CN104112789B - Solar cell and manufacturing method thereof - Google Patents
Solar cell and manufacturing method thereof Download PDFInfo
- Publication number
- CN104112789B CN104112789B CN201310133205.2A CN201310133205A CN104112789B CN 104112789 B CN104112789 B CN 104112789B CN 201310133205 A CN201310133205 A CN 201310133205A CN 104112789 B CN104112789 B CN 104112789B
- Authority
- CN
- China
- Prior art keywords
- type semiconductor
- semiconductor pattern
- layer
- seed layer
- manufacture method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 239000004065 semiconductor Substances 0.000 claims abstract description 193
- 239000010410 layer Substances 0.000 claims abstract description 187
- 238000002161 passivation Methods 0.000 claims abstract description 48
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000011241 protective layer Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 55
- 239000000463 material Substances 0.000 claims description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 239000004332 silver Substances 0.000 claims description 10
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 238000005868 electrolysis reaction Methods 0.000 claims description 3
- 230000002262 irrigation Effects 0.000 claims 9
- 238000003973 irrigation Methods 0.000 claims 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 6
- 239000004411 aluminium Substances 0.000 claims 4
- 238000010422 painting Methods 0.000 claims 3
- 238000007747 plating Methods 0.000 claims 3
- 238000001704 evaporation Methods 0.000 claims 2
- 230000008020 evaporation Effects 0.000 claims 2
- 239000000377 silicon dioxide Substances 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 18
- 229910052710 silicon Inorganic materials 0.000 description 18
- 239000010703 silicon Substances 0.000 description 18
- 229910044991 metal oxide Inorganic materials 0.000 description 10
- 150000004706 metal oxides Chemical class 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 7
- 238000007650 screen-printing Methods 0.000 description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 238000002207 thermal evaporation Methods 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/129—Passivating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明是有关于半导体技术,且特别是有关于一种太阳能电池及其制造方法。The present invention relates to semiconductor technology, and in particular to a solar cell and a manufacturing method thereof.
背景技术Background technique
近年来,随着环保意识抬头以及全球面临能源危机、石化能源的污染与短缺等问题,如何开发节能、环保且可持续使用的替代能源已成为各个先进国家的科技研发的首要目标。在众多替代能源的方案之中,太阳能电池在再生能源新兴市场中的占有率达23%以上,其为现阶段最主要的替代能源,也为十分具有前景的能源技术。In recent years, with the rising awareness of environmental protection and the global energy crisis, pollution and shortage of petrochemical energy, how to develop energy-saving, environmentally friendly and sustainable alternative energy has become the primary goal of scientific and technological research and development in various advanced countries. Among the many alternative energy solutions, solar cells account for more than 23% of the renewable energy emerging market. It is the most important alternative energy at this stage, and it is also a very promising energy technology.
目前在各种类型的太阳能电池中,主要以硅基太阳能电池为技术的主流。然而,目前硅基太阳能电池的发展仍受到光电转换效率的限制,其中影响光电转换效率的膜层除了抗反射层(anti-reflectionlayer)及钝化层外,窗户层(windowlayer)的良窳也是决定光电转换效率的重要关键之一。At present, among various types of solar cells, silicon-based solar cells are the mainstream technology. However, the development of silicon-based solar cells is still limited by the photoelectric conversion efficiency. In addition to the anti-reflection layer (anti-reflection layer) and passivation layer, the quality of the window layer (window layer) also determines the film layer that affects the photoelectric conversion efficiency. One of the important keys of photoelectric conversion efficiency.
图1是现有技术的一种硅基太阳能电池的示意图。请参照图1,硅基太阳能电池100包括硅基材110、钝化层120a、120b、第一型半导体层130、第二型半导体层140、窗户层150a、150b及电极160a、160b。第一型半导体层130及第二型半导体层140配置于硅基材110的相对两侧,且钝化层120a配置于第一型半导体层130与硅基材110之间,而钝化层120b配置于第二型半导体层140与硅基材110之间。窗户层150a、150b分别覆盖于第一型半导体层130及第二型半导体层140上,而电极160a、160b则分别位于窗户层150a、150b上。FIG. 1 is a schematic diagram of a silicon-based solar cell in the prior art. 1, a silicon-based solar cell 100 includes a silicon substrate 110, passivation layers 120a, 120b, a first-type semiconductor layer 130, a second-type semiconductor layer 140, window layers 150a, 150b and electrodes 160a, 160b. The first-type semiconductor layer 130 and the second-type semiconductor layer 140 are arranged on opposite sides of the silicon substrate 110, and the passivation layer 120a is arranged between the first-type semiconductor layer 130 and the silicon substrate 110, and the passivation layer 120b It is disposed between the second-type semiconductor layer 140 and the silicon substrate 110 . The window layers 150a, 150b cover the first-type semiconductor layer 130 and the second-type semiconductor layer 140 respectively, and the electrodes 160a, 160b are respectively located on the window layers 150a, 150b.
由于窗户层150a配置于硅基太阳能电池100的受光面(即面向外界光线),因此,在光穿透率的考量下,硅基太阳能电池100主要以透明金属氧化物作为窗户层150a的材料,其中透明金属氧化物又以铟锡氧化物(indiumtinoxide,ITO)为主流。然而,铟的价格昂贵且铟锡氧化物需要真空(vacuum)制程,因而导致制程成本及时间的增加,而降低了产品的竞争力。此外,在铟锡氧化物的沉积过程中,物理气相沉积(physicalvapordeposition)制程中的等离子体易损害硅基太阳能电池100中的膜层,进而影响硅基太阳能电池100的元件特性。Since the window layer 150a is disposed on the light-receiving surface of the silicon-based solar cell 100 (that is, facing the external light), in consideration of the light transmittance, the silicon-based solar cell 100 mainly uses transparent metal oxide as the material of the window layer 150a, Among them, indium tin oxide (ITO) is the mainstream of transparent metal oxides. However, indium is expensive and indium tin oxide requires a vacuum process, which increases the cost and time of the process and reduces the competitiveness of the product. In addition, during the ITO deposition process, the plasma in the physical vapor deposition (PVD) process is likely to damage the film layers in the silicon-based solar cell 100 , thereby affecting the device characteristics of the silicon-based solar cell 100 .
发明内容Contents of the invention
本发明提供一种太阳能电池的制造方法,其具有相对低的制程成本及时间。The invention provides a method for manufacturing a solar cell, which has relatively low process cost and time.
本发明提供一种太阳能电池,其具有良好的元件特性。The present invention provides a solar cell having good device characteristics.
本发明的一种太阳能电池的制造方法,包括以下步骤。在基板的第一表面上形成保护层;在基板的第二表面上形成钝化层;在钝化层上形成至少一第一型半导体图案以及至少一第二型半导体图案,其中第一型半导体图案与第二型半导体图案共平面且彼此邻接;在第一型半导体图案与第二型半导体图案的交界处形成沟渠,以使第一型半导体图案及第二型半导体图案彼此电性绝缘;在第一型半导体图案与第二型半导体图案上形成种子层,且种子层的导电率大于9×105S/m;在种子层上形成电极层。A method for manufacturing a solar cell of the present invention includes the following steps. Form a protective layer on the first surface of the substrate; form a passivation layer on the second surface of the substrate; form at least one first-type semiconductor pattern and at least one second-type semiconductor pattern on the passivation layer, wherein the first-type semiconductor The pattern and the second-type semiconductor pattern are coplanar and adjacent to each other; a trench is formed at the junction of the first-type semiconductor pattern and the second-type semiconductor pattern, so that the first-type semiconductor pattern and the second-type semiconductor pattern are electrically insulated from each other; A seed layer is formed on the first-type semiconductor pattern and the second-type semiconductor pattern, and the conductivity of the seed layer is greater than 9×10 5 S/m; an electrode layer is formed on the seed layer.
在本发明的一实施例中,上述的第一表面相对于第二表面。In an embodiment of the present invention, the above-mentioned first surface is opposite to the second surface.
在本发明的一实施例中,上述在形成保护层之前,还包括对第一表面进行表面织构化制程。In an embodiment of the present invention, before forming the protective layer, further includes performing a surface texturing process on the first surface.
在本发明的一实施例中,上述的保护层的材料包括氮化硅、氧化硅及氧化铝其中至少一个。In an embodiment of the present invention, the material of the protective layer includes at least one of silicon nitride, silicon oxide and aluminum oxide.
在本发明的一实施例中,上述的形成保护层的方法包括等离子体增强化学气相沉积(PlasmaEnhancedChemicalVaporDeposition,PECVD)、常压化学气相沉积(atmosphericpressurechemicalvapordeposition,APCVD)或原子层沉积(atomiclayerdeposition,ALD)。In an embodiment of the present invention, the above-mentioned method for forming the protective layer includes plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD), atmospheric pressure chemical vapor deposition (atmospheric pressure chemical vapor deposition, APCVD) or atomic layer deposition (atomic layer deposition, ALD).
在本发明的一实施例中,上述在钝化层上形成第一型半导体图案以及第二型半导体图案的方法包括以下步骤。在钝化层上设置第一遮罩,且第一遮罩曝露出钝化层的第一区域;在第一区域上形成第一型半导体图案;在钝化层上设置第二遮罩,且第二遮罩遮蔽第一型半导体图案并曝露出第一型半导体图案以外的第二区域;在第二区域上形成第二型半导体图案。In an embodiment of the present invention, the method for forming the first-type semiconductor pattern and the second-type semiconductor pattern on the passivation layer includes the following steps. setting a first mask on the passivation layer, and the first mask exposes a first region of the passivation layer; forming a first-type semiconductor pattern on the first region; setting a second mask on the passivation layer, and The second mask covers the first-type semiconductor pattern and exposes a second area other than the first-type semiconductor pattern; the second-type semiconductor pattern is formed on the second area.
在本发明的一实施例中,上述的第一型半导体图案及第二型半导体图案其中一个为N型半导体图案,且第一型半导体图案及第二型半导体图案其中另一个为P型半导体图案。In an embodiment of the present invention, one of the above-mentioned first-type semiconductor pattern and the second-type semiconductor pattern is an N-type semiconductor pattern, and the other of the first-type semiconductor pattern and the second-type semiconductor pattern is a P-type semiconductor pattern .
在本发明的一实施例中,上述的沟渠的制造方法包括以激光钻孔或湿式蚀刻移除位于第一型半导体图案与第二型半导体图案的交界处的第一型半导体图案及第二型半导体图案其中至少一个,且沟渠曝露出一部分的钝化层。In an embodiment of the present invention, the method for manufacturing the trench includes removing the first-type semiconductor pattern and the second-type semiconductor pattern at the junction of the first-type semiconductor pattern and the second-type semiconductor pattern by laser drilling or wet etching. At least one of the semiconductor patterns, and the trench exposes a part of the passivation layer.
在本发明的一实施例中,上述的沟渠是在种子层及电极层之前形成,且沟渠的深度等于第一型半导体图案或第二型半导体图案的厚度,沟渠并曝露出一部分的钝化层。In an embodiment of the present invention, the above-mentioned trench is formed before the seed layer and the electrode layer, and the depth of the trench is equal to the thickness of the first-type semiconductor pattern or the thickness of the second-type semiconductor pattern, and the trench exposes a part of the passivation layer .
在本发明的一实施例中,上述形成种子层的方法或形成电极层的方法包括网版印刷或电镀,且该种子层及该电极层曝露出该部分的该钝化层。In an embodiment of the present invention, the method for forming the seed layer or the method for forming the electrode layer includes screen printing or electroplating, and the seed layer and the electrode layer expose the portion of the passivation layer.
在本发明的一实施例中,上述的沟渠是在电极层之后形成,且沟渠的深度等于第一型半导体图案、种子层及电极层的厚度的总和,或等于第二型半导体图案、种子层及电极层的厚度的总和,沟渠并曝露出一部分的钝化层。In an embodiment of the present invention, the above-mentioned ditch is formed after the electrode layer, and the depth of the ditch is equal to the sum of the thicknesses of the first-type semiconductor pattern, the seed layer and the electrode layer, or equal to the thickness of the second-type semiconductor pattern, the seed layer And the sum of the thickness of the electrode layer, trenches and expose a part of the passivation layer.
在本发明的一实施例中,上述形成种子层的方法包括以网版印刷、电镀或热蒸镀的方式将种子层的材料全面地覆盖于第一型半导体图案与第二型半导体图案上,而形成电极层的方法包括以网版印刷、电镀、热蒸镀、电解或化学气相沉积的方式将电极层的材料全面地覆盖于种子层上。In an embodiment of the present invention, the method for forming the seed layer includes covering the material of the seed layer on the first-type semiconductor pattern and the second-type semiconductor pattern in a manner of screen printing, electroplating or thermal evaporation, The method for forming the electrode layer includes completely covering the seed layer with the material of the electrode layer by means of screen printing, electroplating, thermal evaporation, electrolysis or chemical vapor deposition.
在本发明的一实施例中,上述的种子层的材料包括镍、钛、银、铝或钴。In an embodiment of the present invention, the material of the seed layer includes nickel, titanium, silver, aluminum or cobalt.
在本发明的一实施例中,上述的种子层的厚度小于20纳米。In an embodiment of the present invention, the thickness of the aforementioned seed layer is less than 20 nanometers.
在本发明的一实施例中,上述的电极层的材料包括银、铝或铜。In an embodiment of the present invention, the material of the above-mentioned electrode layer includes silver, aluminum or copper.
本发明的一种太阳能电池包括基板、保护层、钝化层、至少一第一型半导体图案、至少一第二型半导体图案、种子层以及电极层;基板具有相对的第一表面与第二表面;保护层配置于第一表面上;钝化层配置于第二表面上;第一型半导体图案以及第二型半导体图案配置于钝化层上,其中第一型半导体图案与第二型半导体图案共平面且彼此电性绝缘;种子层配置于第一型半导体图案与第二型半导体图案上,且种子层的导电率大于9×105S/m;电极层配置于种子层上。A solar cell of the present invention includes a substrate, a protective layer, a passivation layer, at least one first-type semiconductor pattern, at least one second-type semiconductor pattern, a seed layer, and an electrode layer; the substrate has an opposite first surface and a second surface The protective layer is configured on the first surface; the passivation layer is configured on the second surface; the first type semiconductor pattern and the second type semiconductor pattern are configured on the passivation layer, wherein the first type semiconductor pattern and the second type semiconductor pattern Coplanar and electrically insulated from each other; the seed layer is arranged on the first-type semiconductor pattern and the second-type semiconductor pattern, and the conductivity of the seed layer is greater than 9×10 5 S/m; the electrode layer is arranged on the seed layer.
在本发明的一实施例中,上述的第一表面为织构化(textured)表面。In an embodiment of the present invention, the above-mentioned first surface is a textured surface.
在本发明的一实施例中,上述的保护层的材料包括氮化硅、氧化硅及氧化铝其中至少一个。In an embodiment of the present invention, the material of the protective layer includes at least one of silicon nitride, silicon oxide and aluminum oxide.
在本发明的一实施例中,上述的第一型半导体图案及第二型半导体图案其中一个为N型半导体图案,且第一型半导体图案及第二型半导体图案其中另一个为P型半导体图案。In an embodiment of the present invention, one of the above-mentioned first-type semiconductor pattern and the second-type semiconductor pattern is an N-type semiconductor pattern, and the other of the first-type semiconductor pattern and the second-type semiconductor pattern is a P-type semiconductor pattern .
在本发明的一实施例中,上述的一部分的钝化层未被第一型半导体图案及第二型半导体图案覆盖,且位于第一型半导体图案及第二型半导体图案上的种子层及电极层也曝露出所述部分的钝化层。In an embodiment of the present invention, the above-mentioned part of the passivation layer is not covered by the first-type semiconductor pattern and the second-type semiconductor pattern, and the seed layer and the electrode located on the first-type semiconductor pattern and the second-type semiconductor pattern layer also exposes said portion of the passivation layer.
在本发明的一实施例中,上述的种子层的材料包括镍、钛、银、铝或钴。In an embodiment of the present invention, the material of the seed layer includes nickel, titanium, silver, aluminum or cobalt.
在本发明的一实施例中,上述的种子层的厚度小于20纳米。In an embodiment of the present invention, the thickness of the aforementioned seed layer is less than 20 nanometers.
在本发明的一实施例中,上述的电极层的材料包括银、铝或铜。In an embodiment of the present invention, the material of the above-mentioned electrode layer includes silver, aluminum or copper.
基于上述,本发明将第一型半导体图案及第二型半导体图案共同配置于基板的非受光面上(即背对外界光线的第二表面)。如此一来,除了可将遮光的电极层制作在基板的非受光面上还可免去在受光面上形成窗户层,进而有效提升受光面的光穿透率。此外,本发明以导电率相对高的种子层取代现有技术以透明金属氧化物为材料的窗户层,因此,除了可有效提升太阳能电池的光电转换效率及填充系数(fillfactor)外,还可免去铟锡氧化物的制作,进而有效地降低制程成本及时间,并可避免因制作透明金属氧化物而损害太阳能电池中的其它膜层,进而使本发明的太阳能电池具有良好的元件特性。Based on the above, in the present invention, the first-type semiconductor pattern and the second-type semiconductor pattern are jointly disposed on the non-light-receiving surface of the substrate (ie, the second surface facing away from external light). In this way, in addition to making the light-shielding electrode layer on the non-light-receiving surface of the substrate, it is also possible to avoid forming a window layer on the light-receiving surface, thereby effectively increasing the light transmittance of the light-receiving surface. In addition, the present invention replaces the window layer made of transparent metal oxide in the prior art with a seed layer with relatively high conductivity. Therefore, in addition to effectively improving the photoelectric conversion efficiency and fillfactor of the solar cell, it can also avoid The production of indium tin oxide is eliminated, thereby effectively reducing the process cost and time, and avoiding damage to other film layers in the solar cell due to the production of transparent metal oxide, so that the solar cell of the present invention has good device characteristics.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.
附图说明Description of drawings
图1是现有技术的一种硅基太阳能电池的示意图;Fig. 1 is the schematic diagram of a kind of silicon-based solar cell of prior art;
图2A至图2I是依照本发明一实施例的太阳能电池的制作流程的剖面示意图;2A to 2I are cross-sectional schematic diagrams of a manufacturing process of a solar cell according to an embodiment of the present invention;
图3A至图3C是依照本发明另一实施例的太阳能电池的制作流程的剖面示意图。3A to 3C are schematic cross-sectional views of a fabrication process of a solar cell according to another embodiment of the present invention.
附图标记说明:Explanation of reference signs:
100:硅基太阳能电池;100: silicon-based solar cells;
110:硅基材;110: silicon substrate;
120a、120b、230:钝化层;120a, 120b, 230: passivation layer;
130:第一型半导体层;130: a first-type semiconductor layer;
140:第二型半导体层;140: the second type semiconductor layer;
150a、150b:窗户层;150a, 150b: window layer;
160a、160b:电极;160a, 160b: electrodes;
200、300:太阳能电池;200, 300: solar cells;
210:基板;210: substrate;
220:保护层;220: protective layer;
230:钝化层;230: passivation layer;
240A:第一遮罩;240A: first mask;
240B:第二遮罩;240B: second mask;
250a、250b:第一型半导体图案;250a, 250b: first-type semiconductor patterns;
260a、260b:第二型半导体图案;260a, 260b: second-type semiconductor patterns;
270a、270b:种子层;270a, 270b: seed layer;
280a、280b:电极层;280a, 280b: electrode layers;
A1:第一区域;A1: the first area;
A2:第二区域;A2: the second area;
S1a、S1b:第一表面;S1a, S1b: first surface;
S2:第二表面;S2: second surface;
D1、D2:深度;D1, D2: Depth;
T:厚度;T: thickness;
WA、WB:开口;WA, WB: opening;
TC1、TC2:沟渠;TC1, TC2: ditch;
I1、I2:岛状结构;I1, I2: island structure;
S100、S200:等离子体增强化学气相沉积制程。S100, S200: plasma enhanced chemical vapor deposition process.
具体实施方式detailed description
图2A至图2I是依照本发明一实施例的太阳能电池的制作流程的剖面示意图。请参照图2A,提供基板210,其中基板210具有相对的第一表面S1a与第二表面S2。第一表面S1a例如是受光面,也即是,面向外界光线(未示出,例如太阳光)以吸收光子的表面,而第二表面S2例如是非受光面,也即是背对外界光线的表面。基板210的材料包括硅。举例而言,基板210例如是P型硅基板或N型硅基板。2A to 2I are cross-sectional schematic diagrams of a manufacturing process of a solar cell according to an embodiment of the present invention. Referring to FIG. 2A , a substrate 210 is provided, wherein the substrate 210 has a first surface S1a and a second surface S2 opposite to each other. The first surface S1a is, for example, a light-receiving surface, that is, a surface facing external light (not shown, such as sunlight) to absorb photons, and the second surface S2 is, for example, a non-light-receiving surface, that is, a surface facing away from external light . The material of the substrate 210 includes silicon. For example, the substrate 210 is a P-type silicon substrate or an N-type silicon substrate.
请参照图2B,为了提高吸收光子的能力,并降低外界光线的反射,本实施例可选择性地对第一表面S1a(即受光面)进行表面织构化制程,而形成织构化表面(即织构化的第一表面S1b),如图2B中的锯齿状表面所示。表面织构化制程例如是,但不限于,使用氢氧化钾(KOH)溶液来进行。Please refer to FIG. 2B. In order to improve the ability to absorb photons and reduce the reflection of external light, in this embodiment, a surface texturing process can be selectively performed on the first surface S1a (ie, the light-receiving surface) to form a textured surface ( That is, the textured first surface S1b), as shown by the jagged surface in Fig. 2B. The surface texturing process is performed, for example, but not limited to, using potassium hydroxide (KOH) solution.
请参照图2C,在第一表面S1b上形成保护层220。在本实施例中,保护层220可以是具有高能隙以减少载子在表面复合的机率的钝化层,其材料例如是非晶硅(amorphous-silicon),且例如是以等离子体增强化学气相沉积的方法制成。另一方面,保护层220也可以是用以降低外界光线反射的抗反射层,其材料例如是氮化硅、氧化硅及氧化铝其中至少一个,且例如是以等离子体增强化学气相沉积、常压化学气相沉积或原子层沉积的方法制成。如此一来,保护层220除了可作为保护太阳能电池之用(例如是用来避免太阳能电池刮伤或受潮等),还可兼具减少载子在表面复合的机率及/或降低外界光线的反射的功效。Referring to FIG. 2C, a protection layer 220 is formed on the first surface S1b. In this embodiment, the protective layer 220 can be a passivation layer with a high energy gap to reduce the probability of carrier recombination on the surface, and its material is, for example, amorphous silicon (amorphous-silicon), and it is deposited by plasma-enhanced chemical vapor deposition, for example. method made. On the other hand, the protection layer 220 can also be an anti-reflection layer for reducing the reflection of external light, and its material is, for example, at least one of silicon nitride, silicon oxide, and aluminum oxide. made by pressure chemical vapor deposition or atomic layer deposition. In this way, the protective layer 220 can not only protect the solar cell (for example, to prevent the solar cell from being scratched or damp), but also reduce the probability of carrier recombination on the surface and/or reduce the reflection of external light effect.
请参照图2D,在基板210的第二表面S2上形成钝化层230。钝化层230的材料例如是非晶硅,且钝化层230例如是以等离子体增强化学气相沉积的方法制成。Referring to FIG. 2D , a passivation layer 230 is formed on the second surface S2 of the substrate 210 . The material of the passivation layer 230 is, for example, amorphous silicon, and the passivation layer 230 is formed by, for example, plasma enhanced chemical vapor deposition.
请参照图2E,在钝化层230上设置第一遮罩240A,其中第一遮罩240A具有开口WA曝露出钝化层230的第一区域A1,且遮蔽第一区域A1以外的区域(即第二区域A2)。Referring to FIG. 2E , a first mask 240A is provided on the passivation layer 230, wherein the first mask 240A has an opening WA exposing the first area A1 of the passivation layer 230, and shields areas other than the first area A1 (ie Second area A2).
接着,在第一区域A1上形成第一型半导体图案250a,其中,第一型半导体图案250a的材料例如是非晶硅,且形成第一型半导体图案250a进行等离子体增强化学气相沉积制程S100。Next, a first-type semiconductor pattern 250a is formed on the first region A1, wherein the material of the first-type semiconductor pattern 250a is, for example, amorphous silicon, and the plasma-enhanced chemical vapor deposition process S100 is performed to form the first-type semiconductor pattern 250a.
请参照图2F,在钝化层230上设置第二遮罩240B,其中第二遮罩240B遮蔽第一型半导体图案250a所在的第一区域A1,且第二遮罩240B具有开口WB曝露出第一型半导体图案250a以外的第二区域A2。Referring to FIG. 2F, a second mask 240B is provided on the passivation layer 230, wherein the second mask 240B shields the first region A1 where the first-type semiconductor pattern 250a is located, and the second mask 240B has an opening WB exposing the first region A1. The second region A2 other than the type-one semiconductor pattern 250a.
接着,在第二区域A2上形成第二型半导体图案260a,其中,第二型半导体图案260a的材料例如是非晶硅,且形成第二型半导体图案260a的方法包括进行等离子体增强化学气相沉积制程S200。Next, a second-type semiconductor pattern 260a is formed on the second region A2, wherein the material of the second-type semiconductor pattern 260a is, for example, amorphous silicon, and the method for forming the second-type semiconductor pattern 260a includes performing a plasma-enhanced chemical vapor deposition process. S200.
第一型半导体图案250a及第二型半导体图案260a共平面且彼此邻接。此外,第一型半导体图案250a及第二型半导体图案260a其中一个为N型半导体图案,且第一型半导体图案250a及第二型半导体图案260a其中另一个为P型半导体图案。The first-type semiconductor pattern 250a and the second-type semiconductor pattern 260a are coplanar and adjacent to each other. In addition, one of the first-type semiconductor pattern 250a and the second-type semiconductor pattern 260a is an N-type semiconductor pattern, and the other of the first-type semiconductor pattern 250a and the second-type semiconductor pattern 260a is a P-type semiconductor pattern.
此处需说明的是,本实施例虽以2个第一型半导体图案250a及2个第二型半导体图案260a彼此交替排列设置作为举例说明,但第一型半导体图案250a及第二型半导体图案260a的数量或是设置关系当可视实际应用而定,因此本发明并不限于此。What needs to be explained here is that, although the present embodiment takes two first-type semiconductor patterns 250a and two second-type semiconductor patterns 260a alternately arranged as an example for illustration, the first-type semiconductor patterns 250a and the second-type semiconductor patterns The number or arrangement relationship of 260a may depend on actual applications, so the present invention is not limited thereto.
请参照图2G,在第一型半导体图案与第二型半导体图案的交界处(即第一区域A1与第二区域A2的交界处)形成沟渠TC1。详言之,沟渠TC1的制造方法例如是以激光钻孔或湿式蚀刻移除位于第一型半导体图案250a与第二型半导体图案260a的交界处的第一型半导体图案250a及第二型半导体图案260a其中至少一个,而形成彼此分离的第一型半导体图案250b及第二型半导体图案260b,其中沟渠TC1曝露出一部分的钝化层230。此外,在沟渠TC1形成之后,第一型半导体图案250b及第二型半导体图案260b彼此电性绝缘。Referring to FIG. 2G , a trench TC1 is formed at the junction of the first-type semiconductor pattern and the second-type semiconductor pattern (ie, the junction of the first region A1 and the second region A2 ). Specifically, the trench TC1 is manufactured by, for example, laser drilling or wet etching to remove the first-type semiconductor pattern 250a and the second-type semiconductor pattern 260a located at the junction of the first-type semiconductor pattern 250a and the second-type semiconductor pattern 260a. 260a to form a first-type semiconductor pattern 250b and a second-type semiconductor pattern 260b separated from each other, wherein the trench TC1 exposes a part of the passivation layer 230 . In addition, after the trench TC1 is formed, the first-type semiconductor pattern 250b and the second-type semiconductor pattern 260b are electrically insulated from each other.
进一步而言,本实施例的沟渠TC1的深度D1例如约等于第一型半导体图案250b或第二型半导体图案260b的厚度T。也即是,本实施例以激光钻孔或湿式蚀刻所移除的第一型半导体图案250a及/或第二型半导体图案260a的深度约等于两者各自的厚度。Further, the depth D1 of the trench TC1 in this embodiment is, for example, approximately equal to the thickness T of the first-type semiconductor pattern 250 b or the second-type semiconductor pattern 260 b. That is, in this embodiment, the depth of the first-type semiconductor pattern 250a and/or the second-type semiconductor pattern 260a removed by laser drilling or wet etching is approximately equal to their respective thicknesses.
请参照图2H,在第一型半导体图案250b与第二型半导体图案260上形成种子层270a。在本实施例中,种子层270a例如是多个彼此分离且对应第一型半导体图案250b及第二型半导体图案260b设置的岛状导电结构,且种子层270a也曝露出沟渠TC1所曝露出的部分的钝化层230。Referring to FIG. 2H , a seed layer 270 a is formed on the first-type semiconductor pattern 250 b and the second-type semiconductor pattern 260 . In this embodiment, the seed layer 270a is, for example, a plurality of island-shaped conductive structures separated from each other and disposed corresponding to the first-type semiconductor pattern 250b and the second-type semiconductor pattern 260b, and the seed layer 270a also exposes the trench TC1. part of the passivation layer 230 .
此外,种子层270a的材料例如是镍、钛、银、铝、钴或其迭层,且形成种子层270a的方法可以是网版印刷或电镀。在本实施例中,种子层270a的厚度小于20纳米,而导电率大于9×105S/m,且导电率较佳是介于106至108S/m之间。In addition, the material of the seed layer 270a is, for example, nickel, titanium, silver, aluminum, cobalt or a laminate thereof, and the method of forming the seed layer 270a may be screen printing or electroplating. In this embodiment, the thickness of the seed layer 270a is less than 20 nm, and the conductivity is greater than 9×10 5 S/m, and the conductivity is preferably between 10 6 and 10 8 S/m.
本实施例以导电率相对高的种子层270a取代现有技术以透明金属氧化物(导电率小于5×105S/m)为材料的窗户层,因此,本实施例除了可有效提升太阳能电池的光电转换效率及填充系数外,还可免去铟锡氧化物的制作,进而有效地降低制程成本及时间,并可避免因制作透明金属氧化物而损害太阳能电池中的其它膜层,进而使本实施例的太阳能电池具有良好的元件特性。In this embodiment, the window layer made of transparent metal oxide (conductivity less than 5×10 5 S/m) in the prior art is replaced by the seed layer 270a with relatively high conductivity. In addition to the photoelectric conversion efficiency and fill factor, it can also avoid the production of indium tin oxide, thereby effectively reducing the process cost and time, and avoiding damage to other layers in the solar cell due to the production of transparent metal oxide, thereby enabling The solar cell of this example has good device characteristics.
请参照图2I,在种子层270a上形成电极层280a。在此,则初步完成本实施例的太阳能电池200的制作。在本实施例中,电极层280a例如是多个彼此分离且对应第一型半导体图案250b及第二型半导体图案260b设置的岛状导电结构,且电极层280a也曝露出沟渠TC1所曝露出的部分的钝化层230。Referring to FIG. 2I, an electrode layer 280a is formed on the seed layer 270a. Here, the fabrication of the solar cell 200 of this embodiment is preliminarily completed. In this embodiment, the electrode layer 280a is, for example, a plurality of island-shaped conductive structures separated from each other and disposed corresponding to the first-type semiconductor pattern 250b and the second-type semiconductor pattern 260b, and the electrode layer 280a also exposes the trench TC1. part of the passivation layer 230 .
此外,电极层280a的材料例如银、铝、铜或其迭层,且形成电极层280a的方法可以是网版印刷或电镀。In addition, the electrode layer 280a is made of silver, aluminum, copper or a laminate thereof, and the method of forming the electrode layer 280a may be screen printing or electroplating.
在本实施例中,第一型半导体图案250b及第二型半导体图案260b共同配置于基板210的非受光面(即背对外界光线的第二表面S2)上。因此,本实施例除了可将遮光的电极层280a制作在基板210的非受光面(即背对外界光线的第二表面S2)上,还可免去在受光面(即第一表面S1b)上形成现有技术的窗户层(配置于基板与第一型半导体图案之间或第二型半导体图案之间),进而有效提升受光面(即第一表面S1b)的光穿透率。In this embodiment, the first-type semiconductor pattern 250b and the second-type semiconductor pattern 260b are jointly disposed on the non-light-receiving surface of the substrate 210 (ie, the second surface S2 facing away from external light). Therefore, in this embodiment, in addition to fabricating the light-shielding electrode layer 280a on the non-light-receiving surface of the substrate 210 (ie, the second surface S2 facing away from external light), it is also possible to dispense with the light-receiving surface (ie, the first surface S1b). A window layer in the prior art (disposed between the substrate and the first-type semiconductor pattern or between the second-type semiconductor pattern) is formed to effectively increase the light transmittance of the light-receiving surface (ie, the first surface S1b).
在前述实施例中,沟渠TC1(用以使第一型半导体图案250b与第二型半导体图案260b电性绝缘)是在种子层270a及电极层280a之前形成,但本发明不以此为限。In the foregoing embodiments, the trench TC1 (used to electrically insulate the first-type semiconductor pattern 250 b from the second-type semiconductor pattern 260 b ) is formed before the seed layer 270 a and the electrode layer 280 a, but the invention is not limited thereto.
在本发明的另一实施例中,沟渠也可以是在电极层之后形成。图3A至图3C是依照本发明另一实施例的太阳能电池的制作流程的剖面示意图。本实施例的太阳能电池300(参照图3C)与图2I的太阳能电池200具有相似的结构以及相似的制作流程(太阳能电池300的前段制作流程可参照图2A至图2F)。两者的差异处在于本实施例的太阳能电池300在前述图2F的步骤后,在第一型半导体图案250a与第二型半导体图案260a上相继地形成种子层270b(如图3A所示)及电极层280b(如图3B所示),而非制作沟渠TC1(参照图2G)。In another embodiment of the present invention, the trench can also be formed after the electrode layer. 3A to 3C are schematic cross-sectional views of a fabrication process of a solar cell according to another embodiment of the present invention. The solar cell 300 of this embodiment (refer to FIG. 3C ) has a similar structure and a similar manufacturing process to the solar cell 200 in FIG. 2I (refer to FIG. 2A to FIG. 2F for the previous stage of the manufacturing process of the solar cell 300 ). The difference between the two lies in that in the solar cell 300 of this embodiment, after the aforementioned steps in FIG. 2F , a seed layer 270b (as shown in FIG. 3A ) and The electrode layer 280b (as shown in FIG. 3B ) instead of forming the trench TC1 (refer to FIG. 2G ).
此外,本实施例形成种子层270b的方法是以网版印刷、电镀或热蒸镀的方式将种子层270b的材料全面地覆盖于第一型半导体图案250a与第二型半导体图案260a上。另外,形成电极层280b的方法是以网版印刷、电镀、热蒸镀、电解或化学气相沉积的方式将电极层280b的材料全面地覆盖于种子层270b上。In addition, the method of forming the seed layer 270b in this embodiment is to completely cover the material of the seed layer 270b on the first-type semiconductor pattern 250a and the second-type semiconductor pattern 260a by screen printing, electroplating or thermal evaporation. In addition, the method of forming the electrode layer 280b is to fully cover the material of the electrode layer 280b on the seed layer 270b by means of screen printing, electroplating, thermal evaporation, electrolysis or chemical vapor deposition.
在种子层270b及电极层280b形成之后,接着才在第一型半导体图案250a与第二型半导体图案260a的交界处形成沟渠TC2,以使第一型半导体图案250b与第二型半导体图案260b彼此分离且电性绝缘。After the seed layer 270b and the electrode layer 280b are formed, the trench TC2 is formed at the junction of the first-type semiconductor pattern 250a and the second-type semiconductor pattern 260a, so that the first-type semiconductor pattern 250b and the second-type semiconductor pattern 260b are connected to each other. separated and electrically insulated.
由于在形成沟渠TC2之前,种子层270b及电极层280b已全面地覆盖于第一型半导体图案250a与第二型半导体图案260a上,因此,本实施例以激光钻孔或湿式蚀刻移除位于第一型半导体图案250a与第二型半导体图案260a的交界处的第一型半导体图案250a及/或第二型半导体图案260a时,会同时移除位于其上的种子层270b及电极层280b,而形成多个具有岛状结构的种子层270a及电极层280a,其中种子层270a及电极层280a会与第一型半导体图案250a或第二型半导体图案260a具有相似的轮廓。Since the seed layer 270b and the electrode layer 280b have completely covered the first-type semiconductor pattern 250a and the second-type semiconductor pattern 260a before forming the trench TC2, in this embodiment, laser drilling or wet etching is used to remove the first-type semiconductor pattern 250a. When the first-type semiconductor pattern 250a and/or the second-type semiconductor pattern 260a at the junction of the first-type semiconductor pattern 250a and the second-type semiconductor pattern 260a, the seed layer 270b and the electrode layer 280b located thereon will be removed at the same time, and A plurality of seed layers 270a and electrode layers 280a having an island structure are formed, wherein the seed layers 270a and the electrode layers 280a have similar profiles to the first-type semiconductor pattern 250a or the second-type semiconductor pattern 260a.
此外,由第一型半导体图案250b、种子层270a及电极层280a所构成的岛状结构I1以及由第二型半导体图案260b、种子层270a及电极层280a所构成的岛状结构I2会曝露出部分的钝化层230。换言之,沟渠TC2的深度D2约等于第一型半导体图案250b、种子层270a及电极层280a的厚度的总和(即岛状结构I1的厚度)或等于第二型半导体图案260b、种子层270a及电极层280a的厚度的总和(即岛状结构I2的厚度)。In addition, the island structure I1 formed by the first type semiconductor pattern 250b, the seed layer 270a and the electrode layer 280a and the island structure I2 formed by the second type semiconductor pattern 260b, the seed layer 270a and the electrode layer 280a will be exposed. part of the passivation layer 230 . In other words, the depth D2 of the trench TC2 is approximately equal to the sum of the thicknesses of the first-type semiconductor pattern 250b, the seed layer 270a, and the electrode layer 280a (that is, the thickness of the island structure I1) or equal to the second-type semiconductor pattern 260b, the seed layer 270a, and the electrode layer. The sum of the thicknesses of the layer 280a (ie the thickness of the island structure I2).
与太阳能电池200相似地,本实施例的太阳能电池300将第一型半导体图案250b及第二型半导体图案260b共同配置于基板210的非受光面上(即背对外界光线的第二表面S2)。如此一来,除了可避免将遮光的电极层280a制作在基板210的受光面(即面向外界光线的第一表面S1b)上之外,还可免去在受光面上形成现有技术的窗户层,进而有效提升受光面的光穿透率。此外,本实施例的太阳能电池300也以导电率相对高的种子层270a取代现有技术以透明金属氧化物为材料的窗户层,因此,除了可有效提升太阳能电池300的光电转换效率及填充系数外,还可免去铟锡氧化物的制作,进而有效地降低制程成本及时间,并可避免因制作透明金属氧化物而损害太阳能电池中的其它膜层,进而使本实施例的太阳能电池300具有良好的元件特性。Similar to the solar cell 200, the solar cell 300 of this embodiment configures the first-type semiconductor pattern 250b and the second-type semiconductor pattern 260b on the non-light-receiving surface of the substrate 210 (ie, the second surface S2 facing away from external light). . In this way, in addition to avoiding the need to form the light-shielding electrode layer 280a on the light-receiving surface of the substrate 210 (that is, the first surface S1b facing the external light), it is also possible to avoid forming a window layer in the prior art on the light-receiving surface. , thereby effectively improving the light transmittance of the light-receiving surface. In addition, the solar cell 300 of this embodiment also uses the relatively high conductivity seed layer 270a to replace the window layer made of transparent metal oxide in the prior art. Therefore, in addition to effectively improving the photoelectric conversion efficiency and fill factor of the solar cell 300 In addition, the production of indium tin oxide can also be avoided, thereby effectively reducing the process cost and time, and avoiding damage to other film layers in the solar cell due to the production of transparent metal oxide, so that the solar cell 300 of this embodiment Has good component properties.
综上所述,本发明将第一型半导体图案及第二型半导体图案共同配置于基板的非受光面上(即背对外界光线的第二表面)。如此一来,除了可将遮光的电极层制作在基板的非受光面上还可免去在受光面上形成窗户层,进而有效提升受光面的光穿透率。此外,本发明以导电率相对高的种子层取代现有技术以透明金属氧化物为材料的窗户层,因此,除了可有效提升太阳能电池的光电转换效率及填充系数(fillfactor)外,还可免去铟锡氧化物的制作,进而有效地降低制程成本及时间,并可避免因制作透明金属氧化物而损害太阳能电池中的其它膜层,进而使本发明的太阳能电池具有良好的元件特性。To sum up, in the present invention, the first-type semiconductor pattern and the second-type semiconductor pattern are jointly disposed on the non-light-receiving surface of the substrate (ie, the second surface facing away from external light). In this way, in addition to making the light-shielding electrode layer on the non-light-receiving surface of the substrate, it is also possible to avoid forming a window layer on the light-receiving surface, thereby effectively increasing the light transmittance of the light-receiving surface. In addition, the present invention replaces the window layer made of transparent metal oxide in the prior art with a seed layer with relatively high conductivity. Therefore, in addition to effectively improving the photoelectric conversion efficiency and fillfactor of the solar cell, it can also avoid The production of indium tin oxide is eliminated, thereby effectively reducing the process cost and time, and avoiding damage to other film layers in the solar cell due to the production of transparent metal oxide, so that the solar cell of the present invention has good device characteristics.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310133205.2A CN104112789B (en) | 2013-04-17 | 2013-04-17 | Solar cell and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310133205.2A CN104112789B (en) | 2013-04-17 | 2013-04-17 | Solar cell and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104112789A CN104112789A (en) | 2014-10-22 |
CN104112789B true CN104112789B (en) | 2016-04-27 |
Family
ID=51709512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310133205.2A Expired - Fee Related CN104112789B (en) | 2013-04-17 | 2013-04-17 | Solar cell and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104112789B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114335257B (en) * | 2022-03-11 | 2022-08-19 | 浙江爱旭太阳能科技有限公司 | Preparation method of solar cell, solar cell module and power generation system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1538532A (en) * | 2003-04-17 | 2004-10-20 | 中国科学院微电子中心 | Low noise dipole photo-sensitive field effect transistor and its manufacturing method |
CN1592972A (en) * | 2001-11-26 | 2005-03-09 | 壳牌阳光有限公司 | Manufacturing a solar cell with backside contacts |
CN102369601A (en) * | 2009-03-30 | 2012-03-07 | 三洋电机株式会社 | Solar cell |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6552414B1 (en) * | 1996-12-24 | 2003-04-22 | Imec Vzw | Semiconductor device with selectively diffused regions |
-
2013
- 2013-04-17 CN CN201310133205.2A patent/CN104112789B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1592972A (en) * | 2001-11-26 | 2005-03-09 | 壳牌阳光有限公司 | Manufacturing a solar cell with backside contacts |
CN1538532A (en) * | 2003-04-17 | 2004-10-20 | 中国科学院微电子中心 | Low noise dipole photo-sensitive field effect transistor and its manufacturing method |
CN102369601A (en) * | 2009-03-30 | 2012-03-07 | 三洋电机株式会社 | Solar cell |
Also Published As
Publication number | Publication date |
---|---|
CN104112789A (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102629636B (en) | Solar cell and manufacture method thereof | |
KR101173401B1 (en) | Solar cell and manufacturing method of the same | |
US20110162684A1 (en) | Method for manufacturing thin film type solar cell, and thin film type solar cell made by the method | |
US20120000506A1 (en) | Photovoltaic module and method of manufacturing the same | |
CN104979409A (en) | Solar Cell And Method For Manufacturing The Same | |
CN101894880A (en) | Film solar battery module with transparence and process method thereof | |
CN103081123A (en) | Device for generating solar power and method for manufacturing same | |
WO2019242550A1 (en) | Solar cell and method for manufacturing same | |
CN104157742A (en) | Solar cell and manufacturing method thereof | |
CN102194900A (en) | Solar cell and method for manufacturing the same | |
JP2007266096A (en) | Solar cell and its manufacturing method | |
JP2013197555A (en) | Photoelectric conversion element and method for manufacturing the same | |
CN104112789B (en) | Solar cell and manufacturing method thereof | |
US9087953B2 (en) | Solar cell module and method for manufacturing the same | |
JP2014183073A (en) | Photoelectric conversion element and method of manufacturing photoelectric conversion element | |
JP2014072209A (en) | Photoelectric conversion element and photoelectric conversion element manufacturing method | |
CN104011876B (en) | Solar battery apparatus and manufacture method thereof | |
TWI518928B (en) | Solar cell and manufacturing method thereof | |
TWI435462B (en) | Multi-color painting type solar cell manufacturing method | |
WO2017203751A1 (en) | Solar cell and method for manufacturing same, and solar cell panel | |
JP2001217435A (en) | Thin film solar cell and its manufacturing method | |
TW201442260A (en) | Solar cell and manufacturing method thereof | |
JP2013168605A (en) | Manufacturing method of solar cell | |
CN104067398B (en) | Solar cell and manufacture method thereof | |
US20110284056A1 (en) | Solar cell having reduced leakage current and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: MOTECH INDUSTRIES INC. Free format text: FORMER OWNER: TOPCELL SOLAR INTERNATIONAL CO., LTD. Effective date: 20150528 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20150528 Address after: China Taiwan New Taipei City District North pit deep road 3 No. 248 6 floor Applicant after: Motech Industries Inc. Address before: No. 1560, Zhongshan Road section, Guanyin Township, Taoyuan County, Taiwan, China Applicant before: Topcell Solar International Co.,Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160427 Termination date: 20200417 |
|
CF01 | Termination of patent right due to non-payment of annual fee |