CN106159030B - The preparation method of solar cell - Google Patents
The preparation method of solar cell Download PDFInfo
- Publication number
- CN106159030B CN106159030B CN201510130149.6A CN201510130149A CN106159030B CN 106159030 B CN106159030 B CN 106159030B CN 201510130149 A CN201510130149 A CN 201510130149A CN 106159030 B CN106159030 B CN 106159030B
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor layer
- semiconductor substrate
- doped
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title 1
- 239000004065 semiconductor Substances 0.000 claims abstract description 257
- 239000000758 substrate Substances 0.000 claims abstract description 90
- 238000004519 manufacturing process Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims description 30
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- UPGUYPUREGXCCQ-UHFFFAOYSA-N cerium(3+) indium(3+) oxygen(2-) Chemical compound [O--].[O--].[O--].[In+3].[Ce+3] UPGUYPUREGXCCQ-UHFFFAOYSA-N 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- ATFCOADKYSRZES-UHFFFAOYSA-N indium;oxotungsten Chemical compound [In].[W]=O ATFCOADKYSRZES-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种太阳能电池的制作方法,包括下列步骤:提供半导体基底,半导体基底具有侧面以及互相背对的第一面与第二面,且侧面上形成有离型层。于第一面上依序形成第一半导体层以及第一掺杂半导体层,且于第二面上依序形成第二半导体层以及第二掺杂半导体层。于第一掺杂半导体层与第二掺杂半导体层上形成透明导电层,且透明导电层至少部分覆盖离型层。将离型层与半导体基底分离,以移除离型层与覆盖离型层的透明导电层。
The invention discloses a manufacturing method of a solar cell, which includes the following steps: providing a semiconductor substrate, the semiconductor substrate has a side surface, a first surface and a second surface opposite to each other, and a release layer is formed on the side surface. A first semiconductor layer and a first doped semiconductor layer are sequentially formed on the first surface, and a second semiconductor layer and a second doped semiconductor layer are sequentially formed on the second surface. A transparent conductive layer is formed on the first doped semiconductor layer and the second doped semiconductor layer, and the transparent conductive layer at least partially covers the release layer. The release layer is separated from the semiconductor substrate to remove the release layer and the transparent conductive layer covering the release layer.
Description
技术领域technical field
本发明有关于一种太阳能电池的制作方法,尤指一种增加透明导电层于半导体基底上覆盖范围的太阳能电池的制作方法。The invention relates to a method for manufacturing a solar cell, in particular to a method for manufacturing a solar cell that increases the coverage of a transparent conductive layer on a semiconductor substrate.
背景技术Background technique
由于地球石油资源有限,因此近年来对于替代能源的需求与日俱增。在各式替代能源中,太阳能由于能够借助自然界的循环而源源不绝,已成为目前最具发展潜力的绿色能源。但受限于高制作成本、制作工艺复杂与光电转换效率不佳等问题,太阳能的发展仍待进一步的突破。Due to the limited oil resources on earth, the demand for alternative energy has been increasing in recent years. Among all kinds of alternative energy sources, solar energy has become the green energy with the most development potential because it can rely on the cycle of nature and has an endless supply. However, due to problems such as high production cost, complex production process and poor photoelectric conversion efficiency, the development of solar energy still needs further breakthroughs.
目前主要发展的太阳能电池技术可大致分为硅晶太阳能电池、薄膜太阳能电池、聚光型(HCPV)太阳能电池、染料敏化(Dye Sensitized Soloar Cell,DSSC)太阳能电池等种类。其中硅晶太阳能电池由于具有高效率以及产能大等优势,故目前市场上以硅晶太阳能电池的市占率最高。近几年,高效率异质接面硅晶太阳能电池是大家发展的重点,在一般的异质接面硅晶太阳能电池中,于硅晶基底上下表面的透明电极于镀膜时为了避免互相连结而直接导通,一般需使形成的透明导电层与硅晶基底的边缘相隔一安全间距。在此设计下,会导致硅晶基底以及其上所形成的其他半导体材料无法完全被利用来进行光电传换,进而导致太阳能电池的光电转换效率无法有效地提升。At present, the solar cell technologies mainly developed can be roughly divided into silicon crystal solar cells, thin film solar cells, concentrator (HCPV) solar cells, dye sensitized Soloar Cell (DSSC) solar cells and other types. Among them, silicon solar cells have the highest market share in the current market due to their high efficiency and large production capacity. In recent years, high-efficiency heterojunction silicon solar cells are the focus of everyone's development. In general heterojunction silicon solar cells, the transparent electrodes on the upper and lower surfaces of the silicon substrate are coated to avoid interconnection. For direct conduction, it is generally necessary to keep a safe distance between the formed transparent conductive layer and the edge of the silicon substrate. Under this design, the silicon substrate and other semiconductor materials formed thereon cannot be fully utilized for photoelectric conversion, and thus the photoelectric conversion efficiency of the solar cell cannot be effectively improved.
发明内容Contents of the invention
本发明的主要目的之一在于提供一种异质接面太阳能电池的制作方法,利用于半导体基底的侧面上形成离型层,使得透明导电层可全面形成于半导体基底的上下表面以及离型层上,再通过使离型层与半导体基底分离而电性隔离上下表面的透明导电层,故可因此增加透明导电层于半导体基底上的覆盖范围,进而达到提升太阳能电池的光电转换效果的目的。One of the main purposes of the present invention is to provide a method for manufacturing a heterojunction solar cell, which is used to form a release layer on the side of the semiconductor substrate, so that the transparent conductive layer can be fully formed on the upper and lower surfaces of the semiconductor substrate and the release layer On top of that, the transparent conductive layer on the upper and lower surfaces is electrically isolated by separating the release layer from the semiconductor substrate, so that the coverage of the transparent conductive layer on the semiconductor substrate can be increased, thereby achieving the purpose of improving the photoelectric conversion effect of the solar cell.
为达到上述目的,本发明的一实施例提供一种太阳能电池的制作方法,包括下列步骤:首先,提供半导体基底,半导体基底具有侧面以及互相背对的第一面与第二面,且侧面上形成有离型层。接着,于第一面上依序形成第一半导体层以及第一掺杂半导体层,且于第二面上依序形成第二半导体层以及第二掺杂半导体层。然后,于第一掺杂半导体层与第二掺杂半导体层上形成透明导电层,且透明导电层至少部分覆盖离型层。之后,将离型层与半导体基底分离,以移除离型层与覆盖离型层的透明导电层。In order to achieve the above object, an embodiment of the present invention provides a method for manufacturing a solar cell, comprising the following steps: firstly, a semiconductor substrate is provided, the semiconductor substrate has a side surface and a first surface and a second surface opposite to each other, and on the side surface A release layer is formed. Then, a first semiconductor layer and a first doped semiconductor layer are sequentially formed on the first surface, and a second semiconductor layer and a second doped semiconductor layer are sequentially formed on the second surface. Then, a transparent conductive layer is formed on the first doped semiconductor layer and the second doped semiconductor layer, and the transparent conductive layer at least partially covers the release layer. After that, the release layer is separated from the semiconductor substrate to remove the release layer and the transparent conductive layer covering the release layer.
为达到上述目的,本发明的另外一实施例提供一种太阳能电池的制作方法,包括下列步骤:首先,提供半导体基底,半导体基底具有侧面以及互相背对的第一面与第二面。接着,于第一面上依序形成第一半导体层以及第一掺杂半导体层,且于第二面上依序形成第二半导体层以及第二掺杂半导体层。然后,于半导体基底的侧面上形成离型层。接着,于第一掺杂半导体层与第二掺杂半导体层上形成透明导电层,透明导电层至少部分覆盖离型层。之后,将离型层与半导体基底分离,以移除离型层与覆盖离型层的透明导电层。To achieve the above object, another embodiment of the present invention provides a method for fabricating a solar cell, including the following steps: firstly, a semiconductor substrate is provided, and the semiconductor substrate has a side surface and a first surface and a second surface opposite to each other. Then, a first semiconductor layer and a first doped semiconductor layer are sequentially formed on the first surface, and a second semiconductor layer and a second doped semiconductor layer are sequentially formed on the second surface. Then, a release layer is formed on the side of the semiconductor substrate. Next, a transparent conductive layer is formed on the first doped semiconductor layer and the second doped semiconductor layer, and the transparent conductive layer at least partially covers the release layer. After that, the release layer is separated from the semiconductor substrate to remove the release layer and the transparent conductive layer covering the release layer.
附图说明Description of drawings
图1至图8绘示了本发明第一实施例的太阳能电池的制作方法示意图。1 to 8 are schematic diagrams illustrating a method for fabricating a solar cell according to a first embodiment of the present invention.
图9与图10绘示了本发明第二实施例的太阳能电池的制作方法示意图。FIG. 9 and FIG. 10 are schematic diagrams illustrating the manufacturing method of the solar cell according to the second embodiment of the present invention.
图11至图14绘示了本发明第三实施例的太阳能电池的制作方法示意图。FIG. 11 to FIG. 14 are schematic diagrams illustrating the manufacturing method of the solar cell according to the third embodiment of the present invention.
图15绘示了本发明第四实施例的太阳能电池的制作方法示意图。FIG. 15 is a schematic diagram of a method for fabricating a solar cell according to a fourth embodiment of the present invention.
【附图标记说明】[Description of Reference Signs]
1 硅晶柱1 Silicon Pillar
1S 表面1S surface
10 半导体基底10 Semiconductor substrate
10A 第一面10A First side
10B 第二面10B Second side
10S 侧面10S side
11 离型层11 release layer
21 第一半导体层21 First semiconductor layer
22 第一掺杂半导体层22 The first doped semiconductor layer
31 第二半导体层31 Second semiconductor layer
32 第二掺杂半导体层32 Second doped semiconductor layer
40 透明导电层40 transparent conductive layer
41 第一电极41 First electrode
42 第二电极42 Second electrode
51 第一导电图案51 First conductive pattern
52 第二导电图案52 Second conductive pattern
101 太阳能电池101 solar cells
102 太阳能电池102 solar cells
H 水平方向H horizontal direction
Z 垂直投影方向Z vertical projection direction
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
请参考图1至图8,图1至图8绘示了本发明第一实施例的太阳能电池的制作方法示意图,其中图2可被视为沿图1中A-A’剖线所绘示的剖面示意图。为了方便说明,本发明的各图式仅为示意以更容易了解本发明,其详细的比例可依照设计的需求进行调整。本实施例提供一种太阳能电池的制作方法,包括下列步骤:首先,如图1与图2所示,提供半导体基底10,半导体基底10具有侧面10S以及互相背对的第一面10A与第二面10B,侧面10S围绕半导体基底10。第一面10A与第二面10B为于一垂直投影方向Z上相对的两表面,而侧面10S可视为面向一水平方向H,水平方向H大体上与垂直投影方向Z正交,但并不以此为限。侧面10S上形成有离型层11,离型层11可包括光阻、胶材或其他适合的离型材料。本实施例的半导体基底10可包括结晶硅半导体基底例如单晶硅或多晶硅半导体基底,但并不以此为限。当半导体基底10为结晶硅半导体基底时,其可通过对硅晶柱(ingot)进行切割而形成,硅晶柱依据不同需求,截面可以是圆形(circle)、导角方形(pseudo square)、方形(square)和六角形(hexagon)等形状。因此,离型层11可于半导体基底10切割成型之后再形成于半导体基底10的侧面10S。或者,如图3与图2所示,离型层11可先形成于硅晶柱1的表面1S上,再经由切割硅晶柱1以形成于侧面10S上具有离型层11的半导体基底10。Please refer to FIG. 1 to FIG. 8. FIG. 1 to FIG. 8 are schematic diagrams illustrating a method of manufacturing a solar cell according to a first embodiment of the present invention, wherein FIG. sectional schematic diagram. For the convenience of description, the drawings of the present invention are only schematic diagrams for easier understanding of the present invention, and the detailed proportions thereof can be adjusted according to design requirements. This embodiment provides a method for manufacturing a solar cell, which includes the following steps: first, as shown in FIG. 1 and FIG. 2 , a semiconductor substrate 10 is provided. The face 10B, the side 10S surround the semiconductor substrate 10 . The first surface 10A and the second surface 10B are two opposite surfaces in a vertical projection direction Z, and the side surface 10S can be regarded as facing a horizontal direction H, which is substantially perpendicular to the vertical projection direction Z, but not This is the limit. A release layer 11 is formed on the side 10S, and the release layer 11 may include photoresist, glue or other suitable release materials. The semiconductor substrate 10 of the present embodiment may include a crystalline silicon semiconductor substrate such as single crystal silicon or polycrystalline silicon semiconductor substrate, but is not limited thereto. When the semiconductor substrate 10 is a crystalline silicon semiconductor substrate, it can be formed by cutting a silicon crystal pillar (ingot). According to different requirements, the cross section of the silicon crystal pillar can be circle, pseudo square, Shapes such as square and hexagon. Therefore, the release layer 11 can be formed on the side surface 10S of the semiconductor substrate 10 after the semiconductor substrate 10 is cut and shaped. Alternatively, as shown in FIGS. 3 and 2 , the release layer 11 can be formed on the surface 1S of the silicon column 1 first, and then the semiconductor substrate 10 with the release layer 11 on the side 10S is formed by cutting the silicon column 1 .
然后,如图4所示,可选择性地对半导体基底10进行粗糙化(texturing)处理,使半导体基底10的第一面10A与第二面10B转变成粗糙化表面,由此降低反射光比率,但并不以此为限。此粗糙化处理可包括利用蚀刻液(例如氢氧化钾)的蚀刻工艺或其他适合的粗糙化工艺。Then, as shown in FIG. 4, the semiconductor substrate 10 can be selectively roughened (texturing), so that the first surface 10A and the second surface 10B of the semiconductor substrate 10 can be transformed into a roughened surface, thereby reducing the reflected light ratio. , but not limited to this. The roughening process may include an etching process using an etchant (eg, potassium hydroxide) or other suitable roughening processes.
接着,如图5所示,于半导体基底10的第一面10A上依序形成第一半导体层21以及第一掺杂半导体层22,且如图6所示于第二面10B上依序形成第二半导体层31以及第二掺杂半导体层32。在本实施例中,第一掺杂半导体层22与第二掺杂半导体层32较佳具有不同的掺杂型态,举例来说,第一掺杂半导体层22可为n型掺杂非晶硅层,第二掺杂半导体层32可为p型掺杂非晶硅层,而第一半导体层21与第二半导体层31可分别为非晶硅本质半导体层,但并不此为限。此外,在上述的状况下,半导体基底10较佳可为n型单晶硅基底,由此搭配形成异质接面(heterojunction,HJT)硅晶太阳能电池结构,但并不此为限。上述的第一半导体层21、第一掺杂半导体层22、第二半导体层31以及第二掺杂半导体层32可分别通过化学气相沉积(chemical vapor deposition,CVD)方式形成,例如电浆辅助化学气相沉积(PECVD),但并不以此为限。换句话说,上述的粗糙化处理于第一半导体层21、第一掺杂半导体层22、第二半导体层31以及第二掺杂半导体层32形成之前进行。Next, as shown in FIG. 5, the first semiconductor layer 21 and the first doped semiconductor layer 22 are sequentially formed on the first surface 10A of the semiconductor substrate 10, and are sequentially formed on the second surface 10B as shown in FIG. The second semiconductor layer 31 and the second doped semiconductor layer 32 . In this embodiment, the first doped semiconductor layer 22 and the second doped semiconductor layer 32 preferably have different doping types, for example, the first doped semiconductor layer 22 can be n-type doped amorphous For the silicon layer, the second doped semiconductor layer 32 can be a p-type doped amorphous silicon layer, and the first semiconductor layer 21 and the second semiconductor layer 31 can be respectively amorphous silicon intrinsic semiconductor layers, but not limited thereto. In addition, under the above conditions, the semiconductor substrate 10 is preferably an n-type single crystal silicon substrate, thereby forming a heterojunction (heterojunction, HJT) silicon solar cell structure, but not limited thereto. The first semiconductor layer 21, the first doped semiconductor layer 22, the second semiconductor layer 31, and the second doped semiconductor layer 32 can be formed by chemical vapor deposition (chemical vapor deposition, CVD), such as plasma-assisted chemical deposition. Vapor phase deposition (PECVD), but not limited thereto. In other words, the above roughening treatment is performed before the formation of the first semiconductor layer 21 , the first doped semiconductor layer 22 , the second semiconductor layer 31 and the second doped semiconductor layer 32 .
此外,值得说明的是,为了使第一半导体层21与第一掺杂半导体层22覆盖于半导体基底10的第一面10A上的面积尽量增加,第一半导体层21与第一掺杂半导体层22可全面覆盖半导体基底10的第一面10A且可延伸以部分覆盖离型层11。相同地,为了使第二半导体层31与第二掺杂半导体层32覆盖于半导体基底10的第二面10B上的面积尽量增加,第二半导体层31与第二掺杂半导体层32可全面覆盖半导体基底10的第二面10B且亦可延伸以部分覆盖离型层11。因此,第一半导体层21以及第一掺杂半导体层22可于离型层11上与第二半导体层31以及第二掺杂半导体层32部分重迭,但并不以此为限。In addition, it is worth noting that in order to increase the area of the first semiconductor layer 21 and the first doped semiconductor layer 22 covering the first surface 10A of the semiconductor substrate 10 as much as possible, the first semiconductor layer 21 and the first doped semiconductor layer 22 can fully cover the first surface 10A of the semiconductor substrate 10 and can extend to partially cover the release layer 11 . Similarly, in order to increase the area covered by the second semiconductor layer 31 and the second doped semiconductor layer 32 on the second surface 10B of the semiconductor substrate 10 as much as possible, the second semiconductor layer 31 and the second doped semiconductor layer 32 can fully cover The second surface 10B of the semiconductor substrate 10 can also extend to partially cover the release layer 11 . Therefore, the first semiconductor layer 21 and the first doped semiconductor layer 22 can partially overlap with the second semiconductor layer 31 and the second doped semiconductor layer 32 on the release layer 11 , but it is not limited thereto.
然后,如图7所示,于第一掺杂半导体层22与第二掺杂半导体层32上形成透明导电层40,且透明导电层40至少部分覆盖离型层11。透明导电层40可包括氧化铟锡(indium tinoxide,ITO)、氧化铟钨(indium tungsten oxide,IWO)、氧化铟铈(indium cerium oxide,ICO)、氧化铟锌(indium zinc oxide,IZO)与氧化铝锌(aluminum zinc oxide,AZO)或其他适合的透明导电材料。为增加透明导电材料的电气性与光学特性,可以在上述材料中加入氢原子。透明导电层40可通过镀膜方式例如溅镀(sputter)或反应式离子镀膜(reactiveplasma deposition,RPD)等方式形成,但并不以此为限。值得说明的是,在本发明的其他实施例中,形成于第一掺杂半导体层22与第二掺杂半导体层32上的透明导电层亦可视需要分别使用不同的材料而并不限于须使用同一种透明导电材料。此外,为了使透明导电层40覆盖于第一掺杂半导体层22与第二掺杂半导体层32上的面积尽量增加,透明导电层40至少部分覆盖离型层11,或甚至可使透明导电层40于垂直投影方向Z上以及水平方向H上完全覆盖离型层11,由此确保透明导电层40的覆盖状况,但并不以此为限。Then, as shown in FIG. 7 , a transparent conductive layer 40 is formed on the first doped semiconductor layer 22 and the second doped semiconductor layer 32 , and the transparent conductive layer 40 at least partially covers the release layer 11 . The transparent conductive layer 40 may include indium tin oxide (ITO), indium tungsten oxide (IWO), indium cerium oxide (ICO), indium zinc oxide (IZO) and oxide Aluminum zinc oxide (AZO) or other suitable transparent conductive materials. In order to increase the electrical and optical properties of transparent conductive materials, hydrogen atoms can be added to the above materials. The transparent conductive layer 40 may be formed by a coating method such as sputtering or reactive plasma deposition (RPD), but not limited thereto. It is worth noting that, in other embodiments of the present invention, the transparent conductive layers formed on the first doped semiconductor layer 22 and the second doped semiconductor layer 32 may also use different materials as required and are not limited to Use the same transparent conductive material. In addition, in order to increase the area of the transparent conductive layer 40 covering the first doped semiconductor layer 22 and the second doped semiconductor layer 32 as much as possible, the transparent conductive layer 40 at least partially covers the release layer 11, or even the transparent conductive layer 40 completely covers the release layer 11 in the vertical projection direction Z and the horizontal direction H, thereby ensuring the coverage of the transparent conductive layer 40 , but not limited thereto.
之后,如图8所示,将离型层11与半导体基底10分离,以移除离型层11与覆盖离型层11的透明导电层40,由此使得第一掺杂半导体层22上的透明导电层40与第二掺杂半导体层32上的透明导电层40电性分离,并于第一掺杂半导体层22与第二掺杂半导体层32上分别形成第一电极41与第二电极42。换句话说,第一电极41与第二电极42由透明导电层40所形成,而通过本实施例的制作方法,可使第一电极41与第二电极42分别覆盖至半导体基底10的最边缘,由此提升太阳能电池的有效应用面积并可因此提升太阳能电池的光电转换效果。此外,若第一半导体层21、第一掺杂半导体层22、第二半导体层31以及第二掺杂半导体层32亦部分覆盖离型层11,离型层11与半导体基底10分离时可同时移除覆盖离型层11的第一半导体层21、第一掺杂半导体层22、第二半导体层31以及第二掺杂半导体层32,由此亦可确保第一半导体层21、第一掺杂半导体层22、第二半导体层31以及第二掺杂半导体层32覆盖至半导体基底10的最边缘。本实施例的移除离型层11以及覆盖于其上的其他材料层的方式可依据不同种类的离型层11而有所不同,例如可利用直接施加外力的物理方式、加热方式或化学方式,但并不以此为限。Afterwards, as shown in FIG. 8 , the release layer 11 is separated from the semiconductor substrate 10 to remove the release layer 11 and the transparent conductive layer 40 covering the release layer 11, thereby making the first doped semiconductor layer 22 The transparent conductive layer 40 is electrically separated from the transparent conductive layer 40 on the second doped semiconductor layer 32, and a first electrode 41 and a second electrode are respectively formed on the first doped semiconductor layer 22 and the second doped semiconductor layer 32. 42. In other words, the first electrode 41 and the second electrode 42 are formed by the transparent conductive layer 40, and through the manufacturing method of this embodiment, the first electrode 41 and the second electrode 42 can be respectively covered to the outermost edge of the semiconductor substrate 10 , thereby increasing the effective application area of the solar cell and thus improving the photoelectric conversion effect of the solar cell. In addition, if the first semiconductor layer 21, the first doped semiconductor layer 22, the second semiconductor layer 31 and the second doped semiconductor layer 32 also partially cover the release layer 11, the release layer 11 can be separated from the semiconductor substrate 10 at the same time. Remove the first semiconductor layer 21 covering the release layer 11, the first doped semiconductor layer 22, the second semiconductor layer 31 and the second doped semiconductor layer 32, thereby also ensuring that the first semiconductor layer 21, the first doped semiconductor layer The hetero-semiconductor layer 22 , the second semiconductor layer 31 and the second doped semiconductor layer 32 cover to the edge of the semiconductor substrate 10 . The method of removing the release layer 11 and other material layers covering it in this embodiment can be different according to different types of release layer 11, for example, physical methods, heating methods or chemical methods can be used to directly apply external force , but not limited to this.
如图8所示,本实施例的制作方法可还包括于第一面10A的透明导电层40上形成第一导电图案51,并于第二面10B的透明导电层40上形成第二导电图案52。第一导电图案51与第二导电图案52可由电阻率相对较低的导电材料所形成,例如网印银胶或电镀铜线,由此达到降低阻抗的效果。此外,亦可通过第一导电图案51与第二导电图案52的图案设计变化于电阻抗以及透光度之间获得所需的搭配组合。值得说明的是,本实施例的离型层11可于第一导电图案51与第二导电图案52形成之后再与半导体基底10分离,但并不以此为限。As shown in FIG. 8 , the manufacturing method of this embodiment may further include forming a first conductive pattern 51 on the transparent conductive layer 40 on the first surface 10A, and forming a second conductive pattern on the transparent conductive layer 40 on the second surface 10B. 52. The first conductive pattern 51 and the second conductive pattern 52 can be formed of conductive material with relatively low resistivity, such as screen printing silver glue or electroplated copper wire, so as to achieve the effect of reducing impedance. In addition, the desired combination of electrical impedance and light transmittance can also be obtained by changing the pattern design of the first conductive pattern 51 and the second conductive pattern 52 . It should be noted that, the release layer 11 of this embodiment can be separated from the semiconductor substrate 10 after the first conductive pattern 51 and the second conductive pattern 52 are formed, but it is not limited thereto.
通过上述方式即可完成如图8所示的太阳能电池101。在太阳能电池101中,由于第一电极41、第二电极42、第一半导体层21、第一掺杂半导体层22、第二半导体层31以及第二掺杂半导体层32均延伸覆盖至半导体基底10的最边缘,故可使太阳能电池101上进行光电转换的有效面积增加,由此达到提升光电转换效率的目的。The solar cell 101 shown in FIG. 8 can be completed in the above manner. In the solar cell 101, since the first electrode 41, the second electrode 42, the first semiconductor layer 21, the first doped semiconductor layer 22, the second semiconductor layer 31 and the second doped semiconductor layer 32 all extend to cover the semiconductor substrate 10, so that the effective area for photoelectric conversion on the solar cell 101 can be increased, thereby achieving the purpose of improving the photoelectric conversion efficiency.
下文将针对本发明的不同实施例进行说明,且为简化说明,以下说明主要针对各实施例不同之处进行详述,而不再对相同之处作重复赘述。此外,本发明的各实施例中相同的组件以相同的标号进行标示,用以方便在各实施例间互相对照。Different embodiments of the present invention will be described below, and to simplify the description, the following description mainly focuses on the differences of the embodiments, and the similarities will not be repeated. In addition, the same components in the various embodiments of the present invention are marked with the same reference numerals to facilitate mutual comparison among the various embodiments.
请参考图9与图10。图9与图10绘示了本发明第二实施例的太阳能电池的制作方法示意图。与上述第一实施例不同的地方在于,如图9与图10所示,本实施例的制作方法于第一导电图案51与第二导电图案52形成之前先将离型层11与半导体基底10分离,以移除离型层11与覆盖离型层11的透明导电层40、第一半导体层21、第一掺杂半导体层22、第二半导体层31以及第二掺杂半导体层32,并由此形成第一电极41与第二电极42。换句话说,第一导电图案51与第二导电图案52于离型层11与半导体基底10分离之后形成,且第一导电图案51与第二导电图案52分别形成于第一电极41与第二电极42上。Please refer to Figure 9 and Figure 10. FIG. 9 and FIG. 10 are schematic diagrams illustrating the manufacturing method of the solar cell according to the second embodiment of the present invention. The difference from the above-mentioned first embodiment is that, as shown in FIG. 9 and FIG. 10 , in the manufacturing method of this embodiment, the release layer 11 and the semiconductor substrate 10 are formed before the first conductive pattern 51 and the second conductive pattern 52 are formed. Separation, to remove the release layer 11 and the transparent conductive layer 40 covering the release layer 11, the first semiconductor layer 21, the first doped semiconductor layer 22, the second semiconductor layer 31 and the second doped semiconductor layer 32, and Thus, the first electrode 41 and the second electrode 42 are formed. In other words, the first conductive pattern 51 and the second conductive pattern 52 are formed after the release layer 11 is separated from the semiconductor substrate 10, and the first conductive pattern 51 and the second conductive pattern 52 are respectively formed on the first electrode 41 and the second electrode 41. on electrode 42.
请参考图11至图14。图11至图14绘示了本发明第三实施例的太阳能电池的制作方法示意图。本实施例提供一种太阳能电池的制作方法,包括下列步骤:首先,如图11所示,提供半导体基底10,半导体基底10具有侧面10S以及互相背对的第一面10A与第二面10B。接着,于第一面10A上依序形成第一半导体层21以及第一掺杂半导体层22,且于第二面10B上依序形成第二半导体层31以及第二掺杂半导体层32。为了使第一半导体层21与第一掺杂半导体层22覆盖于半导体基底10的第一面10A上的面积尽量增加,第一半导体层21与第一掺杂半导体层22可全面覆盖半导体基底10的第一面10A且可部分延伸覆盖至半导体基底10的侧面10S。相同地,为了使第二半导体层31与第二掺杂半导体层32覆盖于半导体基底10的第二面10B上的面积尽量增加,第二半导体层31与第二掺杂半导体层32可全面覆盖半导体基底10的第二面10B且亦可部分延伸覆盖至半导体基底10的侧面10S。因此,第一半导体层21以及第一掺杂半导体层22可于侧面10S上与第二半导体层31以及第二掺杂半导体层32部分重迭,但并不以此为限。Please refer to Figure 11 to Figure 14. FIG. 11 to FIG. 14 are schematic diagrams illustrating the manufacturing method of the solar cell according to the third embodiment of the present invention. This embodiment provides a method for fabricating a solar cell, including the following steps: First, as shown in FIG. 11 , a semiconductor substrate 10 is provided. The semiconductor substrate 10 has a side surface 10S and a first surface 10A and a second surface 10B opposite to each other. Next, the first semiconductor layer 21 and the first doped semiconductor layer 22 are sequentially formed on the first surface 10A, and the second semiconductor layer 31 and the second doped semiconductor layer 32 are sequentially formed on the second surface 10B. In order to increase the area of the first semiconductor layer 21 and the first doped semiconductor layer 22 covering the first surface 10A of the semiconductor substrate 10 as much as possible, the first semiconductor layer 21 and the first doped semiconductor layer 22 can completely cover the semiconductor substrate 10 The first surface 10A of the semiconductor substrate 10 may partially extend to cover the side surface 10S of the semiconductor substrate 10 . Similarly, in order to increase the area covered by the second semiconductor layer 31 and the second doped semiconductor layer 32 on the second surface 10B of the semiconductor substrate 10 as much as possible, the second semiconductor layer 31 and the second doped semiconductor layer 32 can fully cover The second surface 10B of the semiconductor substrate 10 may also partially extend to cover the side surface 10S of the semiconductor substrate 10 . Therefore, the first semiconductor layer 21 and the first doped semiconductor layer 22 may partially overlap with the second semiconductor layer 31 and the second doped semiconductor layer 32 on the side surface 10S, but it is not limited thereto.
然后,如图12所示,于半导体基底10的侧面10S上形成离型层11。由于第一半导体层21与第一掺杂半导体层22部分覆盖半导体基底10的侧面10S,且第二半导体层31与第二掺杂半导体层32部分覆盖半导体基底10的侧面10S,故离型层11形成于侧面10S上的第一掺杂半导体层22或/及第二掺杂半导体层32之上。接着,于第一掺杂半导体层22与第二掺杂半导体层32上形成透明导电层40,透明导电层40至少部分覆盖离型层11。与上述第一实施例相似,为了使透明导电层40覆盖于第一掺杂半导体层22与第二掺杂半导体层32上的面积尽量增加,透明导电层40较佳可于垂直投影方向Z上以及水平方向H上完全覆盖离型层11,由此确保透明导电层40的覆盖状况,但并不以此为限。Then, as shown in FIG. 12 , a release layer 11 is formed on the side surface 10S of the semiconductor substrate 10 . Since the first semiconductor layer 21 and the first doped semiconductor layer 22 partially cover the side surface 10S of the semiconductor substrate 10, and the second semiconductor layer 31 and the second doped semiconductor layer 32 partially cover the side surface 10S of the semiconductor substrate 10, the release layer 11 is formed on the first doped semiconductor layer 22 or/and the second doped semiconductor layer 32 on the side surface 10S. Next, a transparent conductive layer 40 is formed on the first doped semiconductor layer 22 and the second doped semiconductor layer 32 , the transparent conductive layer 40 at least partially covers the release layer 11 . Similar to the above-mentioned first embodiment, in order to increase the area of the transparent conductive layer 40 covering the first doped semiconductor layer 22 and the second doped semiconductor layer 32 as much as possible, the transparent conductive layer 40 is preferably formed in the vertical projection direction Z. And the release layer 11 is completely covered in the horizontal direction H, thereby ensuring the coverage of the transparent conductive layer 40 , but not limited thereto.
之后,如图13所示,将离型层11与半导体基底10分离,以移除离型层11与覆盖离型层11的透明导电层40,由此使得第一掺杂半导体层22上的透明导电层40与第二掺杂半导体层32上的透明导电层40电性分离,并于第一掺杂半导体层22与第二掺杂半导体层32上分别形成第一电极41与第二电极42。接着,如图14所示,于第一面10A的透明导电层40(也就是第一电极41)上形成第一导电图案51,并于第二面10B的透明导电层40(也就是第二电极42)上形成第二导电图案52,以形成如图14所示的太阳能电池102。在本实施例中,第一导电图案51与第二导电图案52于离型层与半导体基底10分离之后形成,但并不以此为限。值得说明的是,由于本实施例的离型层于第一半导体层21、第一掺杂半导体层22、第二半导体层31以及第二掺杂半导体层32之后形成,故当移除离型层时并不会影响到第一半导体层21、第一掺杂半导体层22、第二半导体层31以及第二掺杂半导体层32的覆盖状况,由此可避免移除离型层的制作工艺状况不佳时所造成的负面影响。Afterwards, as shown in FIG. 13 , the release layer 11 is separated from the semiconductor substrate 10 to remove the release layer 11 and the transparent conductive layer 40 covering the release layer 11, thereby making the first doped semiconductor layer 22 The transparent conductive layer 40 is electrically separated from the transparent conductive layer 40 on the second doped semiconductor layer 32, and a first electrode 41 and a second electrode are respectively formed on the first doped semiconductor layer 22 and the second doped semiconductor layer 32. 42. Next, as shown in FIG. 14, a first conductive pattern 51 is formed on the transparent conductive layer 40 (that is, the first electrode 41) on the first surface 10A, and a first conductive pattern 51 is formed on the transparent conductive layer 40 (that is, the second electrode 41) on the second surface 10B. The second conductive pattern 52 is formed on the electrode 42) to form a solar cell 102 as shown in FIG. 14 . In this embodiment, the first conductive pattern 51 and the second conductive pattern 52 are formed after the release layer is separated from the semiconductor substrate 10 , but it is not limited thereto. It should be noted that since the release layer of this embodiment is formed after the first semiconductor layer 21, the first doped semiconductor layer 22, the second semiconductor layer 31 and the second doped semiconductor layer 32, when the release layer is removed layer will not affect the coverage of the first semiconductor layer 21, the first doped semiconductor layer 22, the second semiconductor layer 31 and the second doped semiconductor layer 32, thus avoiding the removal of the release layer manufacturing process Negative effects of bad conditions.
请参考图15。图15绘示了本发明第四实施例的太阳能电池的制作方法示意图。如图15所示,与上述第三实施例不同的地方在于,本实施例的离型层11于第一导电图案51与第二导电图案52形成之后再与半导体基底10分离。Please refer to Figure 15. FIG. 15 is a schematic diagram of a method for fabricating a solar cell according to a fourth embodiment of the present invention. As shown in FIG. 15 , the difference from the above-mentioned third embodiment is that the release layer 11 of this embodiment is separated from the semiconductor substrate 10 after the first conductive pattern 51 and the second conductive pattern 52 are formed.
综上所述,本发明的太阳能电池的制作方法是利用于半导体基底的侧面上形成离型层,使透明导电层可全面形成于半导体基底的上下表面以及离型层上,再通过使离型层与半导体基底分离而电性隔离上下表面的透明导电层。通过本发明的制作方法,可使半导体基底上的材料层例如第一电极、第二电极、第一半导体层、第一掺杂半导体层、第二半导体层以及第二掺杂半导体层均延伸覆盖至半导体基底的最边缘,进而使太阳能电池上进行光电转换的有效面积增加,由此达到提升光电转换效率的目的。In summary, the manufacturing method of the solar cell of the present invention utilizes the formation of a release layer on the side of the semiconductor substrate, so that the transparent conductive layer can be fully formed on the upper and lower surfaces of the semiconductor substrate and on the release layer, and then by making the release layer The layer is separated from the semiconductor substrate to electrically isolate the transparent conductive layer on the upper and lower surfaces. Through the manufacturing method of the present invention, the material layers such as the first electrode, the second electrode, the first semiconductor layer, the first doped semiconductor layer, the second semiconductor layer and the second doped semiconductor layer on the semiconductor substrate can be extended to cover To the edge of the semiconductor substrate, the effective area for photoelectric conversion on the solar cell is increased, thereby achieving the purpose of improving the photoelectric conversion efficiency.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510130149.6A CN106159030B (en) | 2015-03-24 | 2015-03-24 | The preparation method of solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510130149.6A CN106159030B (en) | 2015-03-24 | 2015-03-24 | The preparation method of solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106159030A CN106159030A (en) | 2016-11-23 |
CN106159030B true CN106159030B (en) | 2017-11-21 |
Family
ID=58063954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510130149.6A Expired - Fee Related CN106159030B (en) | 2015-03-24 | 2015-03-24 | The preparation method of solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106159030B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104253178A (en) * | 2013-06-26 | 2014-12-31 | 联景光电股份有限公司 | Solar cell and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101826912B1 (en) * | 2011-11-07 | 2018-02-08 | 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 | Photovoltaic device and the manufacturing methode thereof |
-
2015
- 2015-03-24 CN CN201510130149.6A patent/CN106159030B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104253178A (en) * | 2013-06-26 | 2014-12-31 | 联景光电股份有限公司 | Solar cell and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106159030A (en) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101301664B1 (en) | The method for manufacturing Thin film type Solar Cell, and Thin film type Solar Cell made by the method | |
CN104538464B (en) | Silicon heterojunction solar cell and manufacturing method thereof | |
US20170054043A1 (en) | Solar cell superfine electrode transfer thin film, manufacturing method and application method thereof | |
JP2012164961A (en) | Solar cell and method of manufacturing the same | |
CN101651163A (en) | Thin film type solar cell and method for manufacturing the same | |
CN108735828A (en) | Heterojunction back contact solar cell and preparation method thereof | |
TW201724538A (en) | Thin film type solar cell and manufacturing method thereof | |
TWM517422U (en) | Heterojunction solar cell with local passivation | |
CN110277473B (en) | Manufacturing method of thin film photovoltaic cell and thin film photovoltaic cell | |
US8729383B2 (en) | Stacked-layered thin film solar cell and manufacturing method thereof | |
CN104425651A (en) | Process for preparing heterojunction solar cell without grid electrode on front surface at low temperature | |
CN105470347A (en) | PERC (PowerEdge RAID Controller) battery manufacturing method | |
US9087953B2 (en) | Solar cell module and method for manufacturing the same | |
CN106159030B (en) | The preparation method of solar cell | |
CN104011876B (en) | Solar battery apparatus and manufacture method thereof | |
TWI435462B (en) | Multi-color painting type solar cell manufacturing method | |
TW201246571A (en) | Thin film solar cell module and manufacturing method thereof | |
WO2019200788A1 (en) | Method for preparing solar cell, and solar cell | |
CN103594552B (en) | A kind of manufacture method of photovoltaic cell | |
JP2013168605A (en) | Manufacturing method of solar cell | |
WO2017203751A1 (en) | Solar cell and method for manufacturing same, and solar cell panel | |
JP6013198B2 (en) | Photoelectric conversion element and method for producing photoelectric conversion element | |
TW201635566A (en) | Manufacturing method of solar cell | |
CN104112789B (en) | Solar cell and manufacturing method thereof | |
TWI851990B (en) | Solar cell module having groove structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171121 |