[go: up one dir, main page]

CN106129231B - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
CN106129231B
CN106129231B CN201610293182.5A CN201610293182A CN106129231B CN 106129231 B CN106129231 B CN 106129231B CN 201610293182 A CN201610293182 A CN 201610293182A CN 106129231 B CN106129231 B CN 106129231B
Authority
CN
China
Prior art keywords
light
light emitting
wavelength conversion
adhesive layer
emitting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610293182.5A
Other languages
Chinese (zh)
Other versions
CN106129231A (en
Inventor
洪政暐
洪钦华
杜隆琦
张瑞夫
郭柏村
李皓钧
林育锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/711,798 external-priority patent/US20150333227A1/en
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to CN201911019739.6A priority Critical patent/CN110767793A/en
Priority to US15/268,654 priority patent/US9997676B2/en
Publication of CN106129231A publication Critical patent/CN106129231A/en
Priority to US15/788,757 priority patent/US10439111B2/en
Priority to US16/004,445 priority patent/US10910523B2/en
Priority to US16/595,414 priority patent/US10804444B2/en
Publication of CN106129231B publication Critical patent/CN106129231B/en
Application granted granted Critical
Priority to US17/164,725 priority patent/US20210159369A1/en
Priority to US17/848,408 priority patent/US20230006109A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/852Encapsulations
    • H10H20/853Encapsulations characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses
    • H10H20/856Reflecting means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls

Landscapes

  • Led Device Packages (AREA)

Abstract

本发明提供一种发光装置及其制作方法,包括一波长转换层、至少一发光单元及一反射保护件。波长转换层具有彼此相对的一上表面与一下表面。发光单元具有二电极垫,且二电极垫位于发光单元的同一侧。发光单元配置于波长转换层的上表面上并露出二电极垫。反射保护件包覆至少部分发光单元及部分波长转换层,且暴露出发光单元的二电极垫。基于上述,本发明的发光装置不但不需要使用现有的承载支架来支撑及固定发光单元,而可有效较少封装厚度以及制作成本,同时,也可有效提高发光单元的正向出光效率。

The present invention provides a light-emitting device and a manufacturing method thereof, comprising a wavelength conversion layer, at least one light-emitting unit and a reflective protective member. The wavelength conversion layer has an upper surface and a lower surface opposite to each other. The light-emitting unit has two electrode pads, and the two electrode pads are located on the same side of the light-emitting unit. The light-emitting unit is configured on the upper surface of the wavelength conversion layer and exposes the two electrode pads. The reflective protective member covers at least a portion of the light-emitting unit and a portion of the wavelength conversion layer, and exposes the two electrode pads of the light-emitting unit. Based on the above, the light-emitting device of the present invention not only does not need to use the existing supporting bracket to support and fix the light-emitting unit, but can effectively reduce the packaging thickness and manufacturing cost, and at the same time, can also effectively improve the forward light output efficiency of the light-emitting unit.

Description

发光装置及其制作方法Light emitting device and manufacturing method thereof

技术领域technical field

本发明是有关于一种发光装置及其制作方法,且特别是有关于一种以发光二极管作为光源的发光装置及其制作方法。The present invention relates to a light-emitting device and a manufacturing method thereof, and in particular to a light-emitting device using a light-emitting diode as a light source and a manufacturing method thereof.

背景技术Background technique

一般来说,发光二极管封装结构通常是将发光二极管芯片配置在由陶瓷材料或金属材料所形成之凹杯型态的承载基座上,以固定及支撑发光二极管芯片。之后,再使用封装胶体来包覆发光二极管芯片,而完成发光二极管封装结构的制作。此时,发光二极管芯片的电极是位于承载基座的上方并位于凹杯内。然而,凹杯型态的承载基座具有一定的厚度,而使得发光二极管封装结构的厚度无法有效降低,因而使发光二极管封装结构无法满足现今薄型化的需求。In general, the LED package structure usually disposes the LED chip on a concave cup-shaped carrier base formed of ceramic material or metal material, so as to fix and support the LED chip. Afterwards, the packaging colloid is used to coat the LED chip, and the fabrication of the LED packaging structure is completed. At this time, the electrodes of the LED chip are located above the carrying base and inside the concave cup. However, the concave cup-shaped bearing base has a certain thickness, which prevents the thickness of the LED packaging structure from being effectively reduced, thus making the LED packaging structure unable to meet the current thinning requirements.

发明内容Contents of the invention

本发明提供一种发光装置,其无需采用现有的承载支架,可具有较薄的封装厚度且符合薄型化的需求。The invention provides a light-emitting device, which does not need to use the existing supporting bracket, can have a thinner package thickness and meets the requirement of thinning.

本发明提供一种发光装置的制作方法,用以制作上述的发光装置。The present invention provides a method for manufacturing a light emitting device, which is used for manufacturing the above light emitting device.

本发明的发光装置,其包括一波长转换层、至少一发光单元及一反射保护件。波长转换层具有彼此相对的一上表面与一下表面。发光单元具有二电极垫,且二电极垫位于发光单元的同一侧。发光单元配置在波长转换层的上表面上并露出二电极垫。反射保护件包覆至少部分发光单元及部分波长转换层,且暴露出发光单元的二电极垫。The light-emitting device of the present invention includes a wavelength conversion layer, at least one light-emitting unit and a reflection protection member. The wavelength conversion layer has an upper surface and a lower surface opposite to each other. The light emitting unit has two electrode pads, and the two electrode pads are located on the same side of the light emitting unit. The light emitting unit is arranged on the upper surface of the wavelength conversion layer and exposes two electrode pads. The reflective protection member covers at least part of the light emitting unit and part of the wavelength conversion layer, and exposes two electrode pads of the light emitting unit.

在本发明的一实施例中,上述的发光装置还包括:一透光层,配置在波长转换层上且位于发光单元与反射保护件之间。In an embodiment of the present invention, the above-mentioned light-emitting device further includes: a light-transmitting layer disposed on the wavelength conversion layer and located between the light-emitting unit and the reflective protection member.

在本发明的一实施例中,上述的透光层还配置在波长转换层与发光单元之间。In an embodiment of the present invention, the above-mentioned transparent layer is further disposed between the wavelength conversion layer and the light emitting unit.

在本发明的一实施例中,上述的反射保护件还包含一与发光单元接触的反射面。In an embodiment of the present invention, the above-mentioned reflective protection member further includes a reflective surface in contact with the light emitting unit.

在本发明的一实施例中,上述的反射保护件的反射面为一平面或一曲面。In an embodiment of the present invention, the reflective surface of the above-mentioned reflective protection member is a plane or a curved surface.

在本发明的一实施例中,上述的反射保护件还完全包覆波长转换层的一侧面。In an embodiment of the present invention, the above-mentioned reflective protection member also completely covers one side of the wavelength conversion layer.

在本发明的一实施例中,上述的反射保护件的一底面与波长转换层的下表面形成一平面。In an embodiment of the present invention, a bottom surface of the above-mentioned reflective protection member and a lower surface of the wavelength conversion layer form a plane.

在本发明的一实施例中,上述的反射保护件还至少包覆部分波长转换层的一侧面。In an embodiment of the present invention, the above-mentioned reflective protection member further covers at least part of one side of the wavelength conversion layer.

在本发明的一实施例中,上述的未被反射保护件包覆的部分波长转换层的侧面与反射保护件的一侧面形成发光装置的一侧平面。In an embodiment of the present invention, the side surface of the part of the wavelength conversion layer not covered by the reflection protection member and the side surface of the reflection protection member form a side plane of the light emitting device.

在本发明的一实施例中,上述的波长转换层还包括未被反射保护件包覆的一第一暴露侧部与一第二暴露侧部。第一暴露侧部与第二暴露侧部不平行,且波长转换层于第一暴露侧部处的厚度不同于波长转换层于第二暴露侧部处的厚度。In an embodiment of the present invention, the above-mentioned wavelength conversion layer further includes a first exposed side portion and a second exposed side portion not covered by the reflective protection member. The first exposed side is not parallel to the second exposed side, and the thickness of the wavelength conversion layer at the first exposed side is different from the thickness of the wavelength conversion layer at the second exposed side.

在本发明的一实施例中,上述的波长转换层还包括一低浓度荧光层以及一高浓度荧光层,高浓度荧光层位于低浓度荧光层与发光单元之间。In an embodiment of the present invention, the above-mentioned wavelength conversion layer further includes a low-concentration fluorescent layer and a high-concentration fluorescent layer, and the high-concentration fluorescent layer is located between the low-concentration fluorescent layer and the light-emitting unit.

在本发明的一实施例中,上述的反射保护件填充于二电极垫之间的一间隙。In an embodiment of the present invention, the above-mentioned reflective protection member fills a gap between the two electrode pads.

在本发明的一实施例中,上述的反射保护件完全填满二电极垫之间的间隙且反射保护件的一表面切齐于二电极垫的一表面。In an embodiment of the present invention, the above-mentioned reflection protection member completely fills the gap between the two electrode pads, and a surface of the reflection protection member is cut flush with a surface of the two electrode pads.

在本发明的一实施例中,上述的至少一发光单元为多个发光单元,波长转换层具有至少一沟槽,位于二发光单元之间。In an embodiment of the present invention, the above-mentioned at least one light-emitting unit is a plurality of light-emitting units, and the wavelength conversion layer has at least one groove located between the two light-emitting units.

本发明的发光装置的制作方法,其包括以下步骤。提供一波长转换层;将多个间隔排列的发光单元配置在波长转换层上,并暴露出每一发光单元的二电极垫;在波长转换层上形成多个沟槽,其中沟槽位于发光单元之间;形成一反射保护件于波长转换层上以及发光单元间并填满沟槽,其中反射保护件暴露出发光单元的电极垫;以及沿着沟槽进行一切割程序,以形成多个发光装置。The manufacturing method of the light-emitting device of the present invention includes the following steps. A wavelength conversion layer is provided; a plurality of light-emitting units arranged at intervals are arranged on the wavelength conversion layer, and the two electrode pads of each light-emitting unit are exposed; a plurality of grooves are formed on the wavelength conversion layer, wherein the grooves are located in the light-emitting unit Between; forming a reflective protection member on the wavelength conversion layer and between the light-emitting units and filling the trenches, wherein the reflective protection member exposes the electrode pads of the light-emitting units; and performing a cutting process along the grooves to form a plurality of light-emitting units device.

在本发明的一实施例中,上述的每一沟槽的深度至少为波长转换层的厚度的一半。In an embodiment of the present invention, the depth of each groove mentioned above is at least half of the thickness of the wavelength conversion layer.

在本发明的一实施例中,上述的发光装置的制作方法,还包括:将间隔排列的发光单元配置在波长转换层上之后,形成一透光层于波长转换层上。In an embodiment of the present invention, the manufacturing method of the above-mentioned light-emitting device further includes: after arranging the light-emitting units arranged at intervals on the wavelength conversion layer, forming a light-transmitting layer on the wavelength conversion layer.

在本发明的一实施例中,上述的发光装置的制作方法,还包括:将间隔排列的发光单元配置在波长转换层上之前,形成一透光层于波长转换层上。In an embodiment of the present invention, the manufacturing method of the above-mentioned light-emitting device further includes: before disposing the light-emitting units arranged at intervals on the wavelength conversion layer, forming a light-transmitting layer on the wavelength conversion layer.

在本发明的一实施例中,上述的反射保护件还包含一与发光单元接触的反射面。In an embodiment of the present invention, the above-mentioned reflective protection member further includes a reflective surface in contact with the light emitting unit.

在本发明的一实施例中,上述的反射保护件的反射面为一平面或一曲面。In an embodiment of the present invention, the reflective surface of the above-mentioned reflective protection member is a plane or a curved surface.

在本发明的一实施例中,上述的波长转换层还包括一低浓度荧光层以及一高浓度荧光层,发光单元配置在高浓度荧光层上。In an embodiment of the present invention, the above-mentioned wavelength conversion layer further includes a low-concentration fluorescent layer and a high-concentration fluorescent layer, and the light-emitting unit is disposed on the high-concentration fluorescent layer.

基于上述,由于本发明的反射保护件包覆发光单元的侧表面,且反射保护件的底面切齐于发光单元的第一电极垫的第一底面以及第二电极垫的第二底面。因此,本发明的发光装置不但不需要使用现有的承载支架来支撑及固定发光单元,而可有效较少封装厚度以及制作成本,同时,也可有效提高发光单元的正向出光效率。Based on the above, since the reflective protector of the present invention covers the side surface of the light emitting unit, and the bottom surface of the reflective protector is aligned with the first bottom surface of the first electrode pad and the second bottom surface of the second electrode pad of the light emitting unit. Therefore, the light-emitting device of the present invention not only does not need to use the existing supporting frame to support and fix the light-emitting unit, but can effectively reduce the packaging thickness and manufacturing cost, and at the same time, can effectively improve the forward light output efficiency of the light-emitting unit.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.

附图说明Description of drawings

图1示出为本发明的一实施例的一种发光装置的示意图;Fig. 1 shows a schematic diagram of a light emitting device according to an embodiment of the present invention;

图2示出为本发明的另一实施例的一种发光装置的示意图;Fig. 2 is a schematic diagram of a light emitting device according to another embodiment of the present invention;

图3示出为本发明的另一实施例的一种发光装置的示意图;Fig. 3 is a schematic diagram of a light emitting device according to another embodiment of the present invention;

图4示出为本发明的另一实施例的一种发光装置的示意图;Fig. 4 is a schematic diagram of a light emitting device according to another embodiment of the present invention;

图5示出为本发明的另一实施例的一种发光装置的示意图;Fig. 5 is a schematic diagram of a light emitting device according to another embodiment of the present invention;

图6示出为本发明的另一实施例的一种发光装置的示意图;Fig. 6 is a schematic diagram of a light emitting device according to another embodiment of the present invention;

图7示出为本发明的另一实施例的一种发光装置的示意图;Fig. 7 is a schematic diagram of a light emitting device according to another embodiment of the present invention;

图8示出为本发明的另一实施例的一种发光装置的示意图;Fig. 8 is a schematic diagram of a light emitting device according to another embodiment of the present invention;

图9示出为本发明的另一实施例的一种发光装置的示意图;Fig. 9 is a schematic diagram of a light emitting device according to another embodiment of the present invention;

图10A至图10D示出为本发明的一实施例的一种发光装置的制作方法的剖面示意图;10A to 10D are schematic cross-sectional views showing a manufacturing method of a light-emitting device according to an embodiment of the present invention;

图11A至图11C示出为本发明的另一实施例的一种发光装置的制作方法的局部步骤的剖面示意图;11A to 11C are schematic cross-sectional views showing partial steps of a method for manufacturing a light-emitting device according to another embodiment of the present invention;

图12A至图12E示出为本发明的另一实施例的一种发光装置的制作方法的剖面示意图;12A to 12E are schematic cross-sectional views showing a manufacturing method of a light-emitting device according to another embodiment of the present invention;

图13A至图13D示出为本发明的另一实施例的一种发光装置的制作方法的局部步骤的剖面示意图;13A to 13D are schematic cross-sectional views showing partial steps of a method for manufacturing a light-emitting device according to another embodiment of the present invention;

图14A至图14E示出为本发明的另一实施例的一种发光装置的制作方法的剖面示意图;14A to 14E are schematic cross-sectional views showing a method of manufacturing a light-emitting device according to another embodiment of the present invention;

图15A至图15E示出为本发明的另一实施例的一种发光装置的制作方法的剖面示意图;15A to 15E are schematic cross-sectional views showing a method of manufacturing a light-emitting device according to another embodiment of the present invention;

图16A至图16C示出为本发明的多个实施例的发光装置的剖面示意图;16A to 16C are schematic cross-sectional views of light emitting devices according to various embodiments of the present invention;

图17A至图17E示出为本发明的一实施例的一种发光装置的制作方法的剖面示意图;17A to 17E are schematic cross-sectional views showing a manufacturing method of a light-emitting device according to an embodiment of the present invention;

图18A与图18B示出为本发明的二实施例的二种发光装置的剖面示意图;18A and 18B are schematic cross-sectional views of two light-emitting devices according to two embodiments of the present invention;

图19A至图19E示出为本发明的另一实施例的一种发光装置的制作方法的剖面示意图;19A to 19E are schematic cross-sectional views showing a method of manufacturing a light-emitting device according to another embodiment of the present invention;

图20A示出为图19E的发光装置的立体示意图;FIG. 20A is a schematic perspective view of the light emitting device shown in FIG. 19E;

图20B示出为沿图20A的线X-X的剖面示意图;Figure 20B is shown as a schematic cross-sectional view along the line X-X of Figure 20A;

图21A示出为本发明的另一实施例的一种发光装置的立体示意图;Fig. 21A is a schematic perspective view of a light emitting device according to another embodiment of the present invention;

图21B与图21C分别示出为沿图21A的线X’-X’以及线Y’-Y’的剖面示意图。21B and 21C are schematic cross-sectional views along the line X'-X' and line Y'-Y' of FIG. 21A, respectively.

附图标记说明:Explanation of reference signs:

10:基板;10: Substrate;

10a:双面胶膜;10a: double-sided adhesive film;

20:另一基板;20: another substrate;

20a:UV胶膜;20a: UV film;

30:第一离型膜;30: the first release film;

40:第二离型膜;40: the second release film;

100a、100b、100c、100d、100e、100f、100g、100h、100i、100j、100k、100m、100n、100p、200a、200b、200c、200d:发光装置;100a, 100b, 100c, 100d, 100e, 100f, 100g, 100h, 100i, 100j, 100k, 100m, 100n, 100p, 200a, 200b, 200c, 200d: light emitting devices;

101:单元;101: unit;

110a、110b、110c、110c’、220:发光单元;110a, 110b, 110c, 110c', 220: light emitting units;

112a、112b、112c、222:上表面;112a, 112b, 112c, 222: upper surface;

113、113’、223:第一电极垫;113, 113', 223: first electrode pads;

113a:第一底面;113a: first bottom surface;

113b:第一侧表面;113b: first side surface;

114a、114b、114c、224:下表面;114a, 114b, 114c, 224: lower surface;

115、115’、225:第二电极垫;115, 115', 225: second electrode pads;

115a:第二底面;115a: second bottom surface;

115b:第二侧表面;115b: second side surface;

116a、116b、116c:侧表面;116a, 116b, 116c: side surfaces;

120、120’、120c、120d、120m、120n、120p、240、240a、240b:反射保护件;120, 120', 120c, 120d, 120m, 120n, 120p, 240, 240a, 240b: reflective protection;

121:边缘;121: edge;

122、122c、122d:顶面;122, 122c, 122d: top surface;

124、124m、124n:底面;124, 124m, 124n: bottom surface;

130d、130c:第一延伸电极;130d, 130c: first extended electrodes;

140d、140c:第二延伸电极;140d, 140c: second extended electrodes;

150:封装胶层;150: packaging adhesive layer;

150c、150c’、230a、230b、230c:透光胶层;150c, 150c', 230a, 230b, 230c: transparent adhesive layer;

160、160’:透光层;160, 160': transparent layer;

170、170’、170a、210、210’:波长转换胶层;170, 170', 170a, 210, 210': wavelength conversion adhesive layer;

171、171a:侧边缘;171, 171a: side edges;

172、172a、214、214’:高浓度荧光胶层;172, 172a, 214, 214': High-concentration fluorescent glue layer;

173:顶面;173: top surface;

173a:边缘;173a: edge;

174、174a、212、212’、212”:低浓度荧光胶层;174, 174a, 212, 212', 212": low-concentration fluorescent adhesive layer;

212a、212a’、212a”:平板部;212a, 212a', 212a": flat part;

212b:突出部;212b: protrusion;

212b’:突出子部;212b': protruding subsection;

226:侧表面;226: side surface;

232:内凹表面;232: concave surface;

234:外凸表面;234: convex surface;

236:倾斜表面;236: inclined surface;

242、242a、242b:反射面;242, 242a, 242b: reflective surfaces;

A:单元;A: unit;

C:沟槽;C: Groove;

C1、C1’:沟槽;C1, C1': Groove;

C2’:第二沟槽;C2': the second groove;

D:深度;D: depth;

E:延伸电极层;E: extended electrode layer;

G:间距;G: spacing;

H:高度差;H: height difference;

L:切割线;L: cutting line;

M1:第一金属层;M1: the first metal layer;

M2:第二金属层;M2: the second metal layer;

S:间隙;S: gap;

T:厚度;T: thickness;

T1:第一厚度;T1: first thickness;

T2:第二厚度;T2: second thickness;

W:宽度;w: width;

X-X、X’-X’、Y-Y、Y’-Y’:线。X-X, X'-X', Y-Y, Y'-Y': line.

具体实施方式Detailed ways

图1示出为本发明的一实施例的一种发光装置的示意图。请先参考图1,在本实施例中,发光装置100a包括一发光单元110a以及一反射保护件120。发光单元110a具有彼此相对的一上表面112a与一下表面114a、一连接上表面112a与下表面114a的侧表面116a以及位于下表面114a上且彼此分离的一第一电极垫113与一第二电极垫115。反射保护件120包覆发光单元110a的侧表面116a且暴露出至少部分上表面112a及暴露出第一电极垫113的至少部分一第一底面113a以及第二电极垫115的至少部分一第二底面115a。FIG. 1 is a schematic diagram of a light emitting device according to an embodiment of the present invention. Please refer to FIG. 1 first. In this embodiment, the light emitting device 100 a includes a light emitting unit 110 a and a reflective protection member 120 . The light emitting unit 110a has an upper surface 112a and a lower surface 114a facing each other, a side surface 116a connecting the upper surface 112a and the lower surface 114a, and a first electrode pad 113 and a second electrode located on the lower surface 114a and separated from each other. Pad 115. The reflective protection member 120 covers the side surface 116a of the light emitting unit 110a and exposes at least part of the upper surface 112a and at least part of the first bottom surface 113a of the first electrode pad 113 and at least part of the second bottom surface of the second electrode pad 115. 115a.

更具体来说,如图1所示,本实施例的发光单元110a的上表面112a与反射保护件120的一顶面122切齐,反射保护件120的一底面124与第一电极垫113的一第一底面113a以及第二电极垫115的一第二底面115a切齐,且反射保护件120可覆盖或暴露出发光单元110a位于第一电极垫113与一第二电极垫115之间的下表面114a。在本实施例中,发光单元110a的侧表面116a垂直于上表面112a与下表面114a,但并不以此为限,而发光单元110a例如是发光二极管,发光二极管的发光波长(包括但不限于)介于315纳米至780纳米之间,发光二极管包括但不限于紫外光、蓝光、绿光、黄光、橘光或红光发光二极管。More specifically, as shown in FIG. 1, the upper surface 112a of the light-emitting unit 110a of this embodiment is aligned with a top surface 122 of the reflective protection member 120, and a bottom surface 124 of the reflective protection member 120 is aligned with the first electrode pad 113. A first bottom surface 113a and a second bottom surface 115a of the second electrode pad 115 are aligned, and the reflective protection member 120 can cover or expose the lower part of the light emitting unit 110a between the first electrode pad 113 and a second electrode pad 115 Surface 114a. In this embodiment, the side surface 116a of the light-emitting unit 110a is perpendicular to the upper surface 112a and the lower surface 114a, but not limited thereto, and the light-emitting unit 110a is, for example, a light-emitting diode, and the light-emitting wavelength of the light-emitting diode (including but not limited to ) between 315 nm and 780 nm, the light emitting diodes include but not limited to ultraviolet, blue, green, yellow, orange or red light emitting diodes.

反射保护件120的反射率至少大于90%,也就是说,本实施例的反射保护件120具有高反射率的特性,其中反射保护件120的材质为包括一掺有高反射粒子的高分子材料,高反射粒子例如但不限于是二氧化钛(TiO2)粉末,而高分子材料例如不限于是环氧树脂或硅树脂。此外,本实施例的发光单元110a的第一电极垫113与第二电极垫115的材质为一金属材料或金属合金,例如是金、铝、锡、银、铋、铟或其组合,但不以此为限。The reflectivity of the reflective protector 120 is at least greater than 90%, that is to say, the reflective protector 120 of this embodiment has the characteristics of high reflectivity, wherein the material of the reflective protector 120 is a polymer material doped with highly reflective particles The highly reflective particles are, for example but not limited to, titanium dioxide (TiO 2 ) powder, and the polymer materials are, for example and not limited to, epoxy resin or silicone resin. In addition, the material of the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110a in this embodiment is a metal material or a metal alloy, such as gold, aluminum, tin, silver, bismuth, indium or a combination thereof, but not This is the limit.

在本实施例中,反射保护件120包覆发光单元110a的侧表面116a,且暴露出发光单元110a的第一电极垫113的第一底面113a以及第二电极垫115的第二底面115a,发光装置100a不需要使用现有的承载支架来支撑及固定发光单元110a,而可有效减少封装厚度以及制作成本,同时,也可通过具有高反射率的反射保护件120来有效提高发光单元110a的正向出光效率。In this embodiment, the reflective protection member 120 covers the side surface 116a of the light emitting unit 110a, and exposes the first bottom surface 113a of the first electrode pad 113 and the second bottom surface 115a of the second electrode pad 115 of the light emitting unit 110a to emit light. The device 100a does not need to use the existing supporting frame to support and fix the light emitting unit 110a, which can effectively reduce the thickness of the package and the manufacturing cost. At the same time, the positive reflection of the light emitting unit 110a can be effectively improved by using the reflective protection member 120 with high reflectivity. To the light efficiency.

在此必须说明的是,下述实施例沿用前述实施例的元件标号与部分内容,其中采用相同的标号来表示相同或近似的元件,相同技术内容的说明可参考前述实施例,下述实施例不再重复赘述。It must be noted here that the following embodiments continue to use the component numbers and parts of the previous embodiments, wherein the same symbols are used to represent the same or similar components, and the description of the same technical content can refer to the previous embodiments. The following embodiments I won't repeat it.

图2示出为本发明的另一实施例的一种发光装置的示意图。请同时参考图1与图2,本实施例的发光装置100b与图1中的发光装置100a的主要差异之处在于:本实施例的发光单元110b的侧表面116b并非垂直于上表面112b与下表面114b,本实施例中发光单元100b的上表面112b的表面积大于下表面114b的表面积,侧表面116b与下表面114b的夹角例如是介于95度到150度之间。本实施例的发光单元110b的上表面112b、侧表面116b及下表面114b所界定的外型轮廓呈现倒梯形,因此可减少发光单元110b侧向出光,且高反射率的反射保护件120可更进一步地有效提高发光单元110b的正向出光效率。Fig. 2 is a schematic diagram of a light emitting device according to another embodiment of the present invention. Please refer to FIG. 1 and FIG. 2 at the same time. The main difference between the light emitting device 100b of this embodiment and the light emitting device 100a in FIG. As for the surface 114b, the surface area of the upper surface 112b of the light emitting unit 100b in this embodiment is larger than the surface area of the lower surface 114b, and the included angle between the side surface 116b and the lower surface 114b is, for example, between 95 degrees and 150 degrees. The outline defined by the upper surface 112b, the side surface 116b, and the lower surface 114b of the light emitting unit 110b in this embodiment presents an inverted trapezoidal shape, so that the side light output from the light emitting unit 110b can be reduced, and the reflective protection member 120 with high reflectivity can be more Further effectively improve the forward light extraction efficiency of the light emitting unit 110b.

图3示出为本发明的另一实施例的一种发光装置的示意图。请同时参考图1与图3,本实施例的发光装置100c与图1中的发光装置100a的主要差异之处在于:本实施例的发光装置100c还包括一第一延伸电极130c以及一第二延伸电极140c。第一延伸电极130c配置在反射保护件120的底面124上,且与第一电极垫113电性连接。第二延伸电极140c配置在反射保护件120的底面124上,且与第二电极垫115电性连接。第一延伸电极130c与第二延伸电极140c彼此分离且覆盖反射保护件120的至少部分底面124。Fig. 3 is a schematic diagram of a light emitting device according to another embodiment of the present invention. Please refer to FIG. 1 and FIG. 3 at the same time. The main difference between the light emitting device 100c of this embodiment and the light emitting device 100a in FIG. The extension electrode 140c. The first extension electrode 130c is disposed on the bottom surface 124 of the reflective protection member 120 and is electrically connected to the first electrode pad 113 . The second extension electrode 140c is disposed on the bottom surface 124 of the reflective protection member 120 and is electrically connected to the second electrode pad 115 . The first extension electrode 130c and the second extension electrode 140c are separated from each other and cover at least part of the bottom surface 124 of the reflection protection member 120 .

如图3所示,本实施例的第一延伸电极130c与第二延伸电极140c的设置完全重叠于第一电极垫113与第二电极垫115,且朝着反射保护件120的边缘延伸。当然,在其他未示出的实施例中,第一延伸电极与第二延伸电极的设置也可部分重叠于第一电极垫与第二电极垫,只要第一延伸电极与第二延伸电极电性连接至第一电极垫与第二电极垫的设置即为本实施例所欲保护之范围。此外,本实施例的第一延伸电极130c与第二延伸电极140c暴露出反射保护件120的部分底面124。As shown in FIG. 3 , the first extension electrode 130 c and the second extension electrode 140 c in this embodiment are arranged to completely overlap the first electrode pad 113 and the second electrode pad 115 , and extend toward the edge of the reflection protection member 120 . Of course, in other unshown embodiments, the arrangement of the first extended electrode and the second extended electrode may also partially overlap the first electrode pad and the second electrode pad, as long as the first extended electrode and the second extended electrode are electrically connected. The arrangement connected to the first electrode pad and the second electrode pad is the protection scope of this embodiment. In addition, the first extension electrode 130c and the second extension electrode 140c in this embodiment expose part of the bottom surface 124 of the reflection protection member 120 .

在本实施例中,第一延伸电极130c与第二延伸电极140c的材质可分别相同或不同于发光单元110a的第一电极垫113与第二电极垫115。当第一延伸电极130c与第二延伸电极140c的材质分别相同于发光单元110a的第一电极垫113与第二电极垫115时,第一延伸电极130c与第一电极垫113之间可为无接缝连接,即为一体成型的结构,第二延伸电极140c与第二电极垫115之间可为无接缝连接,即为一体成型的结构。当第一延伸电极130c与第二延伸电极140c的材质分别不同于发光单元110a的第一电极垫113与第二电极垫115时,第一延伸电极130c与第二延伸电极140c的材质可例如是银、金、铋、锡、铟或上述材料组合的合金。In this embodiment, the materials of the first extension electrode 130c and the second extension electrode 140c may be the same as or different from the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110a. When the materials of the first extension electrode 130c and the second extension electrode 140c are respectively the same as the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110a, there may be no space between the first extension electrode 130c and the first electrode pad 113. The seam connection is an integrally formed structure, and the second extension electrode 140c and the second electrode pad 115 may be seamlessly connected, that is, an integrally formed structure. When the materials of the first extended electrode 130c and the second extended electrode 140c are different from the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110a respectively, the material of the first extended electrode 130c and the second extended electrode 140c can be, for example, Alloys of silver, gold, bismuth, tin, indium or combinations thereof.

由于本实施例的发光装置100c具有与发光单元110a的第一电极垫113与第二电极垫115分别电性连接的第一延伸电极130c与第二延伸电极140c,因此可有效增加发光装置100c的电极接触面积,以利于后续将此发光装置100c与其他外部电路进行组装,可有效提高对位精准度及组装效率。举例来说,第一延伸电极130c的面积大于第一电极垫113的面积,第二延伸电极140c的面积大于第二电极垫115的面积。Since the light emitting device 100c of this embodiment has the first extended electrode 130c and the second extended electrode 140c respectively electrically connected to the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110a, the light emitting device 100c can be effectively increased. The electrode contact area facilitates subsequent assembly of the light emitting device 100c with other external circuits, which can effectively improve alignment accuracy and assembly efficiency. For example, the area of the first extended electrode 130 c is larger than that of the first electrode pad 113 , and the area of the second extended electrode 140 c is larger than that of the second electrode pad 115 .

图4示出为本发明的另一实施例的一种发光装置的示意图。请同时参考图3与图4,本实施例的发光装置100d与图3中的发光装置100c的主要差异之处在于:本实施例的第一延伸电极130d的边缘与第二延伸电极140d的边缘切齐于反射保护件120的边缘。Fig. 4 is a schematic diagram of a light emitting device according to another embodiment of the present invention. Please refer to FIG. 3 and FIG. 4 at the same time. The main difference between the light emitting device 100d in this embodiment and the light emitting device 100c in FIG. 3 lies in: the edge of the first extended electrode 130d and the edge of the second extended electrode 140d Align with the edge of the reflective protector 120 .

图5示出为本发明的另一实施例的一种发光装置的示意图。请同时参考图1与图5,本实施例的发光装置100e与图1中的发光装置100a的主要差异之处在于:本实施例的发光装置100e还包括一封装胶层150,其中封装胶层150配置在发光单元110a的上表面112a上,以增加光取出率及改善光型。封装胶层150也可以延伸至反射保护件120的至少部分上表面122上,封装胶层150的边缘也可以切齐于反射保护件120的边缘。另外,封装胶层150内也可以掺杂有至少一种波长转换材料,波长转换材料系用以将发光单元110a所发出的至少部分光线的波长转换成其他波长,且波长转换材料的材质包括荧光材料、磷光材料、染料、量子点材料及其组合,其中波长转换材料的粒径例如是介于3微米到50微米之间。另外,封装胶层150内也可以掺杂具有高散射能力的氧化物,例如是二氧化钛(TiO2)或二氧化硅(SiO2),以增加出光效率。Fig. 5 is a schematic diagram of a light emitting device according to another embodiment of the present invention. Please refer to FIG. 1 and FIG. 5 at the same time. The main difference between the light emitting device 100e in this embodiment and the light emitting device 100a in FIG. 150 is disposed on the upper surface 112a of the light emitting unit 110a to increase the light extraction rate and improve the light pattern. The encapsulation adhesive layer 150 may also extend to at least a portion of the upper surface 122 of the reflective protector 120 , and the edge of the encapsulant adhesive layer 150 may also be aligned with the edge of the reflective protector 120 . In addition, the packaging adhesive layer 150 can also be doped with at least one wavelength conversion material. The wavelength conversion material is used to convert the wavelength of at least part of the light emitted by the light emitting unit 110a into other wavelengths, and the material of the wavelength conversion material includes fluorescent light. materials, phosphorescent materials, dyes, quantum dot materials and combinations thereof, wherein the particle size of the wavelength conversion material is, for example, between 3 microns and 50 microns. In addition, the encapsulant layer 150 may also be doped with an oxide having high scattering capability, such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ), so as to increase light extraction efficiency.

在本发明一实施例中,发光单元包括但不限于紫外光、蓝光、绿光、黄光、橘光或红光发光单元,而波长转换材料包括但不限于红色、橘色、橘黄色、黄色、黄绿色或绿色的波长转换材料或其组合,用以将发光单元所发出的光的部分或全部进行波长转换。波长转换的光与波长未转换的光进行混光后,使得发光装置发出主波长(dominant wavelenghth)在一特定范围的光,其光色例如包括但不限于红色、橘色、橘黄色、琥珀色、黄色、黄绿色或绿色,或是发出具有特定相对色温的白光,相对色温的范围例如是介于2500K至7000K之间,但不以此为限。In an embodiment of the present invention, the light-emitting unit includes but not limited to ultraviolet light, blue light, green light, yellow light, orange light or red light-emitting unit, and the wavelength conversion material includes but not limited to red, orange, orange, yellow , yellow-green or green wavelength conversion material or a combination thereof, used for wavelength conversion of part or all of the light emitted by the light-emitting unit. After the wavelength-converted light is mixed with the unconverted light, the light-emitting device emits light with a dominant wavelength in a specific range, and its light color includes, but is not limited to, red, orange, orange, and amber. , yellow, yellow-green or green, or emit white light with a specific relative color temperature. The range of the relative color temperature is, for example, between 2500K and 7000K, but not limited thereto.

图6示出为本发明的另一实施例的一种发光装置的示意图。请同时参考图6与图4,本实施例的发光装置100f与图4中的发光装置100d的主要差异之处在于:本实施例的发光装置100f还包括一封装胶层150,其中封装胶层150配置在发光单元110a的上表面112a上,以增加光取出率及改善光型。封装胶层150也可以延伸至反射保护件120的至少部分上表面122上,封装胶层150的边缘也可以切齐于反射保护件120的边缘,另外,封装胶层150内也可以掺杂有至少一种波长转换材料,波长转换材料系用以将发光单元110a所发出的至少部分光线的波长转换成其他波长,且波长转换材料的材质包括荧光材料、磷光材料、染料、量子点材料及其组合,其中波长转换材料的粒径例如是介于3微米到50微米之间。另外,封装胶层150内也可以掺杂具有高散射能力的氧化物,例如是二氧化钛(TiO2)或二氧化硅(SiO2),以增加出光效率。Fig. 6 is a schematic diagram of a light emitting device according to another embodiment of the present invention. Please refer to FIG. 6 and FIG. 4 at the same time. The main difference between the light emitting device 100f in this embodiment and the light emitting device 100d in FIG. 150 is disposed on the upper surface 112a of the light emitting unit 110a to increase the light extraction rate and improve the light pattern. The encapsulating adhesive layer 150 can also extend to at least part of the upper surface 122 of the reflective protector 120, and the edge of the encapsulant adhesive layer 150 can also be aligned with the edge of the reflective protector 120. In addition, the encapsulating adhesive layer 150 can also be doped with At least one wavelength conversion material, the wavelength conversion material is used to convert the wavelength of at least part of the light emitted by the light emitting unit 110a into other wavelengths, and the material of the wavelength conversion material includes fluorescent materials, phosphorescent materials, dyes, quantum dot materials and combination, wherein the particle size of the wavelength conversion material is, for example, between 3 microns and 50 microns. In addition, the encapsulant layer 150 may also be doped with an oxide having high scattering capability, such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ), so as to increase light extraction efficiency.

须说明的是,在图4及图6的实施例中,第一延伸电极130d的边缘与第二延伸电极140d的边缘切齐于反射保护件120的边缘,这样的设计不但可以扩大电极的接触面积,且在制程中,反射保护件120可以同时封装多个相间隔的发光单元110a,之后形成图案化金属层以分别形成第一延伸电极130d与第二延伸电极140d,之后再进行切割,使每一发光装置100f的第一延伸电极130d的边缘与第二延伸电极140d的边缘切齐于反射保护件120的边缘,如此可有效节省制程时间。It should be noted that, in the embodiment shown in FIG. 4 and FIG. 6, the edge of the first extended electrode 130d and the edge of the second extended electrode 140d are aligned with the edge of the reflective protection member 120. This design can not only expand the electrode contact area, and in the manufacturing process, the reflective protection member 120 can encapsulate a plurality of spaced apart light emitting units 110a at the same time, and then form a patterned metal layer to form the first extended electrode 130d and the second extended electrode 140d respectively, and then perform cutting to make The edge of the first extension electrode 130d and the edge of the second extension electrode 140d of each light emitting device 100f are aligned with the edge of the reflective protection member 120, which can effectively save the process time.

图7示出为本发明的另一实施例的一种发光装置的示意图。请同时参考图7与图5,本实施例的发光装置100g与图5中的发光装置100e的主要差异之处在于:本实施例的发光装置100g还包括一透光层160,配置在封装胶层150上,其中透光层160的透光率,例如是大于50%。在本实施例中,透光层160的材质例如是玻璃、陶瓷、树脂、压克力或硅胶等,其目的在于可发光单元110a所产生的光导引至外界,可有效增加发光装置100g的光通量及光取出率,且也可有效保护发光单元110a以避免受到外界水气与氧气的侵袭。Fig. 7 is a schematic diagram of a light emitting device according to another embodiment of the present invention. Please refer to FIG. 7 and FIG. 5 at the same time. The main difference between the light emitting device 100g in this embodiment and the light emitting device 100e in FIG. On the layer 150, the light transmittance of the light-transmitting layer 160 is, for example, greater than 50%. In this embodiment, the material of the light-transmitting layer 160 is, for example, glass, ceramics, resin, acrylic, or silica gel. The luminous flux and the light extraction rate can also effectively protect the light-emitting unit 110 a from being attacked by external moisture and oxygen.

图8示出为本发明的另一实施例的一种发光装置的示意图。请同时参考图8与图7,本实施例的发光装置100h与图7中的发光装置100g的主要差异之处在于:本实施例的发光装置100h的透光层160’是配置在发光单元110a的上表面110a与封装胶层150之间。Fig. 8 is a schematic diagram of a light emitting device according to another embodiment of the present invention. Please refer to FIG. 8 and FIG. 7 at the same time. The main difference between the light emitting device 100h in this embodiment and the light emitting device 100g in FIG. between the upper surface 110a of the top surface 110a and the encapsulation adhesive layer 150 .

图9示出为本发明的另一实施例的一种发光装置的示意图。请同时参考图9与图6,本实施例的发光装置100i与图6中的发光装置100f的主要差异之处在于:本实施例的发光装置100i还包括一透光层160,配置在封装胶层150上,其中透光层160的透光率,例如是大于50%。在本实施例中,透光层160的材质例如是玻璃、陶瓷、树脂、压克力或硅胶等,其目的在于可发光单元110a所产生的光导引至外界,可有效增加发光装置100i的光通量及光取出率,且也可有效保护发光单元110a以避免受到外界水气与氧气的侵袭。Fig. 9 is a schematic diagram of a light emitting device according to another embodiment of the present invention. Please refer to FIG. 9 and FIG. 6 at the same time. The main difference between the light emitting device 100i in this embodiment and the light emitting device 100f in FIG. On the layer 150, the light transmittance of the light-transmitting layer 160 is, for example, greater than 50%. In this embodiment, the material of the light-transmitting layer 160 is, for example, glass, ceramics, resin, acrylic, or silica gel. The luminous flux and the light extraction rate can also effectively protect the light-emitting unit 110 a from being attacked by external moisture and oxygen.

以下将以图1、图7、图4及图9中的发光装置100a、100g、100d、100i为例,并分别配合10A至图10D、图11A至图11C、图12A至图12E以及图13A至图13D对本发明的发光装置的制作方法进行详细的说明。The following will take the light-emitting devices 100a, 100g, 100d, and 100i in FIGS. 1, 7, 4, and 9 as examples, and cooperate with 10A to 10D, 11A to 11C, 12A to 12E, and 13A respectively. Referring to FIG. 13D , the fabrication method of the light emitting device of the present invention will be described in detail.

图10A至图10D示出为本发明的一实施例的一种发光装置的制作方法的剖面示意图。首先,请参考图10A,将多个发光单元110a配置在一基板10上,其中每一发光单元110a具有彼此相对的上表面112a与下表面114a、连接上表面112a与下表面114a的侧表面116a以及位于下表面114a上且彼此分离的第一电极垫113与第二电极垫115。每一发光单元110a的第一电极垫113与第二电极垫115设置在基板10上。也就是说,发光单元110a的发光面,即上表面112a是相对远离基板10。在本实施例中,基板10的材质例如是不锈钢、陶瓷或其他不导电的材质。发光单元110a例如是发光二极管,发光二极管的发光波长(包括但不限于)介于315纳米至780纳米之间,发光二极管包括但不限于紫外光、蓝光、绿光、黄光、橘光或红光发光二极管。10A to 10D are schematic cross-sectional views showing a method of manufacturing a light emitting device according to an embodiment of the present invention. First, referring to FIG. 10A, a plurality of light emitting units 110a are disposed on a substrate 10, wherein each light emitting unit 110a has an upper surface 112a and a lower surface 114a opposite to each other, and a side surface 116a connecting the upper surface 112a and the lower surface 114a. And the first electrode pad 113 and the second electrode pad 115 are located on the lower surface 114a and separated from each other. The first electrode pad 113 and the second electrode pad 115 of each light emitting unit 110 a are disposed on the substrate 10 . That is to say, the light-emitting surface of the light-emitting unit 110 a , that is, the upper surface 112 a is relatively far away from the substrate 10 . In this embodiment, the material of the substrate 10 is, for example, stainless steel, ceramics or other non-conductive materials. The light-emitting unit 110a is, for example, a light-emitting diode. The light-emitting wavelength of the light-emitting diode (including but not limited to) is between 315 nm and 780 nm. The light-emitting diode includes but not limited to ultraviolet light, blue light, green light, yellow light, orange light or red light. light emitting diodes.

接着,请参考图10B,形成一反射保护件120’于基板10上,其中反射保护件120’包覆每一发光单元110a。也就是说,反射保护件120’完全且直接覆盖发光单元110a的上表面112a、下表面114a以及侧表面116a,且填满第一电极垫113与第二电极垫115之间的空隙。此处,反射保护件120’的反射率至少大于90%,也就是说,本实施例的反射保护件120’可具有高反射率的特性,其中反射保护件120’的材质包括一掺杂高反射粒子的高分子材料,高反射粒子例如但不限于是二氧化钛(TiO2)粉末,而高分子材料例如不限于是环氧树脂或硅树脂。Next, referring to FIG. 10B , a reflective protection member 120 ′ is formed on the substrate 10 , wherein the reflective protection member 120 ′ covers each light emitting unit 110 a. That is to say, the reflective protection member 120 ′ completely and directly covers the upper surface 112 a , the lower surface 114 a and the side surface 116 a of the light emitting unit 110 a, and fills the gap between the first electrode pad 113 and the second electrode pad 115 . Here, the reflectivity of the reflective protector 120' is at least greater than 90%, that is to say, the reflective protector 120' of this embodiment may have the characteristics of high reflectivity, wherein the material of the reflective protector 120' includes a highly doped The polymer material of the reflective particles is, for example but not limited to, titanium dioxide (TiO 2 ) powder, and the polymer material is, for example but not limited to, epoxy resin or silicone resin.

接着,请参考图10C,移除部分反射保护件120’,而形成反射保护件120,其中反射保护件120暴露出每一发光单元110a的至少部分上表面112a。此时,每一发光单元110a的上表面112a可能切齐于反射保护件120的顶面122。此处,移除部分反射保护件120’的方法包括例如是研磨法或抛光法。Next, referring to FIG. 10C , part of the reflective protector 120' is removed to form a reflective protector 120, wherein the reflective protector 120 exposes at least part of the upper surface 112a of each light emitting unit 110a. At this time, the upper surface 112 a of each light emitting unit 110 a may be aligned with the top surface 122 of the reflective protection member 120 . Here, the method of removing part of the reflective protection member 120' includes, for example, a grinding method or a polishing method.

之后,请参考图10D,进行一切割程序,以沿着切割线L切割反射保护件120,而形成多个彼此分离的发光装置100a,其中每一发光装置100a分别具有至少一个发光单元110a以及反射保护件120,反射保护件120包覆发光单元110a的侧表面116a且暴露出其至少部分上表面112a。Afterwards, referring to FIG. 10D , a cutting process is performed to cut the reflective protection member 120 along the cutting line L to form a plurality of separate light emitting devices 100a, wherein each light emitting device 100a has at least one light emitting unit 110a and a reflective light emitting device 100a respectively. The protection member 120, the reflective protection member 120 covers the side surface 116a of the light emitting unit 110a and exposes at least part of the upper surface 112a thereof.

最后,请再参考图10D,移除基板10,以暴露每一发光装置100a的反射保护件120的底面124,并暴露出每一发光装置100a的第一电极垫113的至少部分第一底面113a以及第二电极垫115的至少部分第二底面115a。Finally, please refer to FIG. 10D again, remove the substrate 10 to expose the bottom surface 124 of the reflective protection member 120 of each light emitting device 100a, and expose at least part of the first bottom surface 113a of the first electrode pad 113 of each light emitting device 100a And at least part of the second bottom surface 115 a of the second electrode pad 115 .

图11A至图11C示出为本发明的另一实施例的一种发光装置的制作方法的局部步骤的剖面示意图。本实施例的发光装置的制作方法与上述图10A至图10D中的发光装置的制作方法的主要差异之处在于:在图10C与图10D的步骤之间,意即于移除部分反射保护件120’之后,且于进行切割程序之前,请参考图11A,形成封装胶层150于发光单元110a与反射保护件120上,以增加光取出率及改善光型。此处,封装胶层150覆盖发光单元110a的上表面112a与反射保护件120的顶面122,且封装胶层150内也可以掺杂有至少一种波长转换材料。波长转换材料的说明请参考前述实施例。另外,封装胶层150内也可以掺杂具有高散射能力的氧化物,例如是二氧化钛(TiO2)或二氧化硅(SiO2),以增加出光效率。11A to 11C are schematic cross-sectional views showing partial steps of a method for manufacturing a light emitting device according to another embodiment of the present invention. The main difference between the manufacturing method of the light-emitting device of this embodiment and the above-mentioned light-emitting device in FIGS. 10A to 10D is: between the steps of FIG. 10C and FIG. After 120 ′, and before performing the cutting process, referring to FIG. 11A , an encapsulant layer 150 is formed on the light emitting unit 110 a and the reflective protection member 120 to increase the light extraction rate and improve the light pattern. Here, the encapsulant layer 150 covers the upper surface 112 a of the light emitting unit 110 a and the top surface 122 of the reflective protection member 120 , and the encapsulant layer 150 may also be doped with at least one wavelength conversion material. For the description of the wavelength conversion material, please refer to the foregoing embodiments. In addition, the encapsulant layer 150 may also be doped with an oxide having high scattering capability, such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ), so as to increase light extraction efficiency.

接着,请参考图11B,形成一透光层160于发光单元110a与反射保护件120上,其中透光层160位于封装胶层150上,且覆盖封装胶层150。举例来说,透光层160的透光率大于50%。在此实施例中,透光层160的材质例如是玻璃、陶瓷、树脂、压克力或硅胶等,其目的在于可发光单元110a所产生的光导引至外界,可有效增加后续所形成的发光单元封光结构100g的光通量及光取出率,且也可有效保护发光单元110a以避免受到外界水气与氧气的侵袭。Next, please refer to FIG. 11B , a transparent layer 160 is formed on the light emitting unit 110 a and the reflective protection member 120 , wherein the transparent layer 160 is located on the encapsulation layer 150 and covers the encapsulation layer 150 . For example, the light transmittance of the transparent layer 160 is greater than 50%. In this embodiment, the material of the light-transmitting layer 160 is, for example, glass, ceramics, resin, acrylic, or silica gel. The light emitting unit seals the luminous flux and the light extraction rate of the light structure 100g, and can also effectively protect the light emitting unit 110a from being attacked by external moisture and oxygen.

之后,请参考图11C,进行一切割程序,以沿着切割线L切割透光层160、封装胶层150以及反射保护件120,而形成多个彼此分离的发光装置100g。最后,请再参考图11C,移除基板10,以暴露每一发光装置100g的反射保护件120的底面124,其中每一发光装置100g的反射保护件120的底面124暴露出第一电极垫113的至少部分第一底面113a以及第二电极垫115的至少部分第二底面115a。在本发明另一实施例中,也可先移除基板10再进行一切割程序。Afterwards, referring to FIG. 11C , a cutting process is performed to cut the transparent layer 160 , the encapsulant layer 150 and the reflective protection member 120 along the cutting line L to form a plurality of light emitting devices 100 g separated from each other. Finally, please refer to FIG. 11C again, remove the substrate 10 to expose the bottom surface 124 of the reflective protection member 120 of each light emitting device 100g, wherein the bottom surface 124 of the reflective protection member 120 of each light emitting device 100g exposes the first electrode pad 113 At least part of the first bottom surface 113a of the second electrode pad 115 and at least part of the second bottom surface 115a of the second electrode pad 115 . In another embodiment of the present invention, the substrate 10 may also be removed first and then a cutting process is performed.

图12A至图12E示出为本发明的另一实施例的一种发光装置的制作方法的剖面示意图。请先参考图12A,本实施例的发光装置的制作方法与上述图10A至图10D中的发光装置的制作方法的主要差异之处在于:请参考图12A,本实施例的发光单元110a并不是由第一电极垫113与第二电极垫115接触基板10,而是由其上表面112a接触基板10。12A to 12E are schematic cross-sectional views illustrating a method of manufacturing a light emitting device according to another embodiment of the present invention. Please refer to FIG. 12A first. The main difference between the manufacturing method of the light emitting device of this embodiment and the manufacturing method of the light emitting device in FIGS. 10A to 10D is: please refer to FIG. The substrate 10 is contacted by the first electrode pad 113 and the second electrode pad 115 , but the substrate 10 is contacted by its upper surface 112 a.

接着,请参考图12B,形成一反射保护件120’于基板上,其中反射保护件包覆每一发光单元110a。Next, referring to FIG. 12B , a reflective protection member 120' is formed on the substrate, wherein the reflective protection member covers each light emitting unit 110a.

接着,请参考图12C,移除部分反射保护件120’,以形成反射保护件120,其中反射保护件120暴露出每一发光单元110a的第一电极垫113的至少部分第一底面113a以及第二电极垫115的至少部分第二底面115a。Next, please refer to FIG. 12C , remove part of the reflective protection member 120 ′ to form the reflective protection member 120, wherein the reflective protection member 120 exposes at least part of the first bottom surface 113a and the first electrode pad 113 of each light emitting unit 110a. At least part of the second bottom surface 115 a of the second electrode pad 115 .

接着,请参考图12D,形成一图案化金属层作为延伸电极层E,位于每一发光单元110a的第一电极垫113的第一底面113a上以及第二电极垫115的第二底面115a上。此处,形成图案化金属层的方法例如是蒸镀法、溅镀法、电镀法或化学镀法以及光罩蚀刻法。Next, please refer to FIG. 12D , a patterned metal layer is formed as the extended electrode layer E on the first bottom surface 113a of the first electrode pad 113 and on the second bottom surface 115a of the second electrode pad 115 of each light emitting unit 110a. Here, the method of forming the patterned metal layer is, for example, evaporation method, sputtering method, electroplating method or electroless plating method, and photomask etching method.

接着,请参考图12E,进行一切割程序,以沿着切割线切割延伸电极层E与反射保护件120,而形成多个彼此分离的发光装置100d。每一发光装置100d分别具有至少一个发光单元110a、至少包覆发光单元110a的侧表面116a的反射保护件120、直接接触第一电极垫113的第一延伸电极130d以及直接接触第二电极垫115的第二延伸电极140d。第一延伸电极130d与第二延伸电极140d彼此分离且暴露出反射保护件120的至少部分底面124。此时,第一延伸电极130d的面积可大于第一电极垫113的面积,而第二延伸电极140d的面积可大于第二电极垫115的面积。第一延伸电极130d的边缘与第二延伸电极140d的边缘切齐于反射保护件120的边缘。Next, referring to FIG. 12E , a cutting process is performed to cut the extended electrode layer E and the reflective protection member 120 along the cutting line to form a plurality of light emitting devices 100d separated from each other. Each light emitting device 100d has at least one light emitting unit 110a, a reflective protection member 120 covering at least the side surface 116a of the light emitting unit 110a, a first extension electrode 130d directly contacting the first electrode pad 113, and a first extending electrode 130d directly contacting the second electrode pad 115 The second extension electrode 140d. The first extension electrode 130d and the second extension electrode 140d are separated from each other and expose at least part of the bottom surface 124 of the reflection protection member 120 . At this time, the area of the first extension electrode 130d may be larger than the area of the first electrode pad 113 , and the area of the second extension electrode 140d may be larger than the area of the second electrode pad 115 . The edge of the first extension electrode 130d and the edge of the second extension electrode 140d are aligned with the edge of the reflection protection member 120 .

最后,请再参考图12E,移除基板10,以暴露每一发光装置100d的反射保护件120的顶面122与发光单元110a的上表面112a,其中每一发光装置100g的反射保护件120的顶面122切齐于发光单元110a的上表面112a。在本发明另一实施例中,也可先移除基板10再进行一切割程序。Finally, please refer to FIG. 12E again, remove the substrate 10 to expose the top surface 122 of the reflective protection member 120 of each light emitting device 100d and the upper surface 112a of the light emitting unit 110a, wherein the reflective protection member 120 of each light emitting device 100g The top surface 122 is aligned with the upper surface 112a of the light emitting unit 110a. In another embodiment of the present invention, the substrate 10 may also be removed first and then a cutting process is performed.

图13A至图13D示出为本发明的另一实施例的一种发光装置的制作方法的局部步骤的剖面示意图。本实施例的发光装置的制作方法与上述图12A至图12E中的发光装置的制作方法的主要差异之处在于:在图12D与图12E的步骤之间,意即于形成延伸电极层E之后,且于进行切割制程之前,请参考图13A,提供一另一基板20,并设置在延伸电极层E上。此处,另一基板20的材质例如是不锈钢、陶瓷或其他不导电的材质。接着,请再参考图13A,在提供另一基板20之后,移除基板10,以暴露反射保护件120的顶面122以及发光单元110a的上表面112a,其中每一发光单元110a的上表面112a切齐于反射保护件120的顶面122。13A to 13D are schematic cross-sectional views showing partial steps of a method for manufacturing a light emitting device according to another embodiment of the present invention. The main difference between the manufacturing method of the light-emitting device of this embodiment and the above-mentioned light-emitting device in FIGS. 12A to 12E is: between the steps in FIG. 12D and FIG. , and before performing the cutting process, referring to FIG. 13A , another substrate 20 is provided and disposed on the extension electrode layer E. Referring to FIG. Here, the material of the other substrate 20 is, for example, stainless steel, ceramics or other non-conductive materials. Next, please refer to FIG. 13A again, after another substrate 20 is provided, the substrate 10 is removed to expose the top surface 122 of the reflective protector 120 and the upper surface 112a of the light emitting unit 110a, wherein the upper surface 112a of each light emitting unit 110a It is aligned with the top surface 122 of the reflective protection member 120 .

接着,请参考图13B,形成封装胶层150于发光单元110a与反射保护件120上,以增加光取出率及改善光型。此处,封装胶层150覆盖发光单元110a的上表面112a与反射保护件120的顶面122,且封装胶层150内也可以掺杂有至少一种波长转换材料。波长转换材料的说明请参考前述实施例。另外,封装胶层150内也可以掺杂具有高散射能力的氧化物,例如是二氧化钛(TiO2)或二氧化硅(SiO2),以增加出光效率。Next, referring to FIG. 13B , an encapsulation layer 150 is formed on the light emitting unit 110 a and the reflective protection member 120 to increase the light extraction rate and improve the light pattern. Here, the encapsulant layer 150 covers the upper surface 112 a of the light emitting unit 110 a and the top surface 122 of the reflective protection member 120 , and the encapsulant layer 150 may also be doped with at least one wavelength conversion material. For the description of the wavelength conversion material, please refer to the foregoing embodiments. In addition, the encapsulant layer 150 may also be doped with an oxide having high scattering capability, such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ), so as to increase light extraction efficiency.

接着,请参考图13C,形成一透光层160于发光单元110a与反射保护件120上,其中透光层160位于封装胶层150上,且覆盖封装胶层150。举例来说,透光层160的透光率大于50%。此处,透光层160的材质例如是玻璃、陶瓷、树脂、压克力或硅胶等,其目的在于可发光单元110a所产生的光导引至外界,可有效增加后续所形成之发光单元封光结构100i的光通量及光取出率,且也可有效保护发光单元110a以避免受到外界水气与氧气的侵袭。Next, please refer to FIG. 13C , forming a light-transmitting layer 160 on the light-emitting unit 110 a and the reflective protection member 120 , wherein the light-transmitting layer 160 is located on the packaging adhesive layer 150 and covers the packaging adhesive layer 150 . For example, the light transmittance of the transparent layer 160 is greater than 50%. Here, the material of the light-transmitting layer 160 is, for example, glass, ceramics, resin, acrylic, or silica gel. The luminous flux and light extraction rate of the light structure 100i can also effectively protect the light emitting unit 110a from being attacked by external moisture and oxygen.

之后,请参考图13D,进行一切割程序,以沿着切割线L切割透光层160、封装胶层150、反射保护件120及延伸电极层E,而形成多个彼此分离的发光装置100i。最后,请再参考图13D,移除另一基板20,以暴露每一发光装置100i的第一延伸电极130d与第二延伸电极140d。在本发明另一实施例中,也可先移除基板20再进行一切割程序。Afterwards, referring to FIG. 13D , a cutting process is performed to cut the transparent layer 160 , the encapsulant layer 150 , the reflective protection member 120 and the extended electrode layer E along the cutting line L to form a plurality of separated light emitting devices 100i. Finally, referring to FIG. 13D again, another substrate 20 is removed to expose the first extension electrode 130d and the second extension electrode 140d of each light emitting device 100i. In another embodiment of the present invention, the substrate 20 may also be removed first and then a cutting procedure is performed.

图14A至图14E示出为本发明的另一实施例的一种发光装置的制作方法的剖面示意图。请先参考图14A,提供一波长转换胶层170,其中波长转换胶层170包括一低浓度荧光胶层174以及一位于低浓度荧光胶层174上的高浓度荧光胶层172。此处,形成波长转换胶层170的步骤例如是先通过掺质与胶体混合的方式(即是将液态或熔融态胶体与波长转换材料均匀混合,波长转换材料例如是荧光粉但不以此为限),以形成波长转换胶层170,之后静置波长转换胶层170一段时间,如24小时的沉降之后,即形成上下层分离的高浓度荧光胶层172与低浓度荧光胶层174。也就是说,本实施例的波长转换层170是以两层胶层作为举例说明。当然,在其他实施例中,请参考图14A’,提供一波长转换胶层170’,其中波长转换胶层170’为单一胶层,此仍属于本发明所欲保护之范围。14A to 14E are schematic cross-sectional views showing a method of manufacturing a light emitting device according to another embodiment of the present invention. Referring to FIG. 14A , a wavelength conversion adhesive layer 170 is provided, wherein the wavelength conversion adhesive layer 170 includes a low-concentration fluorescent adhesive layer 174 and a high-concentration fluorescent adhesive layer 172 on the low-concentration fluorescent adhesive layer 174 . Here, the step of forming the wavelength conversion adhesive layer 170 is, for example, firstly mixing the dopant with the colloid (that is, uniformly mixing the liquid or molten colloid with the wavelength conversion material, the wavelength conversion material is, for example, phosphor powder, but not as a limit), to form the wavelength conversion adhesive layer 170, and then let the wavelength conversion adhesive layer 170 stand for a period of time, such as after 24 hours of sedimentation, to form a high-concentration fluorescent adhesive layer 172 and a low-concentration fluorescent adhesive layer 174 separated from the upper and lower layers. That is to say, the wavelength conversion layer 170 of this embodiment is illustrated by using two adhesive layers as an example. Of course, in other embodiments, referring to FIG. 14A', a wavelength conversion adhesive layer 170' is provided, wherein the wavelength conversion adhesive layer 170' is a single adhesive layer, which still belongs to the protection scope of the present invention.

接着,请参考图14B,将多个间隔排列的发光单元110c配置在波长转换胶层170上,其中每一发光单元110c具有彼此相对的一上表面112c与一下表面114c、一连接上表面112c与下表面114c的侧表面116c以及位于下表面114c上且彼此分离的一第一电极垫113与一第二电极垫115,而发光单元110c的上表面112c位于波长转换胶层170的高浓度荧光胶层172上。接着,再分别形成多个材料包含透光胶体的透光胶层150c于波长转换胶层170上且延伸至发光单元110c的侧表面116c上,其中透光胶层150c并没有完全覆盖发光单元110c的侧表面116c,而是如图14B所示,透光胶层150c是具有曲率斜面,且越靠近发光单元110c的上表面112c,即靠近波长转换胶层170,透光胶层150c的厚度越厚。此处,透光胶层150c的目的在于固定发光单元110c的位置。Next, referring to FIG. 14B , a plurality of light-emitting units 110c arranged at intervals are disposed on the wavelength conversion adhesive layer 170, wherein each light-emitting unit 110c has an upper surface 112c and a lower surface 114c opposite to each other, and a connection between the upper surface 112c and the lower surface 114c. The side surface 116c of the lower surface 114c and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114c and separated from each other, while the upper surface 112c of the light emitting unit 110c is located in the high-concentration fluorescent glue of the wavelength conversion glue layer 170 on layer 172. Next, a plurality of light-transmitting adhesive layers 150c made of light-transmitting colloid are respectively formed on the wavelength conversion adhesive layer 170 and extend to the side surface 116c of the light-emitting unit 110c, wherein the light-transmitting adhesive layer 150c does not completely cover the light-emitting unit 110c side surface 116c, but as shown in FIG. 14B, the light-transmitting adhesive layer 150c has a curvature slope, and the closer to the upper surface 112c of the light-emitting unit 110c, that is, closer to the wavelength conversion adhesive layer 170, the thicker the light-transmitting adhesive layer 150c is. thick. Here, the purpose of the transparent adhesive layer 150c is to fix the position of the light emitting unit 110c.

须说明的是,在其他实施例中,请参考图14B’,也可在将间隔排列的发光单元110c配置在波长转换胶层170上之前,形成一未固化且材料包含透光胶体的透光胶层150c’于波长转换胶层170上。而将发光单元110c间隔排列地配置在波长转换胶层170上之后,透光胶层150c’可延伸配置在发光单元110c与高浓度荧光胶层172之间。It should be noted that, in other embodiments, please refer to FIG. 14B′, before disposing the light-emitting units 110c arranged at intervals on the wavelength conversion adhesive layer 170, an uncured light-transmitting layer whose material includes a light-transmitting adhesive can also be formed. The glue layer 150c′ is on the wavelength conversion glue layer 170 . After the light-emitting units 110c are arranged at intervals on the wavelength conversion adhesive layer 170, the light-transmitting adhesive layer 150c' can be extended and disposed between the light-emitting units 110c and the high-concentration fluorescent adhesive layer 172.

接着,请同时参考图14B与图14C,在透光胶层150c’固化后,进行一第一切割程序,以切割波长转换胶层170,而形成多个彼此分离的单元101,其中每一单元101分别具有至少一个发光单元110c以及配置在发光单元110c的上表面112c的波长转换胶层170,且每一单元101的波长转换胶层170的两侧边缘171延伸至发光单元110c的侧表面116c之外。紧接着,请再参考图14C,将间隔排列的单元101配置在一基板10上。在本实施例中,基板10的材质例如是不锈钢、陶瓷或其他不导电的材质,在此并不加以限制。Next, please refer to FIG. 14B and FIG. 14C at the same time. After the light-transmitting adhesive layer 150c' is cured, a first cutting process is performed to cut the wavelength conversion adhesive layer 170 to form a plurality of separated units 101, wherein each unit 101 respectively has at least one light emitting unit 110c and a wavelength conversion adhesive layer 170 disposed on the upper surface 112c of the light emitting unit 110c, and the two side edges 171 of the wavelength conversion adhesive layer 170 of each unit 101 extend to the side surface 116c of the light emitting unit 110c outside. Next, please refer to FIG. 14C again, disposing the units 101 arranged at intervals on a substrate 10 . In this embodiment, the material of the substrate 10 is, for example, stainless steel, ceramics or other non-conductive materials, which are not limited here.

之后,请参考图14D,形成一反射保护件120c于基板10上且包覆每一单元101的发光单元110c的侧表面116c以及波长转换胶层170的边缘171。此处,反射保护件120c的形成方式例如是通过点胶的方式所形成,其中反射保护件120c直接覆盖透光胶层150c且沿着透光胶层150c延伸覆盖于波长转换胶层170的边缘171。发光单元110c的第一电极垫113与第二电极垫115于基板10上的正投影不重叠于反射保护件120c于基板10上的正投影。此处,反射保护件120c例如是一白胶层。After that, referring to FIG. 14D , a reflective protection member 120 c is formed on the substrate 10 and covers the side surface 116 c of the light emitting unit 110 c of each unit 101 and the edge 171 of the wavelength conversion adhesive layer 170 . Here, the reflective protection member 120c is formed, for example, by dispensing glue, wherein the reflective protection member 120c directly covers the light-transmitting adhesive layer 150c and extends along the light-transmitting adhesive layer 150c to cover the edge of the wavelength conversion adhesive layer 170 171. The orthographic projections of the first electrode pads 113 and the second electrode pads 115 of the light emitting unit 110 c on the substrate 10 do not overlap with the orthographic projections of the reflective protection member 120 c on the substrate 10 . Here, the reflective protection member 120c is, for example, a white glue layer.

最后,请同时参考图14D与图14E,进行一第二切割程序,以切割反射保护件120c,并且移除基板10,而形成多个彼此分离的发光装置100j。每一发光装置100j分别具有至少一个发光单元101以及包覆发光单元110c的侧表面116c与波长转换胶层170的边缘171的反射保护件120c。在移除基板10之后,暴露每一发光装置100j的反射保护件120c的一顶面122c与波长转换胶层170的一顶面173。在本发明另一实施例中,也可先移除基板10再进行一切割程序。至此,已完成发光装置100j的制作。Finally, referring to FIG. 14D and FIG. 14E at the same time, a second cutting process is performed to cut the reflective protection member 120c and remove the substrate 10 to form a plurality of light emitting devices 100j separated from each other. Each light emitting device 100j respectively has at least one light emitting unit 101 and a reflective protection member 120c covering the side surface 116c of the light emitting unit 110c and the edge 171 of the wavelength conversion adhesive layer 170 . After the substrate 10 is removed, a top surface 122c of the reflective protection member 120c and a top surface 173 of the wavelength conversion adhesive layer 170 of each light emitting device 100j are exposed. In another embodiment of the present invention, the substrate 10 may also be removed first and then a cutting process is performed. So far, the fabrication of the light emitting device 100j has been completed.

在结构上,请再参考图14E,本实施例的发光装置100j包括发光单元110c、反射保护件120c、透光胶层150c以及波长转换胶层170。波长转换胶层170配置在发光单元110c的上表面112c上,其中波长转换胶层170包括低浓度荧光胶层174以及高浓度荧光胶层172,而高浓度荧光胶层172位于低浓度荧光胶层174与发光单元110c之间,且波长转换胶层170的边缘171延伸至发光单元110c的侧表面116c之外。此处,低浓度荧光胶层174可用来做为透光保护层,以增加水气传递路径,有效防止水气渗入。透光胶层150c配置在发光单元110c的侧表面116c与反射保护件120c之间,用以固定发光单元110c的位置。本实施例的反射保护件120c是沿着覆盖发光单元110c的侧表面116c的透光胶层150c而还包覆于波长转换胶层170的边缘171,因此本实施例的发光装置100j不需要使用现有的承载支架来支撑及固定发光单元110c,而可有效减少封装厚度以及制作成本。同时,也可通过具有高反射率的反射保护件120c来有效提高发光单元110c的正向出光效率。此处,反射保护件120c的顶面122c具体化是切齐于波长转换胶层170的顶面173。In terms of structure, please refer to FIG. 14E again. The light emitting device 100j of this embodiment includes a light emitting unit 110c, a reflective protection member 120c, a transparent adhesive layer 150c and a wavelength conversion adhesive layer 170 . The wavelength conversion adhesive layer 170 is disposed on the upper surface 112c of the light-emitting unit 110c, wherein the wavelength conversion adhesive layer 170 includes a low-concentration fluorescent adhesive layer 174 and a high-concentration fluorescent adhesive layer 172, and the high-concentration fluorescent adhesive layer 172 is located on the low-concentration fluorescent adhesive layer. 174 and the light emitting unit 110c, and the edge 171 of the wavelength conversion adhesive layer 170 extends beyond the side surface 116c of the light emitting unit 110c. Here, the low-concentration fluorescent adhesive layer 174 can be used as a light-transmitting protective layer to increase the water vapor transmission path and effectively prevent water vapor from infiltrating. The light-transmitting adhesive layer 150c is disposed between the side surface 116c of the light emitting unit 110c and the reflective protection member 120c to fix the position of the light emitting unit 110c. The reflective protection member 120c of this embodiment is along the light-transmitting adhesive layer 150c covering the side surface 116c of the light-emitting unit 110c and also covers the edge 171 of the wavelength conversion adhesive layer 170, so the light-emitting device 100j of this embodiment does not need to use The existing supporting bracket is used to support and fix the light emitting unit 110c, which can effectively reduce the packaging thickness and manufacturing cost. At the same time, the forward light output efficiency of the light emitting unit 110c can also be effectively improved by using the reflective protection member 120c with high reflectivity. Here, the top surface 122c of the reflective protection member 120c is embodied to be aligned with the top surface 173 of the wavelength conversion adhesive layer 170 .

图15A至图15E示出为本发明的另一实施例的一种发光装置的制作方法的剖面示意图。请先参考图15A,提供一第一离型膜30,接着,提供一波长转换胶层170a于第一离型膜30上,波长转换胶层170a可以是单一层胶层,或是多层胶层,在本实施例中,波长转换胶层170a是包括一低浓度荧光胶层174a以及一位于低浓度荧光胶层174a上的高浓度荧光胶层172a。此处,形成波长转换胶层170a的步骤例如是先通过掺质与胶体混合的方式形成波长转换胶层170a,之后静置波长转换胶层170a一段时间,如24小时后,即形成分离的低浓度荧光胶层172a与高浓度荧光胶层174a。此处,第一离型膜30例如是双面胶膜。15A to 15E are schematic cross-sectional views illustrating a method of manufacturing a light emitting device according to another embodiment of the present invention. Please refer to FIG. 15A first, provide a first release film 30, then provide a wavelength conversion adhesive layer 170a on the first release film 30, the wavelength conversion adhesive layer 170a can be a single layer of adhesive layer, or multi-layer adhesive In this embodiment, the wavelength conversion adhesive layer 170a includes a low-concentration fluorescent adhesive layer 174a and a high-concentration fluorescent adhesive layer 172a on the low-concentration fluorescent adhesive layer 174a. Here, the step of forming the wavelength conversion adhesive layer 170a is, for example, to first form the wavelength conversion adhesive layer 170a by mixing dopant and colloid, and then let the wavelength conversion adhesive layer 170a stand for a period of time, such as 24 hours, to form a separated low Concentrated fluorescent glue layer 172a and high-concentrated fluorescent glue layer 174a. Here, the first release film 30 is, for example, a double-sided adhesive film.

接着,请再参考图15A,将多个间隔排列的发光单元110c配置在波长转换胶层170A上,其中每一发光单元110c具有彼此相对的一上表面112c与一下表面114c、一连接上表面112c与下表面114c的侧表面116c以及位于下表面114c上且彼此分离的一第一电极垫113与一第二电极垫115,而发光单元110c的上表面112c位于波长转换胶层170a的高浓度荧光胶层172a上。此处,相邻两发光单元110c具有一间距G,且此间距G例如是700微米。接着,再分别形成多个透光胶层150c于发光单元110c的侧表面116c上,其中透光胶层150c并没有完全覆盖发光单元110c的侧表面116c,而是如图15B所示,透光胶层150c是具有曲率斜面,且越靠近发光单元110c的上表面112c,透光胶层150c的厚度越厚。此处,透光胶层150c的目的在于固定发光单元110c的位置。Next, please refer to FIG. 15A again, a plurality of light-emitting units 110c arranged at intervals are arranged on the wavelength conversion adhesive layer 170A, wherein each light-emitting unit 110c has an upper surface 112c and a lower surface 114c opposite to each other, and a connecting upper surface 112c The side surface 116c of the lower surface 114c and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114c and separated from each other, while the upper surface 112c of the light emitting unit 110c is located on the high-concentration fluorescent light of the wavelength conversion adhesive layer 170a glue layer 172a. Here, two adjacent light-emitting units 110c have a distance G, and the distance G is, for example, 700 microns. Next, a plurality of light-transmitting adhesive layers 150c are respectively formed on the side surfaces 116c of the light emitting unit 110c, wherein the light-transmitting adhesive layers 150c do not completely cover the side surfaces 116c of the light emitting unit 110c, but as shown in FIG. The adhesive layer 150c has a curvature slope, and the closer to the upper surface 112c of the light emitting unit 110c, the thicker the thickness of the transparent adhesive layer 150c is. Here, the purpose of the transparent adhesive layer 150c is to fix the position of the light emitting unit 110c.

接着,请参考图15B,进行一第一切割程序,以切割高浓度荧光胶层172a以及部分低浓度荧光胶层174a,而形成多个沟槽C。如图15B所示,第一次切割程序并没有完全切断波长转换胶层170a,而是只有切断高浓度荧光胶层172a以及切割部分低浓度荧光胶层174a。此处,沟槽C的宽度W例如是400微米,且沟槽C的深度D例如是波长转换胶层170a的厚度T的一半。波长转换胶层170a的厚度T例如是140微米,而沟槽C的深度D例如是70微米。此时,沟槽C的位置与的封装胶层150c的位置并没有相互干涉。Next, please refer to FIG. 15B , a first cutting process is performed to cut the high-concentration fluorescent glue layer 172 a and part of the low-concentration fluorescent glue layer 174 a to form a plurality of grooves C. As shown in FIG. 15B , the first cutting process does not completely cut off the wavelength conversion adhesive layer 170a, but only cuts off the high-concentration fluorescent adhesive layer 172a and cuts a part of the low-concentration fluorescent adhesive layer 174a. Here, the width W of the trench C is, for example, 400 micrometers, and the depth D of the trench C is, for example, half the thickness T of the wavelength conversion adhesive layer 170 a. The thickness T of the wavelength conversion adhesive layer 170a is, for example, 140 microns, and the depth D of the groove C is, for example, 70 microns. At this time, the position of the trench C and the position of the packaging adhesive layer 150c do not interfere with each other.

之后,请参考图15C,形成一反射保护件120d于低浓度荧光胶层174a上且包覆发光单元110c的侧表面116c,其中反射保护件120d填满沟槽C且暴露出发光单元110c的第一电极垫113以及第二电极垫115。此处,反射保护件120d例如是一白胶层。Afterwards, referring to FIG. 15C , a reflective protection member 120d is formed on the low-concentration fluorescent adhesive layer 174a and covers the side surface 116c of the light emitting unit 110c, wherein the reflective protection member 120d fills the groove C and exposes the first side of the light emitting unit 110c. An electrode pad 113 and a second electrode pad 115 . Here, the reflective protection member 120d is, for example, a white glue layer.

最后,请同时参考图15D与图15E,移除第一离型层30,并提供一第二离型层40,使发光单元110c的第一电极垫113与第二电极垫115接触第二离型膜40。此处,第二离型层40例如是UV胶或双面胶。接着,进行一第二切割程序,以沿着沟槽C的延伸方向(即图式15D中切割线L的延伸方向)而切割反射保护件120d与低浓度荧光胶层174a,而形成多个彼此分离的发光装置100k。每一发光装置100k分别具有至少一个发光单元110c、配置在发光单元110c的上表面112c的波长转换胶层170a以及包覆发光单元110c的侧表面116c的反射保护件120d。本实施例中,波长转换胶层170a是包含高浓度荧光胶层172a与低浓度荧光胶层174a,此处,波长转换胶层170a的低浓度荧光胶层174a的边缘171a切齐于反射保护件120d的边缘121,且反射保护件120d还包覆高浓度荧光胶层172a的边缘173a。移除第二离形层40,而完成发光装置100k的制作。Finally, please refer to FIG. 15D and FIG. 15E at the same time, remove the first release layer 30, and provide a second release layer 40, so that the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110c contact the second release layer. Type film 40. Here, the second release layer 40 is, for example, UV adhesive or double-sided adhesive. Next, a second cutting process is performed to cut the reflective protection member 120d and the low-concentration fluorescent glue layer 174a along the extending direction of the groove C (ie, the extending direction of the cutting line L in FIG. Separate light emitting device 100k. Each light emitting device 100k has at least one light emitting unit 110c, a wavelength conversion adhesive layer 170a disposed on the upper surface 112c of the light emitting unit 110c, and a reflective protection member 120d covering the side surface 116c of the light emitting unit 110c. In this embodiment, the wavelength conversion adhesive layer 170a includes a high-concentration fluorescent adhesive layer 172a and a low-concentration fluorescent adhesive layer 174a. Here, the edge 171a of the low-concentration fluorescent adhesive layer 174a of the wavelength conversion adhesive layer 170a is aligned with the reflection protection member. The edge 121 of 120d, and the reflective protection member 120d also covers the edge 173a of the high-concentration fluorescent glue layer 172a. The second release layer 40 is removed to complete the fabrication of the light emitting device 100k.

在结构上,请再参考图15E,本实施例的发光装置100k包括发光单元110c、反射保护件120d、透光胶层150c以及波长转换胶层170a。波长转换胶层170a配置在发光单元110c的上表面112c上,其中波长转换胶层170a包括低浓度荧光胶层174a以及高浓度荧光胶层172a,而高浓度荧光胶层172a位于低浓度荧光胶层174a与发光单元110c之间,且波长转换胶层170a的边缘171a延伸至发光单元110c的侧表面116c之外。此处,低浓度荧光胶层174可用来做为透光保护层,以增加水气传递路径,有效防止水气渗入。透光胶层150c配置在发光单元110c的侧表面116c与反射保护件120d之间,用以固定发光单元110c的位置。本实施例的反射保护件120d是沿着覆盖发光单元110c的侧表面116c的透光胶层150c而还包覆于波长转换胶层170a的高浓度荧光胶层172a的两侧边缘173a,因此本实施例的发光装置100k不需要使用现有的承载支架来支撑及固定发光单元110c,而可有效减少封装厚度以及制作成本。同时,也可通过具有高反射率的反射保护件120d来有效提高发光单元110c的正向出光效率。此外,本实施例的波长转换胶层170a的低浓度荧光胶层174a覆盖反射保护件120d的一顶面122d。也就是说,本实施例的波长转换胶层170a的高浓度荧光胶层172a的边缘173a与低浓度荧光胶层174a的边缘171a的并没有切齐。In terms of structure, please refer to FIG. 15E again. The light emitting device 100k of this embodiment includes a light emitting unit 110c, a reflective protection member 120d, a transparent adhesive layer 150c, and a wavelength conversion adhesive layer 170a. The wavelength conversion adhesive layer 170a is disposed on the upper surface 112c of the light-emitting unit 110c, wherein the wavelength conversion adhesive layer 170a includes a low-concentration fluorescent adhesive layer 174a and a high-concentration fluorescent adhesive layer 172a, and the high-concentration fluorescent adhesive layer 172a is located on the low-concentration fluorescent adhesive layer. 174a and the light emitting unit 110c, and the edge 171a of the wavelength conversion adhesive layer 170a extends beyond the side surface 116c of the light emitting unit 110c. Here, the low-concentration fluorescent adhesive layer 174 can be used as a light-transmitting protective layer to increase the water vapor transmission path and effectively prevent water vapor from infiltrating. The light-transmitting adhesive layer 150c is disposed between the side surface 116c of the light-emitting unit 110c and the reflective protection member 120d to fix the position of the light-emitting unit 110c. The reflective protection member 120d of this embodiment is along the light-transmitting adhesive layer 150c covering the side surface 116c of the light-emitting unit 110c and also covers the two side edges 173a of the high-concentration fluorescent adhesive layer 172a of the wavelength conversion adhesive layer 170a. The light-emitting device 100k of the embodiment does not need to use the existing supporting frame to support and fix the light-emitting unit 110c, which can effectively reduce the packaging thickness and manufacturing cost. At the same time, the forward light output efficiency of the light emitting unit 110c can also be effectively improved by using the reflective protection member 120d with high reflectivity. In addition, the low-concentration fluorescent adhesive layer 174a of the wavelength conversion adhesive layer 170a of this embodiment covers a top surface 122d of the reflective protection member 120d. That is to say, the edge 173a of the high-concentration fluorescent adhesive layer 172a and the edge 171a of the low-concentration fluorescent adhesive layer 174a of the wavelength conversion adhesive layer 170a of this embodiment are not aligned.

在其他实施例中,请参考图16A,本实施例的发光装置100m与图14E中的发光装置100j相似,差异之处在于:本实施例的反射保护件120m完全填满第一电极垫113与第二电极垫114之间的间隙S且完全覆盖第一电极垫113的一第一侧表面113b与第二电极垫115的一第二侧表面115b,而反射保护件120m的一底面124m切齐于第一电极垫113的第一底面113a与第二电极垫115的第二底面115a。如此一来,可以避免发光装置100m的底部产生漏光的情况。此外,反射保护件120m则完全包覆于波长转换胶层170a的两侧边缘。再者,由于反射保护件120m的包覆性佳且具有较佳的结构性强度,因此本实施例的发光装置100m不需要使用现有的承载支架来支撑及固定发光单元110c,而可有效减少封装厚度以及制作成本。In other embodiments, please refer to FIG. 16A, the light emitting device 100m in this embodiment is similar to the light emitting device 100j in FIG. The gap S between the second electrode pads 114 completely covers a first side surface 113b of the first electrode pad 113 and a second side surface 115b of the second electrode pad 115, and a bottom surface 124m of the reflective protection member 120m is aligned. on the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode pad 115 . In this way, light leakage at the bottom of the light emitting device 100m can be avoided. In addition, the reflective protection member 120m completely covers the two side edges of the wavelength conversion adhesive layer 170a. Moreover, since the reflective protection member 120m has good wrapping properties and better structural strength, the light emitting device 100m of this embodiment does not need to use the existing supporting bracket to support and fix the light emitting unit 110c, and can effectively reduce the Package thickness and fabrication cost.

或者是,请参考图16B,本实施例的发光装置100n与图16A中的发光装置100k相似,差异之处在于:本实施例的反射保护件120n填充于第一电极垫113与第二电极垫114之间的间隙S但并未完全填满,且反射保护件120n仅覆盖第一电极垫113的部分第一侧表面113b与第二电极垫115的部分第二侧表面115b。换言之,反射保护件120n的一底面124n与第一电极垫113的第一底面113a及第二电极垫115的第二底面115a之间具有一高度差H。或者是,请参考图16C,本实施例的发光装置100p与图16B中的发光装置100n相似,差异之处在于:本实施例中第一电极垫113’与第二电极垫115’具体化为多层金属层,如有第一金属层M1及第二金属层M2所组成,但并不以此为限。反射保护件120p完全覆盖第一电极垫113’与第二电极垫115的第一金属层M1的侧表面,但并未完全覆盖第一电极垫113’与第二电极垫115’的第二金属层M2的侧表面。简言之,发光装置100m、100n、100p的发光单元110c、110c’的第一电极垫113、113’与第二电极垫115、115’可为单一金属层或多层金属层,与此并不加以限制。Or, please refer to FIG. 16B, the light emitting device 100n of this embodiment is similar to the light emitting device 100k in FIG. 16A, the difference is that: the reflective protection member 120n of this embodiment is filled in the first electrode pad 113 and the second electrode pad The gap S between 114 is not completely filled, and the reflective protection member 120 n only covers part of the first side surface 113 b of the first electrode pad 113 and part of the second side surface 115 b of the second electrode pad 115 . In other words, there is a height difference H between a bottom surface 124n of the reflective protection member 120n and the first bottom surface 113a of the first electrode pad 113 and the second bottom surface 115a of the second electrode pad 115 . Alternatively, please refer to FIG. 16C, the light emitting device 100p of this embodiment is similar to the light emitting device 100n in FIG. The multi-layer metal layer, for example, is composed of the first metal layer M1 and the second metal layer M2, but is not limited thereto. The reflective protection member 120p completely covers the side surfaces of the first metal layer M1 of the first electrode pad 113' and the second electrode pad 115, but does not completely cover the second metal layer of the first electrode pad 113' and the second electrode pad 115'. The side surface of layer M2. In short, the first electrode pads 113, 113' and the second electrode pads 115, 115' of the light-emitting units 110c, 110c' of the light-emitting devices 100m, 100n, and 100p can be a single metal layer or multiple metal layers. Not limited.

图17A至图17E示出为本发明的一实施例的一种发光装置的制作方法的剖面示意图。关于本实施例的发光装置的制作方法,首先,请参考图17A,提供一波长转换胶层210,波长转换胶层210可为单一层胶层或是多层胶层,本实施例中的波长转换胶层210包括一低浓度荧光胶层212以及一位于低浓度荧光胶层212上的高浓度荧光胶层214。此处,形成波长转换胶层210的步骤例如是先通过掺质与胶体混合的方式将由荧光粉(未示出)与硅胶(未示出)加以均匀混合后所形成的波长转换胶材料层(未示出)铺设于一离型膜(未示出)上,之后静置波长转换胶材料层一段时间,如24小时后,因为荧光粉跟硅胶的密度差异而形成具有分离的一低浓度荧光胶层212与一高浓度荧光胶层214的波长转换胶层210,其中高浓度荧光胶层214会沉淀于低浓度荧光胶层212的下方,而高浓度荧光胶层214例如是黄色,低浓度荧光胶层212例如是透明的,低浓度荧光胶层212的厚度较佳是大于高浓度荧光胶层214的厚度,在一实施例中,厚度的比值可介于1至200间,但并不以此为限。17A to 17E are schematic cross-sectional views showing a method of manufacturing a light emitting device according to an embodiment of the present invention. Regarding the manufacturing method of the light-emitting device of this embodiment, first, please refer to FIG. 17A, a wavelength conversion adhesive layer 210 is provided. The wavelength conversion adhesive layer 210 can be a single layer of adhesive layer or multiple layers of adhesive layers. The wavelength in this embodiment The conversion adhesive layer 210 includes a low-concentration fluorescent adhesive layer 212 and a high-concentration fluorescent adhesive layer 214 on the low-concentration fluorescent adhesive layer 212 . Here, the step of forming the wavelength conversion adhesive layer 210 is, for example, to uniformly mix the wavelength conversion adhesive material layer ( not shown) laid on a release film (not shown), and then let the wavelength conversion adhesive material layer stand for a period of time, such as 24 hours later, due to the density difference between the fluorescent powder and the silica gel, a low-concentration fluorescence with separation is formed. The wavelength conversion adhesive layer 210 of the adhesive layer 212 and a high-concentration fluorescent adhesive layer 214, wherein the high-concentration fluorescent adhesive layer 214 will be deposited below the low-concentration fluorescent adhesive layer 212, and the high-concentration fluorescent adhesive layer 214 is yellow, for example, and the low-concentration fluorescent adhesive layer 214 The fluorescent adhesive layer 212 is, for example, transparent. The thickness of the low-concentration fluorescent adhesive layer 212 is preferably greater than the thickness of the high-concentration fluorescent adhesive layer 214. In one embodiment, the thickness ratio can be between 1 and 200, but not This is the limit.

接着,请再参考图17A,提供一双面胶膜10a,波长转换胶层210的低浓度荧光胶层212配置在双面胶膜10a上,以通过双面胶膜10a来固定波长转换胶层210的位置。接着,进行一第一切割程序,以从高浓度荧光胶层214切割至部分低浓度荧光胶层212,而形成多个沟槽C1。此处,每一沟槽C1的深度至少为波长转换胶层210的厚度的一半。举例来说,如波长转换胶层210的厚度为240微米,而沟槽C1的深度则例如为200微米。此时,沟槽C1可将波长转换胶层210的低浓度荧光胶层212区分为一平板部212a以及一位于平板部212a上的突出部212b,而高浓度荧光胶层214则位于突出部212b上。Next, please refer to FIG. 17A again, a double-sided adhesive film 10a is provided, and the low-concentration fluorescent adhesive layer 212 of the wavelength conversion adhesive layer 210 is disposed on the double-sided adhesive film 10a, so as to fix the wavelength conversion adhesive layer through the double-sided adhesive film 10a 210 location. Next, a first cutting process is performed to cut from the high-concentration fluorescent glue layer 214 to a part of the low-concentration fluorescent glue layer 212 to form a plurality of grooves C1. Here, the depth of each groove C1 is at least half of the thickness of the wavelength conversion adhesive layer 210 . For example, if the thickness of the wavelength conversion adhesive layer 210 is 240 microns, the depth of the groove C1 is, for example, 200 microns. At this time, the groove C1 can divide the low-concentration fluorescent adhesive layer 212 of the wavelength conversion adhesive layer 210 into a flat plate portion 212a and a protruding portion 212b on the flat plate portion 212a, while the high-concentration fluorescent adhesive layer 214 is located on the protruding portion 212b. superior.

接着,请参考图17B,将多个间隔排列的发光单元220配置在波长转换胶层210上,其中每一发光单元220具有彼此相对的一上表面222与一下表面224、一连接上表面222与下表面224的侧表面226以及位于下表面224上且彼此分离的一第一电极垫223与一第二电极垫225。发光单元220的上表面222位于波长转换胶层210的高浓度荧光胶层214上,以增加光取出率及改善光型。沟槽C1将发光单元220区分为多个单元A,在本实施例中每一单元A中至少包括二个发光单元220(图17B中示意地示出两个发光单元220)。每一发光单元220例如是为发光波长介于315纳米至780纳米之间的发光二极管芯片,而发光二极管芯片包括但不限于紫外光、蓝光、绿光、黄光、橘光或红光发光二极管芯片。Next, please refer to FIG. 17B , a plurality of light-emitting units 220 arranged at intervals are arranged on the wavelength conversion adhesive layer 210, wherein each light-emitting unit 220 has an upper surface 222 and a lower surface 224 opposite to each other, and a connection between the upper surface 222 and the lower surface 224. The side surface 226 of the lower surface 224 and a first electrode pad 223 and a second electrode pad 225 located on the lower surface 224 and separated from each other. The upper surface 222 of the light emitting unit 220 is located on the high-concentration fluorescent adhesive layer 214 of the wavelength conversion adhesive layer 210 to increase the light extraction rate and improve the light pattern. The groove C1 divides the light emitting unit 220 into a plurality of units A, and in this embodiment, each unit A includes at least two light emitting units 220 (two light emitting units 220 are schematically shown in FIG. 17B ). Each light-emitting unit 220 is, for example, a light-emitting diode chip with a light-emitting wavelength between 315 nanometers and 780 nanometers, and the light-emitting diode chip includes but is not limited to ultraviolet, blue, green, yellow, orange or red light-emitting diodes chip.

接着,请再参考图17B,形成一透光胶层230a于波长转换胶层210上且延伸配置在发光单元220的侧表面226上。如图17B所示,透光胶层230a由每一发光单元220的下表面224往上表面222逐渐增厚,且透光胶层230a相对于发光单元220的侧表面226具有一内凹表面232,但并不以此为限。此处,透光胶层230a的目的除了在于固定发光单元220的位置之外,因透光胶层230a为一透光材质且折射率大于1,因此也可增加芯片侧面的光取出效果。Next, please refer to FIG. 17B again, forming a transparent adhesive layer 230 a on the wavelength conversion adhesive layer 210 and extending on the side surface 226 of the light emitting unit 220 . As shown in FIG. 17B , the light-transmitting adhesive layer 230a gradually thickens from the lower surface 224 to the upper surface 222 of each light-emitting unit 220 , and the light-transmitting adhesive layer 230a has a concave surface 232 relative to the side surface 226 of the light-emitting unit 220 , but not limited to this. Here, the purpose of the light-transmitting adhesive layer 230a is not only to fix the position of the light-emitting unit 220, but also to increase the light extraction effect on the side of the chip because the light-transmitting adhesive layer 230a is a light-transmitting material with a refractive index greater than 1.

接着,请参考图17C,形成一反射保护件240于发光单元220之间并填满沟槽C1,其中反射保护件240形成于波长转换胶层210上且包覆每一单元A并填满沟槽C1。反射保护件240暴露出每一发光单元220的下表面224、第一电极垫223以及第二电极垫225。此处,反射保护件240的反射率至少大于90%,而反射保护件240例如是一白胶层。反射保护件240的形成方式例如是通过点胶的方式,其中反射保护件240直接覆盖透光胶层230a且沿着透光胶层230a延伸覆盖于高浓度荧光胶层214的边缘上且填满沟槽C1。此时,发光单元220的第一电极垫223与第二电极垫225于双面胶膜10a上的正投影不重叠于反射保护件240于双面胶膜10a上的正投影。Next, please refer to FIG. 17C , a reflective protection member 240 is formed between the light emitting units 220 and fills the groove C1, wherein the reflective protection member 240 is formed on the wavelength conversion adhesive layer 210 and covers each unit A and fills the groove Slot C1. The reflective protection member 240 exposes the lower surface 224 of each light emitting unit 220 , the first electrode pad 223 and the second electrode pad 225 . Here, the reflectivity of the reflection protection member 240 is at least greater than 90%, and the reflection protection member 240 is, for example, a white glue layer. The reflective protection member 240 is formed, for example, by dispensing glue, wherein the reflective protection member 240 directly covers the light-transmitting adhesive layer 230a and extends along the light-transmitting adhesive layer 230a to cover and fill the edge of the high-concentration fluorescent adhesive layer 214. Groove C1. At this time, the orthographic projections of the first electrode pads 223 and the second electrode pads 225 of the light emitting unit 220 on the double-sided adhesive film 10a do not overlap with the orthographic projections of the reflective protection member 240 on the double-sided adhesive film 10a.

接着,请再参考图17C,进行一第二切割程序,以从反射保护件240沿着沟槽C1而贯穿低浓度荧光胶层212,而形成多个彼此分离的发光装置200a。此时,如图17C所示,每一单元A中的二个发光单元220所接触的波长转换胶层210是连续的,意即这些发光单元220具有同一发光面,因此发光单元220所发出的光可通过透明的低浓度荧光胶层212来进行导光,可使得本实施例的发光装置200a具有较佳的发光均匀性。Next, please refer to FIG. 17C , a second cutting process is performed to form a plurality of separated light emitting devices 200 a from the reflective protection member 240 along the groove C1 to penetrate the low-concentration fluorescent glue layer 212 . At this time, as shown in FIG. 17C , the wavelength conversion adhesive layer 210 in contact with the two light-emitting units 220 in each unit A is continuous, which means that these light-emitting units 220 have the same light-emitting surface, so the light emitted by the light-emitting units 220 The light can be guided through the transparent low-concentration fluorescent adhesive layer 212 , so that the light emitting device 200 a of this embodiment has better uniformity of light emission.

之后,请同时参考图17C与图17D,进行第二切割程序之后,需进行一翻膜程序。首先,先提供一UV胶膜20a于发光单元220的第一电极垫223与第二电极垫225上,以先固定这些发光装置200a的相对位置。接着,移除双面胶膜10a而暴露出波长转换胶层210的低浓度荧光胶层212。最后,请参考图17E,移除UV胶膜20a而暴露出发光单元220的第一电极垫223与第二电极垫225。至此,已完成发光装置200a的制作。需说明的是,为了方便说明起见,图17E仅示意地示出一个发光装置200a。After that, please refer to FIG. 17C and FIG. 17D at the same time. After the second cutting procedure, a film turning procedure is required. Firstly, a UV adhesive film 20a is provided on the first electrode pad 223 and the second electrode pad 225 of the light emitting unit 220 to first fix the relative positions of these light emitting devices 200a. Next, the double-sided adhesive film 10 a is removed to expose the low-concentration fluorescent adhesive layer 212 of the wavelength conversion adhesive layer 210 . Finally, referring to FIG. 17E , the UV adhesive film 20 a is removed to expose the first electrode pad 223 and the second electrode pad 225 of the light emitting unit 220 . So far, the fabrication of the light emitting device 200a has been completed. It should be noted that, for convenience of description, FIG. 17E only schematically shows one light emitting device 200a.

在结构上,请再参考图17E,发光装置200a包括多个发光单元220(图17E中示意地示出二个发光单元220)、一波长转换胶层210以及一反射保护件240。每一发光单元220具有彼此相对的一上表面222与一下表面224、一连接上表面222与下表面224的侧表面226以及位于下表面224上且彼此分离的一第一电极垫223与一第二电极垫225。波长转换胶层210配置在发光单元220的上表面222上,且波长转换胶层210包括一低浓度荧光胶层212以及一高浓度荧光胶层214。低浓度荧光胶层212具有一平板部212a以及一位于平板部212a上的突出部212b。高浓度荧光胶层214配置在上表面222与突出部212b之间,其中高浓度荧光胶层214覆盖突出部212b且接触发光单元220的上表面222。发光单元220间隔排列且暴露出部分波长转换胶层210。反射保护件240包覆每一发光单元220的侧表面226且覆盖发光单元220所暴露出的波长转换胶层210。反射保护件240暴露出每一发光单元220的下表面224、第一电极垫223以及第二电极垫225。反射保护件240的边缘切齐于低浓度荧光胶层212的平板部212a的边缘。In terms of structure, please refer to FIG. 17E again. The light emitting device 200a includes a plurality of light emitting units 220 (two light emitting units 220 are schematically shown in FIG. 17E ), a wavelength conversion adhesive layer 210 and a reflective protection member 240 . Each light emitting unit 220 has an upper surface 222 and a lower surface 224 opposite to each other, a side surface 226 connecting the upper surface 222 and the lower surface 224, and a first electrode pad 223 and a first electrode pad 223 separated from each other on the lower surface 224. Two electrode pads 225 . The wavelength conversion adhesive layer 210 is disposed on the upper surface 222 of the light emitting unit 220 , and the wavelength conversion adhesive layer 210 includes a low concentration fluorescent adhesive layer 212 and a high concentration fluorescent adhesive layer 214 . The low-concentration fluorescent adhesive layer 212 has a flat portion 212a and a protruding portion 212b on the flat portion 212a. The high-concentration fluorescent adhesive layer 214 is disposed between the upper surface 222 and the protruding portion 212 b , wherein the high-concentration fluorescent adhesive layer 214 covers the protruding portion 212 b and contacts the upper surface 222 of the light emitting unit 220 . The light emitting units 220 are arranged at intervals and expose part of the wavelength conversion glue layer 210 . The reflective protection member 240 covers the side surface 226 of each light emitting unit 220 and covers the wavelength conversion adhesive layer 210 exposed by the light emitting unit 220 . The reflective protection member 240 exposes the lower surface 224 of each light emitting unit 220 , the first electrode pad 223 and the second electrode pad 225 . Edges of the reflective protection member 240 are aligned with edges of the flat portion 212 a of the low-concentration fluorescent glue layer 212 .

由于本实施例的发光装置200a中的这些发光单元220仅与一个波长转换胶层210相接触,意即这些发光单元220具有同一发光面,且低浓度荧光胶层212的边缘与反射保护件240的边缘切齐。因此,发光单元220所发出的光通过低浓度荧光胶层212的导引,可使得本实施例的发光装置200a可具有较大的发光面积与较佳的发光均匀性。此外,反射保护件240包覆发光单元220的侧表面226,且反射保护件240暴露出发光单元220的第一电极垫223以及第二电极垫225。因此,本实施例的发光装置200a不需要使用现有的承载支架来支撑及固定发光单元220,可有效较少封装厚度以及制作成本,同时,也可有效提高发光单元220的正向出光效率。Since these light-emitting units 220 in the light-emitting device 200a of this embodiment are only in contact with one wavelength conversion adhesive layer 210, it means that these light-emitting units 220 have the same light-emitting surface, and the edge of the low-concentration fluorescent adhesive layer 212 is in contact with the reflection protection member 240 The edges are trimmed. Therefore, the light emitted by the light-emitting unit 220 is guided by the low-concentration fluorescent adhesive layer 212 , so that the light-emitting device 200 a of this embodiment can have a larger light-emitting area and better light-emitting uniformity. In addition, the reflective protector 240 covers the side surface 226 of the light emitting unit 220 , and the reflective protector 240 exposes the first electrode pad 223 and the second electrode pad 225 of the light emitting unit 220 . Therefore, the light-emitting device 200a of this embodiment does not need to use the existing supporting frame to support and fix the light-emitting unit 220, which can effectively reduce the packaging thickness and manufacturing cost, and can also effectively improve the forward light output efficiency of the light-emitting unit 220.

值得一提的是,本实施例并不限定透光胶层230a的结构型态,虽然图17E所示出的透光胶层230a具体化为相对于发光单元220的侧表面226具有内凹表面232。换言之,反射保护件240还包含一与发光单元220接触的反射面242,而此反射面242具体化为曲面。但,在其他实施例中,请参考图18A,本实施例的发光装置200b与图17E中的发光装置200a相似,差异之处在于:透光胶层230b相对于每一发光单元220的侧表面226具有一外凸表面234,可有效增加发光单元220的侧向出光,且通过配合波长转换胶层210的配置,也可增加发光装置200b的出光面积。换言之,反射保护件240a的反射面242a具体化为曲面。或者是,请参考图18B,本实施例的发光装置200c与图17E中的发光装置200a相似,差异之处在于:透光胶层230c相对于每一发光单元220的侧表面226具有一倾斜表面236。换言之,反射保护件240b的反射面242b具体化为平面。It is worth mentioning that this embodiment does not limit the structure of the light-transmitting adhesive layer 230a, although the light-transmitting adhesive layer 230a shown in FIG. 232. In other words, the reflective protection member 240 further includes a reflective surface 242 in contact with the light emitting unit 220 , and the reflective surface 242 is embodied as a curved surface. However, in other embodiments, please refer to FIG. 18A, the light emitting device 200b of this embodiment is similar to the light emitting device 200a in FIG. 226 has a convex surface 234 , which can effectively increase the lateral light emission of the light emitting unit 220 , and also increase the light emission area of the light emitting device 200 b by cooperating with the configuration of the wavelength conversion adhesive layer 210 . In other words, the reflective surface 242a of the reflective protector 240a is embodied as a curved surface. Or, please refer to FIG. 18B, the light emitting device 200c of this embodiment is similar to the light emitting device 200a in FIG. 236. In other words, the reflective surface 242b of the reflective protector 240b is embodied as a plane.

在此必须说明的是,下述实施例沿用前述实施例的元件标号与部分内容,其中采用相同的标号来表示相同或近似的元件,相同技术内容的说明可参考前述实施例,下述实施例不再重复赘述。It must be noted here that the following embodiments continue to use the component numbers and parts of the previous embodiments, wherein the same symbols are used to represent the same or similar components, and the description of the same technical content can refer to the previous embodiments. The following embodiments I won't repeat it.

图19A至图19E示出为本发明的另一实施例的一种发光装置的制作方法的剖面示意图。本实施例的发光装置200d的制作方法与上述图17A至图17E中的发光装置200a的制作方法的主要差异之处在于:请参考图19A,在进行第一切割程序时,还形成多个从高浓度荧光胶层214’切割至部分低浓度荧光胶层212’的第二沟槽C2’。如图19A所示,沟槽C1’与第二沟槽C2’的位置呈交错排列,其中每一沟槽C1’的深度至少为波长转换胶层210’的厚度的一半,且每一第二沟槽C2’的深度与每一沟槽C1’的深度相同。举例来说,如波长转换胶层210’的厚度为240微米,而沟槽C1’的深度以及第二沟槽C2’的深度则例如为200微米,但并不以此为限。此时,低浓度荧光胶层212’的平板部212a’具有一厚度T,较佳地,厚度T例如是介于20微米至50微米之间。第二沟槽C2’将波长转换胶层210’中的低浓度荧光胶层212’的突出部区分为二突出子部212b’,而高浓度荧光胶层214’位于这些突出子部212b’上。19A to 19E are schematic cross-sectional views showing a method of manufacturing a light emitting device according to another embodiment of the present invention. The main difference between the fabrication method of the light-emitting device 200d in this embodiment and the fabrication method of the light-emitting device 200a in FIGS. The high-concentration fluorescent adhesive layer 214' is cut to part of the second groove C2' of the low-concentration fluorescent adhesive layer 212'. As shown in FIG. 19A, the positions of the grooves C1' and the second grooves C2' are staggered, wherein the depth of each groove C1' is at least half of the thickness of the wavelength conversion adhesive layer 210', and each second The depth of trench C2' is the same as that of each trench C1'. For example, if the thickness of the wavelength conversion adhesive layer 210' is 240 microns, the depths of the trench C1' and the second trench C2' are, for example, 200 microns, but not limited thereto. At this time, the plate portion 212a' of the low-concentration fluorescent adhesive layer 212' has a thickness T, preferably, the thickness T is between 20 microns and 50 microns, for example. The second groove C2' divides the protruding portion of the low-concentration fluorescent adhesive layer 212' in the wavelength conversion adhesive layer 210' into two protruding sub-parts 212b', and the high-concentration fluorescent adhesive layer 214' is located on these protruding sub-parts 212b' .

接着,请参考图19B,将间隔排列的发光单元220配置在波长转换胶层210’上,其中第二沟槽C2’位于每一发光单元单元A中的二个发光单元220之间,而发光单元220分别配置在突出子部212b’上,且发光单元220的上表面222直接接触高浓度荧光胶层214’。较佳地,每一突出子部212b’的长度与对应的发光单元220的长度的比值为大于1且小于1.35,也就是说,低浓度荧光胶层212’的突出子部212b’的边缘在发光单元220的边缘外,且高浓度荧光胶层214’的边缘也延伸至发光单元220的边缘外,可有效增加发光单元220的发光面积。接着,分别形成一透光胶层230a于发光单元220的侧表面226上,其中透光胶层230a仅配置在发光单元220的侧表面226上且延伸至波长转换胶层210’的高浓度荧光胶层214’上,其并未延伸配置在低浓度荧光胶层212’上。Next, please refer to FIG. 19B , the light emitting units 220 arranged at intervals are arranged on the wavelength conversion adhesive layer 210', wherein the second groove C2' is located between the two light emitting units 220 in each light emitting unit A, and emits light. The units 220 are respectively disposed on the protruding sub-parts 212b', and the upper surface 222 of the light emitting unit 220 directly contacts the high-concentration fluorescent glue layer 214'. Preferably, the ratio of the length of each protruding subsection 212b' to the length of the corresponding light-emitting unit 220 is greater than 1 and less than 1.35, that is, the edge of the protruding subsection 212b' of the low-concentration fluorescent glue layer 212' is at Outside the edge of the light-emitting unit 220 , and the edge of the high-concentration fluorescent adhesive layer 214 ′ also extends outside the edge of the light-emitting unit 220 , which can effectively increase the light-emitting area of the light-emitting unit 220 . Next, a light-transmitting adhesive layer 230a is formed on the side surface 226 of the light emitting unit 220, wherein the light-transmitting adhesive layer 230a is only disposed on the side surface 226 of the light emitting unit 220 and extends to the high-concentration fluorescent light of the wavelength conversion adhesive layer 210'. On the adhesive layer 214', it is not extended on the low-concentration fluorescent adhesive layer 212'.

接着,同上述图17C、图17D与图17E的步骤,请先考图19C,即形成反射保护件240于波长转换胶层210’上且包覆每一单元A并填满沟槽C1’与第二沟槽C2’,接着,进行一第二切割程序,以从反射保护件240沿着沟槽C1’而贯穿低浓度荧光胶层212’,而形成多个彼此分离的发光装置200d。接着,请同时参考图19C与图19D,进行第二切割程序之后,需进行一翻膜程序。首先,先提供UV胶膜20a于发光单元220的第一电极垫223与第二电极垫225上,以先固定这些发光装置200a的相对位置。接着,移除双面胶膜10a而暴露出波长转换胶层210’的低浓度荧光胶层212’。最后,请参考图19E,移除UV胶膜20a而暴露出发光单元220的第一电极垫223与第二电极垫225上。至此,已完成发光装置200d的制作。需说明的是,为了方便说明起见,图19E仅示意地示出一个发光装置200d。Next, the same as the above-mentioned steps in FIG. 17C, FIG. 17D and FIG. 17E, please refer to FIG. 19C first, that is, form a reflection protection member 240 on the wavelength conversion adhesive layer 210' and cover each unit A and fill the grooves C1' and Next, a second cutting process is performed on the second trench C2 ′ to form a plurality of separated light emitting devices 200 d from the reflective protection member 240 along the trench C1 ′ and through the low-concentration fluorescent adhesive layer 212 ′. Next, please refer to FIG. 19C and FIG. 19D at the same time. After the second cutting process, a film turning process needs to be performed. Firstly, the UV adhesive film 20a is provided on the first electrode pad 223 and the second electrode pad 225 of the light emitting unit 220 to first fix the relative positions of these light emitting devices 200a. Next, the double-sided adhesive film 10a is removed to expose the low-concentration fluorescent adhesive layer 212' of the wavelength conversion adhesive layer 210'. Finally, referring to FIG. 19E , the UV adhesive film 20 a is removed to expose the first electrode pad 223 and the second electrode pad 225 of the light emitting unit 220 . So far, the fabrication of the light emitting device 200d has been completed. It should be noted that, for convenience of description, FIG. 19E only schematically shows one light emitting device 200d.

请同时参考图19E、图20A与图20B,其中需说明的是,图19E所示出的是沿着图20A中的线Y-Y所示出的剖面示意图。本实施例的发光装置200d与图17E中的发光装置200a相似,差异之处在于:二个发光单元220之间所暴露出的波长转换胶层210’还具有第二沟槽C2’,其中第二沟槽C2’从高浓度荧光胶层214’延伸至部分低浓度荧光胶层212’。也就是说,二个发光单元220是配置在一个连续的波长转换胶层210’上,因此发光单元220具有同一个发光面,且低浓度荧光胶层212’的边缘与反射保护件240的边缘切齐。因此,发光单元220所发出的光通过低浓度荧光胶层212’的导引,可使得本实施例的发光装置200d可具有较大的发光面积与较佳的发光均匀性。Please refer to FIG. 19E , FIG. 20A and FIG. 20B at the same time. It should be noted that FIG. 19E shows a schematic cross-sectional view along the line Y-Y in FIG. 20A . The light emitting device 200d of this embodiment is similar to the light emitting device 200a shown in FIG. The second groove C2' extends from the high-concentration fluorescent glue layer 214' to a part of the low-concentration fluorescent glue layer 212'. That is to say, the two light-emitting units 220 are arranged on a continuous wavelength conversion adhesive layer 210 ′, so the light-emitting units 220 have the same light-emitting surface, and the edge of the low-concentration fluorescent adhesive layer 212 ′ and the edge of the reflective protection member 240 Qie Qi. Therefore, the light emitted by the light-emitting unit 220 is guided by the low-concentration fluorescent adhesive layer 212', so that the light-emitting device 200d of this embodiment can have a larger light-emitting area and better light-emitting uniformity.

特别是,进行第一次切割程序时,在图20A中线X-X的方向以及线Y-Y的方向所切割的深度实质上相同。也就是说,请参考图20B,在线X-X方向的剖面图上,低浓度荧光胶层212’的平板部212a’具有一厚度T,请参考图19E,而在线Y-Y方向的剖面图上,低浓度荧光胶层212’的平板部212a’同样具有厚度T。较佳地,厚度T例如是介于20微米至50微米之间。Especially, when performing the first cutting procedure, the depths cut in the direction of line X-X and the direction of line Y-Y in FIG. 20A are substantially the same. That is to say, please refer to FIG. 20B, on the cross-sectional view of the line X-X direction, the flat portion 212a' of the low-concentration fluorescent glue layer 212' has a thickness T, please refer to FIG. 19E, and on the cross-sectional view of the line Y-Y direction, the low-concentration fluorescent adhesive layer The flat portion 212a' of the fluorescent adhesive layer 212' also has a thickness T. As shown in FIG. Preferably, the thickness T is, for example, between 20 microns and 50 microns.

当然,在其他实施例中,在进行第一次切割程序时,在不同方向的切割时,低浓度荧光胶层212’的平板部212a’也可有不同的厚度。图21A示出为本发明的另一实施例的一种发光装置的立体示意图。图21B与图21C分别示出为沿图21A的线X’-X’以及线Y’-Y’的剖面示意图。请同时参考图21A、图21B与图21C,进行第一次切割程序时,在图21A中线X’-X’的方向与线Y’-Y’的方向所切割的深度不同,而导致波长转换胶层210’还包括未被该反射保护件240包覆的一第一暴露侧部与一第二暴露侧部,第一暴露侧部与第二暴露侧部不平行,且波长转换胶层210’于第一暴露侧部处的厚度不同于波长转换胶层210’于第二暴露侧部处的厚度。详细来说,低浓度荧光胶层212”的平板部212a”于线X’-X’的方向上具有一第一厚度T1,而低浓度荧光胶层212”的平板部212a”于Y’-Y’的方向D2上具有一第二厚度T2,而第一厚度T1不同于第二厚度T2。较佳地,第一厚度T1例如是介于50微米至200微米之间,而第二厚度T2例如是介于20微米至50微米之间。Certainly, in other embodiments, when performing the first cutting process, the flat plate portion 212a' of the low-concentration fluorescent adhesive layer 212' may also have different thicknesses when cutting in different directions. Fig. 21A is a schematic perspective view of a light emitting device according to another embodiment of the present invention. 21B and 21C are schematic cross-sectional views along the line X'-X' and line Y'-Y' of FIG. 21A, respectively. Please refer to FIG. 21A, FIG. 21B and FIG. 21C at the same time. When performing the first cutting procedure, the cutting depths in the direction of the line X'-X' and the direction of the line Y'-Y' in FIG. 21A are different, resulting in wavelength conversion The adhesive layer 210 ′ also includes a first exposed side portion and a second exposed side portion not covered by the reflective protection member 240 , the first exposed side portion and the second exposed side portion are not parallel, and the wavelength conversion adhesive layer 210 'The thickness at the first exposed side is different from the thickness of the wavelength conversion adhesive layer 210' at the second exposed side. In detail, the flat part 212a" of the low-concentration fluorescent glue layer 212" has a first thickness T1 in the direction of the line X'-X', and the flat part 212a" of the low-concentration fluorescent glue layer 212" has a thickness T1 in the direction of Y'-X'. The Y' direction D2 has a second thickness T2, and the first thickness T1 is different from the second thickness T2. Preferably, the first thickness T1 is, for example, between 50 micrometers and 200 micrometers, and the second thickness T2 is, for example, between 20 micrometers and 50 micrometers.

由于本实施例的低浓度荧光胶层212”的平板部212a”于X’-X’的方向上与Y’-Y’的方向上分别具有不同的第一厚度T1与第二厚度T2,因此可有效降低相邻两发光单元220之间因暗带而产生亮度降低的情况,进而可提高发光装置200e的发光均匀性。此外,值得一提的是,以线Y’-Y’的方向来举例说明,当低浓度荧光胶层212”’的平板部212a”的厚度T2例如由0.04毫米(mm)提高至0.2毫米(mm)时,发光单元220的出光角度也可由原来的120度增加至130度,意即发光单元220的出光角度可增加10度。简言之,低浓度荧光胶层212”’的平板部212a”的厚度大小与发光单元220的出光角度成正相关。Since the flat portion 212a" of the low-concentration fluorescent glue layer 212" in this embodiment has a different first thickness T1 and a second thickness T2 in the direction of X'-X' and the direction of Y'-Y', respectively, It can effectively reduce the brightness decrease caused by the dark band between two adjacent light emitting units 220, and further improve the light emitting uniformity of the light emitting device 200e. In addition, it is worth mentioning that, taking the direction of the line Y'-Y' as an example, when the thickness T2 of the flat part 212a" of the low-concentration fluorescent glue layer 212"' is increased from 0.04 millimeters (mm) to 0.2 millimeters ( mm), the light emitting angle of the light emitting unit 220 can also be increased from the original 120 degrees to 130 degrees, that is, the light emitting angle of the light emitting unit 220 can be increased by 10 degrees. In short, the thickness of the flat part 212a" of the low-concentration fluorescent adhesive layer 212"' is positively correlated with the light emitting angle of the light emitting unit 220.

综上所述,由于本发明的反射保护件包覆发光单元的侧表面,且反射保护件的底面暴露出发光单元的第一电极垫的第一底面以及第二电极垫的第二底面。因此,本发明的发光装置不但不需要使用现有的承载支架来支撑及固定发光单元,而可有效减少封装厚度以及制作成本,同时,也可有效提高发光单元的正向出光效率。In summary, since the reflective protector of the present invention covers the side surfaces of the light-emitting unit, and the bottom of the reflective protector exposes the first bottom of the first electrode pad and the second bottom of the second electrode pad of the light-emitting unit. Therefore, the light-emitting device of the present invention not only does not need to use the existing supporting frame to support and fix the light-emitting unit, but can effectively reduce the packaging thickness and manufacturing cost, and at the same time, can effectively improve the forward light output efficiency of the light-emitting unit.

此外,由于本发明的发光装置中的这些发光单元仅与一个波长转换胶层相接触,意即这些发光单元具有同一个发光面,且低浓度荧光胶层的边缘与反射保护件的边缘切齐。因此,发光单元所发出的光通过低浓度荧光胶层的导引,可使得本发明的发光装置可具有较大的发光角度与较佳的发光均匀性。此外,反射保护件包覆发光单元的侧表面且暴露出发光单元的第一电极垫以及第二电极垫。因此,本发明的发光装置不需要使用现有的承载支架来支撑及固定发光单元,可有效较少封装厚度以及制作成本,同时,也可有效提高发光单元的正向出光效率。In addition, since these light-emitting units in the light-emitting device of the present invention are only in contact with one wavelength conversion adhesive layer, it means that these light-emitting units have the same light-emitting surface, and the edges of the low-concentration fluorescent adhesive layer are aligned with the edges of the reflective protection . Therefore, the light emitted by the light-emitting unit is guided by the low-concentration fluorescent adhesive layer, so that the light-emitting device of the present invention can have a larger light-emitting angle and better light-emitting uniformity. In addition, the reflective protection member covers the side surface of the light emitting unit and exposes the first electrode pad and the second electrode pad of the light emitting unit. Therefore, the light-emitting device of the present invention does not need to use the existing supporting frame to support and fix the light-emitting unit, which can effectively reduce the packaging thickness and manufacturing cost, and can also effectively improve the forward light output efficiency of the light-emitting unit.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (7)

1.一种发光装置的制作方法,其特征在于,包括:1. A method for manufacturing a light emitting device, comprising: 提供波长转换层;providing a wavelength conversion layer; 将多个发光单元间隔排列地配置在所述波长转换层上,并暴露出每一发光单元的两个电极垫;arranging a plurality of light-emitting units at intervals on the wavelength conversion layer, and exposing two electrode pads of each light-emitting unit; 通过移除所述波长转换层的一部分在所述波长转换层上形成多个沟槽,其中所述沟槽位于所述发光单元之间,并且每一沟槽的深度小于所述波长转换层的厚度;A plurality of grooves are formed on the wavelength conversion layer by removing a part of the wavelength conversion layer, wherein the grooves are located between the light emitting units, and each groove has a depth smaller than that of the wavelength conversion layer. thickness; 形成反射保护件于所述波长转换层上以及在所述发光单元间,且所述反射保护件填入所述沟槽中,其中所述反射保护件暴露出所述发光单元的所述电极垫;以及forming a reflective protector on the wavelength conversion layer and between the light emitting units, and filling the groove with the reflective protector, wherein the reflective protector exposes the electrode pads of the light emitting unit ;as well as 沿着所述沟槽通过切割所述波长转换层和所述反射保护件进行切割程序,以形成多个发光装置,其中每一发光装置的侧表面暴露出所述波长转换层的一部分轮廓,以及以所述反射保护件的一部分填充的每一沟槽的轮廓。performing a cutting process by cutting the wavelength conversion layer and the reflection protection member along the groove to form a plurality of light emitting devices, wherein a side surface of each light emitting device exposes a part of the outline of the wavelength conversion layer, and The outline of each trench filled with a portion of the reflective protector. 2.根据权利要求1所述的发光装置的制作方法,其特征在于,每一沟槽的所述深度至少为所述波长转换层的所述厚度的一半。2. The manufacturing method of a light emitting device according to claim 1, wherein the depth of each groove is at least half of the thickness of the wavelength conversion layer. 3.根据权利要求1所述的发光装置的制作方法,其特征在于,还包括:3. The manufacturing method of the light emitting device according to claim 1, further comprising: 在将所述发光单元间隔排列地配置在所述波长转换层上之后,在所述波长转换层上形成透光层。After the light-emitting units are arranged on the wavelength conversion layer at intervals, a light-transmitting layer is formed on the wavelength conversion layer. 4.根据权利要求1所述的发光装置的制作方法,其特征在于,还包括:4. The manufacturing method of the light emitting device according to claim 1, further comprising: 在将所述发光单元间隔排列地配置在所述波长转换层上之前,在所述波长转换层上形成透光层。Before arranging the light-emitting units at intervals on the wavelength conversion layer, a light-transmitting layer is formed on the wavelength conversion layer. 5.根据权利要求1所述的发光装置的制作方法,其特征在于,所述反射保护件还包括与所述发光单元接触的反射面。5 . The manufacturing method of a light emitting device according to claim 1 , wherein the reflective protection member further comprises a reflective surface in contact with the light emitting unit. 6 . 6.根据权利要求5所述的发光装置的制作方法,其特征在于,所述反射保护件的所述反射面为平面或曲面。6 . The manufacturing method of the light emitting device according to claim 5 , wherein the reflective surface of the reflective protection member is a plane or a curved surface. 6 . 7.根据权利要求1所述的发光装置的制作方法,其特征在于,所述波长转换层还包括低浓度荧光层以及高浓度荧光层,所述发光单元配置在所述高浓度荧光层上。7 . The manufacturing method of a light-emitting device according to claim 1 , wherein the wavelength conversion layer further comprises a low-concentration fluorescent layer and a high-concentration fluorescent layer, and the light-emitting unit is disposed on the high-concentration fluorescent layer.
CN201610293182.5A 2014-05-14 2016-05-05 Light emitting device and manufacturing method thereof Active CN106129231B (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201911019739.6A CN110767793A (en) 2015-05-05 2016-05-05 Light emitting device and method for manufacturing the same
US15/268,654 US9997676B2 (en) 2014-05-14 2016-09-19 Light emitting device and manufacturing method thereof
US15/788,757 US10439111B2 (en) 2014-05-14 2017-10-19 Light emitting device and manufacturing method thereof
US16/004,445 US10910523B2 (en) 2014-05-14 2018-06-11 Light emitting device
US16/595,414 US10804444B2 (en) 2014-05-14 2019-10-07 Light-emitting device and manufacturing method thereof
US17/164,725 US20210159369A1 (en) 2014-05-14 2021-02-01 Light emitting device
US17/848,408 US20230006109A1 (en) 2014-05-14 2022-06-24 Light emitting device and manufacturing method thereof

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201562157450P 2015-05-05 2015-05-05
US62/157450 2015-05-05
US14/711,798 US20150333227A1 (en) 2014-05-14 2015-05-14 Light emitting device package structure and manufacturing method thereof
US14/711798 2015-05-14
US201562220249P 2015-09-18 2015-09-18
US62/220249 2015-09-18
US201562236150P 2015-10-02 2015-10-02
US62/236150 2015-10-02
US201562245247P 2015-10-22 2015-10-22
US62/245247 2015-10-22
US201562262876P 2015-12-03 2015-12-03
US62/262876 2015-12-03
TW105100499 2016-01-08
TW105100499 2016-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201911019739.6A Division CN110767793A (en) 2015-05-05 2016-05-05 Light emitting device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN106129231A CN106129231A (en) 2016-11-16
CN106129231B true CN106129231B (en) 2019-11-22

Family

ID=57269787

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610293182.5A Active CN106129231B (en) 2014-05-14 2016-05-05 Light emitting device and manufacturing method thereof
CN201911019739.6A Pending CN110767793A (en) 2015-05-05 2016-05-05 Light emitting device and method for manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911019739.6A Pending CN110767793A (en) 2015-05-05 2016-05-05 Light emitting device and method for manufacturing the same

Country Status (1)

Country Link
CN (2) CN106129231B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267914B (en) * 2016-12-30 2022-01-11 中强光电股份有限公司 Wavelength conversion device and projector thereof
CN107121841B (en) * 2017-05-04 2018-09-11 深圳市华星光电技术有限公司 It is a kind of for the light conversion film of backlight module, backlight module and display equipment
CN108987555A (en) * 2017-06-01 2018-12-11 晶能光电(江西)有限公司 A kind of white chip preparation method
CN108987549A (en) * 2017-06-01 2018-12-11 晶能光电(江西)有限公司 A kind of white chip preparation method
CN108987556A (en) * 2017-06-01 2018-12-11 晶能光电(江西)有限公司 A kind of white chip
CN107482096B (en) * 2017-08-11 2019-04-09 厦门市三安光电科技有限公司 A light-emitting device and its manufacturing method
CN109427950A (en) * 2017-08-21 2019-03-05 晶能光电(江西)有限公司 White chip and preparation method thereof
CN109755220B (en) * 2017-11-05 2022-09-02 新世纪光电股份有限公司 Light emitting device and method for manufacturing the same
CN109980067A (en) * 2017-12-27 2019-07-05 晶能光电(江西)有限公司 High photosynthetic efficiency white chip and preparation method thereof
CN109980065B (en) * 2017-12-27 2024-08-27 晶能光电股份有限公司 White light LED chip and preparation method thereof
CN110364612B (en) * 2018-04-11 2024-12-10 日亚化学工业株式会社 Light-emitting device
US20200083419A1 (en) * 2018-08-17 2020-03-12 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
CN111106228A (en) * 2018-10-26 2020-05-05 江西省晶能半导体有限公司 LED lamp bead preparation method
CN109360493A (en) * 2018-11-21 2019-02-19 厦门天马微电子有限公司 A kind of backlight module, display panel and electronic equipment
CN109273579B (en) * 2018-11-22 2022-04-22 江西省晶能半导体有限公司 Preparation method of LED lamp beads
CN109830474B (en) * 2018-12-17 2023-07-11 江西省晶能半导体有限公司 Preparation method of colored light LED chip and preparation method of colored light LED lamp beads
CN111463193B (en) 2019-01-21 2021-11-12 光宝光电(常州)有限公司 Chip-level light-emitting diode packaging structure
CN112310054A (en) * 2019-07-30 2021-02-02 中强光电股份有限公司 Light source module
CN111883440B (en) * 2020-07-30 2022-10-18 青岛歌尔微电子研究院有限公司 Glue filling method, module packaging structure and electronic equipment
CN112133814A (en) * 2020-09-16 2020-12-25 弘凯光电(深圳)有限公司 LED package monomer, key device and LED package method
CN112490224B (en) * 2020-11-27 2025-04-08 广东晶科电子股份有限公司 Light-emitting device and manufacturing method
CN112951970B (en) * 2020-12-31 2023-12-08 广东晶科电子股份有限公司 Manufacturing method of light-emitting device and light-emitting device
CN116169133B (en) * 2022-12-01 2025-07-18 华引芯(武汉)科技有限公司 A substrate-free CSP packaging method and light source for multi-color light source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155699A (en) * 1999-03-15 2000-12-05 Agilent Technologies, Inc. Efficient phosphor-conversion led structure
US7045828B2 (en) * 2001-08-09 2006-05-16 Matsushita Electric Industrial Co., Ltd. Card-type LED illumination source
CN102347423A (en) * 2010-07-27 2012-02-08 日东电工株式会社 Component for light-emitting device, light-emitting device and producing method thereof
CN103022010A (en) * 2011-09-21 2013-04-03 西铁城电子株式会社 Light-emitting device, lighting device and method of manufacturing the light-emitting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI244228B (en) * 2005-02-03 2005-11-21 United Epitaxy Co Ltd Light emitting device and manufacture method thereof
JP5482378B2 (en) * 2009-04-20 2014-05-07 日亜化学工業株式会社 Light emitting device
JP5572013B2 (en) * 2010-06-16 2014-08-13 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
US9041046B2 (en) * 2011-03-15 2015-05-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and apparatus for a light source
JP5680472B2 (en) * 2011-04-22 2015-03-04 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
US8957429B2 (en) * 2012-02-07 2015-02-17 Epistar Corporation Light emitting diode with wavelength conversion layer
DE102012107290A1 (en) * 2012-08-08 2014-02-13 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device, conversion agent platelets and method of making a conversion agent platelet
JP2014112669A (en) * 2012-11-12 2014-06-19 Citizen Holdings Co Ltd Semiconductor light-emitting device and manufacturing method of the same
CN203367354U (en) * 2013-07-11 2013-12-25 江阴长电先进封装有限公司 Package structure of thin wafer level LED

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155699A (en) * 1999-03-15 2000-12-05 Agilent Technologies, Inc. Efficient phosphor-conversion led structure
US7045828B2 (en) * 2001-08-09 2006-05-16 Matsushita Electric Industrial Co., Ltd. Card-type LED illumination source
CN102347423A (en) * 2010-07-27 2012-02-08 日东电工株式会社 Component for light-emitting device, light-emitting device and producing method thereof
CN103022010A (en) * 2011-09-21 2013-04-03 西铁城电子株式会社 Light-emitting device, lighting device and method of manufacturing the light-emitting device

Also Published As

Publication number Publication date
CN110767793A (en) 2020-02-07
CN106129231A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106129231B (en) Light emitting device and manufacturing method thereof
US20210159369A1 (en) Light emitting device
US10804444B2 (en) Light-emitting device and manufacturing method thereof
CN107968141B (en) Light-emitting device and method of making the same
CN105098027A (en) Light emitting element packaging structure and manufacturing method thereof
CN111129255B (en) Light emitting diode
CN110649142B (en) light emitting device
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
JP2019102614A (en) Light-emitting device and manufacturing method thereof
JP6024352B2 (en) Light emitting device and manufacturing method thereof
CN104953016A (en) Semiconductor light emitting device
US11329203B2 (en) Light emitting device including covering member and optical member
US9966502B2 (en) Light-emitting device
US11069843B2 (en) Light-emitting device
TWI717347B (en) Manufacturing method of light emitting device
JP2012248795A (en) Semiconductor light-emitting element and method of manufacturing the same
CN104953006A (en) Semiconductor light emitting device
CN103199176A (en) LED package substrate and method of manufacturing led package
CN106549094A (en) Light emitting device package structure
KR102634692B1 (en) Semiconductor light emitting device package
JP2020053504A (en) Light emitting device and method of manufacturing the same
TWI710146B (en) Light emitting device package structure
TWI786500B (en) Light emitting device and manufacturing method thereof
TW202447924A (en) Micro light-emitting diode package structure
CN103367614A (en) Packaging Structure and Manufacturing Method of Light Emitting Diode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231218

Address after: Tokushima County, Japan

Patentee after: NICHIA Corp.

Address before: Tainan, Taiwan, China Science Southern Industrial Park, No. three, Dali Road, No. 5

Patentee before: Genesis Photonics Inc.

TR01 Transfer of patent right