example of FIG. 4 as well, please refer to FIG. 4 and FIG. 7 together. FIG. 7 is a voltage timing diagram of the touch device operating in the self-capacitance mode according to another embodiment of the present invention, as shown in FIG. As shown, when the sensing electrode layer 11 of the touch device 10 has 8 scanning lines 112, 5 data lines 113, and a sensing array 115 with a plurality of sensing units 111 arranged in 8 columns and 5 rows, the control unit 114 starts from each One data line 113 outputs data signals D( 1 ) to D( 5 ) respectively, and then the control unit 114 sequentially outputs scan signals G( 1 ) to G( 8 ) from the eight scan lines 112 .

于图7中的时间区间Prd5中,当第一条扫描线112输出扫描信号G(1)时,亦即第一条扫描线112的电压位准上升时,控制单元114接收5条数据线113上的第三感应数据。第一条数据线113上的第三感应数据为第1行第1列的感应单元111自容量测的结果。第二条数据线113上的第三感应数据为第2行第1列的感应单元111自容量测的结果。第三条数据线113上的第三感应数据为第3行第1列的感应单元111自容量测的结果,其余第四条数据线113到第5条数据线113上的第三感应数据以此类推。In the time interval Prd5 in FIG. 7 , when the first scan line 112 outputs the scan signal G( 1 ), that is, when the voltage level of the first scan line 112 rises, the control unit 114 receives five data lines 113 on the third sensing data. The third sensing data on the first data line 113 is the self-capacitance measurement result of the sensing unit 111 in the first row and the first column. The third sensing data on the second data line 113 is the self-capacitance measurement result of the sensing unit 111 in the second row and the first column. The third sensing data on the third data line 113 is the result of the self-capacitance measurement of the sensing unit 111 in the third row and the first column, and the third sensing data on the remaining fourth data lines 113 to the fifth data lines 113 are And so on.

于时间区间Prd6中,当第二条扫描线112输出扫描信号G(2)时,亦即第二条扫描线112的电压位准上升时,控制单元114接收5条数据线113上的第三感应数据。第一条数据线113上的第三感应数据为第1行第2列的感应单元111自容量测的结果。第二条数据线113上的第三感应数据为第2行第2列的感应单元111自容量测的结果。第三条数据线113上的第三感应数据为第3行第2列的感应单元111自容量测的结果,其余第四条数据线113到第5条数据线113上的第三感应数据以此类推。In the time interval Prd6, when the second scan line 112 outputs the scan signal G(2), that is, when the voltage level of the second scan line 112 rises, the control unit 114 receives the third signal on the five data lines 113. sensor data. The third sensing data on the first data line 113 is the self-capacitance measurement result of the sensing unit 111 in the first row and the second column. The third sensing data on the second data line 113 is the self-capacitance measurement result of the sensing unit 111 in the second row and the second column. The third sensing data on the third data line 113 is the result of the self-capacitance measurement of the sensing unit 111 in the third row and the second column, and the third sensing data on the remaining fourth data lines 113 to the fifth data lines 113 are And so on.

当第三条扫描线112至第八条扫描线112输出扫描信号G(3)~G(8)时,同理地,控制单元114接收每一条数据线113自容量测的结果,不再加以赘述。When the third scan line 112 to the eighth scan line 112 output the scan signals G( 3 ) to G( 8 ), similarly, the control unit 114 receives the self-capacitance measurement result of each data line 113 and does not add any further Repeat.

在实务上,自容量测的结果指当手指触碰于感应单元11上时,控制单元114量测到手指造成感应单元111与接地端之间的自容电容改变的结果。具体来说,当手指未触碰于感应单元111之上时,感应单元111与接地端之间具有自容电容。当手指触碰于感应单元111之上时,手指与感应单元111之间分别产生电容。手指上的电容、手指与感应单元111之间的电容会改变感应单元111与接地端之间的自容电容。控制单元114可以依据感应单元111与接地端之间已改变的自容电容大小或自容电容的改变量来判断手指的触碰。In practice, the result of the self-capacitance measurement refers to the result that when the finger touches the sensing unit 11 , the control unit 114 measures the result of the change of the self-capacitance capacitance between the sensing unit 111 and the ground terminal caused by the finger. Specifically, when the finger does not touch the sensing unit 111 , there is a self-capacitance capacitance between the sensing unit 111 and the ground terminal. When a finger touches the sensing unit 111 , capacitances are generated between the finger and the sensing unit 111 respectively. The capacitance on the finger and the capacitance between the finger and the sensing unit 111 will change the self-capacitance capacitance between the sensing unit 111 and the ground. The control unit 114 can determine the touch of the finger according to the changed self-capacitance capacitance or the change amount of the self-capacitance capacitance between the sensing unit 111 and the ground terminal.

更进一步地,当触控装置10运用于指纹辨识时,指纹凹凸的纹路使得手指与感应单元111之间的接触面积不同,进而影响于互容模式下两个感应单元111之间分别的互容电容大小,以及于自容模式下感应单元111与接地端之间的自容电容大小。换言之,当手指触碰于触控装置10,让触控装置10辨识手指的指纹时,触控装置10会分别执行互容模式和自容模式的感测。于自容模式下,触控装置10会辨识在每一个感应单元111对应的手指区域的自容量测结果。于互容模式下,触控装置10会辨识两个感应单元111之间所对应的手指区域的互容量测结果。触控装置10依据自容量测结果、互容量测结果,据以达到辨识手指纹的效果。Furthermore, when the touch device 10 is used for fingerprint recognition, the concave and convex pattern of the fingerprint makes the contact area between the finger and the sensing unit 111 different, thereby affecting the mutual capacitance between the two sensing units 111 in the mutual capacitance mode. The size of the capacitance, and the size of the self-capacitance capacitance between the sensing unit 111 and the ground terminal in the self-capacitance mode. In other words, when a finger touches the touch device 10 to allow the touch device 10 to recognize the fingerprint of the finger, the touch device 10 performs sensing in the mutual capacitance mode and the self capacitance mode, respectively. In the self-capacitance mode, the touch device 10 recognizes the self-capacitance measurement result of the finger region corresponding to each sensing unit 111 . In the mutual capacitance mode, the touch device 10 recognizes the mutual capacitance measurement result of the finger region corresponding to the two sensing units 111 . The touch device 10 achieves the effect of recognizing the fingerprint according to the self-capacitance measurement result and the mutual-capacity measurement result.

于本实施例中,当触控装置10的感应阵列115为M列N行的矩阵时,触控装置10取得(2M-1)×N笔的互容感应数据及M×N笔的自容应应数据,据以提升触控装置10感应的解析度。In this embodiment, when the sensing array 115 of the touch device 10 is a matrix with M columns and N rows, the touch device 10 obtains the mutual capacitance sensing data of (2M−1)×N pens and the self capacitance of M×N pens. The response data is used to improve the resolution of the sensing of the touch device 10 .

请一并参考图8至图10,图8为根据本发明再一实施例所绘示的触控装置的感应电极层和控制单元的示意图,图9为根据本发明再一实施例所绘示的触控装置操作于互容模式下的电压时序图,图10为根据本发明再一实施例所绘示的触控装置操作于互容模式下另一个操作阶段的电压时序图。如图所示,触控装置20包含感应电极层21。感应电极层21具有多个感应单元211、M条扫描线212、N条数据线213及控制单元214。多个感应单元211排列成M列N行的感应阵列215。感应阵列215中每一列的感应单元211电性连接M条扫描线212其中之一。感应阵列215中每一行的感应单元211电性连接N条数据线213其中之一。Please refer to FIGS. 8 to 10 together. FIG. 8 is a schematic diagram of a sensing electrode layer and a control unit of a touch device according to another embodiment of the present invention, and FIG. 9 is a schematic diagram of another embodiment of the present invention. The voltage timing diagram of the touch device operating in the mutual capacitance mode is shown in FIG. 10 , and FIG. 10 is a voltage timing diagram of another operation stage of the touch device operating in the mutual capacitance mode according to another embodiment of the present invention. As shown in the figure, the touch device 20 includes a sensing electrode layer 21 . The sensing electrode layer 21 has a plurality of sensing units 211 , M scan lines 212 , N data lines 213 and a control unit 214 . The plurality of sensing units 211 are arranged in a sensing array 215 with M columns and N rows. The sensing unit 211 in each column of the sensing array 215 is electrically connected to one of the M scan lines 212 . The sensing units 211 in each row of the sensing array 215 are electrically connected to one of the N data lines 213 .

本实施例的触控装置20与前一个实施例大致上相同,与前一个实施例不同的是,控制单元214从M条扫描线212依序地输出扫描信号G(1)~G(m),且控制单元214会使M条扫描线212其中相邻的两条扫描线输出扫描信号的时间重迭。换言之,当控制单元214从第k条扫描线212输出扫描信号G(k)达预计时间的一半时,控制单元214从第k+1条扫描线212输出扫描信号G(k+1)。当控制单元214从第k+1条扫描线212输出扫描信号G(k+1)达预计时间的一半时,控制单元214停止从第k条扫描线212输出扫描信号G(k),控制单元214从第k+2条扫描线212输出扫描信号G(k+2)。The touch device 20 of this embodiment is substantially the same as the previous embodiment, and the difference from the previous embodiment is that the control unit 214 sequentially outputs the scan signals G( 1 ) to G(m) from the M scan lines 212 , and the control unit 214 makes the time when two adjacent scan lines of the M scan lines 212 output scan signals overlap. In other words, when the control unit 214 outputs the scan signal G(k) from the k-th scan line 212 for half the expected time, the control unit 214 outputs the scan signal G(k+1) from the k+1-th scan line 212 . When the control unit 214 outputs the scan signal G(k+1) from the k+1 th scan line 212 for half the expected time, the control unit 214 stops outputting the scan signal G(k) from the k th scan line 212, and the control unit 214 stops outputting the scan signal G(k) from the k+1 scan line 212. 214 outputs the scan signal G(k+2) from the k+2 th scan line 212 .

具体来说,于互容模式中,控制单元214从第i条第一数据线输出数据信号T(i)时,控制单元214从M条扫描线212依序地输出扫描信号G(1)~G(m),并接收每一条第二数据线上的第一感应数据,如第j条第二数据线、第j+1条第二数据线和第j+2条第二数据线上的第一感应数据,其中当第k-1条扫描线212输出扫描信号G(k-1),且第k条扫描线212输出扫描信号G(k)时,第j条第二数据线上的第一感应数据为第k-1列和第k列上的感应单元211中,电性连接于第j条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,亦即图8中感测区域Y1的互容量测结果。第j+1条第二数据线上的第一感应数据为第k-1列和第k列上的感应单元211中,电性连接于第j条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,亦即图8中感测区域Y1’的互容量测结果。Specifically, in the mutual capacitance mode, when the control unit 214 outputs the data signal T(i) from the i-th first data line, the control unit 214 sequentially outputs the scan signals G(1)˜G(1)˜G from the M scan lines 212 . G(m), and receive the first sensing data on each second data line, such as the jth second data line, the j+1th second data line, and the j+2th second data line The first sensing data, wherein when the k-1 th scan line 212 outputs the scan signal G(k-1), and the k-th scan line 212 outputs the scan signal G(k), the jth second data line The first sensing data is the sensing unit 211 on the k-1th column and the kth column, the sensing unit electrically connected to the j-th second data line and the sensing unit electrically connected to the i-th first data line The result of the mutual capacity measurement, that is, the mutual capacity measurement result of the sensing area Y1 in FIG. 8 . The first sensing data on the j+1th second data line is the sensing unit 211 on the k-1th column and the kth column, the sensing unit electrically connected to the jth second data line is electrically connected to The result of the mutual capacity measurement of the sensing units in the i-th first data line, that is, the mutual capacity measurement result of the sensing area Y1 ′ in FIG. 8 .

此时,同理地,控制单元214亦会从第i+2条第一数据线输出数据信号T(i+2),第j+2条第二数据线上的第一感应数据为第k-1列和第k列上的感应单元211中,电性连接于第j+2条第二数据线的感应单元与电性连接于第i+2条第一数据线的感应单元互容量测的结果。At this time, similarly, the control unit 214 also outputs the data signal T(i+2) from the i+2 th first data line, and the first sensing data on the j+2 th second data line is the k th In the sensing units 211 in the -1 column and the k-th column, the sensing unit electrically connected to the j+2 th second data line and the sensing unit electrically connected to the i+2 th first data line measure the mutual capacitance the result of.

更具体来说,第j条第二数据线上的第一感应数据为电性连接于第j条第二数据线的感应单元211中,位于第k-1列和第k列感应单元211与电性连接于第i条第一数据线的感应单元中,位于第k-1列和第k列感应单元211互容量测的结果。第j+1条第二数据线上的第一感应数据为电性连接于第j+1条第二数据线的感应单元211中,位于第k-1列和第k列感应单元211与电性连接于第i条第一数据线的感应单元中,位于第k-1列和第k列感应单元211互容量测的结果。More specifically, the first sensing data on the j-th second data line is electrically connected to the sensing unit 211 of the j-th second data line, and the sensing units 211 and 211 in the k-1 th column and the k-th column are The sensing unit electrically connected to the i-th first data line is located in the k-1 th column and the k-th column sensing unit 211 is the result of mutual capacitance measurement. The first sensing data on the j+1 th second data line is electrically connected to the sensing unit 211 of the j+1 th second data line, and the sensing units 211 located in the k-1 th column and the k th column are connected to the electrical sensing unit 211. It is the result of mutual capacitance measurement between the sensing unit 211 in the k-1 th column and the k-th column in the sensing unit connected to the ith first data line.

接下来,当第k条扫描线212输出扫描信号G(k),且第k+1条扫描线212输出扫描信号G(k+1)时,第j条第二数据线上的第一感应数据为第k列和第k+1列上的感应单元211中,电性连接于第j条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,亦即图8中感测区域Y3的互容量测结果。第j+1条第二数据线上的第一感应数据为第k列和第k+1列上的感应单元211中,电性连接于第j+1条第二数据线的感应单元与电性连接于第i条第一数据线的感应单元互容量测的结果,亦即图8中感测区域Y3’的互容量测结果。同理地,当第k+1条扫描线212输出扫描信号G(k+1),且第k+2条扫描线212输出扫描信号G(k+2)时,控制单元214接收图8中感测区域Y5和感测区域Y5’的互容量测结果,不再加以赘述。Next, when the k-th scan line 212 outputs the scan signal G(k), and the k+1-th scan line 212 outputs the scan signal G(k+1), the first sensor on the j-th second data line The data is that among the sensing units 211 on the k-th column and the k+1-th column, the sensing unit electrically connected to the j-th second data line and the sensing unit electrically connected to the i-th first data line measure the mutual capacitance. , that is, the mutual capacity measurement result of the sensing area Y3 in FIG. 8 . The first sensing data on the j+1th second data line is the sensing unit 211 on the kth column and the k+1th column, which is electrically connected to the sensing unit of the j+1th second data line and the electrical The result of the mutual capacity measurement of the sensing units sexually connected to the i-th first data line, that is, the mutual capacity measurement result of the sensing area Y3' in FIG. 8 . Similarly, when the k+1 th scan line 212 outputs the scan signal G(k+1), and the k+2 th scan line 212 outputs the scan signal G(k+2), the control unit 214 receives the The mutual capacity measurement results of the sensing area Y5 and the sensing area Y5' are not repeated here.

于下一个操作阶段中,控制单元214从第i+1条第一数据线输出数据信号T(i+1)。控制单元214从M条扫描线212依序地输出扫描信号G(1)~G(m),并接收每一条第二数据线上的第二感应数据,如第j条第二数据线、第j+1条第二数据线和第j+2条第二数据线上的第二感应数据,其中当第k-1条扫描线212输出扫描信号G(k-1),且第k条扫描线212输出扫描信号G(k)时,第j+1条第二数据线上的第二感应数据为第k-1列和第k列上的感应单元211中,电性连接于第j+1条第二数据线的感应单元与电性连接于第i+1条第一数据线的感应单元互容量测的结果,亦即图8中感测区域Y2的互容量测结果。第j+2条第二数据线上的第二感应数据为第k-1列和第k列上的感应单元211中,电性连接于第j+2条第二数据线的感应单元与电性连接于第i+1条第一数据线的感应单元互容量测的结果,亦即图8中感测区域Y2’的互容量测结果。In the next operation stage, the control unit 214 outputs the data signal T(i+1) from the i+1 th first data line. The control unit 214 sequentially outputs the scan signals G( 1 ) to G(m) from the M scan lines 212 , and receives the second sensing data on each of the second data lines, such as the j-th second data line, the second data line The second sensing data on the j+1 second data line and the j+2 th second data line, when the k-1 th scan line 212 outputs the scan signal G(k-1), and the k-th scan line 212 outputs the scan signal G(k-1) When the line 212 outputs the scan signal G(k), the second sensing data on the j+1th second data line is the sensing unit 211 on the k-1th column and the kth column, which is electrically connected to the j+th The result of mutual capacitance measurement between the sensing unit of one second data line and the sensing unit electrically connected to the i+1 th first data line, that is, the mutual capacitance measurement result of the sensing area Y2 in FIG. 8 . The second sensing data on the j+2 th second data line is the sensing unit 211 on the k-1 th column and the k th column, which is electrically connected to the sensing unit of the j+2 th second data line and the electrical The result of the mutual capacity measurement of the sensing units sexually connected to the i+1 th first data line, that is, the mutual capacity measurement result of the sensing area Y2' in FIG. 8 .

此时,同理地,控制单元214亦会从第i+3条第一数据线输出数据信号T(i+3),第j+3条第二数据线上的第二感应数据为第k-1列和第k列上的感应单元211中,电性连接于第j+3条第二数据线的感应单元与电性连接于第i+3条第一数据线的感应单元互容量测的结果。At this time, similarly, the control unit 214 also outputs the data signal T(i+3) from the i+3 th first data line, and the second sensing data on the j+3 th second data line is the k th In the sensing units 211 on the -1 column and the k-th column, the sensing unit electrically connected to the j+3 th second data line and the sensing unit electrically connected to the i+3 th first data line measure the mutual capacitance the result of.

接下来,当第k条扫描线212输出扫描信号G(k),且第k+1条扫描线212输出扫描信号G(k+1)时,第j+1条第二数据线上的第二感应数据为第k列和第k+1列上的感应单元211中,电性连接于第j+1条第二数据线的感应单元与电性连接于第i+1条第一数据线的感应单元互容量测的结果,亦即图8中感测区域Y4的互容量测结果。第j+2条第二数据线上的第二感应数据为第k列和第k+1列上的感应单元211中,电性连接于第j+2条第二数据线的感应单元与电性连接于第i+1条第一数据线的感应单元互容量测的结果,亦即图8中感测区域Y4’的互容量测结果。同理地,当第k+1条扫描线212输出扫描信号G(k+1),且第k+2条扫描线212输出扫描信号G(k+2)时,控制单元214接收图8中感测区域Y6和感测区域Y6’的互容量测结果,不再加以赘述。图8中感测区域Y1~Y6和Y1’~Y6’仅为了方便说明和附图显示并非指触控装置20实际的感测区域。Next, when the k-th scan line 212 outputs the scan signal G(k), and the k+1-th scan line 212 outputs the scan signal G(k+1), the j+1-th second data line The second sensing data is that among the sensing units 211 on the kth column and the k+1th column, the sensing unit electrically connected to the j+1th second data line is electrically connected to the i+1th first data line The result of the mutual capacity measurement of the sensing units of , that is, the mutual capacity measurement result of the sensing area Y4 in FIG. 8 . The second sensing data on the j+2 th second data line is the sensing unit 211 on the k th column and the k+1 th column, which is electrically connected to the sensing unit of the j+2 th second data line and the electrical The result of the mutual capacity measurement of the sensing units sexually connected to the i+1 th first data line, that is, the mutual capacity measurement result of the sensing area Y4' in FIG. 8 . Similarly, when the k+1 th scan line 212 outputs the scan signal G(k+1), and the k+2 th scan line 212 outputs the scan signal G(k+2), the control unit 214 receives the The mutual capacity measurement results of the sensing area Y6 and the sensing area Y6' are not repeated here. The sensing regions Y1-Y6 and Y1'-Y6' in FIG. 8 are only for convenience of description and the drawings are not shown to refer to the actual sensing regions of the touch device 20.

以实际的例子来说,请参照图11至图13,图11为根据本发明又一实施例所绘示的触控装置的感应电极层和控制单元的示意图,图12为根据本发明又一实施例所绘示的触控装置操作于互容模式下的电压时序图,图13为根据本发明又一实施例所绘示的触控装置操作于互容模式下另一个操作阶段的电压时序图。当触控装置20的感应电极层21具有3条扫描线212、8条数据线213及以多个感应单元211排列成3列8行的感应阵列215时,控制单元214首先从第二条数据线213输出数据信号T(1)和从第六条数据线213输出数据信号T(3),接着控制单元214依序地从3条扫描线212输出扫描信号G(1)~G(3)。For a practical example, please refer to FIGS. 11 to 13 , FIG. 11 is a schematic diagram of a sensing electrode layer and a control unit of a touch device according to another embodiment of the present invention, and FIG. 12 is another embodiment of the present invention. The voltage timing diagram of the touch device operating in the mutual capacitance mode according to the embodiment shown in FIG. 13 is the voltage timing diagram of the touch device operating in the mutual capacitance mode according to another embodiment of the present invention in another operation stage. picture. When the sensing electrode layer 21 of the touch device 20 has 3 scan lines 212 , 8 data lines 213 , and a sensing array 215 with a plurality of sensing units 211 arranged in 3 columns and 8 rows, the control unit 214 first selects the data from the second data line 215 . The line 213 outputs the data signal T(1) and the sixth data line 213 outputs the data signal T(3), and then the control unit 214 sequentially outputs the scan signals G(1)˜G(3) from the three scan lines 212 .

于图12中的时间区间Prd1’中,当第一条扫描线212输出扫描信号G(1),且第二条扫描线212输出扫描信号G(2)时,亦即第一条扫描线212和第二条扫描线212的电压位准上升时,控制单元214接收第一条、第三条、第五条和第七条数据线213上的第一感应数据。此时,第一条数据线213上的第一感应数据为第1行第1列和第2行第1列的感应单元211之间的互容电容,与第1行第2列和第2行第2列的感应单元211之间的互容电容的总和。第三条数据线213上的第一感应数据为第3行第1列和第2行第1列的感应单元211之间的互容电容,与第3行第2列和第2行第2列的感应单元211之间的互容电容的总和。第五条数据线213上的第一感应数据为第5行第1列和第6行第1列的感应单元211之间的互容电容,与第5行第2列和第6行第2列的感应单元211之间的互容电容的总和。第七条数据线213上的第一感应数据为第7行第1列和第6行第1列的感应单元211之间的互容电容,与第7行第2列和第6行第2列的感应单元211之间的互容电容的总和。In the time interval Prd1 ′ in FIG. 12 , when the first scan line 212 outputs the scan signal G(1), and the second scan line 212 outputs the scan signal G(2), that is, the first scan line 212 When the voltage level of the second scan line 212 rises, the control unit 214 receives the first sensing data on the first, third, fifth and seventh data lines 213 . At this time, the first sensing data on the first data line 213 is the mutual capacitance between the sensing units 211 in the first row and the first column and the second row and the first column, which is the same as the mutual capacitance between the first row and the second column and the second The sum of the mutual capacitances between the sensing units 211 in row 2 and column 2. The first sensing data on the third data line 213 is the mutual capacitance between the sensing units 211 in the 3rd row, 1st column and 2nd row, 1st column, which is the same as the 3rd row, 2nd column and 2nd row, 2nd The sum of the mutual capacitance between the sensing cells 211 of the column. The first sensing data on the fifth data line 213 is the mutual capacitance between the sensing units 211 in the 5th row, the 1st column and the 6th row and the 1st column, which is the same as that of the 5th row and the 2nd column and the 6th row and the 2nd. The sum of the mutual capacitance between the sensing cells 211 of the column. The first sensing data on the seventh data line 213 is the mutual capacitance between the sensing units 211 in the 7th row and the 1st column and the 6th row and the 1st column. The sum of the mutual capacitance between the sensing cells 211 of the column.

于时间区间Prd2’中,当第二条扫描线212输出扫描信号G(2),且第三条扫描线212输出扫描信号G(3)时,亦即第二条扫描线212和第三条扫描线212的电压位准上升时,控制单元214接收第一条、第三条、第五条和第七条数据线213上的第一感应数据。此时,第一条数据线213上的第一感应数据为第1行第2列和第2行第2列的感应单元211之间的互容电容,与第1行第3列和第2行第3列的感应单元211之间的互容电容的总和。第三条数据线213上的第一感应数据为第3行第2列和第2行第2列的感应单元211之间的互容电容,与第3行第3列和第2行第3列的感应单元211之间的互容电容的总和。第五条数据线213上的第一感应数据为第5行第2列和第6行第2列的感应单元211之间的互容电容,与第5行第3列和第6行第3列的感应单元211之间的互容电容的总和。第七条数据线213上的第一感应数据为第7行第2列和第6行第2列的感应单元211之间的互容电容,与第7行第3列和第6行第3列的感应单元211之间的互容电容的总和。In the time interval Prd2', when the second scan line 212 outputs the scan signal G(2) and the third scan line 212 outputs the scan signal G(3), that is, the second scan line 212 and the third scan line 212 When the voltage level of the scan line 212 rises, the control unit 214 receives the first sensing data on the first, third, fifth and seventh data lines 213 . At this time, the first sensing data on the first data line 213 is the mutual capacitance between the sensing units 211 in the first row and the second column and the second row and the second column, which is the same as the mutual capacitance between the first row, the third column and the second row. The sum of the mutual capacitances between the sensing units 211 in row 3 and column 3. The first sensing data on the third data line 213 is the mutual capacitance between the sensing units 211 in the 3rd row, 2nd column and 2nd row, 2nd column, which is the same as the 3rd row, 3rd column and 2nd row, 3rd column. The sum of the mutual capacitance between the sensing cells 211 of the column. The first sensing data on the fifth data line 213 is the mutual capacitance between the sensing units 211 in the 5th row, 2nd column and 6th row, 2nd column, which is the same as the 5th row, 3rd column and 6th row, 3rd column. The sum of the mutual capacitance between the sensing cells 211 of the column. The first sensing data on the seventh data line 213 is the mutual capacitance between the sensing units 211 in the 7th row, 2nd column and 6th row, 2nd column, which is the same as the 7th row, 3rd column and 6th row, 3rd column. The sum of the mutual capacitance between the sensing cells 211 of the column.

接着,控制单元214从第四条数据线213输出数据信号T(2),从第八条数据线213输出数据信号T(4),并且控制单元214依序地从3条扫描线212输出扫描信号G(1)~G(3)。于图13中的时间区间Prd3’中,当第一条扫描线212输出扫描信号G(1),且第二条扫描线212输出扫描信号G(2)时,亦即第一条扫描线212和第二条扫描线212的电压位准上升时,控制单元214接收第一条、第三条、第五条和第七条数据线213上的第二感应数据。此时,第三条数据线213上的第二感应数据为第3行第1列和第4行第1列的感应单元211之间的互容电容,与第3行第2列和第4行第2列的感应单元211之间的互容电容的总和。第五条数据线213上的第二感应数据为第5行第1列和第4行第1列的感应单元211之间的互容电容,与第5行第2列和第4行第2列的感应单元211之间的互容电容的总和。第七条数据线213上的第二感应数据为第7行第1列和第8行第1列的感应单元211之间的互容电容,与第7行第2列和第8行第2列的感应单元211之间的互容电容的总和。Next, the control unit 214 outputs the data signal T( 2 ) from the fourth data line 213 and the data signal T( 4 ) from the eighth data line 213 , and the control unit 214 sequentially outputs scan lines from the three scan lines 212 Signals G(1) to G(3). In the time interval Prd3 ′ in FIG. 13 , when the first scan line 212 outputs the scan signal G(1) and the second scan line 212 outputs the scan signal G(2), that is, the first scan line 212 When the voltage level of the second scan line 212 rises, the control unit 214 receives the second sensing data on the first, third, fifth and seventh data lines 213 . At this time, the second sensing data on the third data line 213 is the mutual capacitance between the sensing units 211 in the 3rd row, the 1st column and the 4th row and the 1st column. The sum of the mutual capacitances between the sensing units 211 in row 2 and column 2. The second sensing data on the fifth data line 213 is the mutual capacitance between the sensing units 211 in the 5th row, the 1st column and the 4th row and the 1st column, and the The sum of the mutual capacitance between the sensing cells 211 of the column. The second sensing data on the seventh data line 213 is the mutual capacitance between the sensing units 211 in the 7th row and the 1st column and the 8th row and the 1st column. The sum of the mutual capacitance between the sensing cells 211 of the column.

于时间区间Prd4’中,当第二条扫描线212输出扫描信号G(2),且第三条扫描线212输出扫描信号G(3)时,亦即第二条扫描线212和第三条扫描线212的电压位准上升时,控制单元214接收第三条、第五条和第七条数据线213上的第二感应数据。此时,第三条数据线213上的第二感应数据为第3行第2列和第4行第2列的感应单元211之间的互容电容,与第3行第3列和第4行第3列的感应单元211之间的互容电容的总和。第五条数据线213上的第二感应数据为第5行第2列和第4行第2列的感应单元211之间的互容电容,与第5行第3列和第4行第3列的感应单元211之间的互容电容的总和。第七条数据线213上的第二感应数据为第7行第2列和第8行第2列的感应单元211之间的互容电容,与第7行第3列和第8行第3列的感应单元211之间的互容电容的总和。In the time interval Prd4', when the second scan line 212 outputs the scan signal G(2) and the third scan line 212 outputs the scan signal G(3), that is, the second scan line 212 and the third scan line 212 When the voltage level of the scan line 212 rises, the control unit 214 receives the second sensing data on the third, fifth and seventh data lines 213 . At this time, the second sensing data on the third data line 213 is the mutual capacitance between the sensing units 211 in the 3rd row, 2nd column and 4th row, 2nd column, which is the same as the The sum of the mutual capacitances between the sensing units 211 in row 3 and column 3. The second sensing data on the fifth data line 213 is the mutual capacitance between the sensing units 211 in the 5th row, 2nd column and 4th row, 2nd column, which is the same as the 5th row, 3rd column and 4th row, 3rd column. The sum of the mutual capacitance between the sensing cells 211 of the column. The second sensing data on the seventh data line 213 is the mutual capacitance between the sensing units 211 in the 7th row, 2nd column and 8th row, 2nd column, which is the same as the 7th row, 3rd column and 8th row, 3rd column. The sum of the mutual capacitance between the sensing cells 211 of the column.

换言之,于上述具体实施例中,第j条第二数据线电性连接感应阵列215中第2n-1行上的感应单元211,第i条第一数据线电性连接感应阵列215中第2n行上的感应单元211,第j+1条第二数据线电性连接感应阵列215中第2n+1行上的感应单元211,第i+1条第一数据线电性连接感应阵列215中第2n+2行上的感应单元211时,亦即第j条第二数据线、第i条第一数据线、第j+1条第二数据线和第i+1条第一数据线系依序地设置。当第k条扫描线输出扫描信号G(k)及第k+1条扫描线输出扫描信号G(k+1)时,以第k列第2n行的感应单元211与第k列第2n+1行的感应单元211之间互电容量,与第k+1列第2n行的感应单元211与第k+1列第2n+1行的感应单元211之间互电容量的总合,作为第j+1条第二数据线上的第一感应数据。同理地,以第k列第2n+1行的感应单元211与第k列第2n+2行的感应单元211之间互电容量,与第k+1列第2n+1行的感应单元211与第k+1列第2n+2行的感应单元211之间互电容量的总合,作为第j+1条第二数据线上的第二感应数据。In other words, in the above embodiment, the j-th second data line is electrically connected to the sensing units 211 in the 2n-1 row of the sensing array 215 , and the i-th first data line is electrically connected to the 2n-th row of the sensing array 215 . The sensing unit 211 on the row, the j+1 th second data line is electrically connected to the sensing unit 211 on the 2n+1 th row in the sensing array 215 , and the i+1 th first data line is electrically connected to the sensing array 215 In the case of the sensing unit 211 on the 2n+2th row, that is, the jth second data line, the ith first data line, the j+1th second data line, and the i+1th first data line are Set in order. When the k-th scan line outputs the scan signal G(k) and the k+1-th scan line outputs the scan signal G(k+1), the sensing unit 211 in the k-th column and the 2n-th row and the k-th column and 2n+ The sum of the mutual capacitance between the induction units 211 in row 1, and the mutual capacitance between the induction units 211 in the k+1 column and row 2n and the induction units 211 in the k+1 column and row 2n+1, as The first sensing data on the j+1th second data line. Similarly, the mutual capacitance between the inductive unit 211 in the kth column and the 2n+1 row and the inductive unit 211 in the kth column and the 2n+2 row is the same as that of the inductive unit in the k+1th column and the 2n+1 row. The sum of the mutual capacitance between 211 and the sensing unit 211 of the k+1th column and the 2n+2th row is used as the second sensing data on the j+1th second data line.

接下来将说明触控装置20运作于自容模式下的感测方法,请一并参考图14至图15,图14为根据本发明又一实施例所绘示之触控装置的感应电极层和控制单元的示意图,图15为根据本发明又一实施例所绘示的触控装置操作于自容模式下的电压时序图。直接以前述具有3条扫描线212、8条数据线213及以3列8行的感应阵列215的实际例子来说,如图所示,于自容模式中,控制单元214从8条数据线213输出数据信号D(1)~D(8),并依序地从3条扫描线212输出扫描信号G(1)~G(3)。于图15中的时间区间Prd5中,当第一条扫描线212输出扫描信号G(1),且第二条扫描线212输出扫描信号G(2)时,第一条数据线213上的第三感应数据为第1行第1列感应单元211的自容电容和第1行第2列感应单元211的自容电容总和。第二条数据线213上的第三感应数据为第2行第1列感应单元211的自容电容和第2行第2列感应单元211的自容电容总和。其余数据线213上的第三感应数据以此类推,每一笔第三感应数据如图14上每一个感应区域W1中的自容电容总和。Next, the sensing method of the touch device 20 operating in the self-capacitance mode will be described. Please refer to FIG. 14 to FIG. 15 together. FIG. 14 is a sensing electrode layer of the touch device according to another embodiment of the present invention. and a schematic diagram of the control unit, FIG. 15 is a voltage timing diagram of the touch device operating in the self-capacitance mode according to another embodiment of the present invention. Taking the actual example of the aforementioned sensing array 215 with 3 scan lines 212, 8 data lines 213 and 3 columns and 8 rows, as shown in the figure, in the self-capacitance mode, the control unit 214 starts from the 8 data lines. 213 outputs data signals D( 1 ) to D( 8 ), and sequentially outputs scan signals G( 1 ) to G( 3 ) from the three scan lines 212 . In the time interval Prd5 in FIG. 15, when the first scan line 212 outputs the scan signal G(1) and the second scan line 212 outputs the scan signal G(2), the first data line 213 on the first data line 213 outputs the scan signal G(2). The three sensing data is the sum of the self-capacitance capacitance of the sensing unit 211 in the first row and the first column and the self-capacitance capacitance of the sensing unit 211 in the first row and the second column. The third sensing data on the second data line 213 is the sum of the self-capacitance capacitance of the sensing unit 211 in the second row and the first column and the self-capacitance capacitance of the sensing unit 211 in the second row and the second column. The third sensing data on the remaining data lines 213 is analogous, and each third sensing data is the sum of the self-capacitance capacitance in each sensing area W1 shown in FIG. 14 .

于时间区间Prd6中,当第二条扫描线212输出扫描信号G(2)时,且第三条扫描线212输出扫描信号G(3)时,控制单元214接收8条数据线213上的第三感应数据。此时,第一条数据线213上的第三感应数据为第1行第2列感应单元211的自容电容和第1行第3列感应单元211的自容电容总和。第二条数据线213上的第三感应数据为第2行第2列感应单元211的自容电容和第2行第3列感应单元211的自容电容总和,其余数据线213上的第三感应数据以此类推。此时,每一笔第三感应数据如图14上每一个感应区域W2中的自容电容总和。In the time interval Prd6, when the second scan line 212 outputs the scan signal G(2) and the third scan line 212 outputs the scan signal G(3), the control unit 214 receives the first data on the eight data lines 213. Three induction data. At this time, the third sensing data on the first data line 213 is the sum of the self-capacitance capacitance of the sensing cells 211 in the first row and the second column and the self-capacitance capacitance of the sensing cells 211 in the first row and the third column. The third sensing data on the second data line 213 is the sum of the self-capacitance capacitance of the sensing unit 211 in the second row and the second column and the self-capacitance capacitance of the sensing unit 211 in the second row and the third column. The third sensing data on the remaining data lines 213 Sensor data and so on. At this time, each third sensing data is the sum of the self-capacitance capacitances in each sensing area W2 shown in FIG. 14 .

同理地,当触控装置20运用于指纹辨识时,指纹凹凸的纹路使得手指与感应单元211之间的接触面积不同,进而使触控装置20于互容模式下可以取得感应阵列251中每四个感应单元211的互容电容总和,以及于自容模式下取得感应阵列215中,每两个感应单元211的自容电容总和,据以取得手指各区域指纹造成的感应数据,进而达到辨识手指纹的效果。于本实施例中,当触控装置20的感应阵列215为M列N行的矩阵时,触控装置20取得(2M-1)×(N-1)笔的互容感应数据及M×(N-1)笔的自容应应数据,且感应单元211之间的间隙所对应的手指区域亦可以被感应而计算出电容量,使得触控装置20感应的解析度更为提升。Similarly, when the touch device 20 is used for fingerprint recognition, the concave and convex pattern of the fingerprint makes the contact area between the finger and the sensing unit 211 different, so that the touch device 20 can obtain each sensor array 251 in the mutual capacitance mode. The sum of the mutual capacitances of the four sensing units 211 and the sum of the self-capacitances of every two sensing units 211 in the sensing array 215 in the self-capacitance mode are obtained, so as to obtain the sensing data caused by the fingerprints in each area of the finger, thereby achieving identification The effect of hand fingerprints. In this embodiment, when the sensing array 215 of the touch device 20 is a matrix with M columns and N rows, the touch device 20 obtains the mutual capacitance sensing data of (2M−1)×(N−1) pens and M×( N-1) The self-capacitance of the pen corresponds to the data, and the finger area corresponding to the gap between the sensing units 211 can also be sensed to calculate the capacitance, so that the sensing resolution of the touch device 20 is further improved.

于一个实施例中,每一感应单元211中的导电体于扫描线212延伸方向上的长度为导电体于数据线213延伸方向上的长度的1.5倍至3倍。换言之,当导电体于扫描线212延伸方向上的长度为该电体于数据线213延伸方向上的长度的2倍时,于自容模式下,当控制单元214自第二条扫描线212输出扫描信号G(2),且自第三条扫描线212输出扫描信号G(3)时,每一个感应区域W1于扫描线212延伸方向上的长度会大约等于导电体于数据线213延伸方向上的长度。In one embodiment, the length of the conductor in each sensing unit 211 in the extending direction of the scan line 212 is 1.5 times to 3 times the length of the conductor in the extending direction of the data line 213 . In other words, when the length of the conductor in the extension direction of the scan line 212 is twice the length of the conductor in the extension direction of the data line 213, in the self-capacitance mode, when the control unit 214 outputs the output from the second scan line 212 When the scan signal G(2) and the scan signal G(3) are output from the third scan line 212, the length of each sensing region W1 in the extension direction of the scan line 212 is approximately equal to the length of the conductor in the extension direction of the data line 213 length.

于一个实施例中,控制单元为依据时脉控制器产生的时脉信号和起始信号来输出扫描信号。藉由时脉产生信号产生的时脉信号及起始信号可以达到调整控制单元产生扫描信号的时间、输出扫描信号的级数或其他可行的调整内容,本实施例不予限制。In one embodiment, the control unit outputs the scan signal according to the clock signal and the start signal generated by the clock controller. The clock signal and the start signal generated by the clock generating signal can adjust the time for the control unit to generate the scan signal, the number of stages of the output scan signal, or other feasible adjustment contents, which are not limited in this embodiment.

于本发明的附图中,感应单元的样态仅为方便显示之用,本发明并未限制感应单元的形状、数量和样态。此外,前述说明当控制单元214从第k条扫描线212输出扫描信号G(k)达预计时间的一半时,控制单元214会再从第k+1条扫描线212输出扫描信号G(k+1)的实施例,亦仅为方便说明和附图方便显示之用,并未限制扫描信号G(k+1)系在输出扫描信号G(k)达预计时间的一半时输出。In the drawings of the present invention, the shape of the sensing unit is only for convenience of display, and the invention does not limit the shape, quantity and shape of the sensing unit. In addition, when the control unit 214 outputs the scan signal G(k) from the k-th scan line 212 for half the expected time, the control unit 214 will output the scan signal G(k+ from the k+1-th scan line 212 again. The embodiment of 1) is only for convenience of description and drawing, and does not limit the scanning signal G(k+1) to be outputted when the output scanning signal G(k) reaches half of the expected time.

为了更清楚地说明本实施例触控装置的感测方法,请一并参照图1与图16,图16为根据本发明一实施例所绘示的触控装置感测方法的步骤流程图。如图所示,于步骤S301中,于互容模式下,由第i条第一数据线[i]输出数据信号T(i),于步骤S303中,依序地由M条扫描线112其中至少一输出扫描信号。于步骤S305中,当M条扫描线112中第k条扫描线112输出扫描信号G(k)时,接收每一条第二数据线上的第一感应数据。于步骤S307中,切换由第i+1条第一数据线[i+1]输出数据信号T(i+1)。于步骤S309中,当M条扫描线112中第k条扫描线112输出扫描信号G(k)时,接收每一条第二数据线上的第二感应数据。本发明所述的感测方法实际上均已经公开在前述记载的实施例中,本实施例在此不重复说明1 and FIG. 16 together. FIG. 16 is a flowchart showing the steps of the sensing method of the touch device according to an embodiment of the present invention. As shown in the figure, in step S301, in the mutual capacitance mode, the data signal T(i) is output from the i-th first data line [i], and in step S303, the M scan lines 112 are sequentially outputted from among them At least one output scan signal. In step S305, when the k-th scan line 112 of the M scan lines 112 outputs the scan signal G(k), the first sensing data on each of the second data lines is received. In step S307, the i+1 th first data line [i+1] is switched to output the data signal T(i+1). In step S309, when the k-th scan line 112 of the M scan lines 112 outputs the scan signal G(k), the second sensing data on each of the second data lines is received. The sensing method of the present invention has actually been disclosed in the above-mentioned embodiments, and the description of this embodiment will not be repeated here.

综合以上所述,本发明实施例提供一种触控装置与其感测方法,触控装置藉由控制单元切换地运作于自容模式和互容模式下,使得触控感应的面积和数据量增加,再藉由于互容模式时,触控装置分时地从部分的第一数据线传送数据信号,再从另一部份的第一数据线传送数据信号,使得第二数据线上的感应数据不会是同时与两侧第一数据线互容量测的结果,因此控制单元不会误判感应数据所对应的感应区域。此外,藉由互容模式下的互容量测,使得感应单元之间的间隙区域亦可以被感应为感应数据,进而更为提升触控装置的感应能力和解析度。In view of the above, embodiments of the present invention provide a touch device and a sensing method thereof. The touch device operates in a self-capacitance mode and a mutual-capacitance mode by switching the control unit, so that the area and data volume of the touch sensing are increased. , and in the mutual capacitance mode, the touch device transmits data signals from part of the first data lines in time division, and then transmits data signals from another part of the first data lines, so that the sensing data on the second data lines It will not be the result of mutual capacity measurement with the first data lines on both sides at the same time, so the control unit will not misjudge the sensing area corresponding to the sensing data. In addition, through the mutual capacitance measurement in the mutual capacitance mode, the gap area between the sensing units can also be sensed as sensing data, thereby further improving the sensing capability and resolution of the touch device.

虽然本发明以前述的实施例公开如上,但其并非用以限定本发明。在不脱离本发明的精神和范围内,所为的更动与修改,均属本发明的专利保护范围。关于本发明所界定的保护范围请参考所附的权利要求书。Although the present invention is disclosed in the foregoing embodiments, it is not intended to limit the present invention. Changes and modifications made without departing from the spirit and scope of the present invention belong to the scope of patent protection of the present invention. For the scope of protection defined by the present invention, please refer to the appended claims.

Claims (7)

1.一种触控装置的感测方法,适用于一感应电极层,该感应电极层具有多个感应单元、M条扫描线及N条数据线,该些感应单元排列成M列N行的一感应阵列,其中每一列中的该些感应单元电性连接该M条扫描线其中之一,每一行中的该些感应单元电性连接该N条数据线其中之一,该些数据线定义为多条第一数据线及多条第二数据线,该些第一数据线中的第i条第一数据线位于该些第二数据线中的第j条和第j+1条第二数据线之间,且第j+1条第二数据线位于第i条和第i+1条第一数据线之间,该感测方法包括一互容模式及一自容模式,其中于该互容模式中包括:1. A sensing method for a touch device, applicable to a sensing electrode layer, the sensing electrode layer has a plurality of sensing units, M scanning lines and N data lines, the sensing units are arranged in M columns and N rows A sensing array, wherein the sensing units in each column are electrically connected to one of the M scan lines, the sensing units in each row are electrically connected to one of the N data lines, and the data lines define are a plurality of first data lines and a plurality of second data lines, the i-th first data line in the first data lines is located in the j-th and j+1-th second data lines in the second data lines between the data lines, and the j+1 th second data line is located between the i th and the i+1 th first data line, the sensing method includes a mutual capacitance mode and a self capacitance mode, wherein in the Mutual capacitance mode includes: 由第i条第一数据线输出一数据信号;outputting a data signal from the i-th first data line; 依序地由该M条扫描线其中至少一输出一扫描信号;sequentially outputting a scan signal from at least one of the M scan lines; 当该M条扫描线中第k条扫描线输出该扫描信号时,接收每一该第二数据线上的一第一感应数据,其中第j+1条第二数据线上的该第一感应数据为第k列的该些感应单元中,电性连接于第j+1条第二数据线的该感应单元与电性连接于第i条第一数据线的该感应单元互容量测的结果,且第k列中的每一该感应单元电性连接第k条扫描线;When the k-th scan line of the M scan lines outputs the scan signal, a first sensing data on each of the second data lines is received, wherein the first sensing data on the j+1-th second data line The data is the result of mutual capacity measurement between the sensing units in the kth row, the sensing unit electrically connected to the j+1th second data line and the sensing unit electrically connected to the ith first data line , and each of the sensing units in the kth column is electrically connected to the kth scan line; 切换由第i+1条第一数据线输出该数据信号;以及switching the i+1 th first data line to output the data signal; and 当该M条扫描线中第k条扫描线输出该扫描信号时,接收每一该第二数据线上的一第二感应数据,其中第j+1条第二数据线上的该第二感应数据为第k列的该些感应单元中,电性连接于第j+1条第二数据线的该感应单元与电性连接于第i+1条第一数据线的该感应单元互容量测的结果;When the k-th scan line of the M scan lines outputs the scan signal, a second sensing data on each of the second data lines is received, wherein the second sensing data on the j+1-th second data line The data is that among the sensing units in the kth row, the sensing unit electrically connected to the j+1 th second data line and the sensing unit electrically connected to the i+1 th first data line measure the mutual capacitance the result of; 于依序地由该M条扫描线其中至少一输出该扫描信号的步骤中,还包括由该M条扫描线中任二条相邻的扫描线输出该扫描信号,当该M条扫描线中第k条及第k+1条扫描线输出该扫描信号时,第j+1条第二数据线上的该第一感应数据关联于第k列和第k+1列的该些感应单元中,电性连接于第j+1条第二数据线的该些感应单元与电性连接于第i条第一数据线的该些感应单元互容量测的结果;In the step of sequentially outputting the scan signal from at least one of the M scan lines, it also includes outputting the scan signal from any two adjacent scan lines in the M scan lines. When the k and k+1 th scan lines output the scan signal, the first sensing data on the j+1 th second data line is associated with the sensing units in the k th row and the k+1 th row, a result of mutual capacitance measurement between the sensing units electrically connected to the j+1 th second data line and the sensing units electrically connected to the i th first data line; 于该自容模式中,包括由该M条扫描线中任二条相邻的扫描线输出该扫描信号,当该M条扫描线中第k条及第k+1条扫描线输出该扫描信号时,接收每一该第一数据线上的一第三感应数据及接收每一该第二数据线上的一第三感应数据,其中第i条第一数据线上的该第三感应数据关联于第i条第一数据线电性连接的该些感应单元中,电性连接于第k条扫描线的该感应单元及电性连接于第k+1条扫描线的该感应单元自容量测的结果,第j+1条第二数据线上的该第三感应数据关联于第j+1条第二数据线电性连接的该些感应单元中,电性连接于第k条扫描线的该感应单元及电性连接于第k+1条扫描线的该感应单元自容量测的结果。In the self-capacitance mode, including outputting the scan signal from any two adjacent scan lines in the M scan lines, when the k-th scan line and the k+1-th scan line in the M scan lines output the scan signal , receiving a third sensing data on each of the first data lines and receiving a third sensing data on each of the second data lines, wherein the third sensing data on the i-th first data line is associated with Among the sensing units electrically connected to the i-th first data line, the sensing unit electrically connected to the k-th scan line and the sensing unit electrically connected to the k+1-th scan line are self-capacitance measured. As a result, the third sensing data on the j+1th second data line is associated with the sensing units electrically connected to the j+1th second data line, and is electrically connected to the kth scan line. The sensing unit and the sensing unit electrically connected to the k+1 th scan line are the self-capacitance measurement results. 2.如权利要求1所述的触控装置的感测方法,其特征在于,第j条第二数据线电性连接该感应阵列中第2n-1行上的该些感应单元,第i条第一数据线电性连接该感应阵列中第2n行上的该些感应单元,第j+1条第二数据线电性连接该感应阵列中第2n+1行上的该些感应单元,第i+1条第一数据线电性连接该感应阵列中第2n+2行上的该些感应单元,当第k条及第k+1条扫描线输出该扫描信号时,第i条第一数据线上的该第三感应数据为第k列第2n行的该感应单元和第k+1列第2n行的该感应单元量测到的电容量总和,第j+1条第二数据线上的该第三感应数据为第k列第2n+1行的该感应单元和第k+1列第2n+1行的该感应单元量测到的电容量总和。2 . The sensing method of a touch device as claimed in claim 1 , wherein the j-th second data line is electrically connected to the sensing units on the 2n-1-th row in the sensing array, and the i-th line The first data line is electrically connected to the sensing units on the 2nth row in the sensing array, the j+1th second data line is electrically connected to the sensing units on the 2n+1th row in the sensing array, and the j+1th second data line is electrically connected to the sensing units on the 2n+1th row in the sensing array The i+1 first data lines are electrically connected to the sensing units on the 2n+2th row in the sensing array. When the kth and k+1th scan lines output the scan signal, the i-th first data line is the first The third sensing data on the data line is the sum of the capacitances measured by the sensing unit at column k, row 2n and the sensing unit at column k+1, row 2n, and the j+1 second data line The third sensing data above is the sum of the capacitances measured by the sensing unit in the k-th column and row 2n+1 and the sensing unit in the k+1-th column and row 2n+1. 3.如权利要求2所述的触控装置的感测方法,其特征在于,当第k条及第k+1条扫描线输出该扫描信号时,第k列第2n行的该感应单元与第k列第2n+1行的该感应单元之间互电容量,与第k+1列第2n行的该感应单元与第k+1列第2n+1行的该感应单元之间互电容量的总合,作为第j+1条第二数据线上的该第一感应数据。3 . The sensing method of a touch device as claimed in claim 2 , wherein when the k-th and k+1-th scan lines output the scan signal, the sensing unit in the k-th column and the 2n-th row and the The mutual capacitance between the induction unit in column k and row 2n+1 is the mutual capacitance between the induction unit in column k+1 and row 2n and the induction unit in column k+1 and row 2n+1. The sum of the capacity is used as the first sensing data on the j+1th second data line. 4.一种触控装置,包含一感应电极层,该感应电极层包括:4. A touch device, comprising a sensing electrode layer, the sensing electrode layer comprising: 多个感应单元,排列成M列N行的一感应阵列;A plurality of sensing units, arranged in a sensing array with M columns and N rows; M条扫描线,该感应阵列中每一列的该些感应单元电性连接该M条扫描线其中之一;M scan lines, the sensing units in each column of the sensing array are electrically connected to one of the M scan lines; N条数据线,该感应阵列中每一行的该些感应单元电性连接该N条数据线其中之一,该些数据线定义为多条第一数据线及多条第二数据线,该些第一数据线中的第i条第一数据线位于该些第二数据线中的第j条和第j+1条第二数据线之间,且第j+1条第二数据线位于第i条和第i+1条第一数据线之间;以及N data lines, the sensing units in each row of the sensing array are electrically connected to one of the N data lines, the data lines are defined as a plurality of first data lines and a plurality of second data lines, the The i-th first data line in the first data lines is located between the j-th and j+1-th second data lines among the second data lines, and the j+1-th second data line is located in the j+1-th second data line. between i and i+1 first data lines; and 一控制单元,运作于一互容模式及一自容模式,于该互容模式中,该控制单元从第i条第一数据线输出一数据信号,并依序地从该M条扫描线其中至少一输出一扫描信号,当该M条扫描线中第k条扫描线输出该扫描信号时,该控制单元接收每一该第二数据线上的一第一感应数据,该控制单元切换从第i+1条第一数据线输出该数据信号,并依序地从该M条扫描线其中至少一输出该扫描信号,当该M条扫描线中第k条扫描线输出该扫描信号时,该控制单元接收每一该第二数据线上的一第二感应数据,其中第j+1条第二数据线上的该第一感应数据为第k列的该些感应单元中,电性连接于第j+1条第二数据线的该感应单元与电性连接于第i条第一数据线的该感应单元互容量测的结果,第j+1条第二数据线上的该第二感应数据为第k列的该些感应单元中,电性连接于第j+1条第二数据线的该感应单元与电性连接于第i+1条第一数据线的该感应单元互容量测的结果;a control unit, operating in a mutual capacitance mode and a self-capacitance mode, in the mutual capacitance mode, the control unit outputs a data signal from the i-th first data line, and sequentially from the M scan lines At least one outputs a scan signal, and when the k-th scan line of the M scan lines outputs the scan signal, the control unit receives a first sensing data on each of the second data lines, and the control unit switches from the k-th scan line to the scan signal. i+1 first data lines output the data signal, and sequentially output the scan signal from at least one of the M scan lines, when the k-th scan line among the M scan lines outputs the scan signal, the The control unit receives a second sensing data on each of the second data lines, wherein the first sensing data on the j+1 th second data line is the sensing units in the k th row, which are electrically connected to The result of the mutual capacitance measurement between the sensing unit of the j+1th second data line and the sensing unit electrically connected to the i-th first data line, the second sensing unit of the j+1th second data line The data is that among the sensing units in the kth row, the sensing unit electrically connected to the j+1 th second data line and the sensing unit electrically connected to the i+1 th first data line measure the mutual capacitance the result of; 该控制单元依序地从该M条扫描线中任二条相邻的扫描线输出该扫描信号,当该M条扫描线中第k条及第k+1条扫描线输出该扫描信号时,第j+1条第二数据线上的该第一感应数据关联于第k列和第k+1列的该些感应单元中,电性连接于第j+1条第二数据线的该些感应单元与电性连接于第i条第一数据线的该些感应单元互容量测的结果;The control unit sequentially outputs the scan signal from any two adjacent scan lines in the M scan lines, when the k-th and k+1-th scan lines in the M scan lines output the scan signal, the The first sensing data on the j+1 second data line is associated with the sensing units in the kth row and the k+1th row, and is electrically connected to the sensing units on the j+1th second data line the result of mutual capacity measurement between the unit and the sensing units electrically connected to the i-th first data line; 于该自容模式中,该控制单元依序地从该M条扫描线中任二条相邻的扫描线输出该扫描信号,当该M条扫描线中第k条及第k+1条扫描线输出该扫描信号时,该控制单元接收每一该第一数据线上的一第三感应数据及接收每一该第二数据线上的一第三感应数据,其中第i条第一数据线上的该第三感应数据关联于第i条第一数据线电性连接的该些感应单元中,电性连接于第k条扫描线的该感应单元及电性连接于第k+1条扫描线的该感应单元自容量测的结果,第j+1条第二数据线上的该第三感应数据关联于第j+1条第二数据线电性连接的该些感应单元中,电性连接于第k条扫描线的该感应单元及电性连接于第k+1条扫描线的该感应单元自容量测的结果。In the self-capacitance mode, the control unit sequentially outputs the scan signal from any two adjacent scan lines in the M scan lines, when the k th scan line and the k+1 th scan line in the M scan lines When outputting the scan signal, the control unit receives a third sensing data on each of the first data lines and receives a third sensing data on each of the second data lines, wherein the i-th first data line The third sensing data is associated with the sensing units electrically connected to the i-th first data line, the sensing unit electrically connected to the k-th scan line and electrically connected to the k+1-th scan line As a result of the self-capacitance measurement of the sensing unit, the third sensing data on the j+1 th second data line is associated with the sensing units electrically connected to the j+1 th second data line, and the electrical connection A self-capacitance measurement result of the sensing unit on the k-th scan line and the sensing unit electrically connected to the k+1-th scan line. 5.如权利要求4所述的触控装置,其特征在于,第j条第二数据线电性连接该感应阵列中第2n-1行上的该些感应单元,第i条第一数据线电性连接该感应阵列中第2n行上的该些感应单元,第j+1条第二数据线电性连接该感应阵列中第2n+1行上的该些感应单元,第i+1条第一数据线电性连接该感应阵列中第2n+2行上的该些感应单元,当第k条及第k+1条扫描线输出该扫描信号时,第i条第一数据线上的该第三感应数据为第k列第2n行的该感应单元和第k+1列第2n行的该感应单元量测到的电容量总和,第j+1条第二数据线上的该第三感应数据为第k列第2n+1行的该感应单元和第k+1列第2n+1行的该感应单元量测到的电容量总和。5 . The touch device of claim 4 , wherein the j-th second data line is electrically connected to the sensing units in the 2n-1-th row in the sensing array, and the i-th first data line The sensing units on the 2nth row in the sensing array are electrically connected, and the j+1 th second data line is electrically connected with the sensing units on the 2n+1 th row in the sensing array, and the i+1 th data line is electrically connected The first data line is electrically connected to the sensing units on the 2n+2th row in the sensing array. When the kth and k+1th scan lines output the scan signal, the i-th first data line The third sensing data is the sum of the capacitances measured by the sensing unit in column k, row 2n and the sensing unit in column k+1, row 2n. The third sensing data is the sum of the capacitances measured by the sensing unit in the k-th column and row 2n+1 and the sensing unit in the k+1-th column and row 2n+1. 6.如权利要求5所述的触控装置,其特征在于,当第k条及第k+1条扫描线输出该扫描信号时,第k列第2n行的该感应单元与第k列第2n+1行的该感应单元之间互电容量,与第k+1列第2n行的该感应单元与第k+1列第2n+1行的该感应单元之间互电容量的总合为第j+1条第二数据线上的该第一感应数据。6 . The touch device of claim 5 , wherein when the kth and k+1th scan lines output the scan signal, the sensing unit in the kth column and the 2nth row and the kth column and the kth column and the The sum of the mutual capacitance between the induction units in row 2n+1 and the mutual capacitance between the induction unit in column k+1, row 2n and the induction unit in column k+1, row 2n+1 is the first sensing data on the j+1th second data line. 7.如权利要求4所述的触控装置,其特征在于,每一该感应单元包含一导电体,该导电体于该些扫描线延伸方向上的长度为该导电体于该些数据线延伸方向上的长度的1.5倍至3倍。7 . The touch device of claim 4 , wherein each of the sensing units comprises a conductor, and the length of the conductor in the extending direction of the scan lines is equal to the length of the conductor extending over the data lines. 8 . 1.5 to 3 times the length in the direction.
CN201610552721.2A 2016-04-27 2016-07-14 touch device and sensing method thereof Active CN106201140B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105113080A TWI588727B (en) 2016-04-27 2016-04-27 Touch device and sensing method thereof
TW105113080 2016-04-27

Publications (2)

Publication Number Publication Date
CN106201140A CN106201140A (en) 2016-12-07
CN106201140B true CN106201140B (en) 2019-07-12

Family

ID=57477640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610552721.2A Active CN106201140B (en) 2016-04-27 2016-07-14 touch device and sensing method thereof

Country Status (2)

Country Link
CN (1) CN106201140B (en)
TW (1) TWI588727B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106775162B (en) * 2016-12-28 2019-09-24 厦门天马微电子有限公司 Touch-control display panel and its driving method, touch control display apparatus
CN106814910B (en) * 2017-01-16 2019-09-24 厦门天马微电子有限公司 Touch-control display panel and its driving method, touch control display apparatus
TWI646471B (en) * 2017-02-06 2019-01-01 茂丞科技股份有限公司 Fingerprint sensing module and fingerprint identification method
TWI621988B (en) 2017-08-03 2018-04-21 友達光電股份有限公司 Sensing method of fingerprint sensor
CN113867565B (en) * 2021-09-17 2023-09-12 昆山国显光电有限公司 Touch control film layer, touch control detection method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609128A (en) * 2010-12-16 2012-07-25 刘鸿达 Dual-mode touch sensing element, touch display related device and touch driving method thereof
CN103425367A (en) * 2012-05-23 2013-12-04 刘鸿达 Capacitive sensing touch method
CN104375679A (en) * 2013-08-12 2015-02-25 鸿富锦精密工业(深圳)有限公司 Touch display panel, touch detection method and electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069421B2 (en) * 2010-12-16 2015-06-30 Hung-Ta LIU Touch sensor and touch display apparatus and driving method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609128A (en) * 2010-12-16 2012-07-25 刘鸿达 Dual-mode touch sensing element, touch display related device and touch driving method thereof
CN103425367A (en) * 2012-05-23 2013-12-04 刘鸿达 Capacitive sensing touch method
CN104375679A (en) * 2013-08-12 2015-02-25 鸿富锦精密工业(深圳)有限公司 Touch display panel, touch detection method and electronic device

Also Published As

Publication number Publication date
TWI588727B (en) 2017-06-21
CN106201140A (en) 2016-12-07
TW201738713A (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US8258986B2 (en) Capacitive-matrix keyboard with multiple touch detection
JP6750059B2 (en) Capacitive fingerprint sensor with improved sensing element
CN106201140B (en) touch device and sensing method thereof
US11093055B2 (en) Stylus to host synchronization using a magnetic field
US8546705B2 (en) Device and method for preventing the influence of conducting material from point detection of projected capacitive touch panel
TWI474248B (en) Method and device for sensing control point on capacitive-type panel
US8566955B2 (en) User indentification with capacitive touchscreen
CN101727571B (en) Fingerprint sensing device and touch device with fingerprint sensing
CN103150072B (en) Touch device and touch method thereof
US8432170B1 (en) Integrated capacitance model circuit
US8692801B2 (en) System and method for sparse touch sensing on capacitive touch screen
TW201007516A (en) Touch screen and method for positioning coordinate
CN110390245B (en) Gate driver for fingerprint sensor
US20120249446A1 (en) Touch-sensing apparatus
CN104714708B (en) control point sensing panel and design method thereof
TWI493403B (en) Temperature sensitive touch panel and detection method and manufacturing method thereof
US20160078269A1 (en) Fingerprint sensor with sync signal input
TW202101188A (en) High resolution touch sensor apparatus and method
CN211180796U (en) Electronic device with fingerprint sensing function
CN104182099A (en) Capacitive touch panel
CN103186298B (en) Low standby power consumption driving method and device for capacitive multi-touch
CN107807757A (en) Touch sensing unit and fingerprint touch device with same
KR101855648B1 (en) Improved fingerprint recognition sensor and charge integrated sensing circuit used therein
US9405409B1 (en) Method and apparatus for pipelined conversions in touch sensing systems
KR101481963B1 (en) Multi-touch panel, multi-touch sensing device having the same and method of sensing multi-touch using the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant